1
|
Liu Y, Huang C, Xiong Y, Wang X, Shen Z, Zhang M, Gao N, Wang N, Du G, Zhan H. The causal relationship between human brain morphometry and knee osteoarthritis: a two-sample Mendelian randomization study. Front Genet 2024; 15:1420134. [PMID: 39040992 PMCID: PMC11260717 DOI: 10.3389/fgene.2024.1420134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background Knee Osteoarthritis (KOA) is a prevalent and debilitating condition affecting millions worldwide, yet its underlying etiology remains poorly understood. Recent advances in neuroimaging and genetic methodologies offer new avenues to explore the potential neuropsychological contributions to KOA. This study aims to investigate the causal relationships between brain-wide morphometric variations and KOA using a genetic epidemiology approach. Method Leveraging data from 36,778 UK Biobank participants for human brain morphometry and 487,411 UK Biobank participants for KOA, this research employed a two-sample Mendelian Randomization (TSMR) approach to explore the causal effects of 83 brain-wide volumes on KOA. The primary method of analysis was the Inverse Variance Weighted (IVW) and Wald Ratio (WR) method, complemented by MR Egger and IVW methods for heterogeneity and pleiotropy assessments. A significance threshold of p < 0.05 was set to determine causality. The analysis results were assessed for heterogeneity using the MR Egger and IVW methods. Brain-wide volumes with Q_pval < 0.05 were considered indicative of heterogeneity. The MR Egger method was employed to evaluate the pleiotropy of the analysis results, with brain-wide volumes having a p-value < 0.05 considered suggestive of pleiotropy. Results Our findings revealed significant causal associations between KOA and eight brain-wide volumes: Left parahippocampal volume, Right posterior cingulate volume, Left transverse temporal volume, Left caudal anterior cingulate volume, Right paracentral volume, Left paracentral volume, Right lateral orbitofrontal volume, and Left superior temporal volume. These associations remained robust after tests for heterogeneity and pleiotropy, underscoring their potential role in the pathogenesis of KOA. Conclusion This study provides novel evidence of the causal relationships between specific brain morphometries and KOA, suggesting that neuroanatomical variations might contribute to the risk and development of KOA. These findings pave the way for further research into the neurobiological mechanisms underlying KOA and may eventually lead to the development of new intervention strategies targeting these neuropsychological pathways.
Collapse
Affiliation(s)
- Yongming Liu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chao Huang
- Yunyang County People’s Hospital Rehabilitation Medicine Department, Chongqing, China
| | - Yizhe Xiong
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhibi Shen
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mingcai Zhang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ningyang Gao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Nan Wang
- Department of Traditional Chinese Medicine, Shanghai Yangzhi Rehabilitation Hospital (Yangzhi Affiliated Rehabilitation Hospital), School of Medicine, Tongji University, Shanghai, China
| | - Guoqing Du
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Zhan
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Dupuis A, Chen Y, Hansen M, Chow K, Sun JE, Badve C, Ma D, Griswold MA, Boyacioglu R. Quantifying 3D MR fingerprinting (3D-MRF) reproducibility across subjects, sessions, and scanners automatically using MNI atlases. Magn Reson Med 2024; 91:2074-2088. [PMID: 38192239 PMCID: PMC10950529 DOI: 10.1002/mrm.29983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Quantitative MRI techniques such as MR fingerprinting (MRF) promise more objective and comparable measurements of tissue properties at the point-of-care than weighted imaging. However, few direct cross-modal comparisons of MRF's repeatability and reproducibility versus weighted acquisitions have been performed. This work proposes a novel fully automated pipeline for quantitatively comparing cross-modal imaging performance in vivo via atlas-based sampling. METHODS We acquire whole-brain 3D-MRF, turbo spin echo, and MPRAGE sequences three times each on two scanners across 10 subjects, for a total of 60 multimodal datasets. The proposed automated registration and analysis pipeline uses linear and nonlinear registration to align all qualitative and quantitative DICOM stacks to Montreal Neurological Institute (MNI) 152 space, then samples each dataset's native space through transformation inversion to compare performance within atlas regions across subjects, scanners, and repetitions. RESULTS Voxel values within MRF-derived maps were found to be more repeatable (σT1 = 1.90, σT2 = 3.20) across sessions than vendor-reconstructed MPRAGE (σT1w = 6.04) or turbo spin echo (σT2w = 5.66) images. Additionally, MRF was found to be more reproducible across scanners (σT1 = 2.21, σT2 = 3.89) than either qualitative modality (σT1w = 7.84, σT2w = 7.76). Notably, differences between repeatability and reproducibility of in vivo MRF were insignificant, unlike the weighted images. CONCLUSION MRF data from many sessions and scanners can potentially be treated as a single dataset for harmonized analysis or longitudinal comparisons without the additional regularization steps needed for qualitative modalities.
Collapse
Affiliation(s)
- Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, University Hospitals, Cleveland, Ohio, USA
| | | | - Kelvin Chow
- Siemens Medical Solutions USA, Inc, Chicago, Illinois, USA
| | - Jessie E.P. Sun
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chaitra Badve
- Department of Radiology, University Hospitals, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rasim Boyacioglu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Zhao W, Hu Z, Kazerooni AF, Körzdörfer G, Nittka M, Davatzikos C, Viswanath SE, Wang X, Badve C, Ma D. Physics-Informed Discretization for Reproducible and Robust Radiomic Feature Extraction Using Quantitative MRI. Invest Radiol 2024; 59:359-371. [PMID: 37812483 PMCID: PMC10997475 DOI: 10.1097/rli.0000000000001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Given the limited repeatability and reproducibility of radiomic features derived from weighted magnetic resonance imaging (MRI), there may be significant advantages to using radiomics in conjunction with quantitative MRI. This study introduces a novel physics-informed discretization (PID) method for reproducible radiomic feature extraction and evaluates its performance using quantitative MRI sequences including magnetic resonance fingerprinting (MRF) and apparent diffusion coefficient (ADC) mapping. MATERIALS AND METHODS A multiscanner, scan-rescan dataset comprising whole-brain 3D quantitative (MRF T1, MRF T2, and ADC) and weighted MRI (T1w MPRAGE, T2w SPACE, and T2w FLAIR) from 5 healthy subjects was prospectively acquired. Subjects underwent 2 repeated acquisitions on 3 distinct 3 T scanners each, for a total of 6 scans per subject (30 total scans). First-order statistical (n = 23) and second-order texture (n = 74) radiomic features were extracted from 56 brain tissue regions of interest using the proposed PID method (for quantitative MRI) and conventional fixed bin number (FBN) discretization (for quantitative MRI and weighted MRI). Interscanner radiomic feature reproducibility was measured using the intraclass correlation coefficient (ICC), and the effect of image sequence (eg, MRF T1 vs T1w MPRAGE), as well as image discretization method (ie, PID vs FBN), on radiomic feature reproducibility was assessed using repeated measures analysis of variance. The robustness of PID and FBN discretization to segmentation error was evaluated by simulating segmentation differences in brainstem regions of interest. Radiomic features with ICCs greater than 0.75 following simulated segmentation were determined to be robust to segmentation. RESULTS First-order features demonstrated higher reproducibility in quantitative MRI than weighted MRI sequences, with 30% (n = 7/23) features being more reproducible in MRF T1 and MRF T2 than weighted MRI. Gray level co-occurrence matrix (GLCM) texture features extracted from MRF T1 and MRF T2 were significantly more reproducible using PID compared with FBN discretization; for all quantitative MRI sequences, PID yielded the highest number of texture features with excellent reproducibility (ICC > 0.9). Comparing texture reproducibility of quantitative and weighted MRI, a greater proportion of MRF T1 (n = 225/370, 61%) and MRF T2 (n = 150/370, 41%) texture features had excellent reproducibility (ICC > 0.9) compared with T1w MPRAGE (n = 148/370, 40%), ADC (n = 115/370, 32%), T2w SPACE (n = 98/370, 27%), and FLAIR (n = 102/370, 28%). Physics-informed discretization was also more robust than FBN discretization to segmentation error, as 46% (n = 103/222, 46%) of texture features extracted from quantitative MRI using PID were robust to simulated 6 mm segmentation shift compared with 19% (n = 42/222, 19%) of weighted MRI texture features extracted using FBN discretization. CONCLUSIONS The proposed PID method yields radiomic features extracted from quantitative MRI sequences that are more reproducible and robust than radiomic features extracted from weighted MRI using conventional (FBN) discretization approaches. Quantitative MRI sequences also demonstrated greater scan-rescan robustness and first-order feature reproducibility than weighted MRI.
Collapse
Affiliation(s)
- Walter Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Zheyuan Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Satish E. Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio 44106, USA
| | - Chaitra Badve
- Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
4
|
Donatelli G, Cecchi P, Migaleddu G, Cencini M, Frumento P, D'Amelio C, Peretti L, Buonincontri G, Pasquali L, Tosetti M, Cosottini M, Costagli M. Quantitative T1 mapping detects blood-brain barrier breakdown in apparently non-enhancing multiple sclerosis lesions. Neuroimage Clin 2023; 40:103509. [PMID: 37717382 PMCID: PMC10514220 DOI: 10.1016/j.nicl.2023.103509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVES The disruption of the blood-brain barrier (BBB) is a key and early feature in the pathogenesis of demyelinating multiple sclerosis (MS) lesions and has been neuropathologically demonstrated in both active and chronic plaques. The local overt BBB disruption in acute demyelinating lesions is captured as signal hyperintensity in post-contrast T1-weighted images because of the contrast-related shortening of the T1 relaxation time. On the contrary, the subtle BBB disruption in chronic lesions is not visible at conventional radiological evaluation but it might be of clinical relevance. Indeed, persistent, subtle BBB leakage might be linked to low-grade inflammation and plaque evolution. Here we hypothesised that 3D Quantitative Transient-state Imaging (QTI) was able to reveal and measure T1 shortening (ΔT1) reflecting small amounts of contrast media leakage in apparently non-enhancing lesions (ANELs). MATERIALS AND METHODS Thirty-four patients with relapsing remitting MS were included in the study. All patients underwent a 3 T MRI exam of the brain including conventional sequences and QTI acquisitions (1.1 mm isotropic voxel) performed both before and after contrast media administration. For each patient, a ΔT1 map was obtained via voxel-wise subtraction of pre- and post- contrast QTI-derived T1 maps. ΔT1 values measured in ANELs were compared with those recorded in enhancing lesions and in the normal appearing white matter. A reference distribution of ΔT1 in the white matter was obtained from datasets acquired in 10 non-MS patients with unrevealing MR imaging. RESULTS Mean ΔT1 in ANELs (57.45 ± 48.27 ms) was significantly lower than in enhancing lesions (297.71 ± 177.52 ms; p < 0. 0001) and higher than in the normal appearing white matter (36.57 ± 10.53 ms; p < 0.005). Fifty-two percent of ANELs exhibited ΔT1 higher than those observed in the white matter of non-MS patients. CONCLUSIONS QTI-derived quantitative ΔT1 mapping enabled to measure contrast-related T1 shortening in ANELs. ANELs exhibiting ΔT1 values that deviate from the reference distribution in non-MS patients may indicate persistent, subtle, BBB disruption. Access to this information may be proved useful to better characterise pathology and objectively monitor disease activity and response to therapy.
Collapse
Affiliation(s)
- Graziella Donatelli
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | - Paolo Cecchi
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Imago7 Research Foundation, Pisa, Italy
| | | | - Matteo Cencini
- National Institute for Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Paolo Frumento
- Department of Political Sciences, University of Pisa, Pisa, Italy
| | - Claudio D'Amelio
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Peretti
- Imago7 Research Foundation, Pisa, Italy; Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Guido Buonincontri
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Livia Pasquali
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Mirco Cosottini
- Neuroradiology Unit, Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Mauro Costagli
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Gaur S, Panda A, Fajardo JE, Hamilton J, Jiang Y, Gulani V. Magnetic Resonance Fingerprinting: A Review of Clinical Applications. Invest Radiol 2023; 58:561-577. [PMID: 37026802 PMCID: PMC10330487 DOI: 10.1097/rli.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Magnetic resonance fingerprinting (MRF) is an approach to quantitative magnetic resonance imaging that allows for efficient simultaneous measurements of multiple tissue properties, which are then used to create accurate and reproducible quantitative maps of these properties. As the technique has gained popularity, the extent of preclinical and clinical applications has vastly increased. The goal of this review is to provide an overview of currently investigated preclinical and clinical applications of MRF, as well as future directions. Topics covered include MRF in neuroimaging, neurovascular, prostate, liver, kidney, breast, abdominal quantitative imaging, cardiac, and musculoskeletal applications.
Collapse
Affiliation(s)
- Sonia Gaur
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Ananya Panda
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Jesse Hamilton
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Yun Jiang
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Vikas Gulani
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
6
|
Wicaksono KP, Fushimi Y, Nakajima S, Sakata A, Okuchi S, Hinoda T, Oshima S, Otani S, Tagawa H, Urushibata Y, Nakamoto Y. Accuracy, repeatability, and reproducibility of T 1 and T 2 relaxation times measurement by 3D magnetic resonance fingerprinting with different dictionary resolutions. Eur Radiol 2023; 33:2895-2904. [PMID: 36422648 PMCID: PMC10017611 DOI: 10.1007/s00330-022-09244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To assess the accuracy, repeatability, and reproducibility of T1 and T2 relaxation time measurements by three-dimensional magnetic resonance fingerprinting (3D MRF) using various dictionary resolutions. METHODS The ISMRM/NIST phantom was scanned daily for 10 days in two 3 T MR scanners using a 3D MRF sequence reconstructed using four dictionaries with varying step sizes and one dictionary with wider ranges. Thirty-nine healthy volunteers were enrolled: 20 subjects underwent whole-brain MRF scans in both scanners and the rest in one scanner. ROI/VOI analyses were performed on phantom and brain MRF maps. Accuracy, repeatability, and reproducibility metrics were calculated. RESULTS In the phantom study, all dictionaries showed high T1 linearity to the reference values (R2 > 0.99), repeatability (CV < 3%), and reproducibility (CV < 3%) with lower linearity (R2 > 0.98), repeatability (CV < 6%), and reproducibility (CV ≤ 4%) for T2 measurement. The volunteer study demonstrated high T1 reproducibility of within-subject CV (wCV) < 4% by all dictionaries with the same ranges, both in the brain parenchyma and CSF. Yet, reproducibility was moderate for T2 measurement (wCV < 8%). In CSF measurement, dictionaries with a smaller range showed a seemingly better reproducibility (T1, wCV 3%; T2, wCV 8%) than the much wider range dictionary (T1, wCV 5%; T2, wCV 13%). Truncated CSF relaxometry values were evident in smaller range dictionaries. CONCLUSIONS The accuracy, repeatability, and reproducibility of 3D MRF across various dictionary resolutions were high for T1 and moderate for T2 measurements. A lower-resolution dictionary with a well-defined range may be adequate, thus significantly reducing the computational load. KEY POINTS • A lower-resolution dictionary with a well-defined range may be sufficient for 3D MRF reconstruction. • CSF relaxation times might be underestimated due to truncation by the upper dictionary range. • Dictionary with a higher upper range might be advisable, especially for CSF evaluation and elderly subjects whose perivascular spaces are more prominent.
Collapse
Affiliation(s)
- Krishna Pandu Wicaksono
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sonoko Oshima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Tagawa
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
7
|
Choi JY, Hu S, Su TY, Murakami H, Tang Y, Blümcke I, Najm I, Sakaie K, Jones S, Griswold M, Wang ZI, Ma D. Normative quantitative relaxation atlases for characterization of cortical regions using magnetic resonance fingerprinting. Cereb Cortex 2023; 33:3562-3574. [PMID: 35945683 PMCID: PMC10068276 DOI: 10.1093/cercor/bhac292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Quantitative magnetic resonance (MR) has been used to study cyto- and myelo-architecture of the human brain non-invasively. However, analyzing brain cortex using high-resolution quantitative MR acquisition can be challenging to perform using 3T clinical scanners. MR fingerprinting (MRF) is a highly efficient and clinically feasible quantitative MR technique that simultaneously provides T1 and T2 relaxation maps. Using 3D MRF from 40 healthy subjects (mean age = 25.6 ± 4.3 years) scanned on 3T magnetic resonance imaging, we generated whole-brain gyral-based normative MR relaxation atlases and investigated cortical-region-based T1 and T2 variations. Gender and age dependency of T1 and T2 variations were additionally analyzed. The coefficient of variation of T1 and T2 for each cortical-region was 3.5% and 7.3%, respectively, supporting low variability of MRF measurements across subjects. Significant differences in T1 and T2 were identified among 34 brain regions (P < 0.001), lower in the precentral, postcentral, paracentral lobule, transverse temporal, lateral occipital, and cingulate areas, which contain sensorimotor, auditory, visual, and limbic functions. Significant correlations were identified between age and T1 and T2 values. This study established whole-brain MRF T1 and T2 atlases of healthy subjects using a clinical 3T scanner, which can provide a quantitative and region-specific baseline for future brain studies and pathology detection.
Collapse
Affiliation(s)
- Joon Yul Choi
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
| | - Siyuan Hu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
| | - Ting-Yu Su
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
| | - Hiroatsu Murakami
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
| | - Yingying Tang
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
- Department of Neurology, West China Hospital of Sichuan University, 37 Guoxue Ln, Wuhou District, Chengdu, Sichuan 610041, China
| | - Ingmar Blümcke
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
- Imaging Institute, Cleveland Clinic, 1950 E 89th St U Bldg, Cleveland, OH 44195, United States
| | - Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
| | - Ken Sakaie
- Department of Neuropathology, University of Erlangen, Schlobplatz 4, Erlangen 91054, Germany
| | - Stephen Jones
- Department of Neuropathology, University of Erlangen, Schlobplatz 4, Erlangen 91054, Germany
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, United States
| | - Zhong Irene Wang
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
| |
Collapse
|
8
|
Fujita S, Hagiwara A, Yasaka K, Akai H, Kunimatsu A, Kiryu S, Fukunaga I, Kato S, Akashi T, Kamagata K, Wada A, Abe O, Aoki S. Radiomics with 3-dimensional magnetic resonance fingerprinting: influence of dictionary design on repeatability and reproducibility of radiomic features. Eur Radiol 2022; 32:4791-4800. [PMID: 35304637 PMCID: PMC9213334 DOI: 10.1007/s00330-022-08555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Objectives We aimed to investigate the influence of magnetic resonance fingerprinting (MRF) dictionary design on radiomic features using in vivo human brain scans. Methods Scan-rescans of three-dimensional MRF and conventional T1-weighted imaging were performed on 21 healthy volunteers (9 males and 12 females; mean age, 41.3 ± 14.6 years; age range, 22–72 years). Five patients with multiple sclerosis (3 males and 2 females; mean age, 41.2 ± 7.3 years; age range, 32–53 years) were also included. MRF data were reconstructed using various dictionaries with different step sizes. First- and second-order radiomic features were extracted from each dataset. Intra-dictionary repeatability and inter-dictionary reproducibility were evaluated using intraclass correlation coefficients (ICCs). Features with ICCs > 0.90 were considered acceptable. Relative changes were calculated to assess inter-dictionary biases. Results The overall scan-rescan ICCs of MRF-based radiomics ranged from 0.86 to 0.95, depending on dictionary step size. No significant differences were observed in the overall scan-rescan repeatability of MRF-based radiomic features and conventional T1-weighted imaging (p = 1.00). Intra-dictionary repeatability was insensitive to dictionary step size differences. MRF-based radiomic features varied among dictionaries (overall ICC for inter-dictionary reproducibility, 0.62–0.99), especially when step sizes were large. First-order and gray level co-occurrence matrix features were the most reproducible feature classes among different step size dictionaries. T1 map-derived radiomic features provided higher repeatability and reproducibility among dictionaries than those obtained with T2 maps. Conclusion MRF-based radiomic features are highly repeatable in various dictionary step sizes. Caution is warranted when performing MRF-based radiomics using datasets containing maps generated from different dictionaries. Key Points • MRF-based radiomic features are highly repeatable in various dictionary step sizes. • Use of different MRF dictionaries may result in variable radiomic features, even when the same MRF acquisition data are used. • Caution is needed when performing radiomic analysis using data reconstructed from different dictionaries. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-08555-3.
Collapse
Affiliation(s)
- Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo, 113-8421, Japan. .,Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8654, Japan.
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Koichiro Yasaka
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shiroganedai, Minato, Tokyo, 108-8639, Japan
| | - Hiroyuki Akai
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shiroganedai, Minato, Tokyo, 108-8639, Japan
| | - Akira Kunimatsu
- Department of Radiology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shiroganedai, Minato, Tokyo, 108-8639, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852, Hatakeda, Narita, Chiba, 286-8520, Japan
| | - Issei Fukunaga
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Shimpei Kato
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo, 113-8421, Japan.,Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-8654, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 1-2-1, Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
9
|
Fujita S, Cencini M, Buonincontri G, Takei N, Schulte RF, Fukunaga I, Uchida W, Hagiwara A, Kamagata K, Hagiwara Y, Matsuyama Y, Abe O, Tosetti M, Aoki S. Simultaneous relaxometry and morphometry of human brain structures with 3D magnetic resonance fingerprinting: a multicenter, multiplatform, multifield-strength study. Cereb Cortex 2022; 33:729-739. [PMID: 35271703 PMCID: PMC9890456 DOI: 10.1093/cercor/bhac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Relaxation times and morphological information are fundamental magnetic resonance imaging-derived metrics of the human brain that reflect the status of the underlying tissue. Magnetic resonance fingerprinting (MRF) enables simultaneous acquisition of T1 and T2 maps inherently aligned to the anatomy, allowing whole-brain relaxometry and morphometry in a single scan. In this study, we revealed the feasibility of 3D MRF for simultaneous brain structure-wise morphometry and relaxometry. Comprehensive test-retest scan analyses using five 1.5-T and three 3.0-T systems from a single vendor including different scanner types across 3 institutions demonstrated that 3D MRF-derived morphological information and relaxation times are highly repeatable at both 1.5 T and 3.0 T. Regional cortical thickness and subcortical volume values showed high agreement and low bias across different field strengths. The ability to acquire a set of regional T1, T2, thickness, and volume measurements of neuroanatomical structures with high repeatability and reproducibility facilitates the ability of longitudinal multicenter imaging studies to quantitatively monitor changes associated with underlying pathologies, disease progression, and treatments.
Collapse
Affiliation(s)
- Shohei Fujita
- Corresponding author: Department of Radiology, Juntendo University School of Medicine, 12-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Matteo Cencini
- Imago7 Foundation, Pisa, Italy,IRCCS Stella Maris, Pisa, Italy
| | | | | | | | - Issei Fukunaga
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University, Tokyo, Japan
| | | | - Koji Kamagata
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Yasuhiro Hagiwara
- Department of Biostatistics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Yutaka Matsuyama
- Department of Biostatistics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, The University of Tokyo, Tokyo, Japan
| | - Michela Tosetti
- Imago7 Foundation, Pisa, Italy,IRCCS Stella Maris, Pisa, Italy
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
10
|
Cao X, Liao C, Iyer SS, Wang Z, Zhou Z, Dai E, Liberman G, Dong Z, Gong T, He H, Zhong J, Bilgic B, Setsompop K. Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging. Magn Reson Med 2022; 88:133-150. [PMID: 35199877 DOI: 10.1002/mrm.29194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. RESULTS The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. CONCLUSIONS The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.
Collapse
Affiliation(s)
- Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Siddharth Srinivasan Iyer
- Department of Radiology, Stanford University, Stanford, California, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhixing Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gilad Liberman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ting Gong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Cambridge, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
Jordan SP, Hu S, Rozada I, McGivney DF, Boyacioğlu R, Jacob DC, Huang S, Beverland M, Katzgraber HG, Troyer M, Griswold MA, Ma D. Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired optimization. Proc Natl Acad Sci U S A 2021; 118:e2020516118. [PMID: 34593630 PMCID: PMC8501900 DOI: 10.1073/pnas.2020516118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is a method to extract quantitative tissue properties such as [Formula: see text] and [Formula: see text] relaxation rates from arbitrary pulse sequences using conventional MRI hardware. MRF pulse sequences have thousands of tunable parameters, which can be chosen to maximize precision and minimize scan time. Here, we perform de novo automated design of MRF pulse sequences by applying physics-inspired optimization heuristics. Our experimental data suggest that systematic errors dominate over random errors in MRF scans under clinically relevant conditions of high undersampling. Thus, in contrast to prior optimization efforts, which focused on statistical error models, we use a cost function based on explicit first-principles simulation of systematic errors arising from Fourier undersampling and phase variation. The resulting pulse sequences display features qualitatively different from previously used MRF pulse sequences and achieve fourfold shorter scan time than prior human-designed sequences of equivalent precision in [Formula: see text] and [Formula: see text] Furthermore, the optimization algorithm has discovered the existence of MRF pulse sequences with intrinsic robustness against shading artifacts due to phase variation.
Collapse
Affiliation(s)
| | - Siyuan Hu
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Ignacio Rozada
- Optimization Solutions, 1QBit, Vancouver, BC V6E 4B1, Canada
| | - Debra F McGivney
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Rasim Boyacioğlu
- Radiology Department, Case Western Reserve University, Cleveland, OH 44106
| | - Darryl C Jacob
- Department of Physics and Astronomy, Texas A & M University, College Station, TX 77843
| | - Sherry Huang
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | - Mark A Griswold
- Radiology Department, Case Western Reserve University, Cleveland, OH 44106
| | - Dan Ma
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106;
| |
Collapse
|
12
|
Abstract
Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities. In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.
Collapse
Affiliation(s)
- Hiroyuki Kabasawa
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare
| |
Collapse
|
13
|
Accelerated 3D whole-brain T1, T2, and proton density mapping: feasibility for clinical glioma MR imaging. Neuroradiology 2021; 63:1831-1851. [PMID: 33835238 PMCID: PMC8528802 DOI: 10.1007/s00234-021-02703-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/28/2021] [Indexed: 12/04/2022]
Abstract
Purpose Advanced MRI-based biomarkers offer comprehensive and quantitative information for the evaluation and characterization of brain tumors. In this study, we report initial clinical experience in routine glioma imaging with a novel, fully 3D multiparametric quantitative transient-state imaging (QTI) method for tissue characterization based on T1 and T2 values. Methods To demonstrate the viability of the proposed 3D QTI technique, nine glioma patients (grade II–IV), with a variety of disease states and treatment histories, were included in this study. First, we investigated the feasibility of 3D QTI (6:25 min scan time) for its use in clinical routine imaging, focusing on image reconstruction, parameter estimation, and contrast-weighted image synthesis. Second, for an initial assessment of 3D QTI-based quantitative MR biomarkers, we performed a ROI-based analysis to characterize T1 and T2 components in tumor and peritumoral tissue. Results The 3D acquisition combined with a compressed sensing reconstruction and neural network-based parameter inference produced parametric maps with high isotropic resolution (1.125 × 1.125 × 1.125 mm3 voxel size) and whole-brain coverage (22.5 × 22.5 × 22.5 cm3 FOV), enabling the synthesis of clinically relevant T1-weighted, T2-weighted, and FLAIR contrasts without any extra scan time. Our study revealed increased T1 and T2 values in tumor and peritumoral regions compared to contralateral white matter, good agreement with healthy volunteer data, and high inter-subject consistency. Conclusion 3D QTI demonstrated comprehensive tissue assessment of tumor substructures captured in T1 and T2 parameters. Aiming for fast acquisition of quantitative MR biomarkers, 3D QTI has potential to improve disease characterization in brain tumor patients under tight clinical time-constraints.
Collapse
|