1
|
Jia Y, Yang B, Xin H, Qi Q, Wang Y, Lin L, Xie Y, Huang C, Lu J, Qin W, Chen N. Volumetric Integrated Classification Index: An Integrated Voxel-Based Morphometry and Machine Learning Interpretable Biomarker for Post-Traumatic Stress Disorder. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01313-5. [PMID: 39497016 DOI: 10.1007/s10278-024-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
PTSD is a complex mental health condition triggered by individuals' traumatic experiences, with long-term and broad impacts on sufferers' psychological health and quality of life. Despite decades of research providing partial understanding of the pathobiological aspects of PTSD, precise neurobiological markers and imaging indicators remain challenging to pinpoint. This study employed VBM analysis and machine learning algorithms to investigate structural brain changes in PTSD patients. Data were sourced ADNI-DoD database for PTSD cases and from the ADNI database for healthy controls. Various machine learning models, including SVM, RF, and LR, were utilized for classification. Additionally, the VICI was proposed to enhance model interpretability, incorporating SHAP analysis. The association between PTSD risk genes and VICI values was also explored through gene expression data analysis. Among the tested machine learning algorithms, RF emerged as the top performer, achieving high accuracy in classifying PTSD patients. Structural brain abnormalities in PTSD patients were predominantly observed in prefrontal areas compared to healthy controls. The proposed VICI demonstrated classification efficacy comparable to the optimized RF model, indicating its potential as a simplified diagnostic tool. Analysis of gene expression data revealed significant associations between PTSD risk genes and VICI values, implicating synaptic integrity and neural development regulation. This study reveals neuroimaging and genetic characteristics of PTSD, highlighting the potential of VBM analysis and machine learning models in diagnosis and prognosis. The VICI offers a promising approach to enhance model interpretability and guide clinical decision-making. These findings contribute to a better understanding of the pathophysiological mechanisms of PTSD and provide new avenues for future diagnosis and treatment.
Collapse
Affiliation(s)
- Yulong Jia
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Beijing, 100053, Xicheng District, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Beijing, 100053, Xicheng District, China
| | - Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Beijing, 100053, Xicheng District, China
| | - Qunya Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Beijing, 100053, Xicheng District, China
| | - Yu Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Beijing, 100053, Xicheng District, China
| | - Liyuan Lin
- Department of Radiology and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, Heping District, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, Heping District, China
| | - Chaoyang Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Beijing, 100053, Xicheng District, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Beijing, 100053, Xicheng District, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, Heping District, China.
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, No. 45 Chang-chun St, Beijing, 100053, Xicheng District, China.
| |
Collapse
|
2
|
Hinojosa CA, George GC, Ben-Zion Z. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field. Mol Psychiatry 2024; 29:3223-3244. [PMID: 38632413 PMCID: PMC11449801 DOI: 10.1038/s41380-024-02558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Almost three decades have passed since the first posttraumatic stress disorder (PTSD) neuroimaging study was published. Since then, the field of clinical neuroscience has made advancements in understanding the neural correlates of PTSD to create more efficacious treatment strategies. While gold-standard psychotherapy options are available, many patients do not respond to them, prematurely drop out, or never initiate treatment. Therefore, elucidating the neurobiological mechanisms that define the disorder can help guide clinician decision-making and develop individualized mechanisms-based treatment options. To this end, this narrative review highlights progress made in the last decade in adult and youth samples on three outstanding questions in PTSD research: (1) Which neural alterations serve as predisposing (pre-exposure) risk factors for PTSD development, and which are acquired (post-exposure) alterations? (2) Which neural alterations can predict treatment outcomes and define clinical improvement? and (3) Can neuroimaging measures be used to define brain-based biotypes of PTSD? While the studies highlighted in this review have made progress in answering the three questions, the field still has much to do before implementing these findings into clinical practice. Overall, to better answer these questions, we suggest that future neuroimaging studies of PTSD should (A) utilize prospective longitudinal designs, collecting brain measures before experiencing trauma and at multiple follow-up time points post-trauma, taking advantage of multi-site collaborations/consortiums; (B) collect two scans to explore changes in brain alterations from pre-to-post treatment and compare changes in neural activation between treatment groups, including longitudinal follow up assessments; and (C) replicate brain-based biotypes of PTSD. By synthesizing recent findings, this narrative review will pave the way for personalized treatment approaches grounded in neurobiological evidence.
Collapse
Affiliation(s)
- Cecilia A Hinojosa
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Grace C George
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Ziv Ben-Zion
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
3
|
Lin J, Xing Q, Zhang C, Luo Y, Chen X, Xie Y, Wang Y. Advances in Repetitive Transcranial Magnetic Stimulation for the Treatment of Post-traumatic Stress Disorder. ALPHA PSYCHIATRY 2024; 25:440-448. [PMID: 39360295 PMCID: PMC11443297 DOI: 10.5152/alphapsychiatry.2024.241587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 10/04/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that develops and persists after an individual experiences a major traumatic or life-threatening event. While pharmacological treatment and psychological interventions can alleviate some symptoms, pharmacotherapy is time-consuming with low patient compliance, and psychological interventions are costly. Repetitive Transcranial Magnetic Stimulation (rTMS) is a safe and effective technique for treating PTSD, with advantages such as high compliance, low cost, and simplicity of implementation. It can even simultaneously improve depressive symptoms in some patients. Current research indicates that high-frequency rTMS shows better therapeutic effects compared to low-frequency rTMS, with no significant difference in the likelihood of adverse reactions between the two. Theta Burst Stimulation (TBS) exhibits similar efficacy to high-frequency rTMS, with shorter duration and significant improvement in depressive symptoms. However, it carries a slightly higher risk of adverse reactions compared to traditional high-frequency rTMS. Combining rTMS with psychological therapy appears to be more effective in improving PTSD symptoms, with early onset of effects and longer duration, albeit at higher cost and requiring individualized patient control. The most common adverse effect of treatment is headache, which can be improved by stopping treatment or using analgesics. Despite these encouraging data, several aspects remain unknown. Given the highly heterogeneous nature of PTSD, defining unique treatment methods for this patient population is quite challenging. There are also considerable differences between trials regarding stimulation parameters, therapeutic effects, and the role of combined psychological therapy, which future research needs to address.
Collapse
Affiliation(s)
- Jingyi Lin
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qijia Xing
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | - Yaomin Luo
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xin Chen
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yulei Xie
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yinxu Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
4
|
Tang M, Zhang L, Zhou Z, Cao L, Gao Y, Wang Y, Li H, Hu X, Bao W, Liang K, Kuang W, Sweeney JA, Gong Q, Huang X. Divergent effects of sex on hippocampal subfield alterations in drug-naive patients with major depressive disorder. J Affect Disord 2024; 354:173-180. [PMID: 38492647 DOI: 10.1016/j.jad.2024.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The hippocampus is a crucial brain structure in etiological models of major depressive disorder (MDD). It remains unclear whether sex differences in the incidence and symptoms of MDD are related to differential illness-associated brain alterations, including alterations in the hippocampus. This study investigated divergent the effects of sex on hippocampal subfield alterations in drug-naive patients with MDD. METHODS High-resolution structural MR images were obtained from 144 drug-naive individuals with MDD early in their illness course and 135 age- and sex-matched healthy controls (HCs). Hippocampal subfields were segmented using FreeSurfer software and analyzed in terms of both histological subfields (CA1-4, dentate gyrus, etc.) and more integrative larger functional subregions (head, body and tail). RESULTS We observed a significant overall reduction in hippocampal volume in MDD patients, with deficits more prominent deficits in the posterior hippocampus. Differences in anatomic alterations between male and female patients were observed in the CA1-head, presubiculum-body and fimbria in the left hemisphere. Exploratory analyses revealed different patterns of clinical and memory function correlations with histological subfields and functional subregions between male and female patients primarily in the hippocampal head and body. LIMITATIONS This cross-sectional study cannot clarify the causality of hippocampal alterations or their association with illness risk or onset. CONCLUSIONS These findings represent the first reported sex-specific alterations in hippocampal histological subfields in patients with MDD early in the illness course prior to treatment. Sex-specific hippocampal alterations may contribute to diverse sex differences in the clinical presentation of MDD.
Collapse
Affiliation(s)
- Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John A Sweeney
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
5
|
Chu Z, Yuan L, Lian K, He M, Lu Y, Cheng Y, Xu X, Shen Z. Reduced gray matter volume of the hippocampal tail in melancholic depression: evidence from an MRI study. BMC Psychiatry 2024; 24:183. [PMID: 38443878 PMCID: PMC10913289 DOI: 10.1186/s12888-024-05630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Melancholic depression (MD) is one of the most prevalent and severe subtypes of major depressive disorder (MDD). Previous studies have revealed inconsistent results regarding alterations in grey matter volume (GMV) of the hippocampus and amygdala of MD patients, possibly due to overlooking the complexity of their internal structure. The hippocampus and amygdala consist of multiple and functionally distinct subregions, and these subregions may play different roles in MD. This study aims to investigate the volumetric alterations of each subregion of the hippocampus and amygdala in patients with MD and non-melancholic depression (NMD). METHODS A total of 146 drug-naïve, first-episode MDD patients (72 with MD and 74 with NMD) and 81 gender-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent magnetic resonance imaging (MRI) scans. The subregional segmentation of hippocampus and amygdala was performed using the FreeSurfer 6.0 software. The multivariate analysis of covariance (MANCOVA) was used to detect GMV differences of the hippocampal and amygdala subregions between three groups. Partial correlation analysis was conducted to explore the relationship between hippocampus or amygdala subfields and clinical characteristics in the MD group. Age, gender, years of education and intracranial volume (ICV) were included as covariates in both MANCOVA and partial correlation analyses. RESULTS Patients with MD exhibited a significantly lower GMV of the right hippocampal tail compared to HCs, which was uncorrelated with clinical characteristics of MD. No significant differences were observed among the three groups in overall and subregional GMV of amygdala. CONCLUSIONS Our findings suggest that specific hippocampal subregions in MD patients are more susceptible to volumetric alterations than the entire hippocampus. The reduced right hippocampal tail may underlie the unique neuropathology of MD. Future longitudinal studies are required to better investigate the associations between reduced right hippocampal tail and the onset and progression of MD.
Collapse
Affiliation(s)
- Zhaosong Chu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Lijin Yuan
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Kun Lian
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Mengxin He
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| |
Collapse
|
6
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
7
|
Nasrullah N, Kerr WT, Stern JM, Wang Y, Tatekawa H, Lee JK, Karimi AH, Sreenivasan SS, Engel J, Eliashiv DE, Feusner JD, Salamon N, Savic I. Amygdala subfield and prefrontal cortex abnormalities in patients with functional seizures. Epilepsy Behav 2023; 145:109278. [PMID: 37356226 DOI: 10.1016/j.yebeh.2023.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Functional seizures (FS) are paroxysmal episodes, resembling epileptic seizures, but without underlying epileptic abnormality. The aetiology and neuroanatomic associations are incompletely understood. Recent brain imaging data indicate cerebral changes, however, without clarifying possible pathophysiology. In the present study, we specifically investigated the neuroanatomic changes in subregions of the amygdala and hippocampus in FS. METHODS T1 MRI scans of 37 female patients with FS and 37 age-matched female seizure naïve controls (SNC) were analyzed retrospectively in FreeSurfer version 7.1. Seizure naïve controls included patients with depression and anxiety disorders. The analysis included whole-brain cortical thickness, subcortical volumes, and subfields of the amygdala and hippocampus. Group comparisons were carried out using multivariable linear models. RESULTS The FS and SNC groups did not differ in the whole hippocampus and amygdala volumes. However, patients had a significant reduction of the right lateral amygdala volume (p = 0.00041), an increase of the right central amygdala, (p = 0.037), and thinning of the left superior frontal gyrus (p = 0.024). Additional findings in patients were increased volumes of the right medial amygdala (p = 0.031), left anterior amygdala (p = 0.017), and left dentate gyrus of the hippocampus (p = 0.035). CONCLUSIONS The observations from the amygdala and hippocampus segmentation affirm that there are neuroanatomic associations of FS. The pattern of these changes aligned with some of the cerebral changes described in chronic stress conditions and depression. The pattern of detected changes further study, and may, after validation, provide biomarkers for diagnosis and treatment.
Collapse
Affiliation(s)
- Nilab Nasrullah
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Neurology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Wesley T Kerr
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Yanlu Wang
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Siddhika S Sreenivasan
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dawn E Eliashiv
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Neurology Clinic, Karolinska University Hospital, Stockholm, Sweden; Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Knaust T, Siebler MBD, Tarnogorski D, Skiberowski P, Höllmer H, Moritz C, Schulz H. Cross-sectional field study comparing hippocampal subfields in patients with post-traumatic stress disorder, major depressive disorder, post-traumatic stress disorder with comorbid major depressive disorder, and adjustment disorder using routine clinical data. Front Psychol 2023; 14:1123079. [PMID: 37384185 PMCID: PMC10299169 DOI: 10.3389/fpsyg.2023.1123079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023] Open
Abstract
Background The hippocampus is a central brain structure involved in stress processing. Previous studies have linked stress-related mental disorders, such as post-traumatic stress disorder (PTSD) and major depressive disorder (MDD), with changes in hippocampus volume. As PTSD and MDD have similar symptoms, clinical diagnosis relies solely on patients reporting their cognitive and emotional experiences, leading to an interest in utilizing imaging-based data to improve accuracy. Our field study aimed to determine whether there are hippocampal subfield volume differences between stress-related mental disorders (PTSD, MDD, adjustment disorders, and AdjD) using routine clinical data from a military hospital. Methods Participants comprised soldiers (N = 185) with PTSD (n = 50), MDD (n = 70), PTSD with comorbid MDD (n = 38), and AdjD (n = 27). The hippocampus was segmented and volumetrized into subfields automatically using FreeSurfer. We used ANCOVA models with estimated total intracranial volume as a covariate to determine whether there were volume differences in the hippocampal subfields cornu ammonis 1 (CA1), cornu ammonis 2/3 (CA2/3), and dentate gyrus (DG) among patients with PTSD, MDD, PTSD with comorbid MDD, and AdjD. Furthermore, we added self-reported symptom duration and previous psychopharmacological and psychotherapy treatment as further covariates to examine whether there were associations with CA1, CA2/3, and DG. Results No significant volume differences in hippocampal subfields between stress-related mental disorders were found. No significant associations were detected between symptom duration, psychopharmacological treatment, psychotherapy, and the hippocampal subfields. Conclusion Hippocampal subfields may distinguish stress-related mental disorders; however, we did not observe any subfield differences. We provide several explanations for the non-results and thereby inform future field studies.
Collapse
Affiliation(s)
- Thiemo Knaust
- Center for Mental Health, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | | | | | | | - Helge Höllmer
- Center for Mental Health, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Christian Moritz
- Department of Radiology, Bundeswehr Hospital Hamburg, Hamburg, Germany
| | - Holger Schulz
- Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Wisłowska-Stanek A, Lehner M, Tomczuk F, Kołosowska K, Krząśnik P, Turzyńska D, Skórzewska A. The role of the dorsal hippocampus in resistance to the development of posttraumatic stress disorder-like behaviours. Behav Brain Res 2023; 438:114185. [PMID: 36334781 DOI: 10.1016/j.bbr.2022.114185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
This study aimed to determine the activity of the dorsal hippocampus (dHIP) in resistance to the development of posttraumatic stress disorder (PTSD)-like behaviours. Rats were divided into resistant, PTSD(-), and susceptible, PTSD(+) groups based on the time spent in the central area in an open field test and freezing duration during exposure to an aversive context one week after stress experience (electric foot shock). The PTSD(-) rats, compared to the PTSD(+) group, had an increased concentration of corticosterone in plasma and changes in the activity of the dHIP, specifically, increased c-Fos expression in the dentate gyrus (DG) and increased Neuroligin-2 (marker of GABAergic neurotransmission) expression in the DG and CA3 area of the dHIP. Moreover, in the hippocampus, the PTSD(-) group showed decreased mRNA expression for corticotropin-releasing factor receptors type 1 and 2, increased mRNA expression for orexin receptor type 1, and decreased miR-9 and miR-34c levels compared with the PTSD(+) group. This study may suggest that the increase in GABA signalling in the hippocampus attenuates the activity of the CRF system and enhances the function of the orexin system. Moreover, decreased expression of miR-34c and miR-9 could facilitate fear extinction and diminishes the anxiety response. These effects may lead to an anxiolytic-like effect and improve resistance to developing PTSD-like behaviours.
Collapse
Affiliation(s)
- Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Filip Tomczuk
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząśnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology (CEPT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| |
Collapse
|
10
|
Ben-Zion Z, Korem N, Spiller TR, Duek O, Keynan JN, Admon R, Harpaz-Rotem I, Liberzon I, Shalev AY, Hendler T. Longitudinal volumetric evaluation of hippocampus and amygdala subregions in recent trauma survivors. Mol Psychiatry 2023; 28:657-667. [PMID: 36280750 PMCID: PMC9918676 DOI: 10.1038/s41380-022-01842-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
The hippocampus and the amygdala play a central role in post-traumatic stress disorder (PTSD) pathogenesis. While alternations in volumes of both regions have been consistently observed in individuals with PTSD, it remains unknown whether these reflect pre-trauma vulnerability traits or acquired post-trauma consequences of the disorder. Here, we conducted a longitudinal panel study of adult civilian trauma survivors admitted to a general hospital emergency department (ED). One hundred eligible participants (mean age = 32.97 ± 10.97, n = 56 females) completed both clinical interviews and structural MRI scans at 1-, 6-, and 14-months after ED admission (alias T1, T2, and T3). While all participants met PTSD diagnosis at T1, only n = 29 still met PTSD diagnosis at T3 (a "non-Remission" Group), while n = 71 did not (a "Remission" Group). Bayesian multilevel modeling analysis showed robust evidence for smaller right hippocampus volume (P+ of ~0.014) and moderate evidence for larger left amygdala volume (P+ of ~0.870) at T1 in the "non-Remission" group, compared to the "Remission" group. Subregion analysis further demonstrated robust evidence for smaller volume in the subiculum and right CA1 hippocampal subregions (P+ of ~0.021-0.046) in the "non-Remission" group. No time-dependent volumetric changes (T1 to T2 to T3) were observed across all participants or between groups. Results support the "vulnerability trait" hypothesis, suggesting that lower initial volumes of specific hippocampus subregions are associated with non-remitting PTSD. The stable volume of all hippocampal and amygdala subregions does not support the idea of consequential, progressive, stress-related atrophy during the first critical year following trauma exposure.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, CT, USA.
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA.
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Tobias R Spiller
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jackob Nimrod Keynan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Israel Liberzon
- Department of Psychiatry, College of Medicine, Texas A&M, College Station, TX, USA
| | - Arieh Y Shalev
- Department of Psychiatry, NYU Grossman School of Medicine, New York City, NY, USA
| | - Talma Hendler
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Social Sciences and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Singh S, Topolnik L. Inhibitory circuits in fear memory and fear-related disorders. Front Neural Circuits 2023; 17:1122314. [PMID: 37035504 PMCID: PMC10076544 DOI: 10.3389/fncir.2023.1122314] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Fear learning and memory rely on dynamic interactions between the excitatory and inhibitory neuronal populations that make up the prefrontal cortical, amygdala, and hippocampal circuits. Whereas inhibition of excitatory principal cells (PCs) by GABAergic neurons restrains their excitation, inhibition of GABAergic neurons promotes the excitation of PCs through a process called disinhibition. Specifically, GABAergic interneurons that express parvalbumin (PV+) and somatostatin (SOM+) provide inhibition to different subcellular domains of PCs, whereas those that express the vasoactive intestinal polypeptide (VIP+) facilitate disinhibition of PCs by inhibiting PV+ and SOM+ interneurons. Importantly, although the main connectivity motifs and the underlying network functions of PV+, SOM+, and VIP+ interneurons are replicated across cortical and limbic areas, these inhibitory populations play region-specific roles in fear learning and memory. Here, we provide an overview of the fear processing in the amygdala, hippocampus, and prefrontal cortex based on the evidence obtained in human and animal studies. Moreover, focusing on recent findings obtained using genetically defined imaging and intervention strategies, we discuss the population-specific functions of PV+, SOM+, and VIP+ interneurons in fear circuits. Last, we review current insights that integrate the region-specific inhibitory and disinhibitory network patterns into fear memory acquisition and fear-related disorders.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Quebec City, QC, Canada
- Neuroscience Axis, CRCHUQ, Laval University, Quebec City, QC, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Quebec City, QC, Canada
- Neuroscience Axis, CRCHUQ, Laval University, Quebec City, QC, Canada
- *Correspondence: Lisa Topolnik
| |
Collapse
|
12
|
Twait EL, Blom K, Koek HL, Zwartbol MHT, Ghaznawi R, Hendrikse J, Gerritsen L, Geerlings MI. Psychosocial factors and hippocampal subfields: The Medea-7T study. Hum Brain Mapp 2022; 44:1964-1984. [PMID: 36583397 PMCID: PMC9980899 DOI: 10.1002/hbm.26185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Specific subfields within the hippocampus have shown vulnerability to chronic stress, highlighting the importance of looking regionally within the hippocampus to understand the role of psychosocial factors in the development of neurodegenerative diseases. A systematic review on psychosocial factors and hippocampal subfield volumes was performed and showed inconsistent results, highlighting the need for future studies to explore this relationship. The current study aimed to explore the association of psychosocial factors with hippocampal (subfield) volumes, using high-field 7T MRI. Data were from the Memory Depression and Aging (Medea)-7T study, which included 333 participants without dementia. Hippocampal subfields were automatically segmented from T2-weighted images using ASHS software. Generalized linear models accounting for correlated outcomes were used to assess the association between subfields (i.e., entorhinal cortex, subiculum, Cornu Ammonis [CA]1, CA2, CA3, dentate gyrus, and tail) and each psychosocial factor (i.e., depressive symptoms, anxiety symptoms, childhood maltreatment, recent stressful life events, and social support), adjusted for age, sex, and intracranial volume. Neither depression nor anxiety was associated with specific hippocampal (subfield) volumes. A trend for lower total hippocampal volume was found in those reporting childhood maltreatment, and a trend for higher total hippocampal volume was found in those who experienced a recent stressful life event. Among subfields, low social support was associated with lower volume in the CA3 (B = -0.43, 95% CI: -0.72; -0.15). This study suggests possible differential effects among hippocampal (subfield) volumes and psychosocial factors.
Collapse
Affiliation(s)
- Emma L. Twait
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Kim Blom
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Huiberdina L. Koek
- Department of GeriatricsUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Maarten H. T. Zwartbol
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Rashid Ghaznawi
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Lotte Gerritsen
- Department of PsychologyUtrecht UniversityUtrechtThe Netherlands
| | - Mirjam I. Geerlings
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Department of General PracticeAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands,Amsterdam Public Health, Aging & Later life, and Personalized MedicineAmsterdamThe Netherlands,Amsterdam Neuroscience, Neurodegeneration, and Mood, Anxiety, Psychosis, Stress, and SleepAmsterdamThe Netherlands
| | | |
Collapse
|
13
|
Cai M, Park HR, Yang EJ. Nutraceutical Interventions for Post-Traumatic Stress Disorder in Animal Models: A Focus on the Hypothalamic–Pituitary–Adrenal Axis. Pharmaceuticals (Basel) 2022; 15:ph15070898. [PMID: 35890196 PMCID: PMC9324528 DOI: 10.3390/ph15070898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic events and is characterized by overwhelming fear and anxiety. Disturbances in the hypothalamic–pituitary–adrenal (HPA) axis are involved in the pathogenesis of mood disorders, including anxiety, PTSD, and major depressive disorders. Studies have demonstrated the relationship between the HPA axis response and stress vulnerability, indicating that the HPA axis regulates the immune system, fear memory, and neurotransmission. The selective serotonin reuptake inhibitors (SSRIs), sertraline and paroxetine, are the only drugs that have been approved by the United States Food and Drug Administration for the treatment of PTSD. However, SSRIs require long treatment times and are associated with lower response and remission rates; therefore, additional pharmacological interventions are required. Complementary and alternative medicine therapies ameliorate HPA axis disturbances through regulation of gut dysbiosis, insomnia, chronic stress, and depression. We have described the cellular and molecular mechanisms through which the HPA axis is involved in PTSD pathogenesis and have evaluated the potential of herbal medicines for PTSD treatment. Herbal medicines could comprise a good therapeutic strategy for HPA axis regulation and can simultaneously improve PTSD-related symptoms. Finally, herbal medicines may lead to novel biologically driven approaches for the treatment and prevention of PTSD.
Collapse
|
14
|
Ben Assayag E, Tene O, Korczyn AD, Solomon Z, Bornstein NM, Shenhar-Tsarfaty S, Seyman E, Niry D, Molad J, Hallevi H. Posttraumatic Stress Symptoms After Stroke: The Effects of Anatomy and Coping Style. Stroke 2022; 53:1924-1933. [PMID: 35264011 DOI: 10.1161/strokeaha.121.036635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) can be triggered by life-threatening medical emergencies, such as stroke. Data suggest that up to 25% of stroke survivors will develop PTSD symptomatology, but little is known about predisposing factors. We sought to examine whether neuroimaging measures and coping styles are related to PTSD symptoms after stroke. METHODS Participants were survivors of first-ever, mild-moderate ischemic stroke, or transient ischemic attack from the TABASCO study (Tel Aviv Brain Acute Stroke Cohort). All participants underwent a 3T magnetic resonance imaging at baseline and were examined 6, 12, and 24 months thereafter, using neurological, neuropsychological, and functional evaluations. At baseline, coping styles were evaluated by a self-reported questionnaire. PTSD symptoms were assessed using the PTSD checklist. Data were available for 436 patients. RESULTS Forty-eight participants (11%) developed probable PTSD (PTSD checklist ≥44) during the first year after the stroke/transient ischemic attack. Stroke was more likely to cause PTSD than transient ischemic attack. Stroke severity, larger white matter lesion volume, and worse hippocampal connectivity were associated with PTSD severity, while infarct volume or location was not. In a multivariate analysis, high-anxious and defensive coping styles were associated with a 6.66-fold higher risk of developing poststroke PTSD ([95% CI, 2.08-21.34]; P<0.01) compared with low-anxious and repressive coping styles, after adjusting for age, education, stroke severity, brain atrophy, and depression. CONCLUSIONS In our cohort, PTSD was a common sequela among stroke survivors. We suggest that risk factors for PTSD development include stroke severity, white matter damage, and premorbid coping styles. Early identification of at-risk patients is key to effective treatment.
Collapse
Affiliation(s)
- Einor Ben Assayag
- Departments of Neurology, Psychiatry and Radiology, Tel Aviv Sourasky Medical Center, Israel (E.B.A., O.T., S.S.-T., E.S., D.N., J.M., H.H.).,Faculty of Medicine, Tel Aviv University, Israel. (E.B.A., O.T., A.D.K., S.S.-T., D.N., H.H.)
| | - Oren Tene
- Departments of Neurology, Psychiatry and Radiology, Tel Aviv Sourasky Medical Center, Israel (E.B.A., O.T., S.S.-T., E.S., D.N., J.M., H.H.).,Faculty of Medicine, Tel Aviv University, Israel. (E.B.A., O.T., A.D.K., S.S.-T., D.N., H.H.)
| | - Amos D Korczyn
- Faculty of Medicine, Tel Aviv University, Israel. (E.B.A., O.T., A.D.K., S.S.-T., D.N., H.H.)
| | - Zahava Solomon
- Bob Shapell School of Social Work, Tel Aviv University, Israel. (Z.S.)
| | - Natan M Bornstein
- Department of Neurology, Shaare Zedek Medical Center, Jerusalem, Israel (N.M.B.)
| | - Shani Shenhar-Tsarfaty
- Departments of Neurology, Psychiatry and Radiology, Tel Aviv Sourasky Medical Center, Israel (E.B.A., O.T., S.S.-T., E.S., D.N., J.M., H.H.).,Faculty of Medicine, Tel Aviv University, Israel. (E.B.A., O.T., A.D.K., S.S.-T., D.N., H.H.)
| | - Estelle Seyman
- Departments of Neurology, Psychiatry and Radiology, Tel Aviv Sourasky Medical Center, Israel (E.B.A., O.T., S.S.-T., E.S., D.N., J.M., H.H.)
| | - Dana Niry
- Departments of Neurology, Psychiatry and Radiology, Tel Aviv Sourasky Medical Center, Israel (E.B.A., O.T., S.S.-T., E.S., D.N., J.M., H.H.).,Faculty of Medicine, Tel Aviv University, Israel. (E.B.A., O.T., A.D.K., S.S.-T., D.N., H.H.)
| | - Jeremy Molad
- Departments of Neurology, Psychiatry and Radiology, Tel Aviv Sourasky Medical Center, Israel (E.B.A., O.T., S.S.-T., E.S., D.N., J.M., H.H.)
| | - Hen Hallevi
- Departments of Neurology, Psychiatry and Radiology, Tel Aviv Sourasky Medical Center, Israel (E.B.A., O.T., S.S.-T., E.S., D.N., J.M., H.H.).,Faculty of Medicine, Tel Aviv University, Israel. (E.B.A., O.T., A.D.K., S.S.-T., D.N., H.H.)
| |
Collapse
|
15
|
Zilcha‐Mano S, Zhu X, Lazarov A, Suarez‐Jimenez B, Helpman L, Kim Y, Maitlin C, Neria Y, Rutherford BR. Structural brain features signaling trauma, PTSD, or resilience? A systematic exploration. Depress Anxiety 2022; 39:695-705. [PMID: 35708133 PMCID: PMC9588504 DOI: 10.1002/da.23275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Studies have searched for neurobiological markers of trauma exposure, posttraumatic stress disorder (PTSD) diagnosis, and resilience to trauma to identify therapeutic targets for PTSD. Despite some promising results, findings are inconsistent. AIMS The present study adopted a data-driven approach to systematically explore whether structural brain markers of trauma, PTSD, or resilience emerge when all are explored. MATERIALS & METHODS Differences between clusters in the proportion of PTSD, healthy controls (HC), and trauma-exposed healthy controls (TEHC) served to indicate the presence of PTSD, trauma, and resilience markers, respectively. A total of 129 individuals, including 46 with PTSD, 49 TEHCs, and 34 HCs not exposed to trauma were scanned. Volumes, cortical thickness, and surface areas of interest were obtained from T1 structural MRI and used to identify data-driven clusters. RESULTS Two clusters were identified, differing in the proportion of TEHCs but not of PTSDs or HCs. The cluster with the higher proportion of TEHCs, referred to as the resilience cluster, was characterized by higher volume in brain regions implicated in trauma exposure, especially the thalamus and rostral middle frontal gyrus. Cross-validation established the robustness and consistency of the identified clusters. DISCUSSION & CONCLUSION Findings support the existence of structural brain markers of resilience.
Collapse
Affiliation(s)
| | - Xi Zhu
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Amit Lazarov
- School of Psychological SciencesTel‐Aviv UniversityTel‐AvivIsrael,Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Benjamin Suarez‐Jimenez
- New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA,Department of NeuroscienceUniversity of RochesterRochesterNew YorkUSA
| | - Liat Helpman
- Department of Counseling and Human DevelopmentUniversity of HaifaMount CarmelHaifaIsrael,Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Yoojean Kim
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Carly Maitlin
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Yuval Neria
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Bret R. Rutherford
- Columbia University College of Physicians and Surgeons, New York State Psychiatric InstituteNew York CityNew YorkUSA
| |
Collapse
|
16
|
Zhu Z, Lei D, Qin K, Suo X, Li W, Li L, DelBello MP, Sweeney JA, Gong Q. Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level. Diagnostics (Basel) 2021; 11:1416. [PMID: 34441350 PMCID: PMC8391111 DOI: 10.3390/diagnostics11081416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
Previous studies using resting-state functional MRI (rs-fMRI) have revealed alterations in graphical metrics in groups of individuals with posttraumatic stress disorder (PTSD). To explore the ability of graph measures to diagnose PTSD and capture its essential features in individual patients, we used a deep learning (DL) model based on a graph-theoretic approach to discriminate PTSD from trauma-exposed non-PTSD at the individual level and to identify its most discriminant features. Our study was performed on rs-fMRI data from 91 individuals with PTSD and 126 trauma-exposed non-PTSD patients. To evaluate our DL method, we used the traditional support vector machine (SVM) classifier as a reference. Our results showed that the proposed DL model allowed single-subject discrimination of PTSD and trauma-exposed non-PTSD individuals with higher accuracy (average: 80%) than the traditional SVM (average: 57.7%). The top 10 DL features were identified within the default mode, central executive, and salience networks; the first two of these networks were also identified in the SVM classification. We also found that nodal efficiency in the left fusiform gyrus was negatively correlated with the Clinician Administered PTSD Scale score. These findings demonstrate that DL based on graphical features is a promising method for assisting in the diagnosis of PTSD.
Collapse
Affiliation(s)
- Ziyu Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; (Z.Z.); (K.Q.); (X.S.); (W.L.); (J.A.S.)
| | - Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA; (D.L.); (M.P.D.)
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; (Z.Z.); (K.Q.); (X.S.); (W.L.); (J.A.S.)
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; (Z.Z.); (K.Q.); (X.S.); (W.L.); (J.A.S.)
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; (Z.Z.); (K.Q.); (X.S.); (W.L.); (J.A.S.)
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha 410008, China;
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA; (D.L.); (M.P.D.)
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; (Z.Z.); (K.Q.); (X.S.); (W.L.); (J.A.S.)
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, USA; (D.L.); (M.P.D.)
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; (Z.Z.); (K.Q.); (X.S.); (W.L.); (J.A.S.)
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610000, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu 610000, China
| |
Collapse
|
17
|
Zhang L, Lu L, Bu X, Li H, Tang S, Gao Y, Liang K, Zhang S, Hu X, Wang Y, Li L, Hu X, Lim KO, Gong Q, Huang X. Alterations in hippocampal subfield and amygdala subregion volumes in posttraumatic subjects with and without posttraumatic stress disorder. Hum Brain Mapp 2021; 42:2147-2158. [PMID: 33566375 PMCID: PMC8046112 DOI: 10.1002/hbm.25356] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
The hippocampus and amygdala are important structures in the posttraumatic stress disorder (PTSD); however, the exact relationship between these structures and stress or PTSD remains unclear. Moreover, they consist of several functionally distinct subfields/subregions that may serve different roles in the neuropathophysiology of PTSD. Here we present a subregional profile of the hippocampus and amygdala in 145 survivors of a major earthquake and 56 non‐traumatized healthy controls (HCs). We found that the bilateral hippocampus and left amygdala were significantly smaller in survivors than in HCs, and there was no difference between survivors with (n = 69) and without PTSD (trauma‐exposed controls [TCs], n = 76). Analyses revealed similar results in most subfields/subregions, except that the right hippocampal body (in a head‐body‐tail segmentation scheme), right presubiculum, and left amygdala medial nuclei (Me) were significantly larger in PTSD patients than in TCs but smaller than in HCs. Larger hippocampal body were associated with the time since trauma in PTSD patients. The volume of the right cortical nucleus (Co) was negatively correlated with the severity of symptoms in the PTSD group but positively correlated with the same measurement in the TC group. This correlation between symptom severity and Co volume was significantly different between the PTSD and TCs. Together, we demonstrated that generalized smaller volumes in the hippocampus and amygdala were more likely to be trauma‐related than PTSD‐specific, and their subfields/subregions were distinctively affected. Notably, larger left Me, right hippocampal body and presubiculum were PTSD‐specific; these could be preexisting factors for PTSD or reflect rapid posttraumatic reshaping.
Collapse
Affiliation(s)
- Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xuan Bu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Shi Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Kaili Liang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Suming Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xinyue Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yanlin Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, and Minneapolis VA Medical Center, Minneapolis, Minnesota, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| |
Collapse
|