1
|
Kochunov P, Hong LE, Summerfelt A, Gao S, Brown PL, Terzi M, Acheson A, Woldorff MG, Fieremans E, Abdollahzadeh A, Sathyasaikumar KV, Clark SM, Schwarcz R, Shepard PD, Elmer GI. White matter and latency of visual evoked potentials during maturation: A miniature pig model of adolescent development. J Neurosci Methods 2024; 411:110252. [PMID: 39159872 DOI: 10.1016/j.jneumeth.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Continuous myelination of cerebral white matter (WM) during adolescence overlaps with the formation of higher cognitive skills and the onset of many neuropsychiatric disorders. We developed a miniature-pig model of adolescent brain development for neuroimaging and neurophysiological assessment during this critical period. Minipigs have gyroencephalic brains with a large cerebral WM compartment and a well-defined adolescence period. METHODS Eight Sinclair™ minipigs (Sus scrofa domestica) were evaluated four times during weeks 14-28 (40, 28 and 28 days apart) of adolescence using monocular visual stimulation (1 Hz)-evoked potentials and diffusion MRI (dMRI) of WM. The latency for the pre-positive 30 ms (PP30), positive 30 ms (P30) and negative 50 ms (N50) components of the flash visual evoked potentials (fVEPs) and their interhemispheric latency (IL) were recorded in the frontal, central and occipital areas during ten 60-second stimulations for each eye. The dMRI imaging protocol consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32 directions/shell, providing measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axonal water fraction (AWF), and the permeability-diffusivity index (PDI). RESULTS Significant reductions (p < 0.05) in the latency and IL of fVEP measurements paralleled significant rises in FA, KA, AWF and PDI over the same period. The longitudinal latency changes in fVEPs were primarily associated with whole-brain changes in diffusion parameters, while fVEP IL changes were related to maturation of the corpus callosum. CONCLUSIONS Good agreement between reduction in the latency of fVEPs and maturation of cerebral WM was interpreted as evidence for ongoing myelination and confirmation of the minipig as a viable research platform. Adolescent development in minipigs can be studied using human neuroimaging and neurophysiological protocols and followed up with more invasive assays to investigate key neurodevelopmental hypotheses in psychiatry.
Collapse
Affiliation(s)
- Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - L Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Leon Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Terzi
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC. USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah M Clark
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Beck J, Chyl K, Dębska A, Łuniewska M, van Atteveldt N, Jednoróg K. Letter-speech sound integration in typical reading development during the first years of formal education. Child Dev 2024; 95:e236-e252. [PMID: 38396333 DOI: 10.1111/cdev.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
This study investigated the neural basis of letter and speech sound (LS) integration in 53 typical readers (35 girls, all White) during the first 2 years of reading education (ages 7-9). Changes in both sensory (multisensory vs unisensory) and linguistic (congruent vs incongruent) aspects of LS integration were examined. The left superior temporal cortex and bilateral inferior frontal cortex showed increasing activation for multisensory over unisensory LS over time, driven by reduced activation to speech sounds. No changes were noted in the congruency effect. However, at age nine, heightened activation to incongruent over congruent LS pairs were observed, correlating with individual differences in reading development. This suggests that the incongruency effect evolves at varying rates depending on reading skills.
Collapse
Affiliation(s)
- Joanna Beck
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences (PAS), Warsaw, Poland
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland, Kajetany, Mazovia, Poland
| | - Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences (PAS), Warsaw, Poland
- Educational Research Institute, Warsaw, Poland
| | - Agnieszka Dębska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences (PAS), Warsaw, Poland
| | - Magdalena Łuniewska
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences (PAS), Warsaw, Poland
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Nienke van Atteveldt
- Department of Clinical Developmental Psychology & Institute LEARN!, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences (PAS), Warsaw, Poland
| |
Collapse
|
3
|
Takemura H, Kruper JA, Miyata T, Rokem A. Tractometry of Human Visual White Matter Pathways in Health and Disease. Magn Reson Med Sci 2024; 23:316-340. [PMID: 38866532 PMCID: PMC11234945 DOI: 10.2463/mrms.rev.2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Diffusion-weighted MRI (dMRI) provides a unique non-invasive view of human brain tissue properties. The present review article focuses on tractometry analysis methods that use dMRI to assess the properties of brain tissue within the long-range connections comprising brain networks. We focus specifically on the major white matter tracts that convey visual information. These connections are particularly important because vision provides rich information from the environment that supports a large range of daily life activities. Many of the diseases of the visual system are associated with advanced aging, and tractometry of the visual system is particularly important in the modern aging society. We provide an overview of the tractometry analysis pipeline, which includes a primer on dMRI data acquisition, voxelwise model fitting, tractography, recognition of white matter tracts, and calculation of tract tissue property profiles. We then review dMRI-based methods for analyzing visual white matter tracts: the optic nerve, optic tract, optic radiation, forceps major, and vertical occipital fasciculus. For each tract, we review background anatomical knowledge together with recent findings in tractometry studies on these tracts and their properties in relation to visual function and disease. Overall, we find that measurements of the brain's visual white matter are sensitive to a range of disorders and correlate with perceptual abilities. We highlight new and promising analysis methods, as well as some of the current barriers to progress toward integration of these methods into clinical practice. These barriers, such as variability in measurements between protocols and instruments, are targets for future development.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - John A Kruper
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| | - Toshikazu Miyata
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, Japan
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Otten K, Edgar JC, Green HL, Mol K, McNamee M, Kuschner ES, Kim M, Liu S, Huang H, Nordt M, Konrad K, Chen Y. The maturation of infant and toddler visual cortex neural activity and associations with fine motor performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598480. [PMID: 38915536 PMCID: PMC11195154 DOI: 10.1101/2024.06.11.598480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Our understanding of how visual cortex neural processes mature during infancy and toddlerhood is limited. Using magnetoencephalography (MEG), the present study investigated the development of visual evoked responses (VERs) in both cross-sectional and longitudinal samples of infants and toddlers 2 months to 3 years. Brain space analyses focused on N1m and P1m latency, as well as the N1m-to-P1m amplitude. Associations between VER measures and developmental quotient (DQ) scores in the cognitive/visual and fine motor domains were also examined. Results showed a nonlinear decrease in N1m and P1m latency as a function of age, characterized by rapid changes followed by slower progression, with the N1m latency plateauing at 6-7 months and the P1m latency plateauing at 8-9 months. The N1m-to-P1m amplitude also exhibited a non-linear decrease, with strong responses observed in younger infants (∼2-3 months) and then a gradual decline. Associations between N1m and P1m latency and fine motor DQ scores were observed, suggesting that infants with faster visual processing may be better equipped to perform fine motor tasks. The present findings advance our understanding of the maturation of the infant visual system and highlight the relationship between the maturation of visual system and fine motor skills. Highlights The infant N1m and P1m latency shows a nonlinear decrease.N1m latency decreases precede P1m latency decreases.N1m-to-P1m amplitude shows a nonlinear decrease, with stronger responses in younger than older infants.N1m and P1m latency are associated with fine motor DQ.
Collapse
|
5
|
Kruper J, Richie-Halford A, Benson NC, Caffarra S, Owen J, Wu Y, Egan C, Lee AY, Lee CS, Yeatman JD, Rokem A. Convolutional neural network-based classification of glaucoma using optic radiation tissue properties. COMMUNICATIONS MEDICINE 2024; 4:72. [PMID: 38605245 PMCID: PMC11009254 DOI: 10.1038/s43856-024-00496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Sensory changes due to aging or disease can impact brain tissue. This study aims to investigate the link between glaucoma, a leading cause of blindness, and alterations in brain connections. METHODS We analyzed diffusion MRI measurements of white matter tissue in a large group, consisting of 905 glaucoma patients (aged 49-80) and 5292 healthy individuals (aged 45-80) from the UK Biobank. Confounds due to group differences were mitigated by matching a sub-sample of controls to glaucoma subjects. We compared classification of glaucoma using convolutional neural networks (CNNs) focusing on the optic radiations, which are the primary visual connection to the cortex, against those analyzing non-visual brain connections. As a control, we evaluated the performance of regularized linear regression models. RESULTS We showed that CNNs using information from the optic radiations exhibited higher accuracy in classifying subjects with glaucoma when contrasted with CNNs relying on information from non-visual brain connections. Regularized linear regression models were also tested, and showed significantly weaker classification performance. Additionally, the CNN was unable to generalize to the classification of age-group or of age-related macular degeneration. CONCLUSIONS Our findings indicate a distinct and potentially non-linear signature of glaucoma in the tissue properties of optic radiations. This study enhances our understanding of how glaucoma affects brain tissue and opens avenues for further research into how diseases that affect sensory input may also affect brain aging.
Collapse
Affiliation(s)
- John Kruper
- Department of Psychology, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Adam Richie-Halford
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Sendy Caffarra
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
- University of Modena and Reggio Emilia, Modena, Italy
| | - Julia Owen
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Yue Wu
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | | | - Aaron Y Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, Seattle, WA, USA
| | - Jason D Yeatman
- Graduate School of Education and Division of Developmental Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Caffarra S, Kanopka K, Kruper J, Richie-Halford A, Roy E, Rokem A, Yeatman JD. Development of the Alpha Rhythm Is Linked to Visual White Matter Pathways and Visual Detection Performance. J Neurosci 2024; 44:e0684232023. [PMID: 38124006 PMCID: PMC11059423 DOI: 10.1523/jneurosci.0684-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Alpha is the strongest electrophysiological rhythm in awake humans at rest. Despite its predominance in the EEG signal, large variations can be observed in alpha properties during development, with an increase in alpha frequency over childhood and adulthood. Here, we tested the hypothesis that these changes in alpha rhythm are related to the maturation of visual white matter pathways. We capitalized on a large diffusion MRI (dMRI)-EEG dataset (dMRI n = 2,747, EEG n = 2,561) of children and adolescents of either sex (age range, 5-21 years old) and showed that maturation of the optic radiation specifically accounts for developmental changes of alpha frequency. Behavioral analyses also confirmed that variations of alpha frequency are related to maturational changes in visual perception. The present findings demonstrate the close link between developmental variations in white matter tissue properties, electrophysiological responses, and behavior.
Collapse
Affiliation(s)
- Sendy Caffarra
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford 94305, California
- Stanford University Graduate School of Education, Stanford 94305, California
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Klint Kanopka
- Stanford University Graduate School of Education, Stanford 94305, California
| | - John Kruper
- Department of Psychology, University of Washington, Seattle 91905, Washington
- eScience Institute, University of Washington, Seattle 98195-1570, Washington
| | - Adam Richie-Halford
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford 94305, California
- Stanford University Graduate School of Education, Stanford 94305, California
| | - Ethan Roy
- Stanford University Graduate School of Education, Stanford 94305, California
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle 91905, Washington
- eScience Institute, University of Washington, Seattle 98195-1570, Washington
| | - Jason D Yeatman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford 94305, California
- Stanford University Graduate School of Education, Stanford 94305, California
| |
Collapse
|
7
|
Kruper J, Benson NC, Caffarra S, Owen J, Wu Y, Lee AY, Lee CS, Yeatman JD, Rokem A. Optic radiations representing different eccentricities age differently. Hum Brain Mapp 2023; 44:3123-3135. [PMID: 36896869 PMCID: PMC10171550 DOI: 10.1002/hbm.26267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023] Open
Abstract
The neural pathways that carry information from the foveal, macular, and peripheral visual fields have distinct biological properties. The optic radiations (OR) carry foveal and peripheral information from the thalamus to the primary visual cortex (V1) through adjacent but separate pathways in the white matter. Here, we perform white matter tractometry using pyAFQ on a large sample of diffusion MRI (dMRI) data from subjects with healthy vision in the U.K. Biobank dataset (UKBB; N = 5382; age 45-81). We use pyAFQ to characterize white matter tissue properties in parts of the OR that transmit information about the foveal, macular, and peripheral visual fields, and to characterize the changes in these tissue properties with age. We find that (1) independent of age there is higher fractional anisotropy, lower mean diffusivity, and higher mean kurtosis in the foveal and macular OR than in peripheral OR, consistent with denser, more organized nerve fiber populations in foveal/parafoveal pathways, and (2) age is associated with increased diffusivity and decreased anisotropy and kurtosis, consistent with decreased density and tissue organization with aging. However, anisotropy in foveal OR decreases faster with age than in peripheral OR, while diffusivity increases faster in peripheral OR, suggesting foveal/peri-foveal OR and peripheral OR differ in how they age.
Collapse
Affiliation(s)
- John Kruper
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Noah C. Benson
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Sendy Caffarra
- Graduate School of Education, Stanford University and Division of Developmental‐Behavioral Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Julia Owen
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Yue Wu
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Aaron Y. Lee
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Cecilia S. Lee
- Department of OphthalmologyUniversity of WashingtonSeattleWashingtonUSA
- Roger and Angie Karalis Johnson Retina CenterUniversity of WashingtonSeattleWashingtonUSA
| | - Jason D. Yeatman
- Graduate School of Education, Stanford University and Division of Developmental‐Behavioral Pediatrics, Stanford University School of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Ariel Rokem
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| | | |
Collapse
|
8
|
Developmental trajectory of transmission speed in the human brain. Nat Neurosci 2023; 26:537-541. [PMID: 36894655 PMCID: PMC10076215 DOI: 10.1038/s41593-023-01272-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
The structure of the human connectome develops from childhood throughout adolescence to middle age, but how these structural changes affect the speed of neuronal signaling is not well described. In 74 subjects, we measured the latency of cortico-cortical evoked responses across association and U-fibers and calculated their corresponding transmission speeds. Decreases in conduction delays until at least 30 years show that the speed of neuronal communication develops well into adulthood.
Collapse
|
9
|
Ye C, Kwapong WR, Tao W, Lu K, Pan R, Wang A, Liu J, Liu M, Wu B. Alterations of optic tract and retinal structure in patients after thalamic stroke. Front Aging Neurosci 2022; 14:942438. [PMID: 35966790 PMCID: PMC9363922 DOI: 10.3389/fnagi.2022.942438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo investigate the association between degeneration of retinal structure and shrinkage of the optic tract in patients after thalamic stroke.Materials and methodsPatients with unilateral thalamic stroke were included. Structural magnetic resonance imaging (MRI) and optical coherence tomography (OCT) were performed to obtain parameters of optic tract shrinkage (lateral index) and retina structural thickness (retinal nerve fiber layer, RNFL; peripapillary retinal nerve fiber layer, pRNFL; ganglion cell-inner plexiform layer, GCIP), respectively. Visual acuity (VA) examination under illumination was conducted using Snellen charts and then converted to the logarithm of the minimum angle of resolution (LogMAR). We investigated the association between LI and OCT parameters and their relationships with VA.ResultsA total of 33 patients and 23 age-sex matched stroke-free healthy controls were enrolled. Patients with thalamic stroke showed altered LI compared with control participants (P = 0.011) and a significantly increased value of LI in the subgroup of disease duration more than 6 months (P = 0.004). In these patients, LI were significantly associated with pRNFL thickness (β = 0.349, 95% confidence interval [CI]: 0.134–0.564, P = 0.002) after adjusting for confounders (age, sex, hypertension, diabetes, dyslipidemia, and lesion volume). LI and pRNFL were both significantly associated with VA in all patients (LI: β = −0.275, 95% CI: −0.539 to −0.011, P = 0.041; pRNFL: β = −0.023, 95% CI: −0.046 to −0.001, P = 0.040) and in subgroup of disease duration more than 6 months (LI: β = −0.290, 95% CI: −0.469 to −0.111, P = 0.002; pRNFL: β = −0.041, 95% CI: −0.065 to −0.017, P = 0.003).ConclusionShrinkage of the optic tract can be detected in patients with thalamic stroke, especially after 6 months of stroke onset. In these patients, the extent of optic tract atrophy is associated with pRNFL thickness, and they are both related to visual acuity changes.
Collapse
|
10
|
Caffarra S, Joo SJ, Bloom D, Kruper J, Rokem A, Yeatman JD. Development of the visual white matter pathways mediates development of electrophysiological responses in visual cortex. Hum Brain Mapp 2021; 42:5785-5797. [PMID: 34487405 PMCID: PMC8559498 DOI: 10.1002/hbm.25654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
The latency of neural responses in the visual cortex changes systematically across the lifespan. Here, we test the hypothesis that development of visual white matter pathways mediates maturational changes in the latency of visual signals. Thirty-eight children participated in a cross-sectional study including diffusion magnetic resonance imaging (MRI) and magnetoencephalography (MEG) sessions. During the MEG acquisition, participants performed a lexical decision and a fixation task on words presented at varying levels of contrast and noise. For all stimuli and tasks, early evoked fields were observed around 100 ms after stimulus onset (M100), with slower and lower amplitude responses for low as compared to high contrast stimuli. The optic radiations and optic tracts were identified in each individual's brain based on diffusion MRI tractography. The diffusion properties of the optic radiations predicted M100 responses, especially for high contrast stimuli. Higher optic radiation fractional anisotropy (FA) values were associated with faster and larger M100 responses. Over this developmental window, the M100 responses to high contrast stimuli became faster with age and the optic radiation FA mediated this effect. These findings suggest that the maturation of the optic radiations over childhood accounts for individual variations observed in the developmental trajectory of visual cortex responses.
Collapse
Affiliation(s)
- Sendy Caffarra
- Division of Developmental‐Behavioral PediatricsStanford University School of MedicineStanfordCalifornia
- Stanford University Graduate School of EducationStanfordCalifornia
- Basque Center on Cognition Brain and LanguageSan SebastianSpain
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sung Jun Joo
- Department of PsychologyPusan National UniversityPusanRepublic of Korea
| | - David Bloom
- Department of PsychologyUniversity of WashingtonSeattleWashington
- eScience InstituteUniversity of WashingtonSeattleWashington
| | - John Kruper
- Department of PsychologyUniversity of WashingtonSeattleWashington
- eScience InstituteUniversity of WashingtonSeattleWashington
| | - Ariel Rokem
- Department of PsychologyUniversity of WashingtonSeattleWashington
- eScience InstituteUniversity of WashingtonSeattleWashington
| | - Jason D. Yeatman
- Division of Developmental‐Behavioral PediatricsStanford University School of MedicineStanfordCalifornia
- Stanford University Graduate School of EducationStanfordCalifornia
| |
Collapse
|