1
|
An WW, Bhowmik AC, Nelson CA, Wilkinson CL. EEG-based brain age prediction in infants-toddlers: Implications for early detection of neurodevelopmental disorders. Dev Cogn Neurosci 2024; 71:101493. [PMID: 39721149 DOI: 10.1016/j.dcn.2024.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
The infant brain undergoes rapid developmental changes in the first three years of life. Understanding these changes through the prediction of chronological age using neuroimaging can provide insights into typical and atypical brain development. We utilized 938 resting-state EEG recordings from 457 typically developing infants, 2 to 38 months old, to develop age prediction models. The multilayer perceptron model demonstrated the highest accuracy with an R2 of 0.83 and a mean absolute error of 91.7 days. Feature importance analysis that combined hierarchical clustering and Shapley values identified two feature clusters describing periodic alpha and low beta activity as key predictors of age. Application of the model to EEG data from infants later diagnosed with autism or Down syndrome revealed significant underestimations of chronological age, supporting its potential as a clinical tool for early identification of alterations in brain development.
Collapse
Affiliation(s)
- Winko W An
- Developmental Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA; Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| | - Aprotim C Bhowmik
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, 11549, NY, USA; Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, 21205, MD, USA
| | - Charles A Nelson
- Developmental Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA; Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA; Harvard Graduate School of Education, 13 Appian Way, Cambridge, 02138, MA, USA
| | - Carol L Wilkinson
- Developmental Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA; Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA.
| |
Collapse
|
2
|
Vandewouw MM, Ye Y(J, Crosbie J, Schachar RJ, Iaboni A, Georgiades S, Nicolson R, Kelley E, Ayub M, Jones J, Arnold PD, Taylor MJ, Lerch JP, Anagnostou E, Kushki A. Dataset factors associated with age-related changes in brain structure and function in neurodevelopmental conditions. Hum Brain Mapp 2024; 45:e26815. [PMID: 39254138 PMCID: PMC11386318 DOI: 10.1002/hbm.26815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
With brain structure and function undergoing complex changes throughout childhood and adolescence, age is a critical consideration in neuroimaging studies, particularly for those of individuals with neurodevelopmental conditions. However, despite the increasing use of large, consortium-based datasets to examine brain structure and function in neurotypical and neurodivergent populations, it is unclear whether age-related changes are consistent between datasets and whether inconsistencies related to differences in sample characteristics, such as demographics and phenotypic features, exist. To address this, we built models of age-related changes of brain structure (regional cortical thickness and regional surface area; N = 1218) and function (resting-state functional connectivity strength; N = 1254) in two neurodiverse datasets: the Province of Ontario Neurodevelopmental Network and the Healthy Brain Network. We examined whether deviations from these models differed between the datasets, and explored whether these deviations were associated with demographic and clinical variables. We found significant differences between the two datasets for measures of cortical surface area and functional connectivity strength throughout the brain. For regional measures of cortical surface area, the patterns of differences were associated with race/ethnicity, while for functional connectivity strength, positive associations were observed with head motion. Our findings highlight that patterns of age-related changes in the brain may be influenced by demographic and phenotypic characteristics, and thus future studies should consider these when examining or controlling for age effects in analyses.
Collapse
Affiliation(s)
- Marlee M. Vandewouw
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Yifan (Julia) Ye
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Division of Engineering ScienceUniversity of TorontoTorontoCanada
| | - Jennifer Crosbie
- Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Russell J. Schachar
- Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonCanada
| | | | - Elizabeth Kelley
- Department of PsychologyQueen's UniversityKingstonCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonCanada
- Department of PsychiatryQueen's UniversityKingstonCanada
| | - Muhammad Ayub
- Department of PsychiatryQueen's UniversityKingstonCanada
- Division of PsychiatryUniversity of College LondonLondonUK
| | - Jessica Jones
- Department of PsychologyQueen's UniversityKingstonCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonCanada
- Department of PsychiatryQueen's UniversityKingstonCanada
| | - Paul D. Arnold
- The Mathison Centre for Mental Health Research & Education, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Margot J. Taylor
- Department of Diagnostic and Interventional RadiologyThe Hospital for Sick ChildrenTorontoCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PsychologyUniversity of TorontoTorontoCanada
- Department of Medical ImagingUniversity of TorontoTorontoCanada
| | - Jason P. Lerch
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Institute of Medical ScienceUniversity of TorontoTorontoCanada
| | - Azadeh Kushki
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoCanada
| |
Collapse
|
3
|
Zhang X, Pan Y, Wu T, Zhao W, Zhang H, Ding J, Ji Q, Jia X, Li X, Lee Z, Zhang J, Bai L. Brain age prediction using interpretable multi-feature-based convolutional neural network in mild traumatic brain injury. Neuroimage 2024; 297:120751. [PMID: 39048043 DOI: 10.1016/j.neuroimage.2024.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy individuals, ignoring adding information from multiple sources and the changes in brain aging patterns after mild traumatic brain injury (mTBI) were still unclear. METHODS Here, we leveraged the structural data from a large, heterogeneous dataset (N = 1464) to implement an interpretable 3D combined CNN model for brain-age prediction. In addition, we also built an atlas-based occlusion analysis scheme with a fine-grained human Brainnetome Atlas to reveal the age-sstratified contributed brain regions for brain-age prediction in healthy controls (HCs) and mTBI patients. The correlations between brain predicted age gaps (brain-PAG) following mTBI and individual's cognitive impairment, as well as the level of plasma neurofilament light were also examined. RESULTS Our model utilized multiple 3D features derived from T1w data as inputs, and reduced the mean absolute error (MAE) of age prediction to 3.08 years and improved Pearson's r to 0.97 on 154 HCs. The strong generalizability of our model was also validated across different centers. Regions contributing the most significantly to brain age prediction were the caudate and thalamus for HCs and patients with mTBI, and the contributive regions were mostly located in the subcortical areas throughout the adult lifespan. The left hemisphere was confirmed to contribute more in brain age prediction throughout the adult lifespan. Our research showed that brain-PAG in mTBI patients was significantly higher than that in HCs in both acute and chronic phases. The increased brain-PAG in mTBI patients was also highly correlated with cognitive impairment and a higher level of plasma neurofilament light, a marker of neurodegeneration. The higher brain-PAG and its correlation with severe cognitive impairment showed a longitudinal and persistent nature in patients with follow-up examinations. CONCLUSION We proposed an interpretable deep learning framework on a relatively large dataset to accurately predict brain age in both healthy individuals and mTBI patients. The interpretable analysis revealed that the caudate and thalamus became the most contributive role across the adult lifespan in both HCs and patients with mTBI. The left hemisphere contributed significantly to brain age prediction may enlighten us to be concerned about the lateralization of brain abnormality in neurological diseases in the future. The proposed interpretable deep learning framework might also provide hope for testing the performance of related drugs and treatments in the future.
Collapse
Affiliation(s)
- Xiang Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yizhen Pan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tingting Wu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenpu Zhao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haonan Zhang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jierui Ding
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiuyu Ji
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuan Li
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiqi Lee
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Zhang
- Department of Radiation Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an 710032, China.
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Vakli P, Weiss B, Rozmann D, Erőss G, Nárai Á, Hermann P, Vidnyánszky Z. The effect of head motion on brain age prediction using deep convolutional neural networks. Neuroimage 2024; 294:120646. [PMID: 38750907 DOI: 10.1016/j.neuroimage.2024.120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024] Open
Abstract
Deep learning can be used effectively to predict participants' age from brain magnetic resonance imaging (MRI) data, and a growing body of evidence suggests that the difference between predicted and chronological age-referred to as brain-predicted age difference (brain-PAD)-is related to various neurological and neuropsychiatric disease states. A crucial aspect of the applicability of brain-PAD as a biomarker of individual brain health is whether and how brain-predicted age is affected by MR image artifacts commonly encountered in clinical settings. To investigate this issue, we trained and validated two different 3D convolutional neural network architectures (CNNs) from scratch and tested the models on a separate dataset consisting of motion-free and motion-corrupted T1-weighted MRI scans from the same participants, the quality of which were rated by neuroradiologists from a clinical diagnostic point of view. Our results revealed a systematic increase in brain-PAD with worsening image quality for both models. This effect was also observed for images that were deemed usable from a clinical perspective, with brains appearing older in medium than in good quality images. These findings were also supported by significant associations found between the brain-PAD and standard image quality metrics indicating larger brain-PAD for lower-quality images. Our results demonstrate a spurious effect of advanced brain aging as a result of head motion and underline the importance of controlling for image quality when using brain-predicted age based on structural neuroimaging data as a proxy measure for brain health.
Collapse
Affiliation(s)
- Pál Vakli
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| | - Béla Weiss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Óbuda University, Budapest 1034, Hungary.
| | - Dorina Rozmann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - György Erőss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Ádám Nárai
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology and Sportbiology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs 7624, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| |
Collapse
|
5
|
An WW, Bhowmik AC, Nelson CA, Wilkinson CL. Prediction of chronological age from resting-state EEG power in the first three years of life. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.31.24308275. [PMID: 38853932 PMCID: PMC11160894 DOI: 10.1101/2024.05.31.24308275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The infant brain undergoes rapid and significant developmental changes in the first three years of life. Understanding these changes through the prediction of chronological age using neuroimaging data can provide insights into typical and atypical brain development. We utilized longitudinal resting-state EEG data from 457 typically developing infants, comprising 938 recordings, to develop age prediction models. The multilayer perceptron model demonstrated the highest accuracy with an R2 of 0.82 and a mean absolute error of 92.4 days. Aperiodic offset and periodic theta, alpha, and beta power were identified as key predictors of age via Shapley values. Application of the model to EEG data from infants later diagnosed with autism spectrum disorder or Down syndrome revealed significant underestimations of chronological age. This study establishes the feasibility of using EEG to assess brain maturation in early childhood and supports its potential as a clinical tool for early identification of alterations in brain development.
Collapse
Affiliation(s)
- Winko W. An
- Developmental Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
- Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| | - Aprotim C. Bhowmik
- Developmental Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
| | - Charles A. Nelson
- Developmental Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
- Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
- Harvard Graduate School of Education, 13 Appian Way, Cambridge, 02138, MA, USA
| | - Carol L. Wilkinson
- Developmental Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
- Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| |
Collapse
|
6
|
Suo X, Lan H, Zuo C, Chen L, Qin K, Li L, Kemp GJ, Wang S, Gong Q. Multilayer analysis of dynamic network reconfiguration in pediatric posttraumatic stress disorder. Cereb Cortex 2024; 34:bhad436. [PMID: 37991275 DOI: 10.1093/cercor/bhad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroimage studies have reported functional connectome abnormalities in posttraumatic stress disorder (PTSD), especially in adults. However, these studies often treated the brain as a static network, and time-variance of connectome topology in pediatric posttraumatic stress disorder remain unclear. To explore case-control differences in dynamic connectome topology, resting-state functional magnetic resonance imaging data were acquired from 24 treatment-naïve non-comorbid pediatric posttraumatic stress disorder patients and 24 demographically matched trauma-exposed non-posttraumatic stress disorder controls. A graph-theoretic analysis was applied to construct time-varying modular structure of whole-brain networks by maximizing the multilayer modularity. Network switching rate at the global, subnetwork, and nodal levels were calculated and compared between posttraumatic stress disorder and trauma-exposed non-posttraumatic stress disorder groups, and their associations with posttraumatic stress disorder symptom severity and sex interactions were explored. At the global level, individuals with posttraumatic stress disorder exhibited significantly lower network switching rates compared to trauma-exposed non-posttraumatic stress disorder controls. This difference was mainly involved in default-mode and dorsal attention subnetworks, as well as in inferior temporal and parietal brain nodes. Posttraumatic stress disorder symptom severity was negatively correlated with switching rate in the global network and default mode network. No significant differences were observed in the interaction between diagnosis and sex/age. Pediatric posttraumatic stress disorder is associated with dynamic reconfiguration of brain networks, which may provide insights into the biological basis of this disorder.
Collapse
Affiliation(s)
- Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Huan Lan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Chao Zuo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Li Chen
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kun Qin
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219, United States
| | - Lingjiang Li
- Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| |
Collapse
|
7
|
Cohen JW, Ramphal B, DeSerisy M, Zhao Y, Pagliaccio D, Colcombe S, Milham MP, Margolis AE. Relative brain age is associated with socioeconomic status and anxiety/depression problems in youth. Dev Psychol 2024; 60:199-209. [PMID: 37747510 PMCID: PMC10993304 DOI: 10.1037/dev0001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Brain age, a measure of biological aging in the brain, has been linked to psychiatric illness, principally in adult populations. Components of socioeconomic status (SES) associate with differences in brain structure and psychiatric risk across the lifespan. This study aimed to investigate the influence of SES on brain aging in childhood and adolescence, a period of rapid neurodevelopment and peak onset for many psychiatric disorders. We reanalyzed data from the Healthy Brain Network to examine the influence of SES components (occupational prestige, public assistance enrollment, parent education, and household income-to-needs ratio [INR]) on relative brain age (RBA). Analyses included 470 youth (5-17 years; 61.3% men), self-identifying as White (55%), African American (15%), Hispanic (9%), or multiracial (17.2%). Household income was 3.95 ± 2.33 (mean ± SD) times the federal poverty threshold. RBA quantified differences between chronological age and brain age using covariation patterns of morphological features and total volumes. We also examined associations between RBA and psychiatric symptoms (Child Behavior Checklist [CBCL]). Models covaried for sex, scan location, and parent psychiatric diagnoses. In a linear regression, lower RBA is associated with lower parent occupational prestige (p = .01), lower public assistance enrollment (p = .03), and more parent psychiatric diagnoses (p = .01), but not parent education or INR. Lower parent occupational prestige (p = .02) and lower RBA (p = .04) are associated with higher CBCL anxious/depressed scores. Our findings underscore the importance of including SES components in developmental brain research. Delayed brain aging may represent a potential biological pathway from SES to psychiatric risk. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Jacob W. Cohen
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| | - Bruce Ramphal
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
- T.H. Chan School of Public Health, Harvard Medical School
| | - Mariah DeSerisy
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | - Yihong Zhao
- Columbia University School of Nursing
- Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, United States
| | - David Pagliaccio
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| | - Stan Colcombe
- Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, United States
| | - Michael P. Milham
- Child Mind Institute, New York, New York, United States
- Nathan S. Kline Institute, Orangeburg, New York, United States
| | - Amy E. Margolis
- New York State Psychiatric Institute and Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University
| |
Collapse
|
8
|
Kulkarni AP, Hwang G, Cook CJ, Mohanty R, Guliani A, Nair VA, Bendlin BB, Meyerand E, Prabhakaran V. Genetic and environmental influence on resting state networks in young male and female adults: a cartographer mapping study. Hum Brain Mapp 2023; 44:5238-5293. [PMID: 36537283 PMCID: PMC10543121 DOI: 10.1002/hbm.25947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 09/07/2023] Open
Abstract
We propose a unique, minimal assumption, approach based on variance analyses (compared with standard approaches) to investigate genetic influence on individual differences on the functional connectivity of the brain using 65 monozygotic and 65 dizygotic healthy young adult twin pairs' low-frequency oscillation resting state functional Magnetic Resonance Imaging (fMRI) data from the Human Connectome Project. Overall, we found high number of genetically-influenced functional (GIF) connections involving posterior to posterior brain regions (occipital/temporal/parietal) implicated in low-level processes such as vision, perception, motion, categorization, dorsal/ventral stream visuospatial, and long-term memory processes, as well as high number across midline brain regions (cingulate) implicated in attentional processes, and emotional responses to pain. We found low number of GIF connections involving anterior to anterior/posterior brain regions (frontofrontal > frontoparietal, frontotemporal, frontooccipital) implicated in high-level processes such as working memory, reasoning, emotional judgment, language, and action planning. We found very low number of GIF connections involving subcortical/noncortical networks such as basal ganglia, thalamus, brainstem, and cerebellum. In terms of sex-specific individual differences, individual differences in males were more genetically influenced while individual differences in females were more environmentally influenced in terms of the interplay of interactions of Task positive networks (brain regions involved in various task-oriented processes and attending to and interacting with environment), extended Default Mode Network (a central brain hub for various processes such as internal monitoring, rumination, and evaluation of self and others), primary sensorimotor systems (vision, audition, somatosensory, and motor systems), and subcortical/noncortical networks. There were >8.5-19.1 times more GIF connections in males than females. These preliminary (young adult cohort-specific) findings suggest that individual differences in the resting state brain may be more genetically influenced in males and more environmentally influenced in females; furthermore, standard approaches may suggest that it is more substantially nonadditive genetics, rather than additive genetics, which contribute to the differences in sex-specific individual differences based on this young adult (male and female) specific cohort. Finally, considering the preliminary cohort-specific results, based on standard approaches, environmental influences on individual differences may be substantially greater than that of genetics, for either sex, frontally and brain-wide. [Correction added on 10 May 2023, after first online publication: added: functional Magnetic Resonance Imaging. Added: individual differences in, twice. Added statement between furthermore … based on standard approaches.].
Collapse
Affiliation(s)
- Arman P. Kulkarni
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Gyujoon Hwang
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Cole J. Cook
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Akhil Guliani
- Department of Computer ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Veena A. Nair
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Elizabeth Meyerand
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Vivek Prabhakaran
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Computer ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of NeurologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
9
|
Zhang Y, Wang F, Sui J. Decoding individual differences in self-prioritization from the resting-state functional connectome. Neuroimage 2023; 276:120205. [PMID: 37253415 DOI: 10.1016/j.neuroimage.2023.120205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/01/2023] Open
Abstract
Although the self has traditionally been viewed as a higher-order mental function by most theoretical frameworks, recent research advocates a fundamental self hypothesis, viewing the self as a baseline function of the brain embedded within its spontaneous activities, which dynamically regulates cognitive processing and subsequently guides behavior. Understanding this fundamental self hypothesis can reveal where self-biased behaviors emerge and to what extent brain signals at rest can predict such biased behaviors. To test this hypothesis, we investigated the association between spontaneous neural connectivity and robust self-bias in a perceptual matching task using resting-state functional magnetic resonance imaging (fMRI) in 348 young participants. By decoding whole-brain connectivity patterns, the support vector regression model produced the best predictions of the magnitude of self-bias in behavior, which was evaluated via a nested cross-validation procedure. The out-of-sample generalizability was further authenticated using an external dataset of older adults. The functional connectivity results demonstrated that self-biased behavior was associated with distinct connections between the default mode, cognitive control, and salience networks. Consensus network and computational lesion analyses further revealed contributing regions distributed across six networks, extending to additional nodes, such as the thalamus, whose role in self-related processing remained unclear. These results provide evidence that self-biased behavior derives from spontaneous neural connectivity, supporting the fundamental self hypothesis. Thus, we propose an integrated neural network model of this fundamental self that synthesizes previous theoretical models and portrays the brain mechanisms by which the self emerges at rest internally and regulates responses to the external environment.
Collapse
Affiliation(s)
- Yongfa Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China; The Centre for Positive Psychology Research, Tsinghua University, Beijing 100084, China.
| | - Jie Sui
- School of Psychology, University of Aberdeen, Aberdeen AB24 3FX, Scotland, Great Britain
| |
Collapse
|
10
|
Xie Y, Sun J, Man W, Zhang Z, Zhang N. Personalized estimates of brain cortical structural variability in individuals with Autism spectrum disorder: the predictor of brain age and neurobiology relevance. Mol Autism 2023; 14:27. [PMID: 37507798 PMCID: PMC10375633 DOI: 10.1186/s13229-023-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a heritable condition related to brain development that affects a person's perception and socialization with others. Here, we examined variability in the brain morphology in ASD children and adolescent individuals at the level of brain cortical structural profiles and the level of each brain regional measure. METHODS We selected brain structural MRI data in 600 ASDs and 729 normal controls (NCs) from Autism Brain Imaging Data Exchange (ABIDE). The personalized estimate of similarity between gray matter volume (GMV) profiles of an individual to that of others in the same group was assessed by using the person-based similarity index (PBSI). Regional contributions to PBSI score were utilized for brain age gap estimation (BrainAGE) prediction model establishment, including support vector regression (SVR), relevance vector regression (RVR), and Gaussian process regression (GPR). The association between BrainAGE prediction in ASD and clinical performance was investigated. We further explored the related inter-regional profiles of gene expression from the Allen Human Brain Atlas with variability differences in the brain morphology between groups. RESULTS The PBSI score of GMV was negatively related to age regardless of the sample group, and the PBSI score was significantly lower in ASDs than in NCs. The regional contributions to the PBSI score of 126 brain regions in ASDs showed significant differences compared to NCs. RVR model achieved the best performance for predicting brain age. Higher inter-individual brain morphology variability was related to increased brain age, specific to communication symptoms. A total of 430 genes belonging to various pathways were identified as associated with brain cortical morphometric variation. The pathways, including short-term memory, regulation of system process, and regulation of nervous system process, were dominated mainly by gene sets for manno midbrain neurotypes. LIMITATIONS There is a sample mismatch between the gene expression data and brain imaging data from ABIDE. A larger sample size can contribute to the model training of BrainAGE and the validation of the results. CONCLUSIONS ASD has personalized heterogeneity brain morphology. The brain age gap estimation and transcription-neuroimaging associations derived from this trait are replenished in an additional direction to boost the understanding of the ASD brain.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Weiqi Man
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Zhang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
11
|
Suo X, Zuo C, Lan H, Li W, Li L, Kemp GJ, Wang S, Gong Q. Multilayer Network Analysis of Dynamic Network Reconfiguration in Adults With Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 8:452-461. [PMID: 36152949 DOI: 10.1016/j.bpsc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Brain functional network abnormalities are reported in posttraumatic stress disorder (PTSD). Most resting-state functional magnetic resonance imaging studies have assumed that the functional networks remain static during the scans. How these might change dynamically in PTSD remains unclear. METHODS Resting-state functional magnetic resonance imaging data were collected from 71 noncomorbid, treatment-naïve patients with PTSD and 70 demographically matched, trauma-exposed non-PTSD control subjects. Network switching rate was used to characterize dynamic changes of individual resting-state functional networks. Results were analyzed by comparing switching rates between the PTSD and trauma-exposed non-PTSD groups, testing for diagnosis × sex interactions, and examining correlations with PTSD symptom severity. RESULTS At the global level, the PTSD group showed significantly lower network switching rates than the trauma-exposed non-PTSD group. These were observed mainly in the frontoparietal, default mode, and limbic networks at the subnetwork level and in the frontal and temporal regions at the nodal level. These network switching rate alterations were correlated with PTSD symptom severity. There were no significant effects of sex. CONCLUSIONS These disruptions of dynamic functional network stability, reflected by lower network switching rates in the resting state, are a feature of PTSD and suggest that the frontoparietal, default mode, and limbic networks may play a critical role in the underlying neural mechanisms.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chao Zuo
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Huan Lan
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbin Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingjiang Li
- Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Song Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
12
|
Chen LZ, Holmes AJ, Zuo XN, Dong Q. Neuroimaging brain growth charts: A road to mental health. PSYCHORADIOLOGY 2021; 1:272-286. [PMID: 35028568 PMCID: PMC8739332 DOI: 10.1093/psyrad/kkab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
Mental disorders are common health concerns and contribute to a heavy global burden on our modern society. It is challenging to identify and treat them timely. Neuroimaging evidence suggests the incidence of various psychiatric and behavioral disorders is closely related to the atypical development of brain structure and function. The identification and understanding of atypical brain development provide chances for clinicians to detect mental disorders earlier, perhaps even prior to onset, and treat them more precisely. An invaluable and necessary method in identifying and monitoring atypical brain development are growth charts of typically developing individuals in the population. The brain growth charts can offer a series of standard references on typical neurodevelopment, representing an important resource for the scientific and medical communities. In the present paper, we review the relationship between mental disorders and atypical brain development from a perspective of normative brain development by surveying the recent progress in the development of brain growth charts, including four aspects on growth chart utility: 1) cohorts, 2) measures, 3) mechanisms, and 4) clinical translations. In doing so, we seek to clarify the challenges and opportunities in charting brain growth, and to promote the application of brain growth charts in clinical practice.
Collapse
Affiliation(s)
- Li-Zhen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- National Basic Science Data Center, Beijing 100190, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|