1
|
Biondi M, Marino M, Mantini D, Spironelli C. Unveiling altered connectivity between cognitive networks and cerebellum in schizophrenia. Schizophr Res 2024; 271:47-58. [PMID: 39013344 DOI: 10.1016/j.schres.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Cognitive functioning is a crucial aspect in schizophrenia (SZ), and when altered it has devastating effects on patients' quality of life and treatment outcomes. Several studies suggested that they could result from altered communication between the cortex and cerebellum. However, the neural correlates underlying these impairments have not been identified. In this study, we investigated resting state functional connectivity (rsFC) in SZ patients, by considering the interactions between cortical networks supporting cognition and cerebellum. In addition, we investigated the relationship between SZ patients' rsFC and their symptoms. We used fMRI data from 74 SZ patients and 74 matched healthy controls (HC) downloaded from the publicly available database SchizConnect. We implemented a seed-based connectivity approach to identify altered functional connections between specific cortical networks and cerebellum. We considered ten commonly studied resting state networks, whose functioning encompasses specific cognitive functions, and the cerebellum, whose involvement in supporting cognition has been recently identified. We then explored the relationship between altered rsFC values and Positive and Negative Syndrome Scale (PANSS) scores. The SZ group showed increased connectivity values compared with HC group for cortical networks involved in attentive processes, which were also linked to PANSS items describing attention and language-related processing. We also showed decreased connectivity between cerebellar regions, and increased connectivity between them and attentive networks, suggesting the contribution of cerebellum to attentive and affective deficits. In conclusion, our findings highlighted the link between negative symptoms in SZ and altered connectivity within the cerebellum and between the same and cortical networks supporting cognition.
Collapse
Affiliation(s)
| | - Marco Marino
- Department of General Psychology, University of Padova, Italy; Movement Control and Neuroplasticity Research Group, KU, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU, Leuven, Belgium.
| | - Chiara Spironelli
- Padova Neuroscience Center, University of Padova, Italy; Department of General Psychology, University of Padova, Italy
| |
Collapse
|
2
|
Ding H, Zhang Y, Xie Y, Du X, Ji Y, Lin L, Chang Z, Zhang B, Liang M, Yu C, Qin W. Individualized Texture Similarity Network in Schizophrenia. Biol Psychiatry 2024; 96:176-187. [PMID: 38218309 DOI: 10.1016/j.biopsych.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Structural covariance network disruption has been considered an important pathophysiological indicator for schizophrenia. Here, we introduced a novel individualized structural covariance network measure, referred to as a texture similarity network (TSN), and hypothesized that the TSN could reliably reveal unique intersubject heterogeneity and complex dysconnectivity patterns in schizophrenia. METHODS The TSN was constructed by measuring the covariance of 180 three-dimensional voxelwise gray-level co-occurrence matrix feature maps between brain areas in each participant. We first tested the validity and reproducibility of the TSN in characterizing the intersubject variability in 2 longitudinal test-retest healthy cohorts. The TSN was further applied to elucidate intersubject variability and dysconnectivity patterns in 10 schizophrenia case-control datasets (609 schizophrenia cases vs. 579 controls) as well as in a first-episode depression dataset (69 patients with depression vs. 69 control participants). RESULTS The test-retest analysis demonstrated higher TSN intersubject than intrasubject variability. Moreover, the TSN reliably revealed higher intersubject variability in both chronic and first-episode schizophrenia, but not in depression. The TSN also reproducibly detected coexistent increased and decreased TSN strength in widespread brain areas, increased global small-worldness, and the coexistence of both structural hyposynchronization in the central networks and hypersynchronization in peripheral networks in patients with schizophrenia but not in patients with depression. Finally, aberrant intersubject variability and covariance strength patterns revealed by the TSN showed a missing or weak correlation with other individualized structural covariance network measures, functional connectivity, and regional volume changes. CONCLUSIONS These findings support the reliability of a TSN in revealing unique structural heterogeneity and complex dysconnectivity in patients with schizophrenia.
Collapse
Affiliation(s)
- Hao Ding
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Ji
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Liyuan Lin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongyu Chang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhang
- Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China; Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Liang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
3
|
Marzi C, Giannelli M, Barucci A, Tessa C, Mascalchi M, Diciotti S. Efficacy of MRI data harmonization in the age of machine learning: a multicenter study across 36 datasets. Sci Data 2024; 11:115. [PMID: 38263181 PMCID: PMC10805868 DOI: 10.1038/s41597-023-02421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/27/2023] [Indexed: 01/25/2024] Open
Abstract
Pooling publicly-available MRI data from multiple sites allows to assemble extensive groups of subjects, increase statistical power, and promote data reuse with machine learning techniques. The harmonization of multicenter data is necessary to reduce the confounding effect associated with non-biological sources of variability in the data. However, when applied to the entire dataset before machine learning, the harmonization leads to data leakage, because information outside the training set may affect model building, and potentially falsely overestimate performance. We propose a 1) measurement of the efficacy of data harmonization; 2) harmonizer transformer, i.e., an implementation of the ComBat harmonization allowing its encapsulation among the preprocessing steps of a machine learning pipeline, avoiding data leakage by design. We tested these tools using brain T1-weighted MRI data from 1740 healthy subjects acquired at 36 sites. After harmonization, the site effect was removed or reduced, and we showed the data leakage effect in predicting individual age from MRI data, highlighting that introducing the harmonizer transformer into a machine learning pipeline allows for avoiding data leakage by design.
Collapse
Affiliation(s)
- Chiara Marzi
- Department of Statistics, Computer Science and Applications "Giuseppe Parenti", University of Florence, 50134, Florence, Italy
- "Nello Carrara" Institute of Applied Physics (IFAC), National Research Council (CNR), 50019, Sesto Fiorentino, Florence, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126, Pisa, Italy
| | - Andrea Barucci
- "Nello Carrara" Institute of Applied Physics (IFAC), National Research Council (CNR), 50019, Sesto Fiorentino, Florence, Italy
| | - Carlo Tessa
- Radiology Unit Apuane e Lunigiana, Azienda USL Toscana Nord Ovest, 54100, Massa, Italy
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
- Division of Epidemiology and Clinical Governance, Institute for Study, Prevention and netwoRk in Oncology (ISPRO), 50139, Florence, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" - DEI, University of Bologna, 47522, Cesena, Italy.
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, 40121, Bologna, Italy.
| |
Collapse
|
4
|
Chan YH, Yew WC, Chew QH, Sim K, Rajapakse JC. Elucidating salient site-specific functional connectivity features and site-invariant biomarkers in schizophrenia via deep neural networks. Sci Rep 2023; 13:21047. [PMID: 38030699 PMCID: PMC10687079 DOI: 10.1038/s41598-023-48548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
Schizophrenia is a highly heterogeneous disorder and salient functional connectivity (FC) features have been observed to vary across study sites, warranting the need for methods that can differentiate between site-invariant FC biomarkers and site-specific salient FC features. We propose a technique named Semi-supervised learning with data HaRmonisation via Encoder-Decoder-classifier (SHRED) to examine these features from resting state functional magnetic resonance imaging scans gathered from four sites. Our approach involves an encoder-decoder-classifier architecture that simultaneously performs data harmonisation and semi-supervised learning (SSL) to deal with site differences and labelling inconsistencies across sites respectively. The minimisation of reconstruction loss from SSL was shown to improve model performance even within small datasets whilst data harmonisation often led to lower model generalisability, which was unaffected using the SHRED technique. We show that our proposed model produces site-invariant biomarkers, most notably the connection between transverse temporal gyrus and paracentral lobule. Site-specific salient FC features were also elucidated, especially implicating the paracentral lobule for our local dataset. Our examination of these salient FC features demonstrates how site-specific features and site-invariant biomarkers can be differentiated, which can deepen our understanding of the neurobiology of schizophrenia.
Collapse
Affiliation(s)
- Yi Hao Chan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wei Chee Yew
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qian Hui Chew
- Research Division, Institute of Mental Health (IMH), Singapore, Singapore
| | - Kang Sim
- Research Division, Institute of Mental Health (IMH), Singapore, Singapore
- West Region, Institute of Mental Health (IMH), Singapore, Singapore
| | - Jagath C Rajapakse
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
5
|
Li Y, Zhou F, Li R, Gu J, He J. Exploring the correlation between genetic transcription and multi-temporal developmental autism spectrum disorder using resting-state functional magnetic resonance imaging. Front Neurosci 2023; 17:1219753. [PMID: 37456995 PMCID: PMC10339831 DOI: 10.3389/fnins.2023.1219753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The present investigation aimed to explore the neurodevelopmental trajectory of autism spectrum disorder (ASD) by identifying the changes in brain function and gene expression associated with the disorder. Previous studies have indicated that ASD is a highly inherited neurodevelopmental disorder of the brain that displays symptom heterogeneity across different developmental periods. However, the transcriptomic changes underlying these developmental differences remain largely unknown. Methods To address this gap in knowledge, our study employed resting-state functional magnetic resonance imaging (rs-fMRI) data from a large sample of male participants across four representative age groups to stratify the abnormal changes in brain function associated with ASD. Partial least square regression (PLSr) was utilized to identify unique changes in gene expression in brain regions characterized by aberrant functioning in ASD. Results Our results revealed that ASD exhibits distinctive developmental trajectories in crucial brain regions such as the default mode network (DMN), temporal lobe, and prefrontal lobes during critical periods of neurodevelopment when compared to the control group. These changes were also associated with genes primarily located in synaptic tissues. Discussion The findings of this study suggest that the neurobiology of ASD is uniquely heterogeneous across different ages and may be accompanied by distinct molecular mechanisms related to gene expression.
Collapse
|
6
|
Li Y, Li R, Wang N, Gu J, Gao J. Gender effects on autism spectrum disorder: a multi-site resting-state functional magnetic resonance imaging study of transcriptome-neuroimaging. Front Neurosci 2023; 17:1203690. [PMID: 37409103 PMCID: PMC10318192 DOI: 10.3389/fnins.2023.1203690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction The gender disparity in autism spectrum disorder (ASD) has been one of the salient features of condition. However, its relationship between the pathogenesis and genetic transcription in patients of different genders has yet to reach a reliable conclusion. Methods To address this gap, this study aimed to establish a reliable potential neuro-marker in gender-specific patients, by employing multi-site functional magnetic resonance imaging (fMRI) data, and to further investigate the role of genetic transcription molecules in neurogenetic abnormalities and gender differences in autism at the neuro-transcriptional level. To this end, age was firstly used as a regression covariate, followed by the use of ComBat to remove the site effect from the fMRI data, and abnormal functional activity was subsequently identified. The resulting abnormal functional activity was then correlated by genetic transcription to explore underlying molecular functions and cellular molecular mechanisms. Results Abnormal brain functional activities were identified in autism patients of different genders, mainly located in the default model network (DMN) and precuneus-cingulate gyrus-frontal lobe. The correlation analysis of neuroimaging and genetic transcription further found that heterogeneous brain regions were highly correlated with genes involved in signal transmission between neurons' plasma membranes. Additionally, we further identified different weighted gene expression patterns and specific expression tissues of risk genes in ASD of different genders. Discussion Thus, this work not only identified the mechanism of abnormal brain functional activities caused by gender differences in ASD, but also explored the genetic and molecular characteristics caused by these related changes. Moreover, we further analyzed the genetic basis of sex differences in ASD from a neuro-transcriptional perspective.
Collapse
Affiliation(s)
- Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
| | - Ning Wang
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
| | - Jiahe Gu
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|