1
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
2
|
Lotter LD, Saberi A, Hansen JY, Misic B, Paquola C, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère ML, Artiges E, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Nees F, Banaschewski T, Eickhoff SB, Dukart J. Regional patterns of human cortex development correlate with underlying neurobiology. Nat Commun 2024; 15:7987. [PMID: 39284858 PMCID: PMC11405413 DOI: 10.1038/s41467-024-52366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cortical thickness development and aging trajectories unfold along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of the variance associated with a lifespan model of regional cortical thickness trajectories. In contrast, modeled cortical thickness change patterns during adulthood are best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distributions. These relationships are supported by developmental gene expression trajectories and translate to individual longitudinal data from over 8000 adolescents, explaining up to 59% of developmental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand brain development and aging in living humans.
Collapse
Affiliation(s)
- Leon D Lotter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- Max Planck School of Cognition; Stephanstrasse 1A, Leipzig, Germany.
| | - Amin Saberi
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham; University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin, Berlin, Germany
| | - Jean-Luc Martinot
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
- Department of Psychiatry, EPS Barthélémy Durand, Etampes, France
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, Heidelberg, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Pasquini L, Pereira FL, Seddighi S, Zeng Y, Wei Y, Illán-Gala I, Vatsavayai SC, Friedberg A, Lee AJ, Brown JA, Spina S, Grinberg LT, Sirkis DW, Bonham LW, Yokoyama JS, Boxer AL, Kramer JH, Rosen HJ, Humphrey J, Gitler AD, Miller BL, Pollard KS, Ward ME, Seeley WW. Frontotemporal lobar degeneration targets brain regions linked to expression of recently evolved genes. Brain 2024; 147:3032-3047. [PMID: 38940350 PMCID: PMC11370792 DOI: 10.1093/brain/awae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Neurology, Neuroscape, University of California, San Francisco, CA 94158, USA
| | - Felipe L Pereira
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, Bethesda, MD 20892, USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Ignacio Illán-Gala
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, 94158USA
- Trinity College Dublin, Dublin D02 X9W9, Ireland
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalunya, 08041, Spain
| | - Sarat C Vatsavayai
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Adit Friedberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, 94158USA
- Trinity College Dublin, Dublin D02 X9W9, Ireland
| | - Alex J Lee
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94158, USA
| | - Daniel W Sirkis
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Luke W Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Radiology, University of California, San Francisco, CA 94158, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Radiology, University of California, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics and Bakar Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, Bethesda, MD 20892, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Yang H, Chen Y, Tao Q, Shi W, Tian Y, Wei Y, Li S, Zhang Y, Han S, Cheng J. Integrative molecular and structural neuroimaging analyses of the interaction between depression and age of onset: A multimodal magnetic resonance imaging study. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111052. [PMID: 38871019 DOI: 10.1016/j.pnpbp.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Depression is a neurodevelopmental disorder that exhibits progressive gray matter volume (GMV) atrophy. Research indicates that brain development is influential in depression-induced GMV alterations. However, the interaction between depression and age of onset is not well understood by the underlying molecular and neuropathological mechanisms. Thus, 152 first-episode depression individuals and matched 130 healthy controls (HCs) were recruited to undergo T1-weighted high-resolution magnetic resonance imaging for this study. By two-way ANOVA, age and diagnosis were used as factors when analyzing the interaction of GMV in the participants. Then, spatial correlations between neurotransmitter maps and factor-related volume maps are established. Results illustrate a pronounced antagonistic interaction between depression and age of onset in the right insula, superior temporal gyrus, anterior cingulate gyrus, and orbitofrontal gyrus. Depression-caused reductions in GMV are mainly distributed in thalamic-limbic-cortical regions, regardless of age. For the main effect of age, adults exhibit brain atrophy in frontal, cerebellum, parietal, and temporal lobe structures. Cross-modal correlations showed that GMV changes in the interactive regions were linked with the serotonergic system and dopaminergic systems. Summarily, our results reveal the interaction between depression and age of onset in neurobiological mechanisms, which provide hints for future treatment of different ages of depression.
Collapse
Affiliation(s)
- Huiting Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Wenqing Shi
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Ya Tian
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of brain function and cognitive magnetic resonance imaging, Zhengzhou, China; Henan Engineering Technology Research Center for detection and application of brain function, Zhengzhou, China; Henan Engineering Research Center of medical imaging intelligent diagnosis and treatment, Zhengzhou, China; Henan key laboratory of imaging intelligence research, Zhengzhou, China; Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China.
| |
Collapse
|
5
|
Lotter LD, Saberi A, Hansen JY, Misic B, Paquola C, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère ML, Artiges E, Orfanos DP, Paus T, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Nees F, Banaschewski T, Eickhoff SB, Dukart J. Regional patterns of human cortex development correlate with underlying neurobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.05.539537. [PMID: 37205539 PMCID: PMC10187287 DOI: 10.1101/2023.05.05.539537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cortical thickness development and aging trajectories unfold along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of variance associated with a lifespan model of regional cortical thickness trajectories. In contrast, modeled cortical thickness change patterns during adulthood are best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distributions. These relationships are supported by developmental gene expression trajectories and translate to individual longitudinal data from over 8,000 adolescents, explaining up to 59% of developmental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand brain development and aging in living humans.
Collapse
Affiliation(s)
- Leon D. Lotter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
- Max Planck School of Cognition; Stephanstrasse 1A, 04103 Leipzig, Germany
| | - Amin Saberi
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig, Germany
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University; Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University; Montréal, QC, Canada
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London; London, United Kingdom
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin; Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London; London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim; 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay; F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont; 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham; University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
| | - Marie-Laure Paillère
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital; Paris, France
| | - Eric Artiges
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- Department of Psychiatry, EPS Barthélémy Durand; Etampes, France
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Montréal, Quebec, Canada
- Department of Psychiatry, McGill University; Montreal, Quebec, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen; von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden; Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden; Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin; Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin; Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin; Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University; Shanghai, China
| | | | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University; Kiel, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm; Heidelberg, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
| |
Collapse
|
6
|
Shi D, Wu S, Zhuang C, Mao Y, Wang Q, Zhai H, Zhao N, Yan G, Wu R. Multimodal data fusion reveals functional and neurochemical correlates of Parkinson's disease. Neurobiol Dis 2024; 197:106527. [PMID: 38740347 DOI: 10.1016/j.nbd.2024.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Shuohua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Caiyu Zhuang
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yumeng Mao
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qianqi Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Huige Zhai
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, China
| | - Nannan Zhao
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China.
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
7
|
Liu H, Chen D, Liu C, Liu P, Yang H, Lu H. Brain structural changes and molecular analyses in children with benign epilepsy with centrotemporal spikes. Pediatr Res 2024; 96:184-189. [PMID: 38431664 DOI: 10.1038/s41390-024-03118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Benign epilepsy with centrotemporal spikes (BECTS) is a common childhood epilepsy syndrome, accompanied by behavioral problems and cognitive impairments. Previous studies of BECTS-related brain structures applied univariate analysis and showed inconsistent results. And neurotransmitter patterns associated with brain structural alterations were still unclear. METHODS Structural images of twenty-one drug-naïve children with BECTS and thirty-five healthy controls (HCs) were scanned. Segmented gray matter volume (GMV) images were decomposed into independent components (ICs) using the source-based morphometry method. Then spatial correlation analyses were applied to examine possible relationships between GMV changes and neurotransmitter systems. RESULTS Compared with HCs, drug-naïve children with BECTS showed increased volume in one GMV component (IC7), including bilateral precentral gyrus, bilateral supplementary motor area, left superior frontal cortex, bilateral middle/ inferior frontal cortex and bilateral anterior/ middle cingulate cortex. A positive correlation was observed between one GMV component (IC6) and seizure frequency. There were significantly positive correlations between abnormal GMV in IC7 and serotonergic, GABAergic and glutamatergic systems. CONCLUSION These findings provided further evidence of changed GMV in drug-naïve children with BECTS related to their behavioral problems and cognitive impairments, and associated neurotransmitters which could help to better understand neurobiological mechanisms and underlying molecular mechanisms of BECTS. IMPACT The article provides further evidence of changed gray matter volume in drug-naïve children with BECTS related to their behavioral problems and cognitive impairments as well as associated neurotransmitters. Most literature to date has applied univariate analysis and showed inconsistent results, and neurotransmitter patterns associated with brain structural alterations were still unclear. Therefore, this article uses multivariate method and JuSpace toolbox to fill the gap. Significantly increased gray matter volume was found in drug-naïve children with BECTS compared with healthy controls. Abnormal gray matter volume was significantly correlated with clinical data and specific neurotransmitters.
Collapse
Affiliation(s)
- Heng Liu
- Department of Radiology, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China.
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Duoli Chen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Chengxiang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Peng Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hua Yang
- Department of Medical Imaging, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Hong Lu
- Department of Radiology, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China.
| |
Collapse
|
8
|
Pottier C, Küçükali F, Baker M, Batzler A, Jenkins GD, van Blitterswijk M, Vicente CT, De Coster W, Wynants S, Van de Walle P, Ross OA, Murray ME, Faura J, Haggarty SJ, van Rooij JG, Mol MO, Hsiung GYR, Graff C, Öijerstedt L, Neumann M, Asmann Y, McDonnell SK, Baheti S, Josephs KA, Whitwell JL, Bieniek KF, Forsberg L, Heuer H, Lago AL, Geier EG, Yokoyama JS, Oddi AP, Flanagan M, Mao Q, Hodges JR, Kwok JB, Domoto-Reilly K, Synofzik M, Wilke C, Onyike C, Dickerson BC, Evers BM, Dugger BN, Munoz DG, Keith J, Zinman L, Rogaeva E, Suh E, Gefen T, Geula C, Weintraub S, Diehl-Schmid J, Farlow MR, Edbauer D, Woodruff BK, Caselli RJ, Donker Kaat LL, Huey ED, Reiman EM, Mead S, King A, Roeber S, Nana AL, Ertekin-Taner N, Knopman DS, Petersen RC, Petrucelli L, Uitti RJ, Wszolek ZK, Ramos EM, Grinberg LT, Gorno Tempini ML, Rosen HJ, Spina S, Piguet O, Grossman M, Trojanowski JQ, Keene DC, Lee-Way J, Prudlo J, Geschwind DH, Rissman RA, Cruchaga C, Ghetti B, Halliday GM, Beach TG, Serrano GE, Arzberger T, Herms J, Boxer AL, Honig LS, Vonsattel JP, Lopez OL, Kofler J, White CL, Gearing M, Glass J, Rohrer JD, Irwin DJ, Lee EB, Van Deerlin V, Castellani R, Mesulam MM, Tartaglia MC, Finger EC, Troakes C, Al-Sarraj S, Miller BL, Seelaar H, Graff-Radford NR, Boeve BF, Mackenzie IR, van Swieten JC, Seeley WW, Sleegers K, Dickson DW, Biernacka JM, Rademakers R. Deciphering Distinct Genetic Risk Factors for FTLD-TDP Pathological Subtypes via Whole-Genome Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309088. [PMID: 38978643 PMCID: PMC11230325 DOI: 10.1101/2024.06.24.24309088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.
Collapse
|
9
|
Li Y, Yang L, Hao D, Chen Y, Ye-Lin Y, Li CSR, Li G. Functional Networks of Reward and Punishment Processing and Their Molecular Profiles Predicting the Severity of Young Adult Drinking. Brain Sci 2024; 14:610. [PMID: 38928610 PMCID: PMC11201596 DOI: 10.3390/brainsci14060610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol misuse is associated with altered punishment and reward processing. Here, we investigated neural network responses to reward and punishment and the molecular profiles of the connectivity features predicting alcohol use severity in young adults. We curated the Human Connectome Project data and employed connectome-based predictive modeling (CPM) to examine how functional connectivity (FC) features during wins and losses are associated with alcohol use severity, quantified by Semi-Structured Assessment for the Genetics of Alcoholism, in 981 young adults. We combined the CPM findings and the JuSpace toolbox to characterize the molecular profiles of the network connectivity features of alcohol use severity. The connectomics predicting alcohol use severity appeared specific, comprising less than 0.12% of all features, including medial frontal, motor/sensory, and cerebellum/brainstem networks during punishment processing and medial frontal, fronto-parietal, and motor/sensory networks during reward processing. Spatial correlation analyses showed that these networks were associated predominantly with serotonergic and GABAa signaling. To conclude, a distinct pattern of network connectivity predicted alcohol use severity in young adult drinkers. These "neural fingerprints" elucidate how alcohol misuse impacts the brain and provide evidence of new targets for future intervention.
Collapse
Affiliation(s)
- Yashuang Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
| | - Lin Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| | - Dongmei Hao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA (C.-S.R.L.)
| | - Yiyao Ye-Lin
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Chiang-Shan Ray Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA (C.-S.R.L.)
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Beijing 100124, China; (Y.L.)
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, 46022 Valencia, Spain
| |
Collapse
|
10
|
Tang X, Guo Z, Chen G, Sun S, Xiao S, Chen P, Tang G, Huang L, Wang Y. A Multimodal Meta-Analytical Evidence of Functional and Structural Brain Abnormalities Across Alzheimer's Disease Spectrum. Ageing Res Rev 2024; 95:102240. [PMID: 38395200 DOI: 10.1016/j.arr.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Numerous neuroimaging studies have reported that Alzheimer's disease (AD) spectrum have been linked to alterations in intrinsic functional activity and cortical thickness (CT) of some brain areas. However, the findings have been inconsistent and the correlation with the transcriptional profile and neurotransmitter systems remain largely unknown. METHODS We conducted a meta-analysis to identify multimodal differences in the amplitude of low-frequency fluctuation (ALFF)/fractional ALFF (fALFF) and CT in patients with AD and preclinical AD compared to healthy controls (HCs), using the Seed-based d Mapping with Permutation of Subject Images software. Transcriptional data were retrieved from the Allen Human Brain Atlas. The atlas-based nuclear imaging-derived neurotransmitter maps were investigated by JuSpace toolbox. RESULTS We included 26 ALFF/fALFF studies comprising 884 patients with AD and 1,020 controls, along with 52 studies comprising 2,046 patients with preclinical AD and 2,336 controls. For CT, we included 11 studies comprising 353 patients with AD and 330 controls. Overall, compared to HCs, patients with AD showed decreased ALFF/fALFF in the bilateral posterior cingulate gyrus (PCC)/precuneus and right angular gyrus, as well as increased ALFF/fALFF in the bilateral parahippocampal gyrus (PHG). Patients with peclinical AD showed decreased ALFF/fALFF in the left precuneus. Additionally, patients with AD displayed decreased CT in the bilateral PHG, left PCC, bilateral orbitofrontal cortex, sensorimotor areas and temporal lobe. Furthermore, gene sets related to brain structural and functional changes in AD and preclincal AD were enriched for G protein-coupled receptor signaling pathway, ion gated channel activity, and components of biological membrane. Functional and structural alterations in AD and preclinical AD were spatially associated with dopaminergic, serotonergic, and GABAergic neurotransmitter systems. CONCLUSIONS The multimodal meta-analysis demonstrated that patients with AD exhibited convergent functional and structural alterations in the PCC/precuneus and PHG, as well as cortical thinning in the primary sensory and motor areas. Furthermore, patients with preclinical AD showed reduced functional activity in the precuneus. AD and preclinical AD showed genetic modulations/neurotransmitter deficits of brain functional and structural impairments. These findings may provide new insights into the pathophysiology of the AD spectrum.
Collapse
Affiliation(s)
- Xinyue Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
11
|
Pasquini L, Pereira FL, Seddighi S, Zeng Y, Wei Y, Illán-Gala I, Vatsavayai SC, Friedberg A, Lee AJ, Brown JA, Spina S, Grinberg LT, Sirkis DW, Bonham LW, Yokoyama JS, Boxer AL, Kramer JH, Rosen HJ, Humphrey J, Gitler AD, Miller BL, Pollard KS, Ward ME, Seeley WW. FTLD targets brain regions expressing recently evolved genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.27.23297687. [PMID: 37961381 PMCID: PMC10635220 DOI: 10.1101/2023.10.27.23297687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Neurology, Neuroscape, University of California, San Francisco, CA, USA
| | - Felipe L Pereira
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ignacio Illán-Gala
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA and Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalunya, Spain
| | - Sarat C Vatsavayai
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Adit Friedberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA and Trinity College Dublin, Dublin, Ireland
| | - Alex J Lee
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Daniel W Sirkis
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Luke W Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics and Bakar Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Ren J, Yan L, Zhou H, Pan C, Xue C, Wu J, Liu W. Unraveling neurotransmitter changes in de novo GBA-related and idiopathic Parkinson's disease. Neurobiol Dis 2023; 185:106254. [PMID: 37558169 DOI: 10.1016/j.nbd.2023.106254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Presently, neurotransmitter deficits in GBA-related Parkinson's disease (GBA-PD) and relationships with cognitive impairment are poorly understood. A better understanding of neurotransmitter impairments in GBA-PD - particularly in the newly diagnosed drug-naïve phase - may support developing targeted intervention strategies. We aimed to investigate patterns of neurotransmitter deficits in GBA-PD and idiopathic PD (iPD) and cognitive performance correlations. METHODS We recruited 189 newly diagnosed PD patients for GBA sequencing. Voxel-wise gray matter volume (GMV) was evaluated in a subgroup of 17 GBA-PD, 100 iPD, and 32 age- and sex-matched healthy controls (HCs). The JuSpace toolbox covering various neurotransmitter maps helped assess whether the spatial patterns of GMV alterations in GBA-PD or iPD patients (relative to HCs) were associated with specific neurotransmitter systems. RESULTS GBA-PD patients indicated widespread GM atrophy in the fronto-temporal-occipital region compared with HCs. GMV atrophy was spatially correlated in GBA-PD and iPD with serotonergic, dopaminergic, and acetylcholinergic pathway distributions (p < 0.05, false discovery rate corrected). Executive function and language in cognitive domains were also associated with the strength of GMV colocalization of serotonergic, dopaminergic, and acetylcholinergic circuits. CONCLUSIONS Regional GM atrophy related to specific neurotransmitter deficits in de novo GBA-PD and iPD patients could provide new insights into pathophysiological processes, facilitating potential therapeutic targets to support PD management.
Collapse
Affiliation(s)
- Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Yan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chenxi Pan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wu
- Department of Clinical Laboratory, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|