1
|
Zheng J, Xiao J, Fan Y, Zheng H, Liu H, Xiang J, Hai L, Wang Y, Zhang X. CD24 regulates liver immune response and ameliorates acute hepatic injury through controlling hepatic macrophages. Eur J Immunol 2024:e2451178. [PMID: 39444061 DOI: 10.1002/eji.202451178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Liver injury releases danger-associated molecular patterns, which trigger the immune response. CD24 negatively regulates the immune response by binding with danger-associated molecular patterns, but the specific role of CD24 in modulating macrophage-related inflammation during liver injury remains largely unexplored. Here, we aimed to investigate the mechanisms of macrophage CD24 in the development of liver injury. Our results show that CD24 expression is upregulated primarily in hepatic macrophages (HMs) during acute liver injury. CD24-deficient mice exhibited more severe liver injury and showed a significantly higher frequency and number of HMs, particularly Ly6Chi monocyte-derived macrophages. Mechanistically, the CD24-Siglec-G interaction plays a vital role in mitigating acute liver injury. CD24-mediated inhibitory signaling in HMs primarily limits downstream NF-κB and p38 MAPK activation through the recruitment of SHP1. Our work unveils the critical role of macrophage CD24 in negatively regulating innate immune responses and protecting against acute liver injury, thus providing potential therapeutic targets for liver-associated diseases.
Collapse
Affiliation(s)
- Jian Zheng
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Jun Xiao
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Yatong Fan
- Department of Blood Transfusion, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, P. R. China
| | - Honggang Zheng
- Department of Pathology, Tianjin Jinyu Medical Laboratory Co LTD, Tianjin, P. R. China
| | - Hongyu Liu
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Jie Xiang
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Lei Hai
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Yan Wang
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Xuejun Zhang
- Key Laboratory of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
2
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2024:00007890-990000000-00891. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4+ regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Lu J, Gu X, Xue C, Shi Q, Jia J, Cheng J, Zeng Y, Chu Q, Yuan X, Bao Z, Li L. Glycyrrhizic acid alleviates concanavalin A-induced acute liver injury by regulating monocyte-derived macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155586. [PMID: 39159503 DOI: 10.1016/j.phymed.2024.155586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 08/21/2024]
Abstract
Autoimmune hepatitis (AIH) is characterized by persistent liver inflammation induced by aberrant immune responses. Glycyrrhizic acid (GA), a prominent bioactive ingredient of licorice, has shown potential as a safe and effective treatment for AIH. However, the immune regulatory mechanism by which GA exerts its therapeutic effect on AIH remains elusive. In this study, we found that GA intervention significantly alleviated ConA-induced acute liver injury in mice. Cytometry by time-of-flight (CyTOF) analysis revealed that GA increased the abundance of anti-inflammatory F4/80loCD11bhiMHCIIhi MoMF-1 and decreased the abundance of pro-inflammatory F4/80loCD11bhiiNOShi MoMF-3. Multiplex immunofluorescence demonstrated the infiltration of MoMFs in liver tissues. Single-cell RNA sequencing (scRNA-seq) analysis indicated that GA facilitated the immune activation in MoMFs, regulated gene expression of diverse cytokines secreted by MoMFs, and played a role in shaping the immune microenvironment. By integrating the results of CyTOF with scRNA-seq, our study comprehensively elucidates the immune landscape of ConA-induced liver injury following GA intervention, advancing the understanding of GA's mechanism of action. However, it is important to note that some single-cell data in this study remain raw and require further processing and annotation. Our findings suggest that GA alleviates ConA-induced acute liver injury by regulating the function of MoMFs, opening potential avenues for AIH treatment and management, and providing a theoretical basis for the design of novel MoMFs-centered immunotherapies.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2024:S1673-8527(24)00252-2. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
5
|
Kent GM, Atkins MH, Lung B, Nikitina A, Fernandes IM, Kwan JJ, Andrews TS, MacParland SA, Keller GM, Gage BK. Human liver sinusoidal endothelial cells support the development of functional human pluripotent stem cell-derived Kupffer cells. Cell Rep 2024; 43:114629. [PMID: 39146183 DOI: 10.1016/j.celrep.2024.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
In mice, the first liver-resident macrophages, known as Kupffer cells (KCs), are thought to derive from yolk sac (YS) hematopoietic progenitors that are specified prior to the emergence of the hematopoietic stem cell (HSC). To investigate human KC development, we recapitulated YS-like hematopoiesis from human pluripotent stem cells (hPSCs) and transplanted derivative macrophage progenitors into NSG mice previously humanized with hPSC-liver sinusoidal endothelial cells (LSECs). We demonstrate that hPSC-LSECs facilitate stable hPSC-YS-macrophage engraftment for at least 7 weeks. Single-cell RNA sequencing (scRNA-seq) of engrafted YS-macrophages revealed a homogeneous MARCO-expressing KC gene signature and low expression of monocyte-like macrophage genes. In contrast, human cord blood (CB)-derived macrophage progenitors generated grafts that contain multiple hematopoietic lineages in addition to KCs. Functional analyses showed that the engrafted KCs actively perform phagocytosis and erythrophagocytosis in vivo. Taken together, these findings demonstrate that it is possible to generate human KCs from hPSC-derived, YS-like progenitors.
Collapse
Affiliation(s)
- Gregory M Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada
| | - Michael H Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Bryan Lung
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6G2V4, Canada; Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A5C1, Canada
| | - Adele Nikitina
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Ian M Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Jamie J Kwan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada
| | - Tallulah S Andrews
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6G2V4, Canada
| | - Sonya A MacParland
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON M5G2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G1L7, Canada.
| | - Blair K Gage
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
6
|
Liu Y, Wang X, Lan Y. Label-free detection of ConA-induced T-lymphocyte activation at single-cell level by microfluidics. Electrophoresis 2024. [PMID: 39119740 DOI: 10.1002/elps.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Lymphocyte activation is critical in regulating immune responses. The resulting T-cell proliferation has been implicated in the pathogenesis of a variety of autoimmune diseases, such as SLE and rheumatoid arthritis. ConA (concanavalin A)-induced activation has been widely used in the T lymphocytes model of immune-mediated liver injury, autoimmune hepatitis, and so on. In those works, it usually requires fluorescent labeling or cell staining to confirm whether the cells are transformed successfully after medicine treatment to figure out efficacy/pharmacology. The detection preparation steps are time-consuming and have limitations for further proteomic/genomic identifications. Here, a label-free microfluidic method is established to detect lymphocyte activation degree. The lymphocyte and ConA-activated lymphocyte were investigated by a microfluidic device. According to where single cells in the sample were captured in the designed channel, lymphocyte and ConA-activated samples are differentiated and characterized by population electric field factors, 2.08 × 104 and 2.21 × 104 V/m, respectively. Furthermore, salidroside, a herbal medicine that was documented to promote the transformation, was used to treat lymphocyte cells, and the treated cell population is detected to be 2.67 × 104 V/m. The characterization indicates an increasing trend with the activation degree. The result maintains a high consistency with traditional staining methods with transformed cells of 15.8%, 28.8%, and 48.3% in each cell population. Dielectrophoresis is promising to work as a tool for detecting lymphocyte transformation and medical efficacy detection.
Collapse
Affiliation(s)
- Yameng Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohu Wang
- Intelligent Manufacturing College, Tianjin Sino-German University of Applied Sciences, Tianjin, China
| | - Yuxia Lan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Nabekura T, Matsuo S, Shibuya A. Concanavalin-A-Induced Acute Liver Injury in Mice. Curr Protoc 2024; 4:e1117. [PMID: 39126326 DOI: 10.1002/cpz1.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Acute liver injury is a life-threatening disease. Although immune responses are involved in the development and exacerbation of acute liver injury, the cellular and molecular mechanisms are not fully understood. Intravenous administration of the plant lectin concanavalin A (ConA) is widely used as a model of acute liver injury. ConA triggers T cell activation and cytokine production by crosslinking glycoproteins, including the T cell receptor, leading to the infiltration of myeloid cells into the liver and the subsequent amplification of inflammation in the liver. Thus, the pathogenesis of ConA-induced acute liver injury is considered a model of immune-mediated acute liver injury or autoimmune hepatitis in humans. However, the severity of the liver injury and the analyses of immune cells and non-hematopoietic cells in the liver following ConA injection are significantly influenced by the experimental conditions. This article outlines protocols for ConA-induced acute liver injury in mice and evaluation methods for liver injury, immune cells, and non-hematopoietic cells in the liver. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Induction of acute liver injury by ConA injection Basic Protocol 2: Evaluation of inflammatory cytokines in mouse plasma Basic Protocol 3: Preparation of liver sections and histological analysis of liver injury Basic Protocol 4: Preparation of liver immune cells Basic Protocol 5: Preparation of hepatocytes, endothelial cells, and hepatic stellate cells Basic Protocol 6: Flow cytometry of immune and non-hematopoietic liver cells Basic Protocol 7: Flow cytometric sorting of endothelial cells and hepatic stellate cells Basic Protocol 8: Quantitative reverse transcription polymerase chain reaction.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Soichi Matsuo
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Advanced Medical Technologies, National Cerebral and Vascular Cancer Center Research Institute, Suita, Osaka, Japan
| | - Akira Shibuya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Hu F, Shao W, Qiu X. Functions and Clinical Relevance of Liver-Derived Immunoglobulins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:91-99. [PMID: 38967752 DOI: 10.1007/978-981-97-0511-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Liver is the largest internal organ of the body with vital functions. In addition to its endocrine and exocrine activities, liver also plays a pivotal role in the immune system, including haematopoietic functions. Liver parenchymal cells, which are epithelial cells, have been found to possess innate immune functions by expressing pattern-recognition receptors (PRRs), producing complement components, and secreting cytokines. Intriguingly, in recent years, it has been discovered that liver epithelial cells also produce immunoglobulins (Igs), which have long been thought to be produced exclusively by B cells. Notably, even liver epithelial cells from B lymphocyte-deficient mice, including SCID mice and μMT mice, could also produce Igs. Compelling evidence has revealed both the physiological and pathological functions of liver-derived Igs. For instance, liver epithelial cells-derived IgM can serve as a source of natural and specific antibodies that contribute to innate immune responses, while liver-produced IgG can act as a growth factor to promote cell proliferation and survival in normal hepatocytes and hepatocarcinoma. Similar to that in B cells, the toll-like receptor 9 (TLR9)-MyD88 signaling pathway is also actively involved in promoting liver epithelial cells to secrete IgM. Liver-derived Igs could potentially serve as biomarkers, prognostic indicators, and therapeutic targets in the clinical setting, particularly for liver cancers and liver injury. Nevertheless, despite significant advances, much remains unknown about the mechanisms governing Ig transcription in liver cells, as well as the detailed functions of liver-derived Igs and their involvement in diseases and adaptive immunity. Further studies are still needed to reveal these underlying, undefined issues related to the role of liver-derived Igs in both immunity and diseases.
Collapse
Affiliation(s)
- Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing, China.
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
10
|
Papadakos SP, Arvanitakis K, Stergiou IE, Vallilas C, Sougioultzis S, Germanidis G, Theocharis S. Interplay of Extracellular Vesicles and TLR4 Signaling in Hepatocellular Carcinoma Pathophysiology and Therapeutics. Pharmaceutics 2023; 15:2460. [PMID: 37896221 PMCID: PMC10610499 DOI: 10.3390/pharmaceutics15102460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a significant contributor to global cancer-related mortality. Chronic inflammation, often arising from diverse sources such as viral hepatitis, alcohol misuse, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH), profoundly influences HCC development. Within this context, the interplay of extracellular vesicles (EVs) gains prominence. EVs, encompassing exosomes and microvesicles, mediate cell-to-cell communication and cargo transfer, impacting various biological processes, including inflammation and cancer progression. Toll-like receptor 4 (TLR4), a key sentinel of the innate immune system, recognizes both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), thereby triggering diverse signaling cascades and pro-inflammatory cytokine release. The intricate involvement of the TLR4 signaling pathway in chronic liver disease and HCC pathogenesis is discussed in this study. Moreover, we delve into the therapeutic potential of modulating the TLR4 pathway using EVs as novel therapeutic agents for HCC. This review underscores the multifaceted role of EVs in the context of HCC and proposes innovative avenues for targeted interventions against this formidable disease.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece; (I.E.S.); (S.S.)
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Stavros Sougioultzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece; (I.E.S.); (S.S.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
11
|
Zhao P, Sun L, Zhao C, Malik S. PD1 is transcriptionally regulated by LEF1 in mature T cells. Immunobiology 2023; 228:152708. [PMID: 37523793 DOI: 10.1016/j.imbio.2023.152708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
The role of programmed cell death 1 (PD1) in cancer immune evasion is of considerable importance, prompting the development of monoclonal antibodies that specifically target PD-1 to enhance the immune system for cancer therapy. Nevertheless, the efficacy of PD1/programmed cell death-Ligand 1 (PD-L1) blocking antibodies is limited to certain patients or tumor types. Although researchers have demonstrated the influence of PD-1 on the positive selection of T cells, its effect on the T-cell repertoire remains uncertain. Lymphoid enhancer binding factor 1 (LEF1) has been known to play a critical role as a transcription factor in the development and maturation of T cells. Despite the greater focus on the study of its homologous protein, T cell factor 1 (TCF1), we discovered that LEF1 had a positive regulatory effect on the transcription of PD1 in mature T cells, including CD4+ T cells, CD8+ T cells, and Treg cells. This finding was observed in LEF1 knockout and LEF1-stimulated mice models. Additionally, we confirmed the direct regulation of PD1 by LEF1 in tumor-infiltrating lymphocytes through tumor-implantation experiments. The direct regulation of PD1 by LEF1 was further validated in the LEF1 knockout cell line. The results of our study provide novel perspectives on the regulation of PD1 in immune responses and investigate potential approaches for clinical anti-PD1 therapy.
Collapse
Affiliation(s)
- Pin Zhao
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China.
| | - Lanming Sun
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, China
| | - Cong Zhao
- Department of Prevention, Health Care and Fertility, Xinfuli Community Hospital, Linhongnong Road, Dahongmen, Fengtai District, Beijing, China
| | - Samiullah Malik
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen 518055, China
| |
Collapse
|
12
|
Zhang Y, Hong L, Li X, Li Y, Zhang X, Jiang J, Shi F, Diao H. M1 macrophage-derived exosomes promote autoimmune liver injury by transferring long noncoding RNA H19 to hepatocytes. MedComm (Beijing) 2023; 4:e303. [PMID: 37398637 PMCID: PMC10310975 DOI: 10.1002/mco2.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
Exosomes mediate intercellular communication by transmitting active molecules. The function of long noncoding RNA (lncRNA) H19 in autoimmune liver injury is unclear. Concanavalin A (ConA)-induced liver injury is well-characterized immune-mediated hepatitis. Here, we showed that lncRNA H19 expression was increased in the liver after ConA treatment, accompanied by increased exosome secretion. Moreover, injection of AAV-H19 aggravated ConA-induced hepatitis, with an increase in hepatocyte apoptosis. However, GW4869, an exosome inhibitor, alleviated ConA-induced liver injury and inhibited the upregulation of lncRNA H19. Intriguingly, lncRNA H19 expression in the liver was significantly downregulated, after macrophage depletion. Importantly, the lncRNA H19 was primarily expressed in type I macrophage (M1) and encapsulated in M1-derived exosomes. Furthermore, H19 was transported from M1 to hepatocytes via exosomes, and exosomal H19 dramatically induced hepatocytes apoptosis both in vitro and vivo. Mechanistically, H19 upregulated the transcription of hypoxia-inducible factor-1 alpha (HIF-1α), which accumulated in the cytoplasm and mediated hepatocyte apoptosis by upregulating p53. M1-derived exosomal lncRNA H19 plays a pivotal role in ConA-induced hepatitis through the HIF-1α-p53 signaling pathway. These findings identify M1 macrophage-derived exosomal H19 as a novel target for the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Yongting Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Liang Hong
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xuehui Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Yuyu Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xujun Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Fan Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Hongyan Diao
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
13
|
Zhou Z, Pan X, Li L. Crosstalk between liver macrophages and gut microbiota: An important component of inflammation-associated liver diseases. Front Cell Dev Biol 2022; 10:1070208. [PMID: 36483677 PMCID: PMC9723159 DOI: 10.3389/fcell.2022.1070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 08/30/2023] Open
Abstract
Hepatic macrophages have been recognized as primary sensors and responders in liver inflammation. By processing host or exogenous biochemical signals, including microbial components and metabolites, through the gut-liver axis, hepatic macrophages can both trigger or regulate inflammatory responses. Crosstalk between hepatic macrophages and gut microbiota is an important component of liver inflammation and related liver diseases, such as acute liver injury (ALI), alcoholic liver disease (ALD), and nonalcoholic fatty liver disease (NAFLD). This review summarizes recent advances in knowledge related to the crosstalk between hepatic macrophages and gut microbiota, including the therapeutic potential of targeting hepatic macrophages as a component of gut microecology in inflammation-associated liver diseases.
Collapse
Affiliation(s)
| | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Huldani H, Rashid AI, Turaev KN, Opulencia MJC, Abdelbasset WK, Bokov DO, Mustafa YF, Al-Gazally ME, Hammid AT, Kadhim MM, Ahmadi SH. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Commun Signal 2022; 20:167. [PMID: 36289525 PMCID: PMC9597983 DOI: 10.1186/s12964-022-00972-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Concanavalin A (ConA), the most studied plant lectin, has been known as a potent anti-neoplastic agent for a long time. Since initial reports on its capacity to kill cancer cells, much attention has been devoted to unveiling the lectin's exact molecular mechanism. It has been revealed that ConA can bind to several receptors on cancerous and normal cells and modulate the related signaling cascades. The most studied host receptor for ConA is MT1-MMP, responsible for most of the lectin's modulations, ranging from activating immune cells to killing tumor cells. In this study, in addition to studying the effect of ConA on signaling and immune cell function, we will focus on the most up-to-date advancements that unraveled the molecular mechanisms by which ConA can induce autophagy and apoptosis in various cancer cell types, where it has been found that P73 and JAK/STAT3 are the leading players. Moreover, we further discuss the main signaling molecules causing liver injury as the most significant side effect of the lectin injection. Altogether, these findings may shed light on the complex signaling pathways controlling the diverse responses created via ConA treatment, thereby modulating these complex networks to create more potent lectin-based cancer therapy. Video Abstract
Collapse
Affiliation(s)
- Huldani Huldani
- grid.443126.60000 0001 2193 0299Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan Indonesia
| | - Ahmed Ibraheem Rashid
- grid.427646.50000 0004 0417 7786Department of Pharmacology, Collage of Medicine, University of Babylon, Hilla, Iraq
| | - Khikmatulla Negmatovich Turaev
- grid.444694.f0000 0004 0403 0119Department of Clinical Pharmacology, Samarkand State Medical Institute, Samarkand, Uzbekistan ,grid.513581.b0000 0004 6356 9173Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan 100047
| | | | - Walid Kamal Abdelbasset
- grid.449553.a0000 0004 0441 5588Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia ,grid.7776.10000 0004 0639 9286Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- grid.448878.f0000 0001 2288 8774Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation ,grid.466474.3Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240 Russian Federation
| | - Yasser Fakri Mustafa
- grid.411848.00000 0000 8794 8152Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq ,grid.444971.b0000 0004 6023 831XCollege of Technical Engineering, The Islamic University, Najaf, Iraq ,Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Seyed Hossein Ahmadi
- grid.411705.60000 0001 0166 0922Research Center for Cell and Molecular Sciences, School of Medicine, Tehran University of Medical Sciences, PO Box 1417613151, Tehran, Iran
| |
Collapse
|
15
|
The Roles of Skin Langerhans Cells in Immune Tolerance and Cancer Immunity. Vaccines (Basel) 2022; 10:vaccines10091380. [PMID: 36146458 PMCID: PMC9503294 DOI: 10.3390/vaccines10091380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Langerhans cells (LC) are a unique population of tissue-resident macrophages with dendritic cell (DC) functionality that form a network of cells across the epidermis of the skin. Their location at the skin barrier suggests an important role for LC as immune sentinels at the skin surface. The classification of LC as DC over the past few decades has driven the scientific community to extensively study how LC function as DC-like cells that prime T cell immunity. However, LC are a unique type of tissue-resident macrophages, and recent evidence also supports an immunoregulatory role of LC at steady state and during specific inflammatory conditions, highlighting the impact of cutaneous environment in shaping LC functionality. In this mini review, we discuss the recent literature on the immune tolerance function of LC in homeostasis and disease conditions, including malignant transformation and progression; as well as LC functional plasticity for adaption to microenvironmental cues and the potential connection between LC population heterogeneity and functional diversity. Future investigation into the molecular mechanisms that LC use to integrate different microenvironment cues and adapt immunological responses for controlling LC functional plasticity is needed for future breakthroughs in tumor immunology, vaccine development, and treatments for inflammatory skin diseases.
Collapse
|
16
|
Yao X, Jin G, Liu D, Zhang X, Yang Y, chen Y, Duan Z, Bi Y, Yan F, Yang Y, Zhang H, Dong G, Li S, Cheng S, Tang H, Hong F, Si C. Inducible nitric oxide synthase regulates macrophage polarization via the MAPK signals in concanavalin A-induced hepatitis. Immun Inflamm Dis 2022; 10:e643. [PMID: 35759238 PMCID: PMC9168548 DOI: 10.1002/iid3.643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 02/06/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Acute liver inflammatory reactions contribute to many health problems; thus, it is critical to understand the underlying pathogenic mechanisms of acute hepatitis. In this study, an experimental in vivo model of concanavalin A (ConA)-induced hepatitis was used. MATERIALS AND METHODS C57BL/6 (wild-type, WT) or inducible nitric oxide synthase-deficient (iNOS-/- ) mice were injected with PBS or 15 mg/kg ConA via tail vein. Detection of liver injury by histological examination and apoptosis, and flow cytometry to detect the effect of immune cells on liver injury. RESULTS iNOS-/- mice had lower levels of the liver enzymes aspartate aminotransferase and alanine aminotransferase, suggesting that they were protected against ConA-induced pathological liver injury and that iNOS participated in the regulation of hepatitis. Furthermore, iNOS deficiency was found to lower CD86 expression and suppressed the messenger RNA levels of inflammatory factors in the liver. In vitro experiments also demonstrated that iNOS deficiency suppressed the sequential phosphorylation of the mitogen-activated protein kinase pathway cascade, thereby inhibiting the M1 polarization of macrophages and consequently suppressing the transcription of inflammation factors. CONCLUSION iNOS may contribute to ConA-induced inflammation by promoting the activation of proinflammatory macrophages.
Collapse
Affiliation(s)
- Xiaoying Yao
- Medical Research Center, Affiliated Hospital of Jining Medical UniversityJiningShandongChina
- Institute of Immune Precision Diagnosis and Therapy & Translational MedicineAffiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical UniversityJiningShandongChina
- Institute of Immune Precision Diagnosis and Therapy & Translational MedicineAffiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Dong Liu
- Department of Clinical LaboratoryAffiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Xiaobei Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Yu chen
- Fourth Liver Disease Center, Beijing YouAn HospitalCapital Medical UniversityBeijingChina
| | - Zhongping Duan
- Fourth Liver Disease Center, Beijing YouAn HospitalCapital Medical UniversityBeijingChina
| | - Yanzhen Bi
- Department of Infectious DiseaseQingdao Municipal HospitalQingdaoShandongChina
| | - Fenglian Yan
- Institute of Immunology and Molecular MedicineJining Medical UniversityJiningShandongChina
| | - Yanli Yang
- Institute of Immunology and Molecular MedicineJining Medical UniversityJiningShandongChina
| | - Hui Zhang
- Institute of Immunology and Molecular MedicineJining Medical UniversityJiningShandongChina
| | - Guanjun Dong
- Institute of Immunology and Molecular MedicineJining Medical UniversityJiningShandongChina
| | - Shanshan Li
- Fourth Liver Disease Center, Beijing YouAn HospitalCapital Medical UniversityBeijingChina
| | - Shumin Cheng
- Department of GastroenterologyPeople's Hospital of Jia XiangJiningShandongChina
| | - Huixin Tang
- Medical Research Center, Affiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Feng Hong
- Medical Research Center, Affiliated Hospital of Jining Medical UniversityJiningShandongChina
- Institute of Immune Precision Diagnosis and Therapy & Translational MedicineAffiliated Hospital of Jining Medical UniversityJiningShandongChina
| | - Chuanping Si
- Institute of Immune Precision Diagnosis and Therapy & Translational MedicineAffiliated Hospital of Jining Medical UniversityJiningShandongChina
- Institute of Immunology and Molecular MedicineJining Medical UniversityJiningShandongChina
| |
Collapse
|
17
|
Zhang Y, Xu Y, Jing X, Lu W, Zhang F, Qin C. Moscatilin suppresses the inflammation from macrophages and T cells. Open Med (Wars) 2022; 17:756-767. [PMID: 35509689 PMCID: PMC9008319 DOI: 10.1515/med-2022-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
In this study, we aim to investigate moscatilin in alleviating symptoms of autoimmune liver disease (ALD) in a concanavalin A (ConA)-induced liver injury mouse model and elucidate the underlying mechanisms. ALD mouse models were constructed by intravenous injection of ConA (20 mg/kg) and the serum level of alanine aminotransferase (ALT) was measured using an enzyme-linked immunosorbent assay. Moscatilin in various doses was administered for two days starting from a day before the ConA injection. We showed that moscatilin dose-dependently decreased ALT levels in liver tissue of ALD mouse models. Ifng and Tnfa also showed significant downregulation in liver tissues. Macrophages only showed significant Tnfa downregulation and CD4+ T cells only showed significant Ifng downregulation at high moscatilin doses. In vivo administration of moscatilin induced interleukin-37 upregulation in hepatic tissues. In vitro, moscatilin also induced IL-37 upregulation in hepatic stellate cell line JS-1 rather than immune cells represented by RAW264.7 and CTLL-2 cell lines, suggesting that the hepatic stellate cell is majorly responsive to moscatilin treatment in terms of interleukin (IL)-37 upregulation. Our data indicate that moscatilin could alleviate liver injury in ConA-induced ALD mouse models through anti-inflammatory activities, warranting further development of moscatilin as a new drug in treating ALD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hepatobiliary Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Yugang Xu
- Department of General Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Xiujie Jing
- Department of Pediatrics, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Wenkui Lu
- Department of General Surgery, Dongping People's Hospital, Dongping 271500, China
| | - Fusen Zhang
- Department of Critical Care Unit, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, No. 324 Jingwuwei Road No.7, Jinan 250021, Shandong, China
| |
Collapse
|
18
|
Gudd CLC, Possamai LA. The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers (Basel) 2022; 14:1913. [PMID: 35454819 PMCID: PMC9027811 DOI: 10.3390/cancers14081913] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drug-related hepatotoxicity is an emerging clinical challenge with the widening use of immunotherapeutic agents in the field of oncology. This is an important complication to consider as more immune oncological targets are being identified to show promising results in clinical trials. The application of these therapeutics may be complicated by the development of immune-related adverse events (irAEs), a serious limitation often requiring high-dose immunosuppression and discontinuation of cancer therapy. Hepatoxicity presents one of the most frequently encountered irAEs and a better understanding of the underlying mechanism is crucial for the development of alternative therapeutic interventions. As a novel drug side effect, the immunopathogenesis of the condition is not completely understood. In the liver, myeloid cells play a central role in the maintenance of homeostasis and promotion of inflammation. Recent research has identified myeloid cells to be associated with hepatic adverse events of various immune modulatory monoclonal antibodies. In this review article, we provide an overview of the role of myeloid cells in the immune pathogenesis during hepatoxicity related to cancer immunotherapies and highlight potential treatment options.
Collapse
Affiliation(s)
- Cathrin L. C. Gudd
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Lucia A. Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
19
|
Liu Y, Hao H, Hou T. Concanavalin A-induced autoimmune hepatitis model in mice: Mechanisms and future outlook. Open Life Sci 2022; 17:91-101. [PMID: 35291566 PMCID: PMC8886606 DOI: 10.1515/biol-2022-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Abstract
The concanavalin A (Con A)-induced liver injury mouse model is a typical animal model focusing on T cell-dependent hepatic damage in the field of autoimmune hepatitis (AIH). However, the underlying mechanism of hepatic dysfunction due to cell activation or signaling pathways triggered by Con A has not been fully clarified. Therefore, the controversy on this model remains in the academic community. In this article, we first summarized the merit and demerit of this contentious model from the perspectives of cell dysfunction, microcirculation disturbance, involved signaling pathways, as well as the properties of Con A. Then, we summed up the scientific implications of the model in elucidating the pathogenesis of AIH, and the shortcomings of this model were also summarized to elucidate the pathogenesis and application prospect of this classical liver injury mouse model in the study of AIH.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
| | - Huiqin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
| | - Tiezheng Hou
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine , Jinzhong , 030619 , PR China
| |
Collapse
|
20
|
Gu R, Liang A, Liao G, To I, Shehu A, Ma X. Roles of co-factors in drug-induced liver injury: drug metabolism and beyond. Drug Metab Dispos 2022; 50:646-654. [PMID: 35221288 PMCID: PMC9132098 DOI: 10.1124/dmd.121.000457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains one of the major concerns for healthcare providers and patients. Unfortunately, it is difficult to predict and prevent DILI in the clinic because detailed mechanisms of DILI are largely unknown. Many risk factors have been identified for both "intrinsic" and "idiosyncratic" DILI, suggesting that cofactors are an important aspect in understanding DILI. This review outlines the cofactors that potentiate DILI and categorizes them into two types: (1) the specific cofactors that target metabolic enzymes, transporters, antioxidation defense, immune response, and liver regeneration; and (2) the general cofactors that include inflammation, age, gender, comorbidity, gut microbiota, and lifestyle. The underlying mechanisms by which cofactors potentiate DILI are also discussed. SIGNIFICANCE STATEMENT: This review summarizes the risk factors for DILI, which can be used to predict and prevent DILI in the clinic. This work also highlights the gaps in the DILI field and provides future perspectives on the roles of cofactors in DILI.
Collapse
Affiliation(s)
- Ruizhi Gu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alina Liang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Grace Liao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Isabelle To
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amina Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences (R.G., A.S., X.M.) and School of Pharmacy (A.L., G.L., I.T.), University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Wang X, Liang Y, Wang H, Zhang B, Soong L, Cai J, Yi P, Fan X, Sun J. The Protective Role of IL-36/IL-36R Signal in Con A-Induced Acute Hepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:861-869. [PMID: 35046104 PMCID: PMC8830780 DOI: 10.4049/jimmunol.2100481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
The IL-36 family, including IL-36α, IL-36β, IL-36γ, and IL-36R antagonist, belong to the IL-1 superfamily. It was reported that IL-36 plays a role in immune diseases. However, it remains unclear how IL-36 regulates inflammation. To determine the role of IL-36/IL-36R signaling pathways, we established an acute hepatitis mouse model (C57BL/6) by i.v. injection of the plant lectin Con A. We found that the levels of IL-36 were increased in the liver after Con A injection. Our results demonstrated the infiltrated neutrophils, but not the hepatocytes, were the main source of IL-36 in the liver. Using the IL-36R-/- mouse model (H-2b), we surprisingly found that the absence of IL-36 signals led to aggravated liver injury, as evidenced by increased mortality, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and severe liver pathological changes. Further investigations demonstrated that a lack of IL-36 signaling induced intrahepatic activation of CD4+ and CD8+ T lymphocytes and increased the production of inflammatory cytokines. In addition, IL-36R-/- mice had reduced T regulatory cell numbers and chemokines in the liver. Together, our results from the mouse model suggested a vital role of IL-36 in regulating T cell function and homeostasis during liver inflammation.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Biao Zhang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China; and
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Jiyang Cai
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan, China;
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX;
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
22
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
23
|
Hao J, Sun W, Xu H. Pathogenesis of Concanavalin A induced autoimmune hepatitis in mice. Int Immunopharmacol 2021; 102:108411. [PMID: 34891001 DOI: 10.1016/j.intimp.2021.108411] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
Autoimmune hepatitis (AIH) is an autoimmune disease characterized by liver parenchymal destruction and chronic fibrosis. Its exact etiology and pathogenesis are not yet fully understood.(Please connect with the following, do not leave a line) Concanavalin A (Con A)-induced mice hepatitis model is a liver injury mediated by T cell and macrophage activation, and its pathogenesis and pathological changes are similar to human AIH. The establishment of this model has greatly promoted the research progress of AIH pathogenesis. However, the exact mechanism of Con A induced liver injury in mice, and its possible defects or deficiencies, has not yet been described in a clear and detailed manner. Therefore, the model has some limitations when applied to the study of the pathogenesis and treatment mechanism of AIH. This article reveals the pathogenesis of Con A induced liver injury in mice from the aspects of immune disorder and coagulation mechanism, expounds the significance of non-coding RNA in this model, summarizes the signal transduction pathways involved in this model, and summarizes the advantages and disadvantages of the model, which provides a theoretical basis and research target for the application of Con A induced liver injury model in AIH in the future.
Collapse
Affiliation(s)
- Jianheng Hao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China.
| | - Weili Sun
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Huichao Xu
- Acupuncture and Massage Laboratory, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
24
|
The immune niche of the liver. Clin Sci (Lond) 2021; 135:2445-2466. [PMID: 34709406 DOI: 10.1042/cs20190654] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
The liver is an essential organ that is critical for the removal of toxins, the production of proteins, and the maintenance of metabolic homeostasis. Behind each liver functional unit, termed lobules, hides a heterogeneous, complex, and well-orchestrated system. Despite parenchymal cells being most commonly associated with the liver's primary functionality, it has become clear that it is the immune niche of the liver that plays a central role in maintaining both local and systemic homeostasis by propagating hepatic inflammation and orchestrating its resolution. As such, the immunological processes that are at play in healthy and diseased livers are being investigated thoroughly in order to understand the underpinnings of inflammation and the potential avenues for restoring homeostasis. This review highlights recent advances in our understanding of the immune niche of the liver and provides perspectives for how the implementation of new transcriptomic, multimodal, and spatial technologies can uncover the heterogeneity, plasticity, and location of hepatic immune populations. Findings from these technologies will further our understanding of liver biology and create a new framework for the identification of therapeutic targets.
Collapse
|
25
|
Wang H, Zhao Y, Ren B, Qin Y, Li G, Kong D, Qin H, Hao J, Sun D, Wang H. Endometrial regenerative cells with galectin-9 high-expression attenuate experimental autoimmune hepatitis. Stem Cell Res Ther 2021; 12:541. [PMID: 34654474 PMCID: PMC8518235 DOI: 10.1186/s13287-021-02604-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Autoimmune hepatitis (AIH) is a T cell-mediated immune disease that activates abnormally against hepatic antigens. We have previously reported that endometrial regenerative cells (ERCs) were a novel source of adult stem cells, which exhibiting with powerful immunomodulatory effects. Galectin-9 (Gal-9) is expressed in ERCs and plays an important role in regulating T cell response. This study aims to explore the role of ERCs in attenuation of AIH and to determine the potential mechanism of Gal-9 in ERC-mediated immune regulation. Methods ERCs were obtained from menstrual blood of healthy female volunteers. In vitro, ERCs were transfected with lentivirus vectors carrying LGALS9 gene and encoding green fluoresce protein (GFP-Gal-9-LVs) at a MOI 50, Gal-9 expression in ERCs was detected by ELISA and Q-PCR. CD4+ T cells isolated from C57BL/6 mouse spleen were co-cultured with ERCs. The proliferation of CD4+ T cells was detected by CCK-8 kit and the level of Lck/zap-70/LAT protein was measured by western blot. Furthermore, AIH was induced by ConA in C57BL/6 mice which were randomly assigned to untreated, unmodified ERC-treated and Gal-9 high-expressing ERC-treated groups. Histopathological score, liver function, CD4+/CD8+ cell infiltration in liver tissues, the proportion of immune cells in the spleen and liver, and ERC tracking were performed accordingly to assess the progression degree of AIH. Results After transfecting with GFP-Gal-9-LVs, Gal-9 expression in ERCs was significantly increased. Additionally, Gal-9 high-expressing ERCs effectively inhibited CD4+ T cell proliferation and downregulated CD4+ T cell active related proteins p-Lck/p-ZAP70/p-LAT in vitro. Furthermore, treatment with Gal-9 high-expressing ERCs restored liver function, ameliorated liver pathological damage, inhibit CD4+ and CD8+ T cell proliferation and suppress Th1 and Th17 cell response in the hepatitis mice. In addition, Gal-9 high-expressing ERCs further markedly enhanced the level of IL-10 but reduced the levels of IFN-γ, TNF-α, and IL-4 in mouse sera and liver. Cell tracking also showed that ERCs could migrate to the damaged liver organs. Conclusions The results suggested that Gal-9 was an essential modulator, which was required by ERCs in regulating T cell response and attenuating ConA-induced experimental hepatitis. And also, it provides a novel idea for the clinical treatment of AIH.
Collapse
Affiliation(s)
- Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China.,Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingbing Ren
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.,Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Tianjin General Surgery Institute, Tianjin, China.,Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China. .,Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
26
|
Hann A, Oo YH, Perera MTPR. Regulatory T-Cell Therapy in Liver Transplantation and Chronic Liver Disease. Front Immunol 2021; 12:719954. [PMID: 34721383 PMCID: PMC8552037 DOI: 10.3389/fimmu.2021.719954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 12/29/2022] Open
Abstract
The constant exposure of the liver to gut derived foreign antigens has resulted in this organ attaining unique immunological characteristics, however it remains susceptible to immune mediated injury. Our understanding of this type of injury, in both the native and transplanted liver, has improved significantly in recent decades. This includes a greater awareness of the tolerance inducing CD4+ CD25+ CD127low T-cell lineage with the transcription factor FoxP3, known as regulatory T-Cells (Tregs). These cells comprise 5-10% of CD4+ T cells and are known to function as an immunological "braking" mechanism, thereby preventing immune mediated tissue damage. Therapies that aim to increase Treg frequency and function have proved beneficial in the setting of both autoimmune diseases and solid organ transplantations. The safety and efficacy of Treg therapy in liver disease is an area of intense research at present and has huge potential. Due to these cells possessing significant plasticity, and the potential for conversion towards a T-helper 1 (Th1) and 17 (Th17) subsets in the hepatic microenvironment, it is pre-requisite to modify the microenvironment to a Treg favourable atmosphere to maintain these cells' function. In addition, implementation of therapies that effectively increase Treg functional activity in the liver may result in the suppression of immune responses and will hinder those that destroy tumour cells. Thus, fine adjustment is crucial to achieve this immunological balance. This review will describe the hepatic microenvironment with relevance to Treg function, and the role these cells have in both native diseased and transplanted livers.
Collapse
Affiliation(s)
- Angus Hann
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ye H Oo
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Disease (ERN-Rare Liver Centre), University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - M Thamara P R Perera
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Macrophage Depletion via Clodronate Pretreatment Reduces Transgene Expression from AAV Vectors In Vivo. Viruses 2021; 13:v13102002. [PMID: 34696433 PMCID: PMC8538323 DOI: 10.3390/v13102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023] Open
Abstract
Adeno-associated virus is a popular gene delivery vehicle for gene therapy studies. A potential roadblock to widespread clinical adoption is the high vector doses required for efficient transduction in vivo, and the potential for subsequent immune responses that may limit prolonged transgene expression. We hypothesized that the depletion of macrophages via systemic delivery of liposome-encapsulated clodronate would improve transgene expression if given prior to systemic AAV vector administration, as has been shown to be the case with adenoviral vectors. Contrary to our expectations, clodronate liposome pretreatment resulted in significantly reduced transgene expression in the liver and heart, but permitted moderate transduction of the white pulp of the spleen. There was a remarkable localization of transgene expression from the red pulp to the center of the white pulp in clodronate-treated mice compared to untreated mice. Similarly, a greater proportion of transgene expression could be observed in the medulla located in the center of the lymph node in mice treated with clodronate-containing liposomes as compared to untreated mice where transgene expression was localized primarily to the cortex. These results underscore the highly significant role that the immune system plays in influencing the distribution and relative numbers of transduced cells in the context of AAV-mediated gene delivery.
Collapse
|
28
|
Simultaneous or prior activation of intrahepatic type I interferon signaling leads to hepatitis B virus persistence in a mouse model. J Virol 2021; 95:e0003421. [PMID: 34550772 DOI: 10.1128/jvi.00034-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It remains controversial how interferon (IFN) response contributes to hepatitis B virus (HBV) control and pathogenesis. A previous study identified that hydrodynamic injection (HI) of type I IFN (IFN-I) inducer polyinosinic-polycytidylic acid (poly(I:C)) leads to HBV clearance in a chronic HBV mouse model. However, recent studies have suggested that premature IFN-I activation in the liver may facilitate HBV persistence. In the present study, we investigated how the early IFN-I response induces an immunosuppressive signaling cascade and thus causes HBV persistence. We performed HI of the plasmid adeno-associated virus (pAAV)/HBV 1.2 into adult BALB/c mice to establish an adult acute HBV replication model. Activation of the IFN-I signaling pathway following poly(I:C) stimulation or murine cytomegalovirus (MCMV) infection resulted in subsequent HBV persistence. HI of poly(I:C) with the pAAV/HBV 1.2 plasmid resulted in not only the production of IFN-I and the anti-inflammatory cytokine interleukin (IL)-10 but also the expansion of intrahepatic regulatory T cells (Tregs), Kupffer cells (KCs) and myeloid-derived suppressor cells (MDSCs), all of which impaired the T cell response. However, when poly(I:C) was injected at day 14 after the HBV plasmid injection, it significantly enhanced HBV specific T cell responses. In addition, interferon-alpha/beta receptor (IFNAR) blockade rescued T cell response by downregulating of IL-10 expression and decreasing Treg and KC expansion. Consistently, Treg depletion or IL-10 blockade also controlled HBV replication. Importance: IFN-I plays a double-edged sword role during chronic HBV infection. Here, we identified that application of IFN-I at different time points causes contrast outcome. Activation of the IFN-I pathway before HBV replication induces an immunosuppressive signaling cascade in the liver, and consequently caused HBV persistence while IFN-I activation post HBV infection enhances HBV-specific T cell responses and thus promote HBV clearance. This result provided an important clue to the mechanism of HBV persistence in adult individuals.
Collapse
|
29
|
Pan L, Liu C, Liu Q, Li Y, Du C, Kang X, Dong S, Zhou Z, Chen H, Liang X, Chu J, Xu Y, Zhang Q. Human Wharton's jelly-derived mesenchymal stem cells alleviate concanavalin A-induced fulminant hepatitis by repressing NF-κB signaling and glycolysis. Stem Cell Res Ther 2021; 12:496. [PMID: 34503553 PMCID: PMC8427901 DOI: 10.1186/s13287-021-02560-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Background Fulminant hepatitis is a severe life-threatening clinical condition with rapid progressive loss of liver function. It is characterized by massive activation and infiltration of immune cells into the liver and disturbance of inflammatory cytokine production. Mesenchymal stem cells (MSCs) showed potent immunomodulatory properties. Transplantation of MSCs is suggested as a promising therapeutic approach for a host of inflammatory conditions. Methods In the current study, a well-established concanavalin A (Con A)-induced fulminant hepatitis mouse model was used to investigate the effects of transplanting human umbilical cord Wharton's jelly-derived MSCs (hWJ-MSCs) on fulminant hepatitis. Results We showed that hWJ-MSCs effectively alleviate fulminant hepatitis in mouse models, primarily through inhibiting T cell immunity. RNA sequencing of liver tissues and human T cells co-cultured with hWJ-MSCs showed that NF-κB signaling and glycolysis are two main pathways mediating the protective role of hWJ-MSCs on both Con A-induced hepatitis in vivo and T cell activation in vitro. Conclusion In summary, our data confirmed the potent therapeutic role of MSCs-derived from Wharton's jelly of human umbilical cord on Con A-induced fulminant hepatitis, and uncovered new mechanisms that glycolysis metabolic shift mediates suppression of T cell immunity by hWJ-MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02560-x.
Collapse
Affiliation(s)
- Lijie Pan
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanli Li
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Cong Du
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xinmei Kang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhuowei Zhou
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huaxin Chen
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoqi Liang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiajie Chu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China. .,Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
30
|
Wang X, MacParland SA, Perciani CT. Immunological Determinants of Liver Transplant Outcomes Uncovered by the Rat Model. Transplantation 2021; 105:1944-1956. [PMID: 33417410 PMCID: PMC8376267 DOI: 10.1097/tp.0000000000003598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
For many individuals with end-stage liver disease, the only treatment option is liver transplantation. However, liver transplant rejection is observed in 24%-80% of transplant patients and lifelong drug regimens that follow the transplant procedure lead to serious side effects. Furthermore, the pool of donor livers available for transplantation is far less than the demand. Well-characterized and physiologically relevant models of liver transplantation are crucial to a deeper understanding of the cellular processes governing the outcomes of liver transplantation and serve as a platform for testing new therapeutic strategies to enhance graft acceptance. Such a model has been found in the rat transplant model, which has an advantageous size for surgical procedures, similar postoperative immunological progression, and high genome match to the human liver. From rat liver transplant studies published in the last 5 years, it is clear that the rat model serves as a strong platform to elucidate transplant immunological mechanisms. Using the model, we have begun to uncover potential players and possible therapeutic targets to restore liver tolerance and preserve host immunocompetence. Here, we present an overview of recent literature for rat liver transplant models, with an aim to highlight the value of the models and to provide future perspectives on how these models could be further characterized to enhance the overall value of rat models to the field of liver transplantation.
Collapse
Affiliation(s)
- Xinle Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sonya A MacParland
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Catia T Perciani
- Ajmera Family Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| |
Collapse
|
31
|
Li G, Kong D, Qin Y, Wang H, Hu Y, Zhao Y, Hao J, Qin H, Yu D, Zhu Y, Sun C, Wang H. IL-37 overexpression enhances the therapeutic effect of endometrial regenerative cells in concanavalin A-induced hepatitis. Cytotherapy 2021; 23:617-626. [PMID: 33593687 DOI: 10.1016/j.jcyt.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells and immunosuppressive factor IL-37 can both suppress concanavalin A (Con A)-induced hepatitis in mice. Endometrial regenerative cells (ERCs), novel types of mesenchymal-like stromal cells, possess powerful immunomodulatory effects and are effective in treating various diseases. The aim of this study was to explore the effects of ERCs in suppressing Con A-induced hepatitis and determine whether IL-37 overexpression could enhance the therapeutic effect of ERCs in this process. METHODS ERCs were extracted from the menstrual blood of healthy female volunteer donors. The IL-37 gene was transferred into ERCs, and the expression of IL-37 in cells was detected by western blot and enzyme-linked immunosorbent assay. Hepatitis was induced by Con A in C57BL/6 mice that were randomly divided into groups treated with phosphate-buffered saline, ERCs, IL-37 or ERCs transfected with the IL-37 gene (IL-37-ERCs). Cell tracking, liver function, histopathological and immunohistological changes, immune cell proportions and levels of cytokines were measured 24 h after Con A administration. RESULTS Compared with ERC or IL-37 treatment, IL-37-ERCs further reduced levels of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and improved histopathological changes in the liver. In addition, IL-37-ERC treatment further reduced the proportions of M1 macrophages and CD4+ T cells and increased the proportion of regulatory T cells. Moreover, IL-37-ERC treatment resulted in lower levels of IL-12 and interferon gamma, and higher level of transforming growth factor beta. CONCLUSIONS The results of this study suggest that ERCs can effectively alleviate Con A-induced hepatitis. Furthermore, IL-37 overexpression can significantly enhance the therapeutic efficacy of ERCs by augmenting the immunomodulatory and anti-inflammatory properties of ERCs. This study may provide a promising strategy for treatment of T-cell-dependent hepatitis.
Collapse
Affiliation(s)
- Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yonghao Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Dingding Yu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin, China.
| |
Collapse
|
32
|
Wang Z, Ma K, Fujino M, Kusano K, Yi SQ, Iwai A, Li XK. The effects of oral administration of Aureobasidium pullulans-cultured fluid containing β-glucan on concanavalin A injected mice. Heliyon 2021; 7:e07277. [PMID: 34195409 PMCID: PMC8233140 DOI: 10.1016/j.heliyon.2021.e07277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/17/2021] [Accepted: 06/07/2021] [Indexed: 01/07/2023] Open
Abstract
A black yeast, Aureobasidium pullulans, extracellularly produces β-(1,3), (1,6)-D-glucan (β-glucan) under certain conditions. The β-glucan is known to be an immunomodulatory agent, and β-glucan enriched A. pullulans cultured fluid (AP-CF) is used in supplements to maintain human health. Concanavalin A (ConA) is a lectin, and when injected it is known to cause T cell mediated autoimmune hepatitis in mice. The present study investigated the effects of oral administration of AP-CF on ConA injection in mice. The results demonstrated that increases in serum alanine transaminase (ALT) levels after ConA injection were significantly suppressed in an AP-CF administered group of mice. To understand the mechanism of the ALT lowering effects of AP-CF, we used Foxp3 (forkhead box P3) knock-in mice which express the green fluorescent protein (GFP) in Foxp3 induced cells, and the effects of AP-CF on the regulatory T cell (Treg) populations were investigated. The results show that the basal level of Foxp3+ Treg populations in peripheral blood lymphocytes, liver infiltrating lymphocytes, and splenocytes was decreased after 7 days of administration of AP-CF. These findings suggest that oral administration of AP-CF suppresses the basal level of inflammation, and that it may be postulated to be involved in the ALT lowering effects of AP-CF.
Collapse
Affiliation(s)
- Zhidan Wang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Functional Morphology, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Shuang-Qin Yi
- Laboratory of Functional Morphology, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Iwai
- Aureo Co., Ltd., Chiba, Japan.,Aureo Science Co., Ltd., Hokkaido, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Functional Morphology, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
33
|
Diaz-Jimenez D, Kolb JP, Cidlowski JA. Glucocorticoids as Regulators of Macrophage-Mediated Tissue Homeostasis. Front Immunol 2021; 12:669891. [PMID: 34079551 PMCID: PMC8165320 DOI: 10.3389/fimmu.2021.669891] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Our immune system has evolved as a complex network of cells and tissues tasked with maintaining host homeostasis. This is evident during the inflammatory responses elicited during a microbial infection or traumatic tissue damage. These responses seek to eliminate foreign material or restore tissue integrity. Even during periods without explicit disturbances, the immune system plays prominent roles in tissue homeostasis. Perhaps one of the most studied cells in this regard is the macrophage. Tissue-resident macrophages are a heterogenous group of sensory cells that respond to a variety of environmental cues and are essential for organ function. Endogenously produced glucocorticoid hormones connect external environmental stress signals with the function of many cell types, producing profound changes in immune cells, including macrophages. Here, we review the current literature which demonstrates specific effects of glucocorticoids in several organ systems. We propose that tissue-resident macrophages, through glucocorticoid signaling, may play an underappreciated role as regulators of organ homeostasis.
Collapse
Affiliation(s)
- David Diaz-Jimenez
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Joseph P Kolb
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
34
|
Liberal R, de Boer YS, Heneghan MA. Established and novel therapeutic options for autoimmune hepatitis. Lancet Gastroenterol Hepatol 2021; 6:315-326. [DOI: 10.1016/s2468-1253(20)30328-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/14/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
|
35
|
Silva RCP, da Silva RPC, Souto FO, de Lorena VMB, Aires ADL, Costa VMA, Albuquerque MCPDA, de Souza VMO. Extract from Ascaris suum and N-acetyl-L-cysteine induces an immunosuppressant effect in model of autoimmune hepatitis. Parasite Immunol 2021; 43:e12826. [PMID: 33586210 DOI: 10.1111/pim.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Extract of adult Ascaris suum (ASC) worms attenuated the liver damage in experimental autoimmune hepatitis (EAH) with induction of Th2 immune response, but fibrosis occurred. N-acetyl-L-cysteine (NAC) has protective effects against liver fibrosis. OBJECTIVES Evaluate the association ASC + NAC on the T- and B-cell activation, inflammation and fibrogenic markers in the liver in EAH. METHODS Experimental autoimmune hepatitis was induced intravenously with concanavalin A in BALB/c mice. EAH + ASC+NAC group received NAC and ASC; EAH + ASC group received ASC; EAH group received PBS. Doubly labelled CD4+ T (CD28, CTLA-4, CD40L or IL-10) and CD45R+ B lymphocytes (IL-10) and CD4+ CD25+ FoxP3+ cells were evaluated, along with gene expression of Col1a1, α-SMA, Fizz1, Arg1 and PPAR-γ and histomorphometry. RESULTS Experimental autoimmune hepatitis group showed high frequency of CD28+ and CD40L+ T lymphocytes, but not the EAH + ASC group. In relation to EAH group, the Fizz1 expression was lower in both groups treated, but Arg1 expression was lower in only EAH + ASC+NAC group. In the EAH + ASC+NAC group, there were higher frequencies of CD4+ IL-10+ and CD4+ CD25+ FoxP3+ cells, but not CD45R+ IL-10+ , along with mitigated inflammation and collagen production. CONCLUSIONS Ascaris suum favoured immunosuppression in EAH limiting the T cells activation. However, association ASC and NAC was necessary for attenuating the inflammatory process and collagen production.
Collapse
Affiliation(s)
- Roeckson Carlos Peixoto Silva
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Pernambuco, Brazil.,Department of Tropical Medicine, Federal University of Pernambuco, Pernambuco, Brazil
| | - Raul Penaforte Correia da Silva
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Pernambuco, Brazil.,Department of Tropical Medicine, Federal University of Pernambuco, Pernambuco, Brazil
| | - Fabrício Oliveira Souto
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Pernambuco, Brazil.,Agreste Academic Centre, Federal University of Pernambuco, Pernambuco, Brazil
| | | | - André de Lima Aires
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Pernambuco, Brazil.,Department of Tropical Medicine, Federal University of Pernambuco, Pernambuco, Brazil
| | - Vlaudia Maria Assis Costa
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Pernambuco, Brazil.,Department of Tropical Medicine, Federal University of Pernambuco, Pernambuco, Brazil
| | - Mônica Camelo Pessôa de Azevedo Albuquerque
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Pernambuco, Brazil.,Department of Tropical Medicine, Federal University of Pernambuco, Pernambuco, Brazil
| | - Valdênia Maria Oliveira de Souza
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Federal University of Pernambuco, Pernambuco, Brazil
| |
Collapse
|
36
|
Zhang C, Qiu Z, Zhang L, Pang Q, Yang Z, Qin JK, Liang H, Zhao S. Design and synthesis of a ratiometric photoacoustic imaging probe activated by selenol for visual monitoring of pathological progression of autoimmune hepatitis. Chem Sci 2021; 12:4883-4888. [PMID: 34163738 PMCID: PMC8179563 DOI: 10.1039/d0sc06573k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Photoacoustic (PA) imaging with both the high contrast of optical imaging and the high spatial resolution of ultrasound imaging has been regarded as a robust biomedical imaging technique. Autoimmune hepatitis (AIH) is the second largest liver inflammatory disease after viral hepatitis, but its pathogenesis is not fully understood probably due to the lack of an effective in vivo monitoring approach. In this work, an innovative selenol-activated ratiometric PA imaging probe APSel was developed for visual monitoring of pathological progress of AIH. Selenols including selenocysteine (Sec, the major form of Se-containing species in vivo) have been demonstrated to have an effective antioxidant role in inflammation. The reaction of APSel with selenol results in a blue shift of the PA spectrum peak from 860 nm to 690 nm, which enables the ratiometric PA imaging. The APSel probe displays high sensitivity and selectivity to Sec and other selenols. The APSel probe was then employed for ratiometric PA imaging of selenol in cells, and for monitoring the development of AIH in a murine model by tracking the changes of selenol level. The results revealed that the level of selenol was closely correlated with the development of AIH. The proposed APSel, as the first example of a selenol-responsive PA imaging probe, provides a new tool and approach to study and diagnose AIH diseases.
Collapse
Affiliation(s)
- Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Zhidong Qiu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Qiufang Pang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Zhengmin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Jiang-Ke Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| |
Collapse
|
37
|
Rao T, Liu YT, Zeng XC, Li CP, Ou-Yang DS. The hepatotoxicity of Polygonum multiflorum: The emerging role of the immune-mediated liver injury. Acta Pharmacol Sin 2021; 42:27-35. [PMID: 32123300 PMCID: PMC7921551 DOI: 10.1038/s41401-020-0360-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Herbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity. According to the clinical and experimental studies, P. multiflorum-induced liver injury (PM-DILI) is considered to be immune-mediated idiosyncratic liver injury, but the role of immune response and the underlying mechanisms are not completely elucidated. Previous studies focused on the direct toxicity of PM-DILI by using animal models with intrinsic drug-induced liver injury (DILI). However, most epidemiological and clinical evidence demonstrate that PM-DILI is immune-mediated idiosyncratic liver injury. The aim of this review is to assess current epidemiological, clinical and experimental evidence about the possible role of innate and adaptive immunity in the idiosyncratic hepatotoxicity of P. multiflorum. The potential effects of factors associated with immune tolerance, including immune checkpoint molecules and regulatory immune cells on the individual's susceptibility to PM-DILI are also discussed. We conclude by giving our hypothesis of possible immune mechanisms of PM-DILI and providing suggestions for future studies on valuable biomarkers identification and proper immune models establishment.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
| | - Ya-Ting Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Xiang-Chang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Chao-Peng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China
| | - Dong-Sheng Ou-Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China.
| |
Collapse
|
38
|
Ishay Y, Rotnemer-Golinkin D, Ilan Y. The role of the sphingosine axis in immune regulation: A dichotomy in the anti-inflammatory effects between sphingosine kinase 1 and sphingosine kinase 2-dependent pathways. Int J Immunopathol Pharmacol 2021; 35:20587384211053274. [PMID: 34789044 PMCID: PMC8645305 DOI: 10.1177/20587384211053274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Sphingosine kinase has been identified as playing a central role in the immune cascade, being a common mediator in the cellular response to a variety of signals. The different effects of sphingosine kinase 1 and 2 (SphK1 and SphK2, respectively) activity have not been completely characterized. Aim: To determine the different roles played by SphK1 and SphK2 in the regulation of immune-mediated disorders. Methods: Nine groups of mice were studied. Concanavalin A (ConA) injection was used to induce immune-mediated hepatitis. Mice were treated with SphK1 inhibitor (termed SphK-I) and SphK2 inhibitor (termed ABC294640), prior to ConA injection, and effects of treatment on liver enzymes, subsets of T lymphocytes, and serum levels of cytokines were observed. Results: While liver enzyme elevation was ameliorated by administration of SphK1 inhibitor, SphK2 inhibitor-treated mice did not show this tendency. A marked decrease in expression of CD25+ T-cells and Foxp+ T-cells was observed in mice treated with a high dose of SphK1 inhibitor. Alleviation of liver damage was associated with a statistically significant reduction of serum IFNγ levels in mice treated with SphK1 inhibitor and not in those treated with SphK2 inhibitor. Conclusions: Early administration of SphK1 inhibitor in a murine model of immune-mediated hepatitis alleviated liver damage and inflammation with a statistically significant reduction in IFN-γ levels. The data support a dichotomy in the anti-inflammatory effects of SphK1 and SphK2, and suggests that isoenzyme-directed therapies can improve the effect of targeting these pathways.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Hadassah-Hebrew University Medical
Center, Jerusalem Israel
| | | | - Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical
Center, Jerusalem Israel
| |
Collapse
|
39
|
Zhou YK, Zhu LS, Huang HM, Cui SJ, Zhang T, Zhou YH, Yang RL. Stem cells from human exfoliated deciduous teeth ameliorate concanavalin A-induced autoimmune hepatitis by protecting hepatocytes from apoptosis. World J Stem Cells 2020; 12:1623-1639. [PMID: 33505604 PMCID: PMC7789126 DOI: 10.4252/wjsc.v12.i12.1623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/20/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoimmune hepatitis is a serious autoimmune liver disease that threatens human health worldwide, which emphasizes the urgent need to identify novel treatments. Stem cells from human exfoliated deciduous teeth (SHED), which are easy to obtain in a non-invasive manner, show pronounced proliferative and immunomodulatory capacities.
AIM To investigate the protective effects of SHED on concanavalin A (ConA)-induced hepatitis in mice, and to elucidate the associated regulatory mechanisms.
METHODS We used a ConA-induced acute hepatitis mouse model and an in vitro co-culture system to study the protective effects of SHED on ConA-induced autoimmune hepatitis, as well as the associated underlying mechanisms.
RESULTS SHED infusion could prevent aberrant histopathological liver architecture caused by ConA-induced infiltration of CD3+, CD4+, tumor necrosis-alpha+, and interferon-gamma+ inflammatory cells. Alanine aminotransferase and aspartate aminotransferase were significantly elevated in hepatitis mice. SHED infusion could therefore block ConA-induced alanine aminotransferase and aspartate aminotransferase elevations. Mechanistically, ConA upregulated tumor necrosis-alpha and interferon-gamma expression, which was activated by the nuclear factor-kappa B pathway to induce hepatocyte apoptosis, resulting in acute liver injury. SHED administration protected hepatocytes from ConA-induced apoptosis.
CONCLUSION SHED alleviates ConA-induced acute liver injury via inhibition of hepatocyte apoptosis mediated by the nuclear factor-kappa B pathway. Our findings could provide a potential treatment strategy for hepatitis.
Collapse
Affiliation(s)
- Yi-Kun Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Ling-Su Zhu
- Department of Orthodontics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hua-Ming Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Sheng-Jie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Rui-Li Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
40
|
Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol Immunol 2020; 18:92-111. [PMID: 33110250 PMCID: PMC7852534 DOI: 10.1038/s41423-020-00568-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is an important immunological organ that controls systemic tolerance. The liver harbors professional and unconventional antigen-presenting cells that are crucial for tolerance induction and maintenance. Orchestrating the immune response in homeostasis depends on a healthy and well-toned immunological liver microenvironment, which is maintained by the crosstalk of liver-resident antigen-presenting cells and intrahepatic and liver-infiltrating leukocytes. In response to pathogens or autoantigens, tolerance is disrupted by unknown mechanisms. Intrahepatic parenchymal and nonparenchymal cells exhibit unique antigen-presenting properties. The presentation of microbial and endogenous lipid-, metabolite- and peptide-derived antigens from the gut via conventional and nonconventional mechanisms can educate intrahepatic immune cells and elicit effector responses or tolerance. Perturbation of this balance results in autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Although the exact etiologies of these autoimmune liver diseases are unknown, it is thought that the disruption of tolerance towards self-antigens and microbial metabolites and lipids, as well as alterations in bile acid composition, may result in changes in effector cell activation and polarization and may reduce or impair protective anti-inflammatory regulatory T and B cell responses. Additionally, the canonical and noncanonical transmission of antigens and antigen:MHC complexes via trogocytosis or extracellular vesicles between different (non) immune cells in the liver may play a role in the induction of hepatic inflammation and tolerance. Here, we summarize emerging aspects of antigen presentation, autoantibody production, and the application of novel therapeutic approaches in the characterization and treatment of autoimmune liver diseases.
Collapse
|
41
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Liu Y, Chen H, Hao J, Li Z, Hou T, Hao H. Microarray-based transcriptional profiling of a mouse model of autoimmune hepatitis. FEBS Open Bio 2020; 10:2040-2054. [PMID: 32808463 PMCID: PMC7530384 DOI: 10.1002/2211-5463.12953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that do not typically code for a protein. lncRNAs have regulatory roles in many physiological processes, and their dysregulation can contribute to cancer, cardiovascular and neurodegenerative diseases, as well as the onset of autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. However, lncRNA expression changes in autoimmune hepatitis (AIH), a form of inflammation induced by immunological tolerance disorders, are poorly understood. Here, for the first time to our knowledge, we used microarrays to profile 1161 differentially expressed lncRNAs (DELs; 608 up- and 553 down-regulated) and 11 512 differentially expressed mRNAs (DEMs; 5189 up- and 6323 down- regulated) in a concanavalin A-induced AIH mouse model. We used quantitative real-time PCR to confirm the expression of eight DELs and DEMs, and analyzed the coexpression relationship between them. Potential biological functions of screened DELs and DEMs were predicted with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. DEL-DEM interaction networks were also constructed. Our study revealed the roles of DELs and DEMs in the pathogenesis of AIH. We also provided potential candidate biomarkers that may have potential for future development into possible diagnostics or as a treatment for this disorder.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical SciencesShanxi University of Chinese MedicineJinzhongChina
- Basic Laboratory of Integrated Traditional Chinese and Western MedicineShanxi University of Chinese MedicineJinzhongChina
| | - Hao Chen
- College of Basic Medical SciencesShanxi University of Chinese MedicineJinzhongChina
- Basic Laboratory of Integrated Traditional Chinese and Western MedicineShanxi University of Chinese MedicineJinzhongChina
| | - Jian‐heng Hao
- College of Basic Medical SciencesShanxi University of Chinese MedicineJinzhongChina
- Basic Laboratory of Integrated Traditional Chinese and Western MedicineShanxi University of Chinese MedicineJinzhongChina
| | - Zhen‐cheng Li
- College of Basic Medical SciencesShanxi University of Chinese MedicineJinzhongChina
- Basic Laboratory of Integrated Traditional Chinese and Western MedicineShanxi University of Chinese MedicineJinzhongChina
| | - Tiezheng Hou
- College of Basic Medical SciencesShanxi University of Chinese MedicineJinzhongChina
- Basic Laboratory of Integrated Traditional Chinese and Western MedicineShanxi University of Chinese MedicineJinzhongChina
| | - Hui‐qin Hao
- College of Basic Medical SciencesShanxi University of Chinese MedicineJinzhongChina
- Basic Laboratory of Integrated Traditional Chinese and Western MedicineShanxi University of Chinese MedicineJinzhongChina
| |
Collapse
|
43
|
Shabat Y, Lichtenstein Y, Ilan Y. Short-Term Cohousing of Sick with Healthy or Treated Mice Alleviates the Inflammatory Response and Liver Damage. Inflammation 2020; 44:518-525. [PMID: 32978699 DOI: 10.1007/s10753-020-01348-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
Cohousing of sick with healthy or treated animals is based on the concept of sharing an intestinal ecosystem and coprophagy, the consumption of feces, which includes sharing of the microbiome and of active drug metabolites secreted in the feces or urine. To develop a model for short-term cohousing, enabling the study of the effect of sharing an ecosystem on inflammatory states. To determine the impact of cohousing of sick and healthy mice on the immune-mediated disorders, mice injected with concanavalin A (ConA) were cohoused with healthy or sick mice or with steroid-treated or untreated mice. To determine the effect of cohousing on acetaminophen (APAP)-induced liver damage, APAP-injected mice were cohoused with N-acetyl-cysteine (NAC)-treated or untreated mice. In the ConA-induced immune-mediated hepatitis model, cohousing of sick with healthy mice was associated with the alleviation of liver damage in sick animals. Similarly, a significant decrease in serum ALT was noted in ConA-injected mice kept in the same cage as ConA-injected mice treated with steroids. A trend for reduction in liver enzymes in APAP-injected mice was observed upon cohousing with NAC-treated animals. Cohousing of sick mice with healthy or treated mice ameliorated the immune-mediated inflammatory state induced by ConA and APAP. These models for liver damage can serve as biological systems for determining the effects of alterations in the ecosystem on the immune system.
Collapse
Affiliation(s)
- Yehudit Shabat
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel
| | - Yoav Lichtenstein
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120, Jerusalem, Israel.
| |
Collapse
|
44
|
Salmonella Persistence and Host Immunity Are Dictated by the Anatomical Microenvironment. Infect Immun 2020; 88:IAI.00026-20. [PMID: 32393507 DOI: 10.1128/iai.00026-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023] Open
Abstract
The intracellular bacterial pathogen Salmonella is able to evade the immune system and persist within the host. In some cases, these persistent infections are asymptomatic for long periods and represent a significant public health hazard because the hosts are potential chronic carriers, yet the mechanisms that control persistence are incompletely understood. Using a mouse model of chronic typhoid fever combined with major histocompatibility complex (MHC) class II tetramers to interrogate endogenous, Salmonella-specific CD4+ helper T cells, we show that certain host microenvironments may favorably contribute to a pathogen's ability to persist in vivo We demonstrate that the environment in the hepatobiliary system may contribute to the persistence of Salmonella enterica subsp. enterica serovar Typhimurium through liver-resident immunoregulatory CD4+ helper T cells, alternatively activated macrophages, and impaired bactericidal activity. This contrasts with lymphoid organs, such as the spleen and mesenteric lymph nodes, where these same cells appear to have a greater capacity for bacterial killing, which may contribute to control of bacteria in these organs. We also found that, following an extended period of infection of more than 2 years, the liver appeared to be the only site that harbored Salmonella bacteria. This work establishes a potential role for nonlymphoid organ immunity in regulating chronic bacterial infections and provides further evidence for the hepatobiliary system as the site of chronic Salmonella infection.
Collapse
|
45
|
Silva RCP, Silva RPCD, Silva MDC, Nascimento WRCD, Costa VMA, Azevedo Albuquerque MCPD, Souza VMOD. Extract of Ascaris suum induces TGF-β and early production of IgG1 in experimental autoimmune hepatitis. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2020; 29:e023419. [PMID: 32520090 DOI: 10.1590/s1984-29612020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
In experimental autoimmune hepatitis (EAH) of Th1 profile, an extract of adult Ascaris suum worms (ASC) was previously found to deviate the immune response to a Th2/IL-10 pattern. Here, the effects of treatment with ASC on production of TGF-β and the anti-Ascaris isotypes IgG1 and IgG2a in EAH were evaluated. EAH was induced in BALB/c mice, intravenously with concanavalin A. Two hours later, these animals received ASC (EAH+ASC group) or PBS vehicle (EAH group). IgG1 and IgG2a were evaluated 8 h, 24 h and 7 d after induction. TGF-β was measured in a splenocyte culture at this last time. The isotype levels in the EAH group were low throughout the kinetics. In the EAH+ASC group, there was significant production of IgG1 at 24 h and 7 d, but of IgG2a only at 7 d. There was statistically greater production of TGF-β in the EAH+ASC group. The higher levels of IgG1 and TGF-β in this group suggest that an additional Th1 response control route exists in EAH, which needs to be investigated.
Collapse
Affiliation(s)
- Roeckson Carlos Peixoto Silva
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
| | - Raul Penaforte Correia da Silva
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
| | - Maria da Conceição Silva
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
| | | | - Vlaudia Maria Assis Costa
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
| | - Mônica Camelo Pessôa de Azevedo Albuquerque
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
| | - Valdênia Maria Oliveira de Souza
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brasil
| |
Collapse
|
46
|
Schulte R, Wohlleber D, Unrau L, Geers B, Metzger C, Erhardt A, Tiegs G, van Rooijen N, Heukamp LC, Klotz L, Knolle PA, Diehl L. Pioglitazone-Mediated Peroxisome Proliferator-Activated Receptor γ Activation Aggravates Murine Immune-Mediated Hepatitis. Int J Mol Sci 2020; 21:ijms21072523. [PMID: 32260486 PMCID: PMC7177299 DOI: 10.3390/ijms21072523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates target gene expression upon ligand binding. Apart from its effects on metabolism, PPARγ activity can inhibit the production of pro-inflammatory cytokines by several immune cells, including dendritic cells and macrophages. In chronic inflammatory disease models, PPARγ activation delays the onset and ameliorates disease severity. Here, we investigated the effect of PPARγ activation by the agonist Pioglitazone on the function of hepatic immune cells and its effect in a murine model of immune-mediated hepatitis. Cytokine production by both liver sinusoidal endothelial cells (IL-6) and in T cells ex vivo (IFNγ) was decreased in cells from Pioglitazone-treated mice. However, PPARγ activation did not decrease pro-inflammatory tumor necrosis factor alpha TNFα production by Kupffer cells after Toll-like receptor (TLR) stimulation ex vivo. Most interestingly, although PPARγ activation was shown to ameliorate chronic inflammatory diseases, it did not improve hepatic injury in a model of immune-mediated hepatitis. In contrast, Pioglitazone-induced PPARγ activation exacerbated D-galactosamine (GalN)/lipopolysaccharide (LPS) hepatitis associated with an increased production of TNFα by Kupffer cells and increased sensitivity of hepatocytes towards TNFα after in vivo Pioglitazone administration. These results unravel liver-specific effects of Pioglitazone that fail to attenuate liver inflammation but rather exacerbate liver injury in an experimental hepatitis model.
Collapse
Affiliation(s)
- Rike Schulte
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
| | - Dirk Wohlleber
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, 81675, Munich, Germany
| | - Ludmilla Unrau
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Bernd Geers
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Christina Metzger
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
| | - Annette Erhardt
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
| | - Nico van Rooijen
- Department of Molecular Cell Biology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands;
| | | | - Luisa Klotz
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Department of Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Percy A. Knolle
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, 81675, Munich, Germany
| | - Linda Diehl
- Institute for Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany; (R.S.); (D.W.); (C.M.); (L.K.); (P.A.K.)
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.U.); (B.G); (A.E.); (G.T.)
- Correspondence:
| |
Collapse
|
47
|
Sällberg M, Pasetto A. Liver, Tumor and Viral Hepatitis: Key Players in the Complex Balance Between Tolerance and Immune Activation. Front Immunol 2020; 11:552. [PMID: 32292409 PMCID: PMC7119224 DOI: 10.3389/fimmu.2020.00552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is the third most common cause of cancer related death in the World. From an epidemiological point of view the risk factors associated to primary liver cancer are mainly viral hepatitis infection and alcohol consumption. Even though there is a clear correlation between liver inflammation, cirrhosis and cancer, other emerging liver diseases (like fatty liver) could also lead to liver cancer. Moreover, the liver is the major site of metastasis from colon, breast, ovarian and other cancers. In this review we will address the peculiar status of the liver as organ that has to balance between tolerance and immune activation. We will focus on macrophages and other key cellular components of the liver microenvironment that play a central role during tumor progression. We will also discuss how current and future therapies may affect the balance toward immune activation.
Collapse
Affiliation(s)
- Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Pasetto
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Wang H, Lu CH, Ho PC. Metabolic adaptation orchestrates tissue context-dependent behavior in regulatory T cells. Immunol Rev 2020; 295:126-139. [PMID: 32147869 DOI: 10.1111/imr.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
The diverse distribution and functions of regulatory T cells (Tregs) ensure tissue and immune homeostasis; however, it remains unclear which factors can guide distribution, local differentiation, and tissue context-specific behavior in Tregs. Although the emerging concept that Tregs could re-adjust their transcriptome based on their habitations is supported by recent findings, the underlying mechanisms that reprogram transcriptome in Tregs are unknown. In the past decade, metabolic machineries have been revealed as a new regulatory circuit, known as immunometabolic regulation, to orchestrate activation, differentiation, and functions in a variety of immune cells, including Tregs. Given that systemic and local alterations of nutrient availability and metabolite profile associate with perturbation of Treg abundance and functions, it highlights that immunometabolic regulation may be one of the mechanisms that orchestrate tissue context-specific regulation in Tregs. The understanding on how metabolic program instructs Tregs in peripheral tissues not only represents a critical opportunity to delineate a new avenue in Treg biology but also provides a unique window to harness Treg-targeting approaches for treating cancer and autoimmunity with minimizing side effects. This review will highlight the metabolic features on guiding Treg formation and function in a disease-oriented perspective and aim to pave the foundation for future studies.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Chun-Hao Lu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
49
|
Deng G, Li Y, Ma S, Gao Z, Zeng T, Chen L, Ye H, Yang M, Shi H, Yao X, Zeng Z, Chen Y, Song Y, Liu B, Gao L. Caveolin-1 dictates ferroptosis in the execution of acute immune-mediated hepatic damage by attenuating nitrogen stress. Free Radic Biol Med 2020; 148:151-161. [PMID: 31877357 DOI: 10.1016/j.freeradbiomed.2019.12.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a new regulated cells death manner defined as results of iron-dependent accumulation of lipid peroxidation. However, the specific mechanisms of regulating ferroptosis remain unclear. In our present study, we demonstrated that Caveolin-1 (Cav-1) played a central role in protecting hepatocytes against ferroptosis in autoimmunity-mediated hepatitis (AIH). The down-regulated Cav-1 in liver tissues, accompanied by ferroptotic events and RNS production, were contributed to the outcome of ConA-induced hepatic damage, which were rescued by ferrostatin-1 (an inhibitor of ferroptosis) in vivo and in vitro. Additionally, Cav-1 deficiency aggravated ConA-induced hepatocellular death and ferroptosis associated with excessive nitrogen stress response. Short hairpin RNA of Cav-1 in hepatocytes promoted ferroptosis and nitrative stress in response to erastin in vitro, which was ameliorated by Cav-1 over-expression. Meanwhile, administration of the iNOS inhibitor (1400W) or ONOO- scavenger (Fe-TMPyP), diminished reactive nitrogen species (RNS), remarkably reduced hepatocytes ferroptosis and attenuated ConA-induced liver damage. Furthermore, immune inhibition by gadolinium chloride (GdCl3), a well-known Kupffer cell depletor, elevated hepatic Cav-1 but inhibited ferroptosis and nitrative stress under ConA exposure. In conclusion, these data revealed a novel molecular mechanism of ferroptosis with the Cav-1 regulation was essential for pathogenesis of ConA-induced hepatitis. Downstream of Cav-1, RNS-mediated ferroptosis was a pivotal step that drives the execution of acute immune-mediated hepatic damage.
Collapse
Affiliation(s)
- Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuoyi Ma
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Zhuowei Gao
- Shunde Hospital, Guangzhou University of Chinese Medicine, Foshan, 528333, Guangdong, China; Shunde Hospital, Southern Medical University, Foshan, 528308, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Limei Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Haixin Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaofen Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhiyun Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuhong Song
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Bing Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
50
|
Zhang M, Li Q, Zhou C, Zhao Y, Li R, Zhang Y. Demethyleneberberine attenuates concanavalin A-induced autoimmune hepatitis in mice through inhibition of NF-κB and MAPK signaling. Int Immunopharmacol 2020; 80:106137. [PMID: 31931366 DOI: 10.1016/j.intimp.2019.106137] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Demethyleneberberine (DMB) is a natural product which has been reported to possess mitochondria-targeting anti-oxidative and anti-inflammatory effect. However, the pharmacological action and molecular mechanism of DMB on autoimmune hepatitis (AIH) have not been explored. In this study, AIH was induced by intravenously injecting Con A (20 mg/kg) in mice for 8 h, and DMB protected against Con A-induced AIH, evidenced by obvious reduction of hepatic enzymes in serum and histological lesion. DMB significantly inhibited the infiltration of CD4+ T cell and Kupffer cell as well as the expression of inflammatory cytokines, such as TNF-α, IL-6, IL-1β and IFN-γ by ELISA and qPCR analysis. Western blotting analysis illustrated that DMB remarkably inhibited Con A-induced phosphorylation of IKK, IκB, NF-κB p65, ERK, JNK, p38 MAPK and STAT3 induced by Con A. Moreover, DMB also effectively suppressed hepatic oxidative stress with reduction of MDA and elevation of GSH. Taken together, our findings indicated that DMB could prevent Con A-induced AIH by regulating NF-κB and MAPK signaling, suggesting that DMB can serve as a promising candidate for therapy of AIH.
Collapse
Affiliation(s)
- Miao Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Qingxia Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Cuisong Zhou
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yaxing Zhao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|