1
|
Brea R, Casanova N, Alvarez-Lucena C, Fuertes-Agudo M, Luque-Tevar M, Cucarella C, Capitani MC, Marinochi MV, Fusini ME, Lahoz A, Nogueroles ML, Fraile J, Ronco MT, Boscá L, González-Rodríguez Á, García-Monzón C, Martín-Sanz P, Casado M, Francés DE. Beneficial effects of hepatic cyclooxygenase-2 expression against cholestatic injury after common bile duct ligation in mice. Liver Int 2024; 44:2409-2423. [PMID: 38847511 DOI: 10.1111/liv.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but little is known about the significance of COX-2 in cholestatic injury. This study was designed to elucidate the role of COX-2 expression in hepatocytes during the pathogenesis of obstructive cholestasis. METHODS We used genetically modified mice constitutively expressing human COX-2 in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and its derived prostaglandins in liver function, and the synthesis and excretion of bile acids (BA) in response to cholestatic liver injury. RESULTS After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and inflammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice displayed a differential metabolic pattern of BA synthesis that led to an improved clearance after BDL-induced accumulation. In addition, an enhanced response to the BDL-induced oxidative stress and hepatic apoptosis was observed. In vitro experiments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective role of prostaglandin E2 against BA toxicity. CONCLUSIONS Taken together, our data indicate that constitutive expression of COX-2 in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a defensive response against cholestasis-derived BA accumulation and injury.
Collapse
Affiliation(s)
- Rocío Brea
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - Natalia Casanova
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María Luque-Tevar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María C Capitani
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - María V Marinochi
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Matías E Fusini
- Cátedra de Histología y Embriología Humana-Fac. Cs. Médicas-UNR, Rosario, Argentina
| | | | | | - Juan Fraile
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - María T Ronco
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carmelo García-Monzón
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Daniel E Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| |
Collapse
|
2
|
Fuertes-Agudo M, Luque-Tévar M, Cucarella C, Martín-Sanz P, Casado M. Advances in Understanding the Role of NRF2 in Liver Pathophysiology and Its Relationship with Hepatic-Specific Cyclooxygenase-2 Expression. Antioxidants (Basel) 2023; 12:1491. [PMID: 37627486 PMCID: PMC10451723 DOI: 10.3390/antiox12081491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress and inflammation play an important role in the pathophysiological changes of liver diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that positively regulates the basal and inducible expression of a large battery of cytoprotective genes, thus playing a key role in protecting against oxidative damage. Cyclooxygenase-2 (COX-2) is a key enzyme in prostaglandin biosynthesis. Its expression has always been associated with the induction of inflammation, but we have shown that, in addition to possessing other benefits, the constitutive expression of COX-2 in hepatocytes is beneficial in reducing inflammation and oxidative stress in multiple liver diseases. In this review, we summarized the role of NRF2 as a main agent in the resolution of oxidative stress, the crucial role of NRF2 signaling pathways during the development of chronic liver diseases, and, finally we related its action to that of COX-2, where it appears to operate as its partner in providing a hepatoprotective effect.
Collapse
Affiliation(s)
- Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María Luque-Tévar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB) “Alberto Sols”, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
3
|
Fuertes-Agudo M, Luque-Tévar M, Cucarella C, Brea R, Boscá L, Quintana-Cabrera R, Martín-Sanz P, Casado M. COX-2 Expression in Hepatocytes Improves Mitochondrial Function after Hepatic Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:antiox11091724. [PMID: 36139798 PMCID: PMC9495319 DOI: 10.3390/antiox11091724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 12/15/2022] Open
Abstract
Cyclooxygenase 2 (COX-2) is a key enzyme in prostanoid biosynthesis. The constitutive hepatocyte expression of COX-2 has a protective role in hepatic ischemia-reperfusion (I/R) injury (IRI), decreasing necrosis, reducing reactive oxygen species (ROS) levels, and increasing autophagy and antioxidant and anti-inflammatory response. The physiopathology of IRI directly impacts mitochondrial activity, causing ATP depletion and being the main source of ROS. Using genetically modified mice expressing human COX-2 (h-COX-2 Tg) specifically in hepatocytes, and performing I/R surgery on the liver, we demonstrate that COX-2 expression has a beneficial effect at the mitochondrial level. Mitochondria derived from h-COX-2 Tg mice livers have an increased respiratory rate associated with complex I electron-feeding pathways compared to Wild-type (Wt) littermates, without affecting complex I expression or assembly. Furthermore, Wt-derived mitochondria show a loss of mitochondrial membrane potential (ΔΨm) that correlates to increased proteolysis of fusion-related OPA1 through OMA1 protease activity. All these effects are not observed in h-COX-2 Tg mitochondria, which behave similarly to the Sham condition. These results suggest that COX-2 attenuates IRI at a mitochondrial level, preserving the proteolytic processing of OPA1, in addition to the maintenance of mitochondrial respiration.
Collapse
Affiliation(s)
- Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María Luque-Tévar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rocío Brea
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | | | - Paloma Martín-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biomedicas Alberto Sols (IIBM), CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Correspondence: (P.M.-S.); (M.C.); Tel.: +34-914972746 (P.M.-S.); +34-963393778 (M.C.)
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (P.M.-S.); (M.C.); Tel.: +34-914972746 (P.M.-S.); +34-963393778 (M.C.)
| |
Collapse
|
4
|
Assessment of hepatic prostaglandin E 2 level in carbamazepine induced liver injury. Endocr Regul 2022; 56:22-30. [PMID: 35180822 DOI: 10.2478/enr-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective. Carbamazepine (CBZ), a widely used antiepileptic drug, is one major cause of the idiosyncratic liver injury along with immune reactions. Conversely, prostaglandin E2 (PGE2) demonstrates a hepatoprotective effect by regulating immune reactions and promoting liver repair in various types of liver injury. However, the amount of hepatic PGE2 during CBZ-induced liver injury remains elusive. In this study, we aimed to evaluate the hepatic PGE2 levels during CBZ-induced liver injury using a mouse model. Methods. Mice were orally administered with CBZ at a dose of 400 mg/kg for 4 days, and 800 mg/kg on the 5th day. Results. Plasma alanine transaminase (ALT) level increased in some of mice 24 h after the last CBZ administration. Although median value of hepatic PGE2 amount in the CBZ-treated mice showed same extent as vehicle-treated control mice, it exhibited significant elevated level in mice with severe liver injury presented by a plasma ALT level >1000 IU/L. According to these results, mice had a plasma ALT level >1000 IU/L were defined as responders and the others as non-responders in this study. Even though, the hepatic PGE2 levels increased in responders, the hepatic expression and enzyme activity related to PGE2 production were not upregulated when compared with vehicle-treated control mice. However, the hepatic 15-hydroxyprostaglandin dehydrogenase (15-PGDH) expression and activity decreased significantly in responders when compared with control mice. Conclusions. These results indicate that elevated hepatic PGE2 levels can be attributed to the downregulation of 15-PGDH expression under CBZ-induced liver injury.
Collapse
|
5
|
Hepatic COX-2 expression protects mice from an alcohol-high fat diet-induced metabolic disorder by involving protein acetylation related energy metabolism. Alcohol 2021; 92:41-52. [PMID: 33662521 PMCID: PMC8095085 DOI: 10.1016/j.alcohol.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE A diet high in fat and ethanol often results in chronic metabolic disorder, hepatic steatosis, and liver inflammation. Constitutive hepatic cyclooxygenase-2 (COX-2) expression could protect from high fat-induced metabolism disturbance in a murine model. In this study, we explored the influence of hCOX-2 transgenic [TG] to high fat with ethanol-induced metabolic disorder and liver injury using a mouse animal model. METHODS 12-week-old male hepatic hCOX-2 transgenic (TG) or wild type mice (WT) were fed either a high fat and ethanol liquid diet (HF+Eth) or a regular control diet (RCD) for 5 weeks (four groups: RCD/WT, RCD/TG; HF+Eth/TG, HF+Eth/WT). We assessed metabolic biomarkers, cytokine profiles, histomorphology, and gene expression to study the impact of persistent hepatic COX-2 expression on diet-induced liver injury. RESULTS In the HF+Eth diet, constitutively hepatic human COX-2 expression protects mice from body weight gain and white adipose tissue accumulation, accompanied by improved IPGTT response, serum triglyceride/cholesterol levels, and lower levels of serum and liver inflammatory cytokines. Histologically, hCOX-2 mice showed decreased hepatic lipid droplets accumulation, decreased hepatocyte ballooning, and improved steatosis scores. Hepatic hCOX-2 overexpression enhanced AKT insulin signaling and increased fatty acid synthesis in both RCD and HF+Eth diet groups. The anti-lipogenic effect of hCOX-2 TG in the HF+Eth diet animals was mediated by increasing lipid disposal through enhanced β-oxidation via elevations in the expression of PPARα and PPARγ, and increased hepatic autophagy as assessed by the ratio of autophagy markers LC3 II/I in hepatic tissue. Various protein acetylation pathway components, including HAT, HDAC1, SIRT1, and SNAIL1, were modulated in hCOX-2 TG mice in either RCD or HF+Eth diet. CONCLUSIONS Hepatic human COX-2 expression protected mice from the metabolic disorder and liver injury induced by a high fat and ethanol diet by enhancing hepatic lipid expenditure. Epigenetic reprogramming of diverse metabolic genes might be involved in the anti-lipogenic effect of COX-2.
Collapse
|
6
|
Abolhasani A, Heidari F, Noori S, Mousavi S, Abolhasani H. Cytotoxicity Evaluation of Dimethoxy and Trimethoxy Indanonic Spiroisoxazolines Against Cancerous Liver Cells. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2212796813666190926112807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
3'-(3,4-dimethoxyphenyl)-4'-(4-(methylsulfonyl)phenyl)-4'H-spiro
[indene-2,5'-isoxazol]-1(3H)-one and 4'-(4-(methylsulfonyl)phenyl)-3'-(3,4,5-trimethoxyphenyl)-
4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one compounds containing indanonic spiroisoxazoline
core are widely known for their antiproliferative activities and investigation of
tubulin binding modes.
Objective:
To evaluate the cytotoxicity effect of Dimethoxy and Trimethoxy Indanonic Spiroisoxazolines
against HepG2 cancerous liver cell line and to perform a comparison with
other known anti-liver cancer drugs.
Methods:
The evaluation of cytotoxicity of dimethoxy and trimethoxy indanonic spiroisoxazoline
compounds, Oxaliplatin, Doxorubicin, 5-fluorouracil and Cisplatin against HepG2
(hepatocellular liver carcinoma) cell line has been performed using MTT assay and analyzed
by GraphPad PRISM software (version 8.0.2).
Results:
Potent cytotoxicity effects against HepG2 cell line, comparable to Cisplatin (IC50=
0.047±0.0045 µM), Oxaliplatin (IC50= 0.0051µM), Doxorubicin (IC50= 0.0014µM) and 5-
fluorouracil (IC50= 0.0089 µM), were shown by both dimethoxy (IC50= 0.059±0.012 µM)
and trimethoxy (IC50= 0.086±0.019 µM) indanonic spiroisoxazoline compounds.
Conclusion:
In vitro biological evaluations revealed that dimethoxy and trimethoxy indanonic
spiroisoxazoline compounds are good candidates for the development of new anti-liver
cancer agents.
Collapse
Affiliation(s)
- Ahmad Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Somayeh Noori
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Shokoufeh Mousavi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
7
|
Motiño O, Francés DE, Casanova N, Fuertes-Agudo M, Cucarella C, Flores JM, Vallejo-Cremades MT, Olmedilla L, Pérez Peña J, Bañares R, Boscá L, Casado M, Martín-Sanz P. Protective Role of Hepatocyte Cyclooxygenase-2 Expression Against Liver Ischemia-Reperfusion Injury in Mice. Hepatology 2019; 70:650-665. [PMID: 30155948 DOI: 10.1002/hep.30241] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Abstract
Liver ischemia and reperfusion injury (IRI) remains a serious clinical problem affecting liver transplantation outcomes. IRI causes up to 10% of early organ failure and predisposes to chronic rejection. Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but the significance of COX-2 in IRI is a matter of controversy. This study was designed to elucidate the role of COX-2 induction in hepatocytes against liver IRI. In the present work, hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were subjected to IRI. hCOX-2-Tg mice exhibited lower grades of necrosis and inflammation than Wt mice, in part by reduced hepatic recruitment and infiltration of neutrophils, with a concomitant decrease in serum levels of proinflammatory cytokines. Moreover, hCOX-2-Tg mice showed a significant attenuation of the IRI-induced increase in oxidative stress and hepatic apoptosis, an increase in autophagic flux, and a decrease in endoplasmic reticulum stress compared to Wt mice. Interestingly, ischemic preconditioning of Wt mice resembles the beneficial effects observed in hCOX-2-Tg mice against IRI due to a preconditioning-derived increase in endogenous COX-2, which is mainly localized in hepatocytes. Furthermore, measurement of prostaglandin E2 (PGE2 ) levels in plasma from patients who underwent liver transplantation revealed a significantly positive correlation of PGE2 levels and graft function and an inverse correlation with the time of ischemia. Conclusion: These data support the view of a protective effect of hepatic COX-2 induction and the consequent rise of derived prostaglandins against IRI.
Collapse
Affiliation(s)
- Omar Motiño
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
| | - Daniel E Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Natalia Casanova
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
| | | | - Carme Cucarella
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Juana M Flores
- Department of Animal Medicine and Surgery, Veterinary Faculty, Universidad Complutense de Madrid, Spain
| | | | - Luis Olmedilla
- Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - José Pérez Peña
- Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
| | - Rafael Bañares
- Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
- Medicine Faculty, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Madrid, Spain
| |
Collapse
|
8
|
Rex J, Lutz A, Faletti LE, Albrecht U, Thomas M, Bode JG, Borner C, Sawodny O, Merfort I. IL-1β and TNFα Differentially Influence NF-κB Activity and FasL-Induced Apoptosis in Primary Murine Hepatocytes During LPS-Induced Inflammation. Front Physiol 2019; 10:117. [PMID: 30842741 PMCID: PMC6391654 DOI: 10.3389/fphys.2019.00117] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophage-derived cytokines largely influence the behavior of hepatocytes during an inflammatory response. We previously reported that both TNFα and IL-1β, which are released by macrophages upon LPS stimulation, affect Fas ligand (FasL)-induced apoptotic signaling. Whereas TNFα preincubation leads to elevated levels of caspase-3 activity and cell death, pretreatment with IL-1β induces increased caspase-3 activity but keeps cells alive. We now report that IL-1β and TNFα differentially influence NF-κB activity resulting in a differential upregulation of target genes, which may contribute to the distinct effects on cell viability. A reduced NF-κB activation model was established to further investigate the molecular mechanisms which determine the distinct cell fate decisions after IL-1β and TNFα stimulation. To study this aspect in a more physiological setting, we used supernatants from LPS-stimulated bone marrow-derived macrophages (BMDMs). The treatment of hepatocytes with the BMDM supernatant, which contains both IL-1β and TNFα, sensitized to FasL-induced caspase-3 activation and cell death. However, when TNFα action was blocked by neutralizing antibodies, cell viability after stimulation with the BMDM supernatant and FasL increased as compared to single FasL stimulation. This indicates the important role of TNFα in the sensitization of apoptosis in hepatocytes. These results give first insights into the complex interplay between macrophages and hepatocytes which may influence life/death decisions of hepatocytes during an inflammatory reaction of the liver in response to a bacterial infection.
Collapse
Affiliation(s)
- Julia Rex
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Laura E Faletti
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Ute Albrecht
- Clinic of Gastroenterology, Hepatology and Infection Diseases, Heinrich-Heine-University, Duesseldorf, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Johannes G Bode
- Clinic of Gastroenterology, Hepatology and Infection Diseases, Heinrich-Heine-University, Duesseldorf, Germany
| | - Christoph Borner
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Brea R, Motiño O, Francés D, García-Monzón C, Vargas J, Fernández-Velasco M, Boscá L, Casado M, Martín-Sanz P, Agra N. PGE 2 induces apoptosis of hepatic stellate cells and attenuates liver fibrosis in mice by downregulating miR-23a-5p and miR-28a-5p. Biochim Biophys Acta Mol Basis Dis 2018; 1864:325-337. [PMID: 29109031 DOI: 10.1016/j.bbadis.2017.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs), small noncoding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key regulatory molecules in chronic liver diseases, whose end stage is hepatic fibrosis, a major global health burden. Pharmacological strategies for prevention or treatment of hepatic fibrosis are still limited, what makes it necessary to establish a better understanding of the molecular mechanisms underlying its pathogenesis. In this context, we have recently shown that cyclooxygenase-2 (COX-2) expression in hepatocytes restricts activation of hepatic stellate cells (HSCs), a pivotal event in the initiation and progression of hepatic fibrosis. Here, we evaluated the role of COX-2 in the regulation of a specific set of miRNAs on a mouse model of CCl4 and bile duct ligation (BDL)-induced liver fibrosis. Our results provide evidence that COX-2 represses miR-23a-5p and miR-28-5p expression in HSC. The decrease of miR-23a-5p and miR-28-5p expression promotes protection against fibrosis by decreasing the levels of pro-fibrogenic markers α-SMA and COL1A1 and increasing apoptosis of HSC. Moreover, we demonstrate that serum levels of miR-28-5p are decreased in patients with chronic liver disease. These results suggest a protective effect exerted by COX-2-derived prostanoids in the process of hepatofibrogenesis.
Collapse
Affiliation(s)
- R Brea
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - O Motiño
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - D Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario, Argentina
| | - C García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Amadeo Vives 2, 28009 Madrid, Spain
| | - J Vargas
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Amadeo Vives 2, 28009 Madrid, Spain
| | - M Fernández-Velasco
- Instituto de Investigación Hospital Universitario La Paz, IDIPAZ, Pedro Rico 6, 28029 Madrid, Spain
| | - L Boscá
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - M Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Monforte de Lemos 3-5, 28029 Madrid, Spain; Instituto de Biomedicina de Valencia, IBV-CSIC, Jaume Roig 11, 46010 Valencia, Spain
| | - P Martín-Sanz
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - N Agra
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
10
|
Yao C, Li G, Cai M, Qian Y, Wang L, Xiao L, Thaiss F, Shi B. Prostate cancer downregulated SIRP-α modulates apoptosis and proliferation through p38-MAPK/NF-κB/COX-2 signaling. Oncol Lett 2017; 13:4995-5001. [PMID: 28588738 DOI: 10.3892/ol.2017.6070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
The present study investigated the regulatory mechanism of signal-regulatory protein (SIRP)-α in the apoptosis and proliferation of prostate cancer (CaP) cells. The expression profile of SIRP-α in prostate cancer cells was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. Then SIRP-α function in CaP cells was further analyzed with the overexpression and RNA interference of SIRP-α. The results revealed that SIRP-α expression levels were decreased in CaP tissues and cell lines, with androgen-independent CaP exhibiting a lower SIRP-α expression compared with androgen-dependent CaP. Overexpression of SIRP-α resulted in a significantly reduced number of live CaP cells by enhancing apoptosis, whereas SIRP-α silencing increased CaP cell proliferation. Mechanistically, SIRP-α decreases cyclooxygenase-2 (COX-2) expression and cytokine production by negatively regulating p38 mitogen-activated protein kinase and nuclear factor-κB pathway. Therefore, SIRP-α knockdown decreases cell apoptosis by enhancing COX-2 expression. The present results indicate that SIRP-α may function as a novel negative regulator to modulate cellular proliferation, survival and migration in CaP cells. The heightened sensitivity of cells restoring SIRP-α function could be exploited in the development of therapeutics that may potentiate the antineoplastic effects of conventional cytokines or chemotherapeutic agents.
Collapse
Affiliation(s)
- Chen Yao
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Gang Li
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Ming Cai
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Yeyong Qian
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Liqin Wang
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Li Xiao
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Friedrich Thaiss
- III Medical Clinic, University Hospital, Eppendorf, D-20246 Hamburg, Germany
| | - Bingyi Shi
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| |
Collapse
|
11
|
Motiño O, Agra N, Brea Contreras R, Domínguez-Moreno M, García-Monzón C, Vargas-Castrillón J, Carnovale CE, Boscá L, Casado M, Mayoral R, Valdecantos MP, Valverde ÁM, Francés DE, Martín-Sanz P. Cyclooxygenase-2 expression in hepatocytes attenuates non-alcoholic steatohepatitis and liver fibrosis in mice. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1710-23. [PMID: 27321932 DOI: 10.1016/j.bbadis.2016.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase-2 (COX-2) is involved in different liver diseases but little is known about the significance of COX-2 in the development and progression of non-alcoholic steatohepatitis (NASH). This study was designed to elucidate the role of COX-2 expression in hepatocytes in the pathogenesis of steatohepatitis and hepatic fibrosis. In the present work, hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either fed methionine-and-choline deficient (MCD) diet to establish an experimental non-alcoholic steatohepatitis (NASH) model or injected with carbon tetrachloride (CCl4) to induce liver fibrosis. In our animal model, hCOX-2-Tg mice fed MCD diet showed lower grades of steatosis, ballooning and inflammation than Wt mice, in part by reduced recruitment and infiltration of hepatic macrophages, with a corresponding decrease in serum levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice showed a significant attenuation of the MCD diet-induced increase in oxidative stress and hepatic apoptosis observed in Wt mice. Even more, hCOX-2-Tg mice treated with CCl4 had significantly lower stages of fibrosis and less hepatic content of collagen, hydroxyproline and pro-fibrogenic markers than Wt controls. Collectively, our data indicates that constitutive hepatocyte COX-2 expression ameliorates NASH and liver fibrosis development in mice by reducing inflammation, oxidative stress and apoptosis and by modulating activation of hepatic stellate cells, respectively, suggesting a possible protective role for COX-2 induction in NASH/NAFLD progression.
Collapse
Affiliation(s)
- Omar Motiño
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Noelia Agra
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Rocío Brea Contreras
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Marina Domínguez-Moreno
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Amadeo Vives 2, 28009 Madrid, Spain
| | - Javier Vargas-Castrillón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Amadeo Vives 2, 28009 Madrid, Spain
| | - Cristina E Carnovale
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario, Argentina
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Jaume Roig 11, 46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rafael Mayoral
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain; Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Daniel E Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario, Argentina.
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas (IIB) "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Yao L, Chen W, Han C, Wu T. Microsomal prostaglandin E synthase-1 protects against Fas-induced liver injury. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1071-80. [PMID: 27102561 PMCID: PMC4935489 DOI: 10.1152/ajpgi.00327.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/17/2016] [Indexed: 01/31/2023]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme for the synthesis of prostaglandin E2 (PGE2), a proproliferative and antiapoptotic lipid molecule important for tissue regeneration and injury repair. In this study, we developed transgenic (Tg) mice with targeted expression of mPGES-1 in the liver to assess Fas-induced hepatocyte apoptosis and acute liver injury. Compared with wild-type (WT) mice, the mPGES-1 Tg mice showed less liver hemorrhage, lower serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, less hepatic necrosis/apoptosis, and lower level of caspase cascade activation after intraperitoneal injection of the anti-Fas antibody Jo2. Western blotting analysis revealed increased expression and activation of the serine/threonine kinase Akt and associated antiapoptotic molecules in the liver tissues of Jo2-treated mPGES-1 Tg mice. Pretreatment with the mPGES-1 inhibitor (MF63) or the Akt inhibitor (Akt inhibitor V) restored the susceptibility of the mPGES-1 Tg mice to Fas-induced liver injury. Our findings provide novel evidence that mPGES-1 prevents Fas-induced liver injury through activation of Akt and related signaling and suggest that induction of mPGES-1 or treatment with PGE2 may represent important therapeutic strategy for the prevention and treatment of Fas-associated liver injuries.
Collapse
Affiliation(s)
| | | | | | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
13
|
Motiño O, Francés DE, Mayoral R, Castro-Sánchez L, Fernández-Velasco M, Boscá L, García-Monzón C, Brea R, Casado M, Agra N, Martín-Sanz P. Regulation of MicroRNA 183 by Cyclooxygenase 2 in Liver Is DEAD-Box Helicase p68 (DDX5) Dependent: Role in Insulin Signaling. Mol Cell Biol 2015; 35:2554-67. [PMID: 25963660 PMCID: PMC4475926 DOI: 10.1128/mcb.00198-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023] Open
Abstract
Cyclooxygenase (COX) catalyzes the first step in prostanoid biosynthesis and exists as two isoforms. COX-1 is a constitutive enzyme involved in physiological processes, whereas COX-2 is induced by a variety of stimuli. MicroRNAs (miRNAs) are noncoding RNAs that function as key posttranscriptional regulators of gene expression. Although it is known that COX-2 expression is regulated by miRNAs, there are no data regarding COX-2 involvement in miRNA regulation. Considering our previous results showing that COX-2 expression in hepatocytes protects against insulin resistance, we evaluated the role of COX-2 in the regulation of a specific set of miRNAs implicated in insulin signaling in liver cells. Our results provide evidence of the molecular basis for a novel function of COX-2 in miRNA processing. COX-2 represses miRNA 23b (miR-23b), miR-146b, and miR-183 expression in liver cells by increasing the level of DEAD-box helicase p68 (DDX5) through phosphatidylinositol 3-kinase (PI3K)/p300 signaling and by modulating the enzymatic function of the Drosha (RNase type III) complex through its physical association with DDX5. The decrease of miR-183 expression promotes protection against insulin resistance by increasing insulin receptor substrate 1 (IRS1) levels. These results indicate that the modulation of miRNA processing by COX-2 is a key event in insulin signaling in liver and has potential clinical implications for the management of various hepatic dysfunctions.
Collapse
Affiliation(s)
- Omar Motiño
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Daniel E Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Rosario, Argentina
| | - Rafael Mayoral
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Castro-Sánchez
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Rocío Brea
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Noelia Agra
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Wu K, Yang L, Li C, Zhu CH, Wang X, Yao Y, Jia YJ. MicroRNA-146a enhances Helicobacter pylori induced cell apoptosis in human gastric cancer epithelial cells. Asian Pac J Cancer Prev 2015; 15:5583-6. [PMID: 25081668 DOI: 10.7314/apjcp.2014.15.14.5583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection induces apoptosis in gastric epithelial cells, and this occurrence may link to gastric carcinogenesis. However, the regulatory mechanism of H. pylori-induced apoptosis is not clear. MicroRNA-146a has been implicated as a key regulator of the immune system. This report describes our discovery of molecular mechanisms of microRNA-146a regulation of apoptosis in human gastric cancer cells. We found that overexpression of microRNA-146a by transfecting microRNA-146a mimics could significantly enhance apoptosis, and this up-regulation was triggered by COX-2 inhibition. Furthermore, we found that microRNA-146a density was positively correlated with apoptosis rates in H. pylori-positive gastric cancer tissues and intratumoral microRNA-146a density was negatively correlated with lymph node metastasis among H. pylori-positive gastric cancer patients. Understanding the important roles of microRNA-146a in regulating cell apoptosis in H. pylori infected human gastric cancer cells will contribute to the development of microRNA targeted therapy in the future.
Collapse
Affiliation(s)
- Kai Wu
- Department of Gastroenterology, 309 Hospital of Chinese People's Liberation Army, Beijing, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
15
|
Francés DE, Motiño O, Agrá N, González-Rodríguez Á, Fernández-Álvarez A, Cucarella C, Mayoral R, Castro-Sánchez L, García-Casarrubios E, Boscá L, Carnovale CE, Casado M, Valverde ÁM, Martín-Sanz P. Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance. Diabetes 2015; 64:1522-31. [PMID: 25422106 DOI: 10.2337/db14-0979] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023]
Abstract
Accumulation evidence links obesity-induced inflammation as an important contributor to the development of insulin resistance, which plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. Cyclooxygenase (COX)-1 and -2 catalyze the first step in prostanoid biosynthesis. Because adult hepatocytes fail to induce COX-2 expression regardless of the proinflammatory stimuli used, we have evaluated whether this lack of expression under mild proinflammatory conditions might constitute a permissive condition for the onset of insulin resistance. Our results show that constitutive expression of human COX-2 (hCOX-2) in hepatocytes protects against adiposity, inflammation, and, hence, insulin resistance induced by a high-fat diet, as demonstrated by decreased hepatic steatosis, adiposity, plasmatic and hepatic triglycerides and free fatty acids, increased adiponectin-to-leptin ratio, and decreased levels of proinflammatory cytokines, together with an enhancement of insulin sensitivity and glucose tolerance. Furthermore, hCOX-2 transgenic mice exhibited increased whole-body energy expenditure due in part by induction of thermogenesis and fatty acid oxidation. The analysis of hepatic insulin signaling revealed an increase in insulin receptor-mediated Akt phosphorylation in hCOX-2 transgenic mice. In conclusion, our results point to COX-2 as a potential therapeutic target against obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Daniel E Francés
- Institute of Experimental Physiology (Instituto de Fisiología Experimental), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Omar Motiño
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Agrá
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Fernández-Álvarez
- Institute of Experimental Physiology (Instituto de Fisiología Experimental), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Carme Cucarella
- Biomedical Institute of Valencia, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rafael Mayoral
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Luis Castro-Sánchez
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Ester García-Casarrubios
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Lisardo Boscá
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina E Carnovale
- Institute of Experimental Physiology (Instituto de Fisiología Experimental), Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Marta Casado
- Biomedical Institute of Valencia, Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ángela M Valverde
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Martín-Sanz
- Institute of Biomedical Research Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines 2014; 2:275-300. [PMID: 28548072 PMCID: PMC5344275 DOI: 10.3390/biomedicines2040275] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis), regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.
Collapse
|
17
|
Cheng J, Fan XM. Role of cyclooxygenase-2 in gastric cancer development and progression. World J Gastroenterol 2013; 19:7361-7368. [PMID: 24259966 PMCID: PMC3831217 DOI: 10.3748/wjg.v19.i42.7361] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
Although the incidence of gastric cancer has been declining in recent decades, it remains a major public health issue as the second leading cause of cancer death worldwide. In China, gastric cancer is still the main cause of death in patients with malignant tumors. Most patients are diagnosed at an advanced stage and mortality is high. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme in prostanoid synthesis and plays an important role in the development and progression of gastric cancer. The expression of COX-2 in gastric cancer is upregulated and its molecular mechanisms have been investigated. Helicobacter pylori infection, tumor suppressor gene mutation and the activation of nuclear factor-kappa B may be responsible for the elevated expression of COX-2 in gastric cancer. The mechanisms of COX-2 in the development and progression of gastric cancer are probably through promoting the proliferation of gastric cancer cells, while inhibiting apoptosis, assisting angiogenesis and lymphatic metastasis, and participating in cancer invasion and immunosuppression. This review is intended to discuss, comment and summarize recent research progress on the role of COX-2 in gastric cancer development and progression, and elucidate the molecular mechanisms which might be involved in the carcinogenesis.
Collapse
|
18
|
Llorente-Izquierdo C, Mayoral R, Cucarella C, Grau C, Alvarez MS, Flores JM, García-Palencia P, Agra N, Castro-Sánchez L, Boscá L, Martín-Sanz P, Casado M. Progression of liver oncogenesis in the double transgenic mice c-myc/TGF α is not enhanced by cyclooxygenase-2 expression. Prostaglandins Other Lipid Mediat 2013; 106:106-15. [PMID: 23579063 DOI: 10.1016/j.prostaglandins.2013.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase-2 (COX-2) has been associated with cell growth regulation, tissue remodeling and carcinogenesis. Overexpression of COX-2 in hepatocytes constitutes an ideal condition to evaluate the role of prostaglandins (PGs) in liver pathogenesis. The effect of COX-2-dependent PGs in genetic hepatocarcinogenesis has been investigated in triple c-myc/transforming growth factor α (TGF-α) transgenic mice that express human COX-2 in hepatocytes on a B6CBAxCD1xB6DBA2 background. Analysis of the contribution of COX-2-dependent PGs to the development of hepatocarcinogenesis, evaluated in this model, suggested a minor role of COX-2-dependent prostaglandins to liver oncogenesis as indicated by liver histopathology, morphometric analysis and specific markers of tumor progression. This allows concluding that COX-2 is insufficient for modifying the hepatocarcinogenesis course mediated by c-myc/TGF-α.
Collapse
Affiliation(s)
- Cristina Llorente-Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Francés DEA, Ingaramo PI, Mayoral R, Través P, Casado M, Valverde ÁM, Martín-Sanz P, Carnovale CE. Cyclooxygenase-2 over-expression inhibits liver apoptosis induced by hyperglycemia. J Cell Biochem 2013; 114:669-80. [PMID: 23059845 DOI: 10.1002/jcb.24409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022]
Abstract
Increased expression of COX-2 has been linked to inflammation and carcinogenesis. Constitutive expression of COX-2 protects hepatocytes from several pro-apoptotic stimuli. Increased hepatic apoptosis has been observed in experimental models of diabetes. Our present aim was to analyze the role of COX-2 as a regulator of apoptosis in diabetic mouse liver. Mice of C57BL/6 strain wild type (Wt) and transgenic in COX-2 (hCOX-2 Tg) were separated into Control (vehicle) and SID (streptozotocin induced diabetes, 200 mg/kg body weight, i.p.). Seven days post-injection, Wt diabetic animals showed a decrease in PI3K activity and P-Akt levels, an increase of P-JNK, P-p38, pro-apoptotic Bad and Bax, release of cytochrome c and activities of caspases-3 and -9, leading to an increased apoptotic index. This situation was improved in diabetic COX-2 Tg. In addition, SID COX-2 Tg showed increased expression of anti-apoptotic Mcl-1 and XIAP. Pro-apoptotic state in the liver of diabetic animals was improved by over-expression of COX-2. We also analyzed the roles of high glucose-induced apoptosis and hCOX-2 in vitro. Non-transfected and hCOX-2-transfected cells were cultured at 5 and 25 mM of glucose by 72 h. At 25 mM there was an increase in apoptosis in non-transfected cells versus those exposed to 5 mM. This increase was partly prevented in transfected cells at 25 mM. Moreover, the protective effect observed in hCOX-2-transfected cells was suppressed by addition of DFU (COX-2 selective inhibitor), and mimicked by addition of PGE(2) in non-transfected cells. Taken together, these results demonstrate that hyperglycemia-induced hepatic apoptosis is protected by hCOX-2 expression.
Collapse
Affiliation(s)
- Daniel E A Francés
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cosin-Roger J, Vernia S, Alvarez MS, Cucarella C, Boscá L, Martin-Sanz P, Fernández-Alvarez AJ, Casado M. Identification of a novel Pfkfb1 mRNA variant in rat fetal liver. Biochem Biophys Res Commun 2013; 431:36-40. [PMID: 23291237 DOI: 10.1016/j.bbrc.2012.12.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/13/2012] [Indexed: 02/07/2023]
Abstract
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) catalyzes the synthesis and degradation of fructose-2,6-bisphosphate, a key metabolite in the glucose homeostasis. Four genes, Pfkfb1-4, have been characterized in mammals that code for several isoforms generated by alternative splicing through the control of several promoters and 5' non-coding exons. Here, we characterize in fetal rat liver new mRNA variants which are transcribed from a new Pfkfb1 gene promoter. The long variant codes to a new isoform (FL-PFK-2) that would be of relevant function to modulate the transition of fetal to adult liver metabolism.
Collapse
Affiliation(s)
- Jesús Cosin-Roger
- Instituto de Biomedicina de Valencia, IBV-CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fernández-Alvarez A, Llorente-Izquierdo C, Mayoral R, Agra N, Boscá L, Casado M, Martín-Sanz P. Evaluation of epigenetic modulation of cyclooxygenase-2 as a prognostic marker for hepatocellular carcinoma. Oncogenesis 2012; 1:e23. [PMID: 23552739 PMCID: PMC3412654 DOI: 10.1038/oncsis.2012.23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cyclooxygenases (COX-1 and 2) catalyze the first step in prostanoid biosynthesis. They are implicated in homeostatic processes with an important role in inflammation and carcinogenesis. In the liver, COX-2 expression is restricted to proliferation or dedifferentiation situations. The COX-2 promoter contains numerous CpG islands that, when hypermethylated, result in transcriptionally silencing thus regulating the growth of carcinoma cells. In this work, we investigated whether a correlation exists between COX-2 expression and methylation signatures at the 5'region of the gene in hepatoma cell lines and human hepatocellular carcinoma (HCC). We also examined the acetylation status of the COX-2 promoter and the effects of histone deacetylase (HDAC) inhibitors on COX-2 expression. Our results suggest a significant association between reduced COX-2 expression and promoter hypermethylation of COX-2 and histone deacetylation in some hepatoma cell lines and in HCC. Treatment with demethylating agents or HDAC inhibitors restored the expression of COX-2. Moreover, in an HCC cohort, a statistically significant inverse association was observed between COX-2 mRNA levels and promoter methylation. In agreement with these data, a reduction of overall survival of the patients was observed after decreased COX-2 expression by promoter hypermethylation and histone H3 hypoacetylation.
Collapse
Affiliation(s)
| | | | - R Mayoral
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - N Agra
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - L Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - M Casado
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Instituto de Biomedicina de Valencia, IBV-CSIC, Jaime Roig 11, 46010 Valencia, SpainE-mail:
| | - P Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM Arturo Duperier, 4 28029 Madrid, Spain. E-mail:
| |
Collapse
|
22
|
Xu Q, Nakayama M, Suzuki Y, Sakai K, Nakamura T, Sakai Y, Matsumoto K. Suppression of acute hepatic injury by a synthetic prostacyclin agonist through hepatocyte growth factor expression. Am J Physiol Gastrointest Liver Physiol 2012; 302:G420-9. [PMID: 22159278 DOI: 10.1152/ajpgi.00216.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have demonstrated that mice disrupted with the cyclooxygenase-2 gene showed much more severe liver damage compared with wild-type mice after liver injury, and prostaglandins (PGs) such as PGE(1/2) and PGI(2) have decreased hepatic injury, but the mechanisms by which prostaglandins exhibit protective action on the liver have yet to be addressed. In the present study, we investigated the mechanism of the protective action of PGI(2) using the synthetic IP receptor agonist ONO-1301. In primary cultures of hepatocytes and nonparenchymal liver cells, ONO-1301 did not show protective action directly on hepatocytes, whereas it stimulated expression of hepatocyte growth factor (HGF) in nonparenchymal liver cells. In mice, peroral administration of ONO-1301 increased hepatic gene expression and protein levels of HGF. Injections of CCl4 induced acute liver injury in mice, but the onset of acute liver injury was strongly suppressed by administration of ONO-1301. The increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) by CCl4 were suppressed by 10 mg/kg ONO-1301 to 39.4 and 33.6%, respectively. When neutralizing antibody against HGF was administered with ONO-1301 and CCl4, the decreases by ONO-1301 in serum ALT and AST, apoptotic liver cells, and expansion of necrotic areas in liver tissue were strongly reversed by neutralization of endogenous HGF. These results indicate that ONO-1301 increases expression of HGF and that hepatoprotective action of ONO-1301 in CCl4-induced liver injury may be attributable to its activity to induce expression of HGF, at least in part. The potential for involvement of HGF-Met-mediated signaling in the hepatotrophic action of endogenous prostaglandins generated by injury-dependent cyclooxygenase-2 induction is considerable.
Collapse
Affiliation(s)
- Qing Xu
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa Univ., Kakuma, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Agra Andrieu N, Motiño O, Mayoral R, Llorente Izquierdo C, Fernández-Alvarez A, Boscá L, Casado M, Martín-Sanz P. Cyclooxygenase-2 is a target of microRNA-16 in human hepatoma cells. PLoS One 2012; 7:e50935. [PMID: 23226427 PMCID: PMC3511388 DOI: 10.1371/journal.pone.0050935] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/26/2012] [Indexed: 02/07/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC); however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a) by binding directly to the microRNA response element (MRE) in the COX-2 3'-UTR promoting translational suppression of COX-2 mRNA; b) by decreasing the levels of the RNA-binding protein Human Antigen R (HuR). Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Base Sequence
- Biopsy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Down-Regulation
- ELAV Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Protein Biosynthesis/genetics
- Protein Stability
- RNA Stability/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Noelia Agra Andrieu
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Omar Motiño
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Rafael Mayoral
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristina Llorente Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Ana Fernández-Alvarez
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
24
|
Immunodetection of cyclooxygenase-2 (COX-2) is restricted to tissue macrophages in normal rat liver and to recruited mononuclear phagocytes in liver injury and cholangiocarcinoma. Histochem Cell Biol 2011; 137:217-33. [PMID: 22131058 PMCID: PMC3262142 DOI: 10.1007/s00418-011-0889-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2011] [Indexed: 12/11/2022]
Abstract
It has been suggested that cyclooxygenase-2 (COX-2)-mediated prostaglandin synthesis is associated with liver inflammation and carcinogenesis. The aim of this study is to identify the cellular source of COX-2 expression in different stages, from acute liver injury through liver fibrosis to cholangiocarcinoma (CC). We induced in rats acute and "chronic" liver injury (thioacetamide (TAA) or carbon tetrachloride (CCl(4))) and CC development (TAA) and assessed COX-2 gene expression in normal and damaged liver tissue by RT-PCR of total RNA. The cellular localization of COX-2 protein in liver tissue was analyzed by immunohistochemistry as well as in isolated rat liver cells by Western blotting. The findings were compared with those obtained in human cirrhotic liver tissue. The specificity of the antibodies was tested by 2-DE Western blot and mass spectrometric identification of the positive protein spots. RT-PCR analysis of total RNA revealed an increase of hepatic COX-2 gene expression in acutely as well as "chronically" damaged liver. COX-2-protein was detected in those ED1(+)/ED2(+) cells located in the non-damaged tissue (resident tissue macrophages). In addition COX-2 positivity in inflammatory mononuclear phagocytes (ED1(+)/ED2(-)), which were also present within the tumoral tissue was detected. COX-2 protein was clearly detectable in isolated Kupffer cells as well as (at lower level) in isolated "inflammatory" macrophages. Similar results were obtained in human cirrhotic liver. COX-2 protein is constitutively detectable in liver tissue macrophages. Inflammatory mononuclear phagocytes contribute to the increase of COX-2 gene expression in acute and chronic liver damage induced by different toxins and in the CC microenvironment.
Collapse
|
25
|
Sancho P, Martín-Sanz P, Fabregat I. Reciprocal regulation of NADPH oxidases and the cyclooxygenase-2 pathway. Free Radic Biol Med 2011; 51:1789-98. [PMID: 21907277 DOI: 10.1016/j.freeradbiomed.2011.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 01/05/2023]
Abstract
The objective of this work was to analyze the possible association between cyclooxygenase-2 (COX-2) and NADPH oxidases (NOX) in liver cells, in response to various proinflammatory and toxic insults. First, we observed that treatment of Chang liver (CHL) cells with various COX-2 inducers increased reactive oxygen species (ROS) production concomitant with GSH depletion, phorbol 12-myristate 13-acetate (PMA) being the most effective treatment. Moreover, early changes in the oxidative status induced by PMA were inhibited by glutathione ethyl ester, which also impeded COX-2 induction. In fact, CHL cells expressed NOX1 and NOX4, although only NOX4 expression was up-regulated in the presence of PMA. Knock-down experiments suggested that PMA initiated a pathway in which NOX1 activation controlled COX-2 expression and activity, which, in turn, induced NOX4 expression by activation of the prostaglandin receptor EP4. In addition, CHL cells overexpressing COX-2 showed higher NOX4 expression and ROS content, which were decreased in the presence of the COX-2 inhibitor DFU. Interestingly, we found that addition of prostaglandin E(2) (PGE(2)) also induced NOX4 expression and ROS production, which might promote cell adhesion. Finally, we determined that NOX4 induction by PGE(2) was dependent on ERK1/2 signaling. Taken together, these results indicate that NOX proteins and COX-2 are reciprocally regulated in liver cells.
Collapse
Affiliation(s)
- Patricia Sancho
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | | | | |
Collapse
|
26
|
Llorente Izquierdo C, Mayoral R, Flores JM, García-Palencia P, Cucarella C, Boscá L, Casado M, Martín-Sanz P. Transgenic mice expressing cyclooxygenase-2 in hepatocytes reveal a minor contribution of this enzyme to chemical hepatocarcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1361-73. [PMID: 21356386 PMCID: PMC3069875 DOI: 10.1016/j.ajpath.2010.11.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/21/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase-2 (COX-2) has been associated with cell growth regulation, tissue remodeling, and carcinogenesis. Ectopic expression of COX-2 in hepatocytes constitutes a nonphysiological condition ideal for evaluating the role of prostaglandins (PGs) in liver pathogenesis. The effect of COX-2-dependent PGs in chronic liver disease, hepatitis, fibrosis, and chemical hepatocarcinogenesis, has been investigated in transgenic (Tg) mice that express human COX-2 in hepatocytes and in Tg hepatic human cell lines. We have used three different complementary approaches: i) diethylnitrosamine (DEN)-induced chemical hepatocarcinogenesis in COX-2 Tg mice, ii) DEN/phenobarbital treatment of human COX-2 Tg hepatocyte-like cells, and iii) COX-2 Tg hepatocyte-like cells implants in nude mice. The data suggest that PGs produced by COX-2 in hepatocytes promoted mild hepatitis in 60-week-old mice, as assessed by histological examination, but failed to contribute to the development of liver fibrogenesis after methionine- and choline-deficient diet treatment. Moreover, liver injury, collagen content, and hepatic stellate cell activation were equally severe in wild-type and COX-2 Tg mice. The contribution of COX-2-dependent PGs to the development of DEN-induced hepatocarcinogenesis was evaluated in Tg mice, Tg hepatocyte-like cells, and nude mice and the analysis revealed that COX-2 expression favors the development of preneoplastic foci without affecting malignant transformation. Endogenous COX-2 expression in wild-type mice is a late event in the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Rafael Mayoral
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Madrid, Spain
- Biomedical Research Centre Network of Hepatic and Digestive Diseases (CIBERehd), Barcelona, Spain
| | - Juana María Flores
- Department of Medicine and Animal Surgery, Veterinary Faculty, Complutense University, Madrid, Spain
| | - Pilar García-Palencia
- Department of Medicine and Animal Surgery, Veterinary Faculty, Complutense University, Madrid, Spain
| | - Carme Cucarella
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
| | - Lisardo Boscá
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Madrid, Spain
- Biomedical Research Centre Network of Hepatic and Digestive Diseases (CIBERehd), Barcelona, Spain
| | - Marta Casado
- Biomedical Research Centre Network of Hepatic and Digestive Diseases (CIBERehd), Barcelona, Spain
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- Address reprint requests to Paloma Martín-Sanz, Ph.D., or Marta Casado, Ph.D., Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Institute of Biomedical Research Alberto Sols (CSIC-UAM), Madrid, Spain
- Biomedical Research Centre Network of Hepatic and Digestive Diseases (CIBERehd), Barcelona, Spain
- Address reprint requests to Paloma Martín-Sanz, Ph.D., or Marta Casado, Ph.D., Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| |
Collapse
|
27
|
Martín-Sanz P, Mayoral R, Casado M, Boscá L. COX-2 in liver, from regeneration to hepatocarcinogenesis: What we have learned from animal models? World J Gastroenterol 2010; 16:1430-5. [PMID: 20333781 PMCID: PMC2846246 DOI: 10.3748/wjg.v16.i12.1430] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of animals lacking genes or expressing genes under the control of cell-specific promoters has significantly increased our knowledge of the genetic and molecular basis of physiopathology, allowing testing of functional hypotheses and validation of biochemical and pharmacologic approaches in order to understand cell function. However, with unexpected frequency, gene knockout animals and, more commonly, animal models of transgenesis give experimental support to even opposite conclusions on gene function. Here we summarize what we learned on the role of cyclooxygenase 2 (COX-2) in liver and revise the results obtained in 3 independent models of mice expressing a COX-2 transgene specifically in the hepatocyte. Upon challenge with pro-inflammatory stimuli, the animals behave very differently, some transgenic models having a protective effect but others enhancing the injury. In addition, one transgene exerts differential effects on normal liver physiology depending on the transgenic animal model used.
Collapse
|
28
|
Fecker LF, Stockfleth E, Braun FK, Rodust PM, Schwarz C, Köhler A, Leverkus M, Eberle J. Enhanced death ligand-induced apoptosis in cutaneous SCC cells by treatment with diclofenac/hyaluronic acid correlates with downregulation of c-FLIP. J Invest Dermatol 2010; 130:2098-109. [PMID: 20237495 DOI: 10.1038/jid.2010.40] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Actinic keratosis (AK) occurs on sun-exposed skin and may progress to invasive squamous cell carcinoma (SCC). As for its topical treatment, diclofenac/hyaluronic acid (HA) has been recently approved. The NSAID diclofenac is an inhibitor of COX-2; however, its mode of action in cutaneous epithelial cancer cells is largely unknown. Here, the effects of diclofenac/HA were investigated in relation to death ligand-mediated apoptosis (TNF-alpha, TRAIL, and CD95 activation). Whereas diclofenac/HA only moderately induced apoptosis by itself, it resulted in pronounced enhancement of death ligand-mediated apoptosis in sensitive SCC cell lines (3/4). Apoptosis was associated with activation of initiator caspases of the extrinsic pathway (caspase-8/caspase-10). Furthermore, death ligand and diclofenac/HA-mediated apoptosis were blocked by the same caspase inhibitors, indicating related pathways. The proapoptotic effects of diclofenac/HA appeared independent of the p53 pathway. Also, upregulation of death receptors appeared less important; however, strong downregulation of c-FLIP isoforms was seen after diclofenac/HA treatment. The crucial role of c-FLIP was proven through overexpression and knockdown experiments. Thus, induction of apoptosis appears to be highly characteristic of the mode of action of diclofenac/HA, and the therapeutic effect may be related to sensitization of neoplastic keratinocytes for death ligand-induced apoptosis.
Collapse
Affiliation(s)
- Lothar F Fecker
- Department of Dermatology and Allergy, HTCC Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010; 2010:215158. [PMID: 20339581 PMCID: PMC2841246 DOI: 10.1155/2010/215158] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/18/2009] [Indexed: 12/13/2022] Open
Abstract
It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously expressed COX-1, which is involved in homeostasis; the inducible COX-2 isoform, which is upregulated during both inflammation and cancer; and COX-3, expressed in brain and spinal cord, whose functions remain to be elucidated. COX-2 was described to modulate cell proliferation and apoptosis mainly in solid tumors, that is, colorectal, breast, and prostate cancers, and, more recently, in hematological malignancies. These findings prompt us to analyze here the effects of a combination of COX-2 inhibitors together with different clinically used therapeutic strategies in order to further improve the efficiency of future anticancer treatments. COX-2 modulation is a promising field investigated by many research groups.
Collapse
|
30
|
Rodust PM, Stockfleth E, Ulrich C, Leverkus M, Eberle J. UV-induced squamous cell carcinoma--a role for antiapoptotic signalling pathways. Br J Dermatol 2010; 161 Suppl 3:107-15. [PMID: 19775366 DOI: 10.1111/j.1365-2133.2009.09458.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The incidence of nonmelanoma skin cancer including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) has dramatically increased in the last decades, and chronic sun exposure was identified as a main etiologic agent. UV radiation may produce DNA damage either directly or through reactive oxygen species (ROS). As mutations caused by UV may lead to skin cancer due to oncogene activation and tumor suppressor gene inactivation, efficient safeguard mechanisms have been developed during evolution. These enclose induction of apoptosis and formation sunburn cells aiming at the removal of premalignant cells. The keratinocyte apoptotic machinery in response to UV consists of both intrinsic/mitochondrial and extrinsic/death receptor-mediated cell-death pathways, which are particularly regulated by mitogen-activated protein kinases (MAPKs, JNK and p38) and the tumor-suppressor protein p53. For development of skin cancer, it appears that critical steps in apoptosis control are dysregulated leading to resistance both to death ligand-mediated and intrinsic proapoptotic pathways. These particularly include inactivation of p53, as well as activation of EGFR, COX-2 and MAPKs, which result in specific regulation of Bcl-2 proteins, death ligands and death receptors. The final unravelling of apoptosis regulation in epithelial skin cancer may allow the development of new targeted therapeutic strategies.
Collapse
Affiliation(s)
- P M Rodust
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, HTCC Skin Cancer Center Charité, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
31
|
Hikita H, Takehara T, Shimizu S, Kodama T, Li W, Miyagi T, Hosui A, Ishida H, Ohkawa K, Kanto T, Hiramatsu N, Yin XM, Hennighausen L, Tatsumi T, Hayashi N. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology 2009; 50:1217-26. [PMID: 19676108 PMCID: PMC3560852 DOI: 10.1002/hep.23126] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Anti-apoptotic members of the Bcl-2 family, including Bcl-2, Bcl-xL, Mcl-1, Bcl-w and Bfl-1, inhibit the mitochondrial pathway of apoptosis. Bcl-xL and Mcl-1 are constitutively expressed in the liver. Although previous research established Bcl-xL as a critical apoptosis antagonist in differentiated hepatocytes, the significance of Mcl-1 in the liver, especially in conjunction with Bcl-xL, has not been clear. To examine this question, we generated hepatocyte-specific Mcl-1-deficient mice by crossing mcl-1(flox/flox) mice and AlbCre mice and further crossed them with bcl-x(flox/flox) mice, giving Mcl-1/Bcl-xL-deficient mice. The mcl-1(flox/flox) AlbCre mice showed spontaneous apoptosis of hepatocytes after birth, as evidenced by elevated levels of serum alanine aminotransferase (ALT) and caspase-3/7 activity and an increased number of terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick-end labeling (TUNEL)-positive cells in the liver; these phenotypes were very close to those previously found in hepatocyte-specific Bcl-xL-deficient mice. Although mcl-1(flox/+) AlbCre mice did not display apoptosis, their susceptibility to Fas-mediated liver injury significantly increased. Further crossing of Mcl-1 mice with Bcl-xL mice showed that bcl-x(flox/+) mcl-1(flox/+) AlbCre mice also showed spontaneous hepatocyte apoptosis similar to Bcl-xL-deficient or Mcl-1-deficient mice. In contrast, bcl-x(flox/flox) mcl-1(flox/+) AlbCre, bcl-x(flox/+) mcl-1(flox/flox) AlbCre, and bcl-x(flox/flox) mcl-1(flox/flox) AlbCre mice displayed a decreased number of hepatocytes and a reduced volume of the liver on day 18.5 of embryogenesis and rapidly died within 1 day after birth, developing hepatic failure evidenced by increased levels of blood ammonia and bilirubin. CONCLUSION Mcl-1 is critical for blocking apoptosis in adult liver and, in the absence of Bcl-xL, is essential for normal liver development. Mcl-1 and Bcl-xL are two major anti-apoptotic Bcl-2 family proteins expressed in the liver and cooperatively control hepatic integrity during liver development and in adult liver homeostasis in a gene dose-dependent manner.
Collapse
Affiliation(s)
- Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Shimizu
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wei Li
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuya Miyagi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Hosui
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Ishida
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuyoshi Ohkawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Kanto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Hiramatsu
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiao-Ming Yin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norio Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
32
|
Li G, Han C, Xu L, Lim K, Isse K, Wu T. Cyclooxygenase-2 prevents fas-induced liver injury through up-regulation of epidermal growth factor receptor. Hepatology 2009; 50:834-43. [PMID: 19585617 PMCID: PMC2758493 DOI: 10.1002/hep.23052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
UNLABELLED Cyclooxygenase-2 (COX-2)-derived prostaglandins participate in a number of pathophysiological responses such as inflammation, carcinogenesis, and modulation of cell growth and survival. This study used complementary approaches of COX-2 transgenic (Tg) and knockout (KO) mouse models to evaluate the mechanism of COX-2 in Fas-induced hepatocyte apoptosis and liver failure in vivo. We generated Tg mice with targeted expression of COX-2 in the liver by using the albumin promoter-enhancer-driven vector. The COX-2 Tg, COX-2 KO, and wild-type mice were treated with the anti-Fas antibody Jo2 (0.5 microg/g of body weight) for 4 to 6 hours, and the extent of liver injury was assessed by histopathology, serum aminotransferases, TUNEL staining, and caspase activation. The COX-2 Tg mice showed resistance to Fas-induced liver injury in comparison with the wild-type mice; this was reflected by the lower alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, less liver damage, and less hepatocyte apoptosis (P < 0.01). In contrast, the COX-2 KO mice showed significantly higher serum ALT and AST levels, more prominent hepatocyte apoptosis, and higher levels of caspase-8, caspase-9, and caspase-3 activity than the wild-type mice (P < 0.01). The COX-2 Tg livers expressed higher levels of epidermal growth factor receptor (EGFR) than the wild-type controls; the COX-2 KO livers expressed the lowest levels of EGFR. Pretreatment with a COX-2 inhibitor (NS-398) or an EGFR inhibitor (AG1478) exacerbated Jo2-mediated liver injury and hepatocyte apoptosis. CONCLUSION These findings demonstrate that COX-2 prevents Fas-induced hepatocyte apoptosis and liver failure at least in part through up-regulation of EGFR.
Collapse
Affiliation(s)
- Guiying Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130021, China
| | - Chang Han
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Lihong Xu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kyu Lim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213,Department of Biochemistry, College of Medicine, Chungnam National University, Korea
| | - Kumiko Isse
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Tong Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
33
|
Abstract
COX-2 is an inducible enzyme which is over expressed in gastric cancer tissues and plays an important role in the incidence, development and prognosis of gastric cancer by regulating the formation of vessel, inducing mutations, immune suppression, suppression of apoptosis, changing the activity of adhesion molecule to promote tumor metastasis, and so on. COX selective inhibitors can be used as one of the basic anti-tumor drugs because of their tumor suppression function in the future.
Collapse
|
34
|
Inserte J, Molla B, Aguilar R, Través PG, Barba I, Martín-Sanz P, Boscá L, Casado M, Garcia-Dorado D. Constitutive COX-2 activity in cardiomyocytes confers permanent cardioprotection Constitutive COX-2 expression and cardioprotection. J Mol Cell Cardiol 2009; 46:160-8. [PMID: 19084534 DOI: 10.1016/j.yjmcc.2008.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/06/2008] [Accepted: 11/06/2008] [Indexed: 02/07/2023]
Abstract
Different lines of evidence suggest that inhibition of COX-2 activity exacerbates reperfusion injury, but direct data showing beneficial effects of increased COX-2 activity are lacking. The aim of this study was to determine the effect of constitutive expression of COX-2 on cardiomyocyte tolerance to ischemia-reperfusion injury. We generated a transgenic mouse (B6D2-Tg (MHC-PTGS2)17Upme) that constitutively expresses functional human COX-2 in cardiomyocytes under the control of alpha-myosin heavy chain promoter. COX-2 expression was confirmed by immunoblotting and by increased levels of PGE(2) and PGI(2) in myocardium. Histological and echocardiographic analysis revealed no differences in the phenotype of transgenic mice (TgCOX-2) with respect to wild type (Wt) mice. Tolerance to ischemia-reperfusion injury was analysed in a Langendorff system. Reperfused TgCOX-2 hearts after 40 min of ischemia improved functional recovery (32.9+/-6.2% vs. 9.45+/-4.4%, P=0.004) and reduced cell death assessed by LDH release (43% of reduction, P<0.001) and triphenyltetrazolium staining (41% of reduction, P=0.002). Cardioprotection was not further increased by ischemic preconditioning. Pretreatment of mice with the COX-2 inhibitor DFU attenuated cardioprotection with a correlation between myocardial PGE(2) levels and the extent of cell death. NMR spectroscopy showed a marked reduction in arachidonic acid (AA) content in TgCOX-2 hearts. Both, DFU pretreatment and perfusion of TgCOX-2 hearts with AA increased myocardial AA to values similar to those measured in Wt hearts and reversed cardioprotection. We conclude that constitutive expression of COX-2 in cardiomyocytes confers a permanent cardioprotective state against reperfusion injury. Increased PGE(2) synthesis and reduced AA content could explain this effect.
Collapse
Affiliation(s)
- Javier Inserte
- Servicio de Cardiologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mayoral R, Mollá B, Flores JM, Boscá L, Casado M, Martín-Sanz P. Constitutive expression of cyclo-oxygenase 2 transgene in hepatocytes protects against liver injury. Biochem J 2008; 416:337-46. [PMID: 18671671 DOI: 10.1042/bj20081224] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of COX (cyclo-oxygenase)-2-dependent PGs (prostaglandins) in acute liver injury has been investigated in transgenic mice that express human COX-2 in hepatocytes. We have used three well-established models of liver injury: in LPS (lipopolysaccharide) injury in D-GalN (D-galactosamine)-preconditioned mice; in the hepatitis induced by ConA (concanavalin A); and in the proliferation of hepatocytes in regenerating liver after PH (partial hepatectomy). The results from the present study demonstrate that PG synthesis in hepatocytes decreases the susceptibility to LPS/D-GalN or ConA-induced liver injury as deduced by significantly lower levels of the pro-inflammatory profile and plasmatic aminotransferases in transgenic mice, an effect suppressed by COX-2-selective inhibitors. These Tg (transgenic) animals express higher levels of anti-apoptotic proteins and exhibit activation of proteins implicated in cell survival, such as Akt and AMP kinase after injury. The resistance to LPS/D-GalN-induced liver apoptosis involves an impairment of procaspase 3 and 8 activation. Protection against ConA-induced injury implies a significant reduction in necrosis. Moreover, hepatocyte commitment to start replication is anticipated in Tg mice after PH, due to the expression of PCNA (proliferating cell nuclear antigen), cyclin D1 and E. These results show, in a genetic model, that tissue-specific COX-2-dependent PGs exert an efficient protection against acute liver injury by an antiapoptotic/antinecrotic effect and by accelerated early hepatocyte proliferation.
Collapse
Affiliation(s)
- Rafael Mayoral
- Instituto de Investigaciones Biomédicas Alberto Sols Consejo Superior de Investigaciones Científicas, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Al-Salihi MA, Terrece Pearman A, Doan T, Reichert EC, Rosenberg DW, Prescott SM, Stafforini DM, Topham MK. Transgenic expression of cyclooxygenase-2 in mouse intestine epithelium is insufficient to initiate tumorigenesis but promotes tumor progression. Cancer Lett 2008; 273:225-32. [PMID: 18790560 DOI: 10.1016/j.canlet.2008.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 06/24/2008] [Accepted: 08/04/2008] [Indexed: 12/15/2022]
Abstract
We generated mice expressing a COX-2 transgene in colon epithelium and found that they did not develop spontaneous colon tumors. But when treated with azoxymethane, a colon carcinogen, COX-2 mice had a higher tumor load compared to wild-type mice. There was no change in the number of pre-neoplastic lesions, indicating that COX-2 does not affect tumor initiation. Tumors in the COX-2 transgenic mice had higher levels of phosphorylated epidermal growth factor receptor and Akt compared to wild-type mice. Collectively, our data indicate that COX-2 promotes colon tumor progression, but not initiation, and it does so, in part, by activating EGFR and Akt signaling pathways.
Collapse
Affiliation(s)
- Mazin A Al-Salihi
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Rm 3365, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev 2008; 60:311-57. [PMID: 18922966 DOI: 10.1124/pr.108.00001] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Steatosis of the liver may arise from a variety of conditions, but the molecular basis for lipid droplet formation is poorly understood. Although a certain amount of lipid storage may even be hepatoprotective, prolonged lipid storage can result in an activation of inflammatory reactions and loss of metabolic competency. Apart from drug-induced steatosis, certain metabolic disorders associated with obesity, insulin resistance, and hyperlipidemia give also rise to nonalcoholic fatty liver diseases (NAFLD). It is noteworthy that advanced stages of nonalcoholic hepatic steatosis and steatohepatitis (NASH) result ultimately in fibrosis and cirrhosis. In this regard, the lipid droplets (LDs) have been discovered to be metabolically highly active structures that play major roles in lipid transport, sorting, and signaling cascades. In particular, LDs maintain a dynamic communication with the endoplasmic reticulum (ER) and the plasma membrane via sphingolipid-enriched domains of the plasma membrane-the lipid rafts. These microdomains frequently harbor receptor tyrosine kinases and other signaling molecules and connect extracellular events with intracellular signaling cascades. Here, we review recent knowledge on the molecular mechanisms of drug and metabolically induced hepatic steatosis and its progression to steatohepatitis (NASH). The contribution of cytokines and other signaling molecules, as well as activity of nuclear receptors, lipids, transcription factors, and endocrine mediators toward cellular dysfunction and progression of steatotic liver disease to NASH is specifically addressed, as is the cross-talk of different cell types in the pathogenesis of NAFLD. Furthermore, we provide an overview of recent therapeutic approaches in NASH therapy and discuss new as well as putative targets for pharmacological interventions.
Collapse
Affiliation(s)
- Nora Anderson
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | | |
Collapse
|
38
|
Affiliation(s)
- Yosuke Osawa
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Japan
| | | |
Collapse
|