1
|
Mohamed MI, Embretsen M, Nguyen JH. Hepatic draining lymph nodes in human liver transplant: Implications in alloimmunity and tolerance. Transpl Immunol 2024; 87:102140. [PMID: 39442585 DOI: 10.1016/j.trim.2024.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Hepatic draining lymph nodes (HDLN) are implicated in allograft alloimmunity and tolerance. In contrast to experimental work, the role of HDLNs in human liver transplant (LT) is unknown due to lack of relevant clinical tissue. METHODS During LT, the porta hepatis was dissected near the liver hilum during native hepatectomy. The HDLN in this region was taken prior to reperfusion (prereperfusion). Following complete reperfusion with recipient portal venous blood, hepatic arterial inflow into the allograft was established. As the recipient's common hepatic artery was fully mobilized, its HDLNs were removed and submitted to pathology (postreperfusion). RESULTS Of 37 LTs performed between January 1, 2021, and July 9, 2022, 20 had both pre- and postreperfusion HDLNs archived (Group A); 11 had only postreperfusion HDLNs archived (Group B), and 6 had no archived HDLNs (Group C). Removing and archiving HDLNs did not increase operative times or transfusion requirements. For groups A, B, and C, mean (SD) warm ischemic times were 25.2 (2.0), 25.3 (3.2), and 28.3 (6.2) minutes, respectively (P > .05); operating times were 3.9 (0.7), 6.9 (7.8), and 7.9 (7.1) hours, respectively (A vs C, P = .017; C vs B, P > .05); and units of transfused packed red blood cells were 8.0 (3.8), 11.1 (10.3), and 12.2 (7.6), respectively (P > .05). CONCLUSION We describe an approach for clinical archiving of HDLNs obtained within the operative field during orthotopic LT in humans. Availability of relevant HDLNs is essential for investigations of primary immune responses potentially important in allograft alloimmunity and tolerance.
Collapse
Affiliation(s)
- Mohamed I Mohamed
- Department of Transplantation, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States of America.
| | - Mattias Embretsen
- Virginia Commonwealth University, Richmond, VA, United States of America
| | - Justin H Nguyen
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, United States of America.
| |
Collapse
|
2
|
Zhao J, Que W, Du X, Fujino M, Ichimaru N, Ueta H, Tokuda N, Guo WZ, Zabrocki P, de Haard H, Nonomura N, Li XK. Monotherapy With Anti-CD70 Antibody Causes Long-Term Mouse Cardiac Allograft Acceptance With Induction of Tolerogenic Dendritic Cells. Front Immunol 2021; 11:555996. [PMID: 33737923 PMCID: PMC7961176 DOI: 10.3389/fimmu.2020.555996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023] Open
Abstract
Allograft rejection has been an obstacle for the long-term survival of patients. CD70, a tumor necrosis factor (TNF) family member critically expressed on antigen-presenting cells and strongly but transiently up-regulated during lymphocyte activation, represents an important co-stimulatory molecule that induces effective T cell responses. We used a mouse heterotopic cardiac transplantation model to evaluate the effects of monotherapy with the antibody targeting mouse CD70 (FR70) on transplantation tolerance and its immunoregulatory activity. FR70-treated C3H recipient mice permanently accepted B6 fully mismatched cardiac allografts. Consistent with the graft survival, the infiltration of CD8+ T cells in the graft was reduced, dendritic cells were differentiated into a tolerogenic status, and the number of regulatory T cells was elevated both in the graft and the recipient’s spleen. In addition, naïve C3H given an adoptive transfer of spleen cells from the primary recipients with FR70 treatment accepted a heart graft from a matching B6 donor but not third-party BALB/c mice. Our findings show that treatment with FR70 induced regulatory cells and inhibited cytotoxic T cell proliferation, which led to long-term acceptance of mouse cardiac allografts. These findings highlight the potential role of anti-CD70 antibodies as a clinically effective treatment for allograft rejection.
Collapse
Affiliation(s)
- Jing Zhao
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Specific Organ Regulation (Urology), Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xiaoxiao Du
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naotsugu Ichimaru
- Department of Specific Organ Regulation (Urology), Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Nobuko Tokuda
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Norio Nonomura
- Department of Specific Organ Regulation (Urology), Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Ueta H, Xu XD, Yu B, Kitazawa Y, Yu E, Hara Y, Morita-Nakagawa M, Zhou S, Sawanobori Y, Ueha S, Rokutan K, Tanaka T, Tokuda N, Matsushima K, Matsuno K. Suppression of liver transplant rejection by anti-donor MHC antibodies via depletion of donor immunogenic dendritic cells. Int Immunol 2020; 33:261-272. [PMID: 33258927 PMCID: PMC8060989 DOI: 10.1093/intimm/dxaa076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/29/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We previously found two distinct passenger dendritic cell (DC) subsets in the rat liver that played a central role in the liver transplant rejection. In addition, a tolerance-inducing protocol, donor-specific transfusion (DST), triggered systemic polytopical production of depleting alloantibodies to donor class I MHC (MHCI) antigen (DST-antibodies). METHODS We examined the role of DST-antibodies in the trafficking of graft DC subsets and the alloresponses in a rat model. We also examined an anti-donor class II MHC (MHCII) antibody that recognizes donor DCs more selectively. RESULTS Preoperative transfer of DST-antibodies or DST pretreatment eliminated all passenger leukocytes, including both DC subsets and depleted the sessile DCs in the graft to ~20% of control. The CD172a+CD11b/c+ immunogenic subset was almost abolished. The intrahost direct or semi-direct allorecognition pathway was successfully blocked, leading to a significant suppression of the CD8+ T-cell response in the recipient lymphoid organs and the graft with delayed graft rejection. Anti-donor MHCII antibody had similar effects without temporary graft damage. Although DST pretreatment had a priming effect on the proliferative response of recipient regulatory T cells, DST-primed sera and the anti-donor MHCII antibody did not. CONCLUSION DST-antibodies and anti-donor MHCII antibodies could suppress the CD8+ T-cell-mediated liver transplant rejection by depleting donor immunogenic DCs, blocking the direct or semi-direct pathways of allorecognition. Donor MHCII-specific antibodies may be applicable as a selective suppressant of anti-donor immunity for clinical liver transplantation without the cellular damage of donor MHCII- graft cells and recipient cells.
Collapse
Affiliation(s)
- Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Xue-Dong Xu
- Department of General Surgery, Dalian Medical University, The First Affiliated Hospital, Dalian, China
| | - Bin Yu
- Department General Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Enqiao Yu
- Department General Surgery, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | | | | | - Shu Zhou
- Department of Obstetrics and Gynecology, Dalian Medical University, The First Affiliated Hospital, Dalian, China
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiya Tanaka
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Nobuko Tokuda
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
4
|
Nie F, Ding F, Chen B, Huang S, Liu Q, Xu C. Dendritic cells aggregate inflammation in experimental osteoarthritis through a toll-like receptor (TLR)-dependent machinery response to challenges. Life Sci 2019; 238:116920. [PMID: 31610189 DOI: 10.1016/j.lfs.2019.116920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
AIMS Dendritic cells (DCs) and Toll-like receptor (TLR) participate in mediating inflammation process. However, the functional role of TLR expressed on DCs in osteoarthritis (OA) development has not been defined yet. The purpose of this study was to investigate the role and mechanism of TLR and DCs in the progression of experimental osteoarthritis (OA). MATERIALS AND METHODS Experimental OA model was induced by iodoacetate injection. Expressions of toll-like receptors in DCs of OA mice were detected by qRT-PCR and flow cytometry. TLR agonists lipopolysaccharide (LPS) and R848 or TLR antagonist FP7 were used, and the levels of TLRs and inflammatory cytokines were examined by qRT-PCR and ELISA. KEY FINDINGS The expression levels of TLR family members were increased in DCs derived from synovial fluid of OA mice compared with the sham mice. In vitro, OA mice-derived DCs had increased production of inflammatory cytokine after TLR agonists LPS and R848 challenge, while TLR challenges did not affect DCs maturation. Inhibition of TLR by TLR antagonist FP7 blocked TLR challenges-induced increased inflammation in DCs. In mice, administration of FP7 attenuated LPS-induced inflammatory response and OA condition. SIGNIFICANCE Increased TLR expression in OA-derived DCs contributes to the inflammation condition and potentially acts as a therapeutic target for osteoarthritis.
Collapse
Affiliation(s)
- Fengfeng Nie
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong, 276400, China
| | - Fei Ding
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng, Jiangsu, 224300, China
| | - Bo Chen
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong, 276400, China
| | - Shouguo Huang
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong, 276400, China
| | - Qingbai Liu
- Department of Orthopedics, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Changming Xu
- Department of Orthopedics, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| |
Collapse
|
5
|
Kitazawa Y, Ueta H, Sawanobori Y, Katakai T, Yoneyama H, Ueha S, Matsushima K, Tokuda N, Matsuno K. Novel Targeting to XCR1 + Dendritic Cells Using Allogeneic T Cells for Polytopical Antibody Responses in the Lymph Nodes. Front Immunol 2019; 10:1195. [PMID: 31191552 PMCID: PMC6548820 DOI: 10.3389/fimmu.2019.01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
Abstract
Vaccination strategy that induce efficient antibody responses polytopically in most lymph nodes (LNs) against infections has not been established yet. Because donor-specific blood transfusion induces anti-donor class I MHC antibody production in splenectomized rats, we examined the mechanism and significance of this response. Among the donor blood components, T cells were the most efficient immunogens, inducing recipient T cell and B cell proliferative responses not only in the spleen, but also in the peripheral and gut LNs. Donor T cells soon migrated to the splenic T cell area and the LNs, with a temporary significant increase in recipient NK cells. XCR1+ resident dendritic cells (DCs), but not XCR1− DCs, selectively phagocytosed donor class I MHC+ fragments after 1 day. After 1.5 days, both DC subsets formed clusters with recipient CD4+ T cells, which proliferated within these clusters. Inhibition of donor T cell migration or depletion of NK cells by pretreatment with pertussis toxin or anti-asialoGM1 antibody, respectively, significantly suppressed DC phagocytosis and subsequent immune responses. Three allogeneic strains with different NK activities had the same response but with different intensity. Donor T cell proliferation was not required, indicating that the graft vs. host reaction is dispensable. Intravenous transfer of antigen-labeled and mitotic inhibitor-treated allogeneic, but not syngeneic, T cells induced a polytopical antibody response to labeled antigens in the LNs of splenectomized rats. These results demonstrate a novel mechanism of alloresponses polytopically in the secondary lymphoid organs (SLOs) induced by allogeneic T cells. Donor T cells behave as self-migratory antigen ferries to be delivered to resident XCR1+ DCs with negligible commitment of migratory DCs. Allogeneic T cells may be clinically applicable as vaccine vectors for polytopical prophylactic antibody production even in asplenic or hyposplenic individuals.
Collapse
Affiliation(s)
- Yusuke Kitazawa
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nobuko Tokuda
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
6
|
Ueta H, Kitazawa Y, Sawanobori Y, Ueno T, Ueha S, Matsushima K, Matsuno K. Single blood transfusion induces the production of donor-specific alloantibodies and regulatory T cells mainly in the spleen. Int Immunol 2019; 30:53-67. [PMID: 29361165 PMCID: PMC5892146 DOI: 10.1093/intimm/dxx078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/29/2017] [Indexed: 12/02/2022] Open
Abstract
Donor-specific blood transfusion is known to induce alloresponses and lead to immunosuppression. We examined their underlying mechanisms by employing fully allogeneic rat combinations. Transfused recipients efficiently produced alloantibodies of the IgM and IgG subclasses directed against donor class I MHC. The recipients exhibited active expansion of CD4+ T cells and CD4+FOXP3+ regulatory T cells (Treg cells), followed by CD45R+ B cells and IgM+ or IgG subclass+ antibody-forming cells mainly in the spleen. From 1.5 days, the resident MHCII+CD103+ dendritic cells (DCs) in the splenic T-cell area, periarterial lymphocyte sheath, formed clusters with recipient BrdU+ or 5-ethynyl-2′-deoxyuridine+ cells, from which the proliferative response of CD4+ T cells originated peaking at 3–4 days. Transfusion-induced antibodies had donor passenger cell-depleting activity in vitro and in vivo and could suppress acute GvH disease caused by donor T cells. Furthermore, Treg cells significantly suppressed mixed leukocyte reactions in a donor-specific manner. In conclusion, single blood transfusion efficiently induced a helper T-cell-dependent anti-donor class I MHC antibody-forming cell response with immunoglobulin class switching, and a donor-specific Treg cell response mainly in the spleen, probably by way of the indirect allorecognition via resident DCs. These antibodies and Treg cells may be involved, at least partly, in the donor-specific transfusion-induced suppression of allograft rejection.
Collapse
Affiliation(s)
- Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Takamasa Ueno
- Center for AIDS Research.,International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Satoshi Ueha
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kouji Matsushima
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
7
|
|
8
|
Uchida T, Ueta H, Xu XD, Hirakawa J, Tahara K, Zhou S, Sawanobori Y, Simmons S, Kitazawa Y, Kawashima H, Matsuno K. Rapid immunosurveillance by recirculating lymphocytes in the rat intestine: critical role of unsulfated sialyl-Lewis X on high endothelial venules of the Peyer's patches. Int Immunol 2018; 30:23-33. [PMID: 29365122 PMCID: PMC5917783 DOI: 10.1093/intimm/dxx072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
Naive lymphocytes systemically recirculate for immunosurveillance inspecting foreign antigens and pathogens in the body. Trafficking behavior such as the migration pathway and transit time within the gastrointestinal tract, however, remains to be elucidated. Rat thoracic duct lymphocytes (TDLs) were transferred to a congeneic host that had undergone mesenteric lymphadenectomy. The migration pathway was investigated using newly developed four-color immunohistochemistry and immunofluorescence. Donor TDLs showed rapid transition in gut tissues from which they emerged in mesenteric lymph around 4 h after intravenous injection. Immunohistochemistry showed that donor TDLs predominantly transmigrated across high endothelial venules (HEVs) at the interfollicular area of the Peyer's patches (PPs), then exited into the LYVE-1+ efferent lymphatics, that were close to the venules. The rapid recirculation depended largely on the local expression of unsulfated sialyl-Lewis X on these venules where putative dendritic cells (DCs) were associated underneath. Recruited naive T cells briefly made contact with resident DCs before exiting to the lymphatics in the steady state. In some transplant settings, however, the T cells retained contact with DCs and were sensitized and differentiated into activated T cells. In conclusion, we directly demonstrated that lymphocyte recirculation within the gut is a very rapid process. The interfollicular area of PPs functions as a strategically central site for rapid immunosurveillance where HEVs, efferent lymphatics and resident DCs converge. PPs can, however, generate alloreactive T cells, leading to exacerbation of graft-versus-host disease or gut allograft rejection.
Collapse
Affiliation(s)
- Tomomi Uchida
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - Xue-Dong Xu
- Department of General Surgery, Dalian Medical University, 1st Affiliated Hospital, Dalian, China
| | - Jotaro Hirakawa
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kazunori Tahara
- Division of Surgery, Department of Surgical Specialties, National Center for Child Health and Development, Tokyo, Japan
| | - Shu Zhou
- Department of Gynecology, Dalian Medical University, 1st Affiliated Hospital, Dalian, China
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - Szandor Simmons
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences and WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, School of Medicine, Tochigi, Japan
| |
Collapse
|
9
|
The CD8 T-cell response during tolerance induction in liver transplantation. Clin Transl Immunology 2016; 5:e102. [PMID: 27867515 PMCID: PMC5099425 DOI: 10.1038/cti.2016.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022] Open
Abstract
Both experimental and clinical studies have shown that the liver possesses unique tolerogenic properties. Liver allografts can be spontaneously accepted across complete major histocompatibility mismatch in some animal models. In addition, some liver transplant patients can be successfully withdrawn from immunosuppressive medications, developing ‘operational tolerance'. Multiple mechanisms have been shown to be involved in inducing and maintaining alloimmune tolerance associated with liver transplantation. Here, we focus on CD8 T-cell tolerance in this setting. We first discuss how alloreactive cytotoxic T-cell responses are generated against allografts, before reviewing how the liver parenchyma, donor passenger leucocytes and the host immune system function together to attenuate alloreactive CD8 T-cell responses to promote the long-term survival of liver transplants.
Collapse
|
10
|
He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 2016; 43:81-95. [PMID: 27781554 DOI: 10.1080/1040841x.2016.1176988] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gut microbiota interacts with host immune system in ways that influence the development of disease. Advances in respiratory immune system also broaden our knowledge of the interaction between host and microbiome in the lung. Increasing evidence indicated the intimate relationship between the gastrointestinal tract and respiratory tract. Exacerbations of chronic gut and lung disease have been shown to share key conceptual features with the disorder and dysregulation of the microbial ecosystem. In this review, we discuss the impact of gut and lung microbiota on disease exacerbation and progression, and the recent understanding of the immunological link between the gut and the lung, the gut-lung axis.
Collapse
Affiliation(s)
- Yang He
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Qu Wen
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Fangfang Yao
- a Department of Cancer Center, Union Hospital , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Dong Xu
- b Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yuancheng Huang
- b Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Junshuai Wang
- c Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
11
|
Shi XL, Mancham S, Hansen BE, de Knegt RJ, de Jonge J, van der Laan LJW, Rivadeneira F, Metselaar HJ, Kwekkeboom J. Counter-regulation of rejection activity against human liver grafts by donor PD-L1 and recipient PD-1 interaction. J Hepatol 2016; 64:1274-82. [PMID: 26941095 DOI: 10.1016/j.jhep.2016.02.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 02/09/2016] [Accepted: 02/23/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Co-inhibitory receptor-ligand interactions fine-tune immune responses by negatively regulating T cell functions. Our aim is to examine the involvement of co-inhibitory receptor-ligand pair PD-1/PD-L1 in regulating rejection after liver transplantation (LT) in humans. METHODS PD-L1/PD-1 expression in liver allograft was determined by immunohistochemistry or flow cytometry, and the effect of blockade was studied using graft-infiltrating T cells ex vivo. Five single nucleotide polymorphisms within PD-1 and PD-L1 genes were genotyped in 528 LT recipients and 410 donors, and associations with both early (⩽6months) and late (>6months) acute rejection were analyzed using Cox proportional-hazards regression model. The effect of PD-L1 rs4143815 on PD-L1 expression was analyzed using donor hepatic leukocytes. RESULTS PD-L1 was expressed by hepatocytes, cholangiocytes and along the sinusoids in post-transplant liver allografts, and PD-1 was abundantly expressed on allograft-infiltrating T cells. PD-L1 blockade enhanced allogeneic proliferative responses of graft-infiltrating T cells. In the genetic association analysis, donor PD-L1 rs4143815 (CC/CG vs. GG; HR=0.230; p=0.002) and recipient PD-1 rs11568821 (AA/AG vs. GG; HR=3.739; p=0.004) were associated with acute rejection late after LT in multivariate analysis. Recipients carrying the PD-1 rs11568821 A allele who were transplanted with liver grafts of PD-L1 rs4143815 GG homozygous donors showed the highest risk for late acute rejection. PD-L1 rs4143815 is associated with differential PD-L1 expression on donor hepatic dendritic cells upon IFN-γ stimulation. CONCLUSION Our data suggest that interplay between donor PD-L1 and recipient PD-1 counter-regulates rejection activity against liver grafts in humans.
Collapse
Affiliation(s)
- Xiao-Lei Shi
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands; Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanta Mancham
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Bettina E Hansen
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Shin R, Itoh Y, Kataoka M, Iino-Miura S, Miura R, Mizutani T, Fujisawa T. Anti-tumor activity of heat-killed Lactobacillus plantarum BF-LP284 on Meth-A tumor cells in BALB/c mice. Int J Food Sci Nutr 2016; 67:641-9. [DOI: 10.1080/09637486.2016.1185771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ryoichi Shin
- Central Institute for Health Science, A. L. A. Corporation, Tokyo, Japan
- Laboratory of Food Hygiene, School of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yukie Itoh
- Central Institute for Health Science, A. L. A. Corporation, Tokyo, Japan
| | - Motoyuki Kataoka
- Central Institute for Health Science, A. L. A. Corporation, Tokyo, Japan
| | - Shiori Iino-Miura
- Central Institute for Health Science, A. L. A. Corporation, Tokyo, Japan
| | - Ryosuke Miura
- Central Institute for Health Science, A. L. A. Corporation, Tokyo, Japan
| | - Takeo Mizutani
- Central Institute for Health Science, A. L. A. Corporation, Tokyo, Japan
| | - Tomohiko Fujisawa
- Laboratory of Food Hygiene, School of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
13
|
Direct evidence for activated CD8+ T cell transmigration across portal vein endothelial cells in liver graft rejection. J Gastroenterol 2016; 51:985-98. [PMID: 26891909 PMCID: PMC5037149 DOI: 10.1007/s00535-016-1169-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/27/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lymphocyte recruitment into the portal tract is crucial not only for homeostatic immune surveillance but also for many liver diseases. However, the exact route of entry for lymphocytes into portal tract is still obscure. We investigated this question using a rat hepatic allograft rejection model. METHODS A migration route was analyzed by immunohistological methods including a recently developed scanning electron microscopy method. Transmigration-associated molecules such as selectins, integrins, and chemokines and their receptors expressed by hepatic vessels and recruited T-cells were analyzed by immunohistochemistry and flow cytometry. RESULTS The immunoelectron microscopic analysis clearly showed CD8β(+) cells passing through the portal vein (PV) endothelia. Furthermore, the migrating pathway seemed to pass through the endothelial cell body. Local vascular cell adhesion molecule-1 (VCAM-1) expression was induced in PV endothelial cells from day 2 after liver transplantation. Although intercellular adhesion molecule-1 (ICAM-1) expression was also upregulated, it was restricted to sinusoidal endothelia. Recipient T-cells in the graft perfusate were CD25(+)CD44(+)ICAM-1(+)CXCR3(+)CCR5(-) and upregulated α4β1 or αLβ2 integrins. Immunohistochemistry showed the expression of CXCL10 in donor MHCII(high) cells in the portal tract as well as endothelial walls of PV. CONCLUSIONS We show for the first time direct evidence of T-cell transmigration across PV endothelial cells during hepatic allograft rejection. Interactions between VCAM-1 on endothelia and α4β1 integrin on recipient effector T-cells putatively play critical roles in adhesion and transmigration through endothelia. A chemokine axis of CXCL10 and CXCR3 also may be involved.
Collapse
|
14
|
Shi XL, de Mare-Bredemeijer ELD, Tapirdamaz Ö, Hansen BE, van Gent R, van Campenhout MJH, Mancham S, Litjens NHR, Betjes MGH, van der Eijk AA, Xia Q, van der Laan LJW, de Jonge J, Metselaar HJ, Kwekkeboom J. CMV Primary Infection Is Associated With Donor-Specific T Cell Hyporesponsiveness and Fewer Late Acute Rejections After Liver Transplantation. Am J Transplant 2015; 15:2431-42. [PMID: 25943855 DOI: 10.1111/ajt.13288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 02/17/2015] [Accepted: 02/22/2015] [Indexed: 01/25/2023]
Abstract
Viral infections, including cytomegalovirus (CMV), abrogate transplantation tolerance in animal models. Whether this also occurs in humans remains elusive. We investigated how CMV affects T cells and rejection episodes after liver transplantation (LT). Phenotype and alloreactivity of peripheral and allograft-infiltrating T cells from LT patients with different CMV status were analyzed by flow cytometry. The association of CMV status with early and late acute rejection was retrospectively analyzed in a cohort of 639 LT patients. CMV-positivity was associated with expansion of peripheral effector memory T cell subsets after LT. Patients with CMV primary infection showed donor-specific CD8(+) T cell hyporesponsiveness. While terminally differentiated effector memory cells comprised the majority of peripheral donor-specific CD8(+) T cells in CMV primary infection patients, they were rarely present in liver allografts. Retrospective analysis showed that R(-) D(+) serostatus was an independent protective factor for late acute rejection by multivariate Cox regression analysis (hazard ratio [HR] = 0.18, 95% CI = 0.04-0.86, p = 0.015). Additionally, CMV primary infection patients showed the highest Vδ1/Vδ2 γδ T cell ratio, which has been shown to be associated with operational tolerance after LT. In conclusion, our data suggest that CMV primary infection may promote tolerance to liver allografts, and CMV status should be considered when tapering or withdrawing immunosuppression.
Collapse
Affiliation(s)
- X-L Shi
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E L D de Mare-Bredemeijer
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ö Tapirdamaz
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - B E Hansen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - R van Gent
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - M J H van Campenhout
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - S Mancham
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - N H R Litjens
- Department of Internal Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - M G H Betjes
- Department of Internal Medicine, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - A A van der Eijk
- Department of Virology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Q Xia
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - J de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - H J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - J Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Kitazawa Y, Ueta H, Hünig T, Sawanobori Y, Matsuno K. A novel multicolor immunostaining method using ethynyl deoxyuridine for analysis of in situ immunoproliferative response. Histochem Cell Biol 2015; 144:195-208. [PMID: 25976155 PMCID: PMC4534512 DOI: 10.1007/s00418-015-1329-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/08/2023]
Abstract
Immune responses are generally accompanied by antigen presentation and proliferation and differentiation of antigen-specific lymphocytes (immunoproliferation), but analysis of these events in situ on tissue sections is very difficult. We have developed a new method of simultaneous multicolor immunofluorescence staining for immunohistology and flow cytometry using a thymidine analogue, 5-ethynyl-2′-deoxyuridine (EdU). Because of the small size of azide dye using click chemistry and elimination of DNA denaturation steps, EdU staining allowed for immunofluorescence staining of at least four colors including two different markers on a single-cell surface, which is impossible with the standard 5-bromo-2′-deoxyuridine method. By using two rat models, successfully detected parameters were the cluster of differentiation antigens including phenotypic and functional markers of various immune cells, histocompatibility complex antigens, and even some nuclear transcription factors. Proliferating cells could be further sorted and used for RT-PCR analysis. This method thus enables functional in situ time-kinetic analysis of immunoproliferative responses in a distinct domain of the lymphoid organs, which are quantitatively confirmed by flow cytometry.
Collapse
Affiliation(s)
- Yusuke Kitazawa
- />Department of Anatomy (Macro), Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293 Japan
| | - Hisashi Ueta
- />Department of Anatomy (Macro), Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293 Japan
| | - Thomas Hünig
- />Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Yasushi Sawanobori
- />Department of Anatomy (Macro), Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293 Japan
| | - Kenjiro Matsuno
- />Department of Anatomy (Macro), Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293 Japan
| |
Collapse
|
16
|
Cardiac allograft vasculopathy: a donor or recipient induced pathology? J Cardiovasc Transl Res 2015; 8:106-16. [PMID: 25652948 PMCID: PMC4382530 DOI: 10.1007/s12265-015-9612-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/14/2015] [Indexed: 01/16/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is one of the main causes of late-stage heart failure after heart transplantation. CAV is characterized by concentric luminal narrowing of the coronary arteries, but the exact pathogenesis of CAV is still not unraveled. Many researchers show evidence of an allogeneic immune response of the recipient, whereas others show contrasting results in which donor-derived cells induce an immune response against the graft. In addition, fibrosis of the neo-intima can be induced by recipient-derived circulating cells or donor-derived cells. In this review, both donor and recipient sides of the story are described to obtain better insight in the pathogenesis of CAV. Dual outcomes were found regarding the contribution of donor and recipient cells in the initiation of the immune response and the development of fibrosis during CAV. Future research could focus more on the potential synergistic interaction of donor and recipient cells leading to CAV.
Collapse
|
17
|
Chen J, Wei Y, He J, Cui G, Zhu Y, Lu C, Ding Y, Xue R, Bai L, Uede T, Li L, Diao H. Natural killer T cells play a necessary role in modulating of immune-mediated liver injury by gut microbiota. Sci Rep 2014; 4:7259. [PMID: 25435303 PMCID: PMC4248284 DOI: 10.1038/srep07259] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota are implicated in many liver diseases. Concanavalin A (ConA)-induced hepatitis is a well-characterized murine model of fulminant immunological hepatic injury. Oral administration of pathogenic bacteria or gentamycin to the mice before ConA injection, liver injury and lymphocyte distribution in liver and intestine were assessed. Our data show that administration of pathogenic bacteria exacerbated the liver damage. There was more downregulation of activation-induced natural killer T (NKT) cells in the liver of pathogenic bacteria-treated ConA groups. Also, there was a negative correlation between the numbers of hepatic NKT cells and liver injury in our experiments. Moreover, intestinal dendritic cells (DCs) were increased in pathogenic bacteria-treated ConA groups. The activation of DCs in Peyer's patches and the liver was similar to the intestine. However, depletion of gut gram-negative bacteria alleviated ConA-induced liver injury, through suppressed hepatic NKT cells activation and DCs homing in liver and intestine. In vitro experiments revealed that DCs promoted NKT cell cytotoxicity against hepatocyte following stimulation with pathogenic bacteria. Our study suggests that increased intestinal pathogenic bacteria facilitate immune-mediated liver injury, which may be due to the activation of NKT cells that mediated by intestinal bacterial antigens activated DCs.
Collapse
Affiliation(s)
- Jianing Chen
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yingfeng Wei
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianqin He
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Guangying Cui
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yunan Zhu
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Chong Lu
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yulong Ding
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Rufeng Xue
- 1] Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease of CAS, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China [2] Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230027, China
| | - Li Bai
- 1] Institute of Immunology and Key Laboratory of Innate Immunity and Chronic Disease of CAS, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China [2] Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei 230027, China
| | - Toshimitsu Uede
- Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, 0600815, Japan
| | - Lanjuan Li
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hongyan Diao
- 1] State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China [2] Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
18
|
Sawanobori Y, Ueta H, Dijkstra CD, Park CG, Satou M, Kitazawa Y, Matsuno K. Three distinct subsets of thymic epithelial cells in rats and mice defined by novel antibodies. PLoS One 2014; 9:e109995. [PMID: 25334032 PMCID: PMC4204869 DOI: 10.1371/journal.pone.0109995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/04/2014] [Indexed: 01/04/2023] Open
Abstract
AIM Thymic epithelial cells (TECs) are thought to play an essential role in T cell development and have been detected mainly in mice using lectin binding and antibodies to keratins. Our aim in the present study was to create a precise map of rat TECs using antibodies to putative markers and novel monoclonal antibodies (i.e., ED 18/19/21 and anti-CD205 antibodies) and compare it with a map from mouse counterparts and that of rat thymic dendritic cells. RESULTS Rat TECs were subdivided on the basis of phenotype into three subsets; ED18+ED19+/-keratin 5 (K5)+K8+CD205+ class II MHC (MHCII)+ cortical TECs (cTECs), ED18+ED21-K5-K8+Ulex europaeus lectin 1 (UEA-1)+CD205- medullary TECs (mTEC1s), and ED18+ED21+K5+K8dullUEA-1-CD205- medullary TECs (mTEC2s). Thymic nurse cells were defined in cytosmears as an ED18+ED19+/-K5+K8+ subset of cTECs. mTEC1s preferentially expressed MHCII, claudin-3, claudin-4, and autoimmune regulator (AIRE). Use of ED18 and ED21 antibodies revealed three subsets of TECs in mice as well. We also detected two distinct TEC-free areas in the subcapsular cortex and in the medulla. Rat dendritic cells in the cortex were MHCII+CD103+ but negative for TEC markers, including CD205. Those in the medulla were MHCII+CD103+ and CD205+ cells were found only in the TEC-free area. CONCLUSION Both rats and mice have three TEC subsets with similar phenotypes that can be identified using known markers and new monoclonal antibodies. These findings will facilitate further analysis of TEC subsets and DCs and help to define their roles in thymic selection and in pathological states such as autoimmune disorders.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cells, Cultured
- Claudin-3/immunology
- Claudin-3/metabolism
- Claudin-4/immunology
- Claudin-4/metabolism
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Keratin-5/immunology
- Keratin-5/metabolism
- Keratin-8/immunology
- Keratin-8/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Minor Histocompatibility Antigens
- Phenotype
- Plant Lectins/immunology
- Plant Lectins/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Thymus Gland/cytology
Collapse
Affiliation(s)
- Yasushi Sawanobori
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Hiashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Christine D. Dijkstra
- Molecular Cell Biology and Immunology, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Motoyasu Satou
- Department of Biochemistry, Dokkyo Medical University, Tochigi, Japan
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
- * E-mail:
| |
Collapse
|
19
|
Yoshii A, Kitahara S, Ueta H, Matsuno K, Ezaki T. Role of uterine contraction in regeneration of the murine postpartum endometrium. Biol Reprod 2014; 91:32. [PMID: 24966392 DOI: 10.1095/biolreprod.114.117929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The endometrium undergoes continuous repair and regeneration without scarring throughout the reproductive life of women. However, the mechanisms responsible for this complete restoration remain mostly unexplored. We hypothesized that the ischemic state and local hypoxia present after parturition may create a special microenvironment for endometrial healing, and that this ischemia might be caused by reduction in organ volume via postpartum uterine contraction. Here, we developed a mouse model using a combination of cesarean section and the administration of a beta 2 adrenergic receptor agonist (ritodrine hydrochloride) in postpartum mice that had been ovariectomized to exclude the effect of ovarian hormones. Our results revealed that transient hypoxia indeed occurred in postpartum uteri. Furthermore, we found that the number of M2 macrophages, which play a central role in wound healing, peaked on Postpartum Day 3 and gradually decreased thereafter in hypoxic injury sites. Almost concurrently, significant upregulation of vascular endothelial growth factor and transforming growth factor beta (TGFbeta) was observed. In particular, the antifibrotic factor TGFbeta3 was released during the endometrial healing process. These changes were significantly suppressed by inhibition of uterine contraction. Taken together, these results suggest that uterine contraction is essential, not only for hemostasis, but also for endometrial regeneration, leading to a process that involves the activation of macrophages, increased endometrial cell proliferation, and upregulation of nonfibrotic growth factors. This study paves the way to a novel approach for investigating the process of scarless wound healing.
Collapse
Affiliation(s)
- Asuka Yoshii
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Kitahara
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Taichi Ezaki
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
20
|
|
21
|
Tay SS, Lu B, Sierro F, Benseler V, McGuffog CM, Bishop GA, Cowan PJ, McCaughan GW, Dwyer KM, Bowen DG, Bertolino P. Differential migration of passenger leukocytes and rapid deletion of naive alloreactive CD8 T cells after mouse liver transplantation. Liver Transpl 2013; 19:1224-35. [PMID: 23913831 DOI: 10.1002/lt.23720] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022]
Abstract
Donor passenger leukocytes (PLs) from transplanted livers migrate to recipient lymphoid tissues, where they are thought to induce the deletion of donor-specific T cells and tolerance. Difficulties in tracking alloreactive T cells and PLs in rats and in performing this complex surgery in mice have limited progress in identifying the contribution of PL subsets and sites and the kinetics of T cell deletion. Here we developed a mouse liver transplant model in which PLs, recipient cells, and a reporter population of transgenic CD8 T cells specific for the graft could be easily distinguished and quantified in allografts and recipient organs by flow cytometry. All PL subsets circulated rapidly via the blood as soon as 1.5 hours after transplantation. By 24 hours, PLs were distributed differently in the lymph nodes and spleen, whereas donor natural killer and natural killer T cells remained in the liver and blood. Reporter T cells were activated in both liver and lymphoid tissues, but their numbers dramatically decreased within the first 48 hours. These results provide the first unequivocal demonstration of the differential recirculation of liver PL subsets after transplantation, and show that alloreactive CD8 T cells are deleted more rapidly than initially reported. This model will be useful for dissecting early events leading to the spontaneous acceptance of liver transplants.
Collapse
Affiliation(s)
- Szun S Tay
- Liver Immunology Group, Centenary Institute, Newtown, Australia; A. W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nazé F, Suin V, Lamoral S, Francart A, Brochier B, Roels S, Mast J, Kalai M, Van Gucht S. Infectivity of rabies virus-exposed macrophages. Microbes Infect 2012; 15:115-25. [PMID: 23159243 DOI: 10.1016/j.micinf.2012.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 11/17/2022]
Abstract
Rabies virus distributes widely in infected mice, including lymphoid tissues and spleen macrophages. The infection characteristics in murine macrophages and the infectivity of virus-exposed macrophages were examined upon inoculation in mice. In vitro, Mf4/4 spleen macrophages supported mild virus production (10(4)-fold less than neuroblastoma), with formation of typical virions. Bone marrow-derived macrophages (BMM) were most efficient to capture virus, but new virus production was not detected. Virus-induced cell death was significantly stronger in BMM, which might have eliminated BMM with productive infection. Still, viral RNA remained detectable in the remaining BMM for at least 4 weeks. Injection of in vitro-infected Mf4/4 in the nose or brain proved efficient to propagate infection in mice, even when cells were pre-incubated with neutralizing antibodies. Surprisingly, injection of ex-vivo-infected BMM in the brain also led to lethal infection in 8 out of 12 mice. Injection of infected Mf4/4 in the muscle mostly favoured a protective antibody response. Despite that macrophages are less fit to support virus production, they can still act as a source of infectious virus upon transfer in mice. This may be relevant for screening donor organs/cells, for which RT-PCR should be preferred over the traditional antigen or virus isolation assays.
Collapse
Affiliation(s)
- Florence Nazé
- National Reference Laboratory of Rabies, Viral Diseases, Communicable and Infectious Diseases, Scientific Institute of Public Health, Engeland St. 642, B-1180 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu B, Ueta H, Kitazawa Y, Tanaka T, Adachi K, Kimura H, Morita M, Sawanobori Y, Qian HX, Kodama T, Matsuno K. Two immunogenic passenger dendritic cell subsets in the rat liver have distinct trafficking patterns and radiosensitivities. Hepatology 2012; 56:1532-45. [PMID: 22511480 DOI: 10.1002/hep.25795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED The aim of this study was to investigate the trafficking patterns, radiation sensitivities, and functions of conventional dendritic cell (DC) subsets in the rat liver in an allotransplantation setting. We examined DCs in the liver, hepatic lymph, and graft tissues and recipient secondary lymphoid organs after liver transplantation from rats treated or untreated by sublethal irradiation. We identified two distinct immunogenic DC subsets. One was a previously reported population that underwent blood-borne migration to the recipient's secondary lymphoid organs, inducing systemic CD8(+) T-cell responses; these DCs are a radiosensitive class II major histocompatibility complex (MHCII)(+) CD103(+) CD172a(+) CD11b(-) CD86(+) subset. Another was a relatively radioresistant MHCII(+) CD103(+) CD172a(+) CD11b(+) CD86(+) subset that steadily appeared in the hepatic lymph. After transplantation, the second subset migrated to the parathymic lymph nodes (LNs), regional peritoneal cavity nodes, or persisted in the graft. Irradiation completely eliminated the migration and immunogenicity of the first subset, but only partly suppressed the migration of the second subset and the CD8(+) T-cell response in the parathymic LNs. The grafts were acutely rejected, and intragraft CD8(+) T-cell and FoxP3(+) regulatory T-cell responses were unchanged. The radioresistant second subset up-regulated CD25 and had high allostimulating activity in the mixed leukocyte reaction, suggesting that this subset induced CD8(+) T-cell responses in the parathymic LNs and in the graft by the direct allorecognition pathway, leading to the rejection. CONCLUSION Conventional rat liver DCs contain at least two distinct immunogenic passenger subsets: a radiosensitive blood-borne migrant and a relatively radioresistant lymph-borne migrant. LNs draining the peritoneal cavity should be recognized as a major site of the intrahost T-cell response by the lymph-borne migrant. This study provides key insights into liver graft rejection and highlights the clinical implications of immunogenic DC subsets.
Collapse
Affiliation(s)
- Bin Yu
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Matsuno K, Ueta H, Shu Z, Xue-Dong X, Sawanobori Y, Kitazawa Y, Bin Y, Yamashita M, Shi C. The microstructure of secondary lymphoid organs that support immune cell trafficking. ACTA ACUST UNITED AC 2011; 73:1-21. [PMID: 21471663 DOI: 10.1679/aohc.73.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune cell trafficking in the secondary lymphoid organs is crucial for an effective immune response. Recirculating T cells constantly patrol not only secondary lymphoid organs but also the whole peripheral organs. Thoracic duct lymphocytes represent an ideal cell source for analyzing T cell trafficking: high endothelial venules (HEVs) allow recirculating lymphocytes to transmigrate from the blood directly, and recirculating T cells form a cluster with dendritic cells (DCs) to survey antigen invasions even in a steady state. This cluster becomes an actual site for the antigen presentation when DCs have captured antigens. On activation, effector and memory T cells differentiate into several subsets that have different trafficking molecules and patterns. DCs also migrate actively in a manner depending upon their maturational stages. Danger signals induce the recruitment of several DC precursor subsets with different trafficking patterns and functions. In this review, we describe general and specialized structures of the secondary lymphoid organs for the trafficking of T cells and DCs by a multicolor immunoenzyme staining technique. The lymph nodes, spleen, and Peyer's patches of rats were selected as the major representatives. In vivo trafficking of subsets of T cells and DCs within these organs under steady or emergency states are shown and discussed, and unsolved questions and future prospects are also considered.
Collapse
Affiliation(s)
- Kenjiro Matsuno
- Department of Anatomy (Marco), Dokkyo Medical University, Mibu, Tochigi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Depletion of alveolar macrophages abrogates prolongation of cardiac allograft survival induced by intratracheal delivery of alloantigen. Transplantation 2011; 91:413-24. [PMID: 21192321 DOI: 10.1097/tp.0b013e3182052b84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We previously showed that pretreatment with intratracheal delivery (ITD) of alloantigen induced prolonged cardiac allograft survival and generated regulatory cells in mice. In this study, we examined the role of alveolar macrophages (AM) in our ITD model. METHODS Some CBA mice were given ITD of C57BL/6 splenocytes and underwent transplantation of C57BL/6 hearts 7 days later. In others, AM were depleted with clodronate-loaded liposomes 3 days before ITD. In adoptive transfer studies, whole splenocytes were obtained from ITD-treated CBA mice and administered to naïve CBA secondary recipients, which were given C57BL/6 hearts immediately afterward. Interleukin-10 concentrations in bronchoalveolar lavage fluid were assessed by enzyme-linked immunosorbent assays. Immunohistologic and flow cytometric studies were performed after ITD. RESULTS C57BL/6 splenocytes given by ITD were ingested by AM in 2 days and undetectable in paratracheal lymph nodes or spleen tissue. CBA mice given ITD of C57BL/6 splenocytes had markedly prolonged allograft survival (median survival time [MST], 86 days), whereas naïve CBA mice rejected allografts acutely (MST, 8 days). AM-depleted, ITD-treated mice also rejected allografts (MST, 5.5 days). Naïve secondary recipients given adoptive transfer of splenocytes from ITD-treated mice had prolonged allograft survival (MST, >100 days), whereas secondary recipients given adoptive transfer of splenocytes from AM-depleted, ITD-treated mice rejected the grafts (MST, 15.5 days). Interleukin-10 expression in bronchoalveolar lavage fluid was down-regulated in AM-depleted mice compared with naïve mice. CONCLUSIONS AM have an important role in the induction of regulatory cells in our model of ITD of alloantigen.
Collapse
|
26
|
Tapirdamaz Ö, Mancham S, van der Laan LJW, Kazemier G, Thielemans K, Metselaar HJ, Kwekkeboom J. Detailed kinetics of the direct allo-response in human liver transplant recipients: new insights from an optimized assay. PLoS One 2010; 5:e14452. [PMID: 21206923 PMCID: PMC3012075 DOI: 10.1371/journal.pone.0014452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/18/2010] [Indexed: 12/17/2022] Open
Abstract
Conventional assays for quantification of allo-reactive T-cell precursor frequencies (PF) are relatively insensitive. We present a robust assay for quantification of PF of T-cells with direct donor-specificity, and establish the kinetics of circulating donor-specific T cells after liver transplantation (LTx). B cells from donor splenocytes were differentiated into professional antigen-presenting cells by CD40-engagement (CD40-B cells). CFSE-labelled PBMC from LTx-recipients obtained before and at several time points after LTx, were stimulated with donor-derived or 3rd party CD40-B cells. PF of donor-specific T cells were calculated from CFSE-dilution patterns, and intracellular IFN-γ was determined after re-stimulation with CD40-B cells. Compared to splenocytes, stimulations with CD40-B cells resulted in 3 to 5-fold higher responding T-cell PF. Memory and naïve T-cell subsets responded equally to allogeneic CD40-B cell stimulation. Donor-specific CD4+ and CD8+ T-cell PF ranged from 0.5 to 19% (median: 5.2%). One week after LTx, PF of circulating donor-specific CD4+ and CD8+ T cells increased significantly, while only a minor increase in numbers of T cells reacting to 3rd party allo-antigens was observed. One year after LTx numbers of CD4+ and CD8+ T cells reacting to donor antigens, as well as those reacting to 3rd party allo-antigens, were slightly lower compared to pre-transplant values. Moreover, CD4+ and CD8+ T cells responding to donor-derived, as well as those reacting to 3rd party CD40-B cells, produced less IFN-γ. In conclusion, our alternative approach enables detection of allo-reactive human T cells at high frequencies, and after application we conclude that donor-specific T-cell PF increase immediately after LTx. However, no evidence for a specific loss of circulating T-cells recognizing donor allo-antigens via the direct pathway up to 1 year after LTx was obtained, underscoring the relative insensitiveness of previous assays.
Collapse
Affiliation(s)
- Özlem Tapirdamaz
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Shanta Mancham
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Geert Kazemier
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Herold J. Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Moroso V, Metselaar HJ, Mancham S, Tilanus HW, Eissens D, van der Meer A, van der Laan LJW, Kuipers EJ, Joosten I, Kwekkeboom J. Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation. Liver Transpl 2010; 16:895-908. [PMID: 20583081 DOI: 10.1002/lt.22080] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In contrast to other solid organ transplantations, liver grafts have tolerogenic properties. Animal models indicate that donor leukocytes transferred into the recipient after liver transplantation (LTX) play a relevant role in this tolerogenic phenomenon. However, the specific donor cell types involved in modulation of the recipient alloresponse are not yet defined. We hypothesized that this unique property of liver grafts may be related to their high content of organ-specific natural killer (NK) and CD56(+) T cells. Here, we show that a high proportion of hepatic NK cells that detach from human liver grafts during pretransplant perfusion belong to the CD56bright subset, and are in an activated state (CD69(+)). Liver NK cells contained perforin and granzymes, exerted stronger cytotoxicity against K562 target cells when compared with blood NK cells, and secreted interferon-gamma, but no interleukin-10 or T helper 2 cytokines, upon stimulation with monokines. Interestingly, whereas the CD56bright subset is classically considered as noncytolytic, liver CD56bright NK cells showed a high content of cytolytic molecules and degranulated in response to K562 cells. After LTX, but not after renal transplantation, significant numbers of donor CD56dim NK and CD56(+) T cells were detected in the recipient circulation for approximately 2 weeks. In conclusion, during clinical LTX, activated and highly cytotoxic NK cells of donor origin are transferred into the recipient, and a subset of them mixes with the recirculating recipient NK cell pool. The unique properties of the transferred hepatic NK cells may enable them to play a role in regulating the immunological response of the recipient against the graft and therefore contribute to liver tolerogenicity.
Collapse
Affiliation(s)
- Viviana Moroso
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bosma BM, Metselaar HJ, Gerrits JH, van Besouw NM, Mancham S, Groothuismink ZMA, Boor PPC, van der Laan LJW, Tilanus HW, Kuipers EJ, Kwekkeboom J. Migration of allosensitizing donor myeloid dendritic cells into recipients after liver transplantation. Liver Transpl 2010; 16:12-22. [PMID: 19866483 DOI: 10.1002/lt.21961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is thought, but there is no evidence, that myeloid dendritic cells (MDCs) of donor origin migrate into the recipient after clinical organ transplantation and sensitize the recipient's immune system by the direct presentation of donor allo-antigens. Here we show prominent MDC chimerism in the recipient's circulation early after clinical liver transplantation (LTx) but not after renal transplantation (RTx). MDCs that detach from human liver grafts produce large amounts of pro-inflammatory [tumor necrosis factor alpha and interleukin 6 (IL-6)] and anti-inflammatory (IL-10) cytokines upon activation with various stimuli, express higher levels of toll-like receptor 4 than blood or splenic MDCs, and are sensitive to stimulation with a physiological concentration of lipopolysaccharide (LPS). Upon stimulation with LPS, MDCs detaching from liver grafts prime allogeneic T cell proliferation and production of interferon gamma but not of IL-10. Soluble factors secreted by liver graft MDCs amplify allogeneic T helper 1 responses. In conclusion, after clinical LTx, but not after RTx, prominent numbers of donor-derived MDCs migrate into the recipient's circulation. MDCs detaching from liver grafts produce pro-inflammatory and anti-inflammatory cytokines and are capable of stimulating allogeneic T helper 1 responses, and this suggests that MDC chimerism after clinical LTx may contribute to liver graft rejection rather than acceptance.
Collapse
Affiliation(s)
- Brenda M Bosma
- Department of Gastroenterology and Hepatology, University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Is Indoleamine 2,3-Dioxygenase Important for Graft Acceptance in Highly Sensitized Patients After Combined Auxiliary Liver-Kidney Transplantation? Transplantation 2009; 88:911-9. [DOI: 10.1097/tp.0b013e3181b72e49] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Colvin BL, Matta BM, Thomson AW. Dendritic cells and chemokine-directed migration in transplantation: where are we headed? Clin Lab Med 2009; 28:375-84, v. [PMID: 19028258 DOI: 10.1016/j.cll.2008.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of dendritic cells (DC) in transplantation is often overshadowed by the more prominent roles of T and B cells, which interact directly with and, in the absence of immunosuppressive therapy, destroy the allograft. It has become increasingly recognized, however, that these potent antigen-presenting cells exert control over the immune response and regulate the balance between tolerance and immunity to transplanted organs and tissues. The role that chemokines play in influencing DC function with impact on regulation of immune responses against the graft is only beginning to be understood. This article considers how the manipulation of DC trafficking during an alloimmune response can affect graft outcome.
Collapse
Affiliation(s)
- Bridget L Colvin
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, W1544 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
31
|
Xu XD, Ueta H, Zhou S, Shi C, Koga D, Ushiki T, Matsuno K. Trafficking of recirculating lymphocytes in the rat liver: rapid transmigration into the portal area and then to the hepatic lymph. Liver Int 2008; 28:319-30. [PMID: 18290774 DOI: 10.1111/j.1478-3231.2008.01671.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND We have investigated how recirculating lymphocytes patrol the liver in a normal steady state. METHODS Thoracic duct lymphocytes of congeneic rats were intravenously transferred to host rats and donor cell trafficking in the liver and hepatic lymph was examined. Host hepatic lymph nodes (HLNs) were selectively removed, which allowed liver-derived donor cells to collect in the thoracic duct without transit in the intervening HLNs. RESULTS The number of donor cells in the thoracic duct lymph significantly increased over the baseline 3, 5 and 11 h after transfer in the HLN-removed, non-pretreated, and HLN-ligated (in which a lymph efflux was blocked) groups, respectively. Histologically, donor cells appeared in the portal area from 0.5 h after transfer and frequently attached to the basal lamina of portal vein both externally and internally. Three hours after transfer, a few donor cells appeared in the subcapsular sinus of HLNs. CONCLUSION The minimal transit time of rat recirculating lymphocytes is 3-4 h in the liver and 5-8 h in the hepatic LNs, in a normal steady state. Recirculating lymphocytes might transmigrate through the portal vein as well as the sinusoid in the periportal zone. This rapid transit might enable an efficient surveillance of the liver portal area by the recirculating lymphocytes.
Collapse
Affiliation(s)
- Xue-Dong Xu
- Department of Anatomy (Macro), and SORST, Dokkyo Medical University, Tochigi 321-0293, Japan
| | | | | | | | | | | | | |
Collapse
|