1
|
Merlino F, Secondo A, Mitidieri E, Sorrentino R, Bellavita R, Grasso N, Chatenet D, Pannaccione A, Grieco P, d'Emmanuele di Villa Bianca R, Carotenuto A. Expanding Structure-Activity Relationships of Human Urotensin II Peptide Analogues: A Proposed Key Role of the N-Terminal Region for Novel Urotensin II Receptor Modulators. J Med Chem 2024; 67:13879-13890. [PMID: 39096311 DOI: 10.1021/acs.jmedchem.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
While the urotensinergic system plays a role in influencing various pathologies, its potential remains untapped because of the absence of therapeutically effective urotensin II receptor (UTR) modulators. Herein, we developed analogues of human urotensin II (hU-II) peptide in which, along with well-known antagonist-oriented modifications, the Glu1 residue was subjected to single-point mutations. The generated library was tested by a calcium mobilization assay and ex vivo experiments, also in competition with selected ligands. Interestingly, many derivatives showed noncompetitive modulation that was rationalized by the lateral allostery concept applied to a G protein-coupled receptor (GPCR) multimeric model. UPG-108 showed an unprecedented ability to double the efficacy of hU-II, while UPG-109 and UPG-111 turned out to be negative allosteric modulators of UTR. Overall, our investigation will serve to explore and highlight the expanding possibilities of modulating the UTR system through N-terminally modified hU-II analogues and, furthermore, will aim to elucidate the intricate nature of such a GPCR system.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Rosa Bellavita
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Nicola Grasso
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - David Chatenet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, H7 V 1B7 Québec, Canada
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| | | | - Alfonso Carotenuto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples Federico II, via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
2
|
Michael OS, Kanthakumar P, Soni H, Rajesh Lenin R, Abhiram Jha K, Gangaraju R, Adebiyi A. Urotensin II system in chronic kidney disease. Curr Res Physiol 2024; 7:100126. [PMID: 38779598 PMCID: PMC11109353 DOI: 10.1016/j.crphys.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive and long-term condition marked by a gradual decline in kidney function. CKD is prevalent among those with conditions such as diabetes mellitus, hypertension, and glomerulonephritis. Affecting over 10% of the global population, CKD stands as a significant cause of morbidity and mortality. Despite substantial advances in understanding CKD pathophysiology and management, there is still a need to explore novel mechanisms and potential therapeutic targets. Urotensin II (UII), a potent vasoactive peptide, has garnered attention for its possible role in the development and progression of CKD. The UII system consists of endogenous ligands UII and UII-related peptide (URP) and their receptor, UT. URP pathophysiology is understudied, but alterations in tissue expression levels of UII and UT and blood or urinary UII concentrations have been linked to cardiovascular and kidney dysfunctions, including systemic hypertension, chronic heart failure, glomerulonephritis, and diabetes. UII gene polymorphisms are associated with increased risk of diabetes. Pharmacological inhibition or genetic ablation of UT mitigated kidney and cardiovascular disease in rodents, making the UII system a potential target for slowing CKD progression. However, a deeper understanding of the UII system's cellular mechanisms in renal and extrarenal organs is essential for comprehending its role in CKD pathophysiology. This review explores the evolving connections between the UII system and CKD, addressing potential mechanisms, therapeutic implications, controversies, and unexplored concepts.
Collapse
Affiliation(s)
- Olugbenga S. Michael
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Raji Rajesh Lenin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kumar Abhiram Jha
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Fernández-Varo G, Jiménez W, Cable E, Ginès P, Harris G, Bukofzer S. Partial vasopressin 1a receptor agonism reduces portal hypertension and hyperaldosteronism and induces a powerful diuretic and natriuretic effect in rats with cirrhosis and ascites. Biomed Pharmacother 2023; 165:115116. [PMID: 37418980 DOI: 10.1016/j.biopha.2023.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
The vasopressin system has emerged as a therapeutic focus for lowering portal hypertension and reducing splanchnic vasodilation in patients with refractory ascites. Clinically available vasopressin agonists are limited by preferential selectivity for V1 receptors that also have steep concentration-response curves with potential risks of excess vasoconstriction and/or complete antidiuretic effects. OCE-205 is a novel, selective, partial V1a receptor agonist with mixed agonist/antagonist activity and no V2 receptor activation at therapeutic doses. We carried out two studies assessing the in vivo effects of OCE-205 in different rat models of cirrhosis and ascites. In a carbon tetrachloride rat cirrhosis model, OCE-205 administration produced a marked reduction in portal hypertension and hyperaldosteronism, along with robust diuretic and natriuretic effects. These effects were accompanied by marked decreases in ascites volume, with three of five animals experiencing total mobilization of ascites. There was no evidence of fluid overload or sodium or water retention, confirming OCE-205's lack of V2 receptor activity. In a second, corroborative study using a bile duct ligation rat model of ascites, OCE-205 produced significant decreases in ascites volume and body weight and a significant increase in urine volume versus vehicle. Urine sodium excretion increased significantly after the first administration of OCE-205 relative to vehicle; however, repeat administration over 5 days did not lead to hyponatremia. Thus, in separate in vivo models, the mixed agonist/antagonist OCE-205 demonstrated relevant and expected endpoint findings consistent with its known mechanism of action and in vitro pharmacology without apparent unwanted effects or nonspecific toxicities.
Collapse
Affiliation(s)
- Guillermo Fernández-Varo
- Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Wladimiro Jiménez
- Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Edward Cable
- Ferring Research Institute Inc., 4244 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | - Pere Ginès
- Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Geoff Harris
- Ocelot Bio, Inc., 12670 High Bluff Drive, San Diego, CA 92130, USA
| | - Stan Bukofzer
- Ocelot Bio, Inc., 12670 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
4
|
Billard E, Hébert TE, Chatenet D. EXPLORATION OF THE UROCONTRIN A SCAFFOLD YIELDS NEW UROTENSINERGIC SYSTEM ALLOSTERIC MODULATOR AND COMPETITIVE ANTAGONISTS. Biochem Pharmacol 2023; 211:115485. [PMID: 36889446 DOI: 10.1016/j.bcp.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
The urotensinergic system, involved in the development and/or progression of numerous pathological conditions, is composed of one G protein-coupled receptor (UT) and two endogenous ligands known as urotensin II (UII) and urotensin II-related peptide (URP). These two structurally related hormones, which exert common and divergent effects, are thought to play specific biological roles. In recent years, we have characterized an analog termed urocontrin A (UCA), i.e. [Pep4]URP, which is capable of discriminating the effects of UII from URP. Such an action could allow the delineation of the respective functions of these two endogenous ligands. In an effort to define the molecular determinants involved in this behavior and to improve the pharmacological profile of UCA, we introduced modifications from urantide, considered for some time as a lead compound for the development of UT antagonists, into UCA and assessed the binding, contractile activity and G protein signaling of these newly developed compounds. Our results show that UCA and its derivatives exert probe-dependent effects on UT antagonism, and we have further identified [Pen2, Pep4]URP as a Gq biased ligand with an insurmountable antagonism in our aortic ring contraction assay.
Collapse
Affiliation(s)
- Etienne Billard
- INRS - Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3A 1A3, Canada
| | - David Chatenet
- INRS - Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada.
| |
Collapse
|
5
|
Rodrigues SG, Mendoza YP, Bosch J. Investigational drugs in early clinical development for portal hypertension. Expert Opin Investig Drugs 2022; 31:825-842. [PMID: 35758843 DOI: 10.1080/13543784.2022.2095259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Advanced chronic liver disease is considered a reversible condition after removal of the primary aetiological factor. This has led to a paradigm shift in which portal hypertension (PH) is a reversible complication of cirrhosis. The pharmacologic management of PH is centered on finding targets to modify the natural history of cirrhosis and PH. AREAS COVERED This paper offers an overview of the use of pharmacological strategies in early clinical development that modify PH. Papers included were selected from searching clinical trials sites and PubMed from the last 10 years. EXPERT OPINION A paradigm shift has generated a new concept of PH in cirrhosis as a reversible complication of a potentially curable disease. Decreasing portal pressure to prevent decompensation and further complications of cirrhosis that may lead liver transplantation or death is a goal. Therapeutic strategies also aspire achieve total or partial regression of fibrosis thus eliminating the need for treatment or screening of PH.
Collapse
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.,Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Yuly P Mendoza
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.,Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland.,Graduate School for Health Sciences (GHS), University of Bern
| | - Jaime Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.,Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| |
Collapse
|
6
|
Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep 2021; 3:100316. [PMID: 34337369 PMCID: PMC8318926 DOI: 10.1016/j.jhepr.2021.100316] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Portal hypertension, defined as increased pressure in the portal vein, develops as a consequence of increased intrahepatic vascular resistance due to the dysregulation of liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), frequently arising from chronic liver diseases. Extrahepatic haemodynamic changes contribute to the aggravation of portal hypertension. The pathogenic complexity of portal hypertension and the unsuccessful translation of preclinical studies have impeded the development of effective therapeutics for patients with cirrhosis, while counteracting hepatic and extrahepatic mechanisms also pose a major obstacle to effective treatment. In this review article, we will discuss the following topics: i) cellular and molecular mechanisms of portal hypertension, focusing on dysregulation of LSECs, HSCs and hepatic microvascular thrombosis, as well as changes in the extrahepatic vasculature, since these are the major contributors to portal hypertension; ii) translational/clinical advances in our knowledge of portal hypertension; and iii) future directions.
Collapse
Key Words
- ACE2, angiogenesis-converting enzyme 2
- ACLF, acute-on-chronic liver failure
- AT1R, angiotensin II type I receptor
- CCL2, chemokine (C-C motif) ligand 2
- CCl4, carbon tetrachloride
- CLD, chronic liver disease
- CSPH, clinically significant portal hypertension
- Dll4, delta like canonical Notch ligand 4
- ECM, extracellular matrix
- EUS, endoscopic ultrasound
- FXR
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- HRS, hepatorenal syndrome
- HSC
- HSCs, hepatic stellate cells
- HVPG, hepatic venous pressure gradient
- Hsp90, heat shock protein 90
- JAK2, Janus kinase 2
- KO, knockout
- LSEC
- LSEC, liver sinusoidal endothelial cells
- MLCP, myosin light-chain phosphatase
- NET, neutrophil extracellular trap
- NO
- NO, nitric oxide
- NSBB
- NSBBs, non-selective beta blockers
- PDE, phosphodiesterase
- PDGF, platelet-derived growth factor
- PIGF, placental growth factor
- PKG, cGMP-dependent protein kinase
- Rho-kinase
- TIPS
- TIPS, transjugular intrahepatic portosystemic shunt
- VCAM1, vascular cell adhesion molecule 1
- VEGF
- VEGF, vascular endothelial growth factor
- angiogenesis
- eNOS, endothelial nitric oxide synthase
- fibrosis
- liver stiffness
- statins
- β-Arr2, β-arrestin 2
- β1-AR, β1-adrenergic receptor
- β2-AR, β2-adrenergic receptor
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure-EF Clif, Barcelona, Spain
| |
Collapse
|
7
|
Abstract
Cirrhosis is the fifth leading cause of death in adults. Advanced cirrhosis can cause significant portal hypertension (PH), which is responsible for many of the complications observed in patients with cirrhosis, such as varices. If portal pressure exceeds a certain threshold, the patient is at risk of developing life-threatening bleeding from varices. Variceal bleeding has a high incidence among patients with liver cirrhosis and carries a high risk of mortality and morbidity. The management of variceal bleeding is complex, often requiring a multidisciplinary approach involving pharmacological, endoscopic, and radiologic interventions. In terms of management, three stages can be considered: primary prophylaxis, active bleeding, and secondary prophylaxis. The main goal of primary and secondary prophylaxis is to prevent variceal bleeding. However, active variceal bleeding is a medical emergency that requires swift intervention to stop the bleeding and achieve durable hemostasis. We describe the pathophysiology of cirrhosis and PH to contextualize the formation of gastric and esophageal varices. We also discuss the currently available treatments and compare how they fare in each stage of clinical management, with a special focus on drugs that can prevent bleeding or assist in achieving hemostasis.
Collapse
|
8
|
Cremonese C, Schierwagen R, Uschner FE, Torres S, Tyc O, Ortiz C, Schulz M, Queck A, Kristiansen G, Bader M, Sauerbruch T, Weiskirchen R, Walther T, Trebicka J, Klein S. Short-Term Western Diet Aggravates Non-Alcoholic Fatty Liver Disease (NAFLD) With Portal Hypertension in TGR(mREN2)27 Rats. Int J Mol Sci 2020; 21:E3308. [PMID: 32392802 PMCID: PMC7246932 DOI: 10.3390/ijms21093308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is gaining in importance and is linked to obesity. Especially, the development of fibrosis and portal hypertension in NAFLD patients requires treatment. Transgenic TGR(mREN2)27 rats overexpressing mouse renin spontaneously develop NAFLD with portal hypertension but without obesity. This study investigated the additional role of obesity in this model on the development of portal hypertension and fibrosis. Obesity was induced in twelve-week old TGR(mREN2)27 rats after receiving Western diet (WD) for two or four weeks. Liver fibrosis was assessed using standard techniques. Hepatic expression of transforming growth factor-β1 (TGF-β1), collagen type Iα1, α-smooth muscle actin, and the macrophage markers Emr1, as well as the chemoattractant Ccl2, interleukin-1β (IL1β) and tumor necrosis factor-α (TNFα) were analyzed. Assessment of portal and systemic hemodynamics was performed using the colored microsphere technique. As expected, WD induced obesity and liver fibrosis as confirmed by Sirius Red and Oil Red O staining. The expression of the monocyte-macrophage markers, Emr1, Ccl2, IL1β and TNFα were increased during feeding of WD, indicating infiltration of macrophages into the liver, even though this increase was statistically not significant for the EGF module-containing mucin-like receptor (Emr1) mRNA expression levels. Of note, portal pressure increased with the duration of WD compared to animals that received a normal chow. Besides obesity, WD feeding increased systemic vascular resistance reflecting systemic endothelial and splanchnic vascular dysfunction. We conclude that transgenic TGR(mREN2)27 rats are a suitable model to investigate NAFLD development with liver fibrosis and portal hypertension. Tendency towards elevated expression of Emr1 is associated with macrophage activity point to a significant role of macrophages in NAFLD pathogenesis, probably due to a shift of the renin-angiotensin system towards a higher activation of the classical pathway. The hepatic injury induced by WD in TGR(mREN2)27 rats is suitable to evaluate different stages of fibrosis and portal hypertension in NAFLD with obesity.
Collapse
Affiliation(s)
- Carla Cremonese
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| | - Robert Schierwagen
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| | - Frank Erhard Uschner
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| | - Sandra Torres
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| | - Olaf Tyc
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| | - Cristina Ortiz
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| | - Martin Schulz
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| | - Alexander Queck
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| | - Glen Kristiansen
- Institute for Pathology, University of Bonn, 53127 Bonn, Germany;
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany;
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital of Bonn, 53127 Bonn, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany;
| | - Thomas Walther
- Department of Pharmacology and Therapeutics, University College Cork, T12 YN60 Cork, Ireland;
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- European Foundation for the Study of Chronic Liver Failure, 08021 Barcelona, Spain
- Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
| | - Sabine Klein
- Department of Internal Medicine I, Goethe University Frankfurt, 60323 Frankfurt, Germany; (C.C.); (R.S.); (F.E.U.); (S.T.); (O.T.); (C.O.); (M.S.); (A.Q.); (S.K.)
| |
Collapse
|
9
|
Abstract
Terlipressin, somatostatin, or octreotide are recommended as pharmacologic treatment of acute variceal hemorrhage. Nonselective β-blockers decrease the risk of variceal hemorrhage and hepatic decompensation, particularly in those 30% to 40% of patients with good hemodynamic response. Carvedilol, statins, and anticoagulants are promising agents in the management of portal hypertension. Recent advances in the pharmacologic treatment of portal hypertension have mainly focused on modifying an increased intrahepatic resistance through nitric oxide and/or modulation of vasoactive substances. Several novel pharmacologic agents for portal hypertension are being evaluated in humans.
Collapse
Affiliation(s)
- Chalermrat Bunchorntavakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Rajavithi Hospital, College of Medicine, Rangsit University, Rajavithi Road, Ratchathewi, Bangkok 10400, Thailand; Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 2 Dulles, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania, 2 Dulles, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Zhang B, Ji LH, Zhang CG, Zhao G, Wu ZY. Gender differences in vascular reactivity of mesenteric arterioles in portal hypertensive and non-portal hypertensive rats. World J Gastroenterol 2019; 25:5953-5960. [PMID: 31660032 PMCID: PMC6815798 DOI: 10.3748/wjg.v25.i39.5953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Portal hypertension (PHT) is primarily caused by an increase in resistance to portal outflow and secondarily by an increase in splanchnic blood flow. Vascular hyporeactivity both in systemic circulation and in the mesenteric artery plays a role in the hyperdynamic circulatory syndrome.
AIM To explore gender differences and the role of endogenous sex hormones in PHT and vascular reactivity of mesenteric arterioles in rats.
METHODS Cirrhosis and PHT were established by subcutaneous injection of carbon tetrachloride (CCl4) in both male and female integral and castrated rats (ovariectomized [OVX] in female rats, orchiectomy [ORX] in male rats). The third-order branch of the mensenteric artery was divided and used to measure vascular reactivity to vasoconstrictors.
RESULTS No significant difference in portal pressure was observed between integral and castrated male PHT rats (15.2 ± 2.1 mmHg vs 16.7 ± 2.7 mmHg, P > 0.05). The portal pressure in integral female PHT rats was lower than that in OVX female PHT rats (12.7 ± 2.7 mmHg vs 16.5 ± 2.4 mmHg, P < 0.05). In PHT rats, the concentration response curves of the mesenteric arterioles to norepinephrine were shifted to the right, and the maximal responses (Emax) values were decreased and effective concentrations causing half maximum responses (EC50) values were increased, compared to those of non-PHT rats, both in male and female rats. Compared to non-PHT integral male rats, the sensitivity of the mesenteric arterioles of non-PHT ORX male rats to norepinephrine was decreased (P > 0.05). However, there was no difference between integral and ORX male rats with PHT. In integral female PHT rats, the concentration response curves were shifted to the left (P < 0.05), and the Emax values were increased and EC50 values were decreased compared to OVX female PHT rats.
CONCLUSION Clear gender differences were observed in mesenteric vascular reactivity in CCl4-induced cirrhotic and PHT rats. Conservation of estrogen can retain the sensitivity of the mesenteric arterioles to vasoconstrictors and has a protective effect on splanchnic vascular function in PHT.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin-Hua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Cheng-Gang Zhang
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi-Yong Wu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
11
|
Nassour H, Iddir M, Chatenet D. Towards Targeting the Urotensinergic System: Overview and Challenges. Trends Pharmacol Sci 2019; 40:725-734. [DOI: 10.1016/j.tips.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
|
12
|
Pereira-Castro J, Brás-Silva C, Fontes-Sousa AP. Novel insights into the role of urotensin II in cardiovascular disease. Drug Discov Today 2019; 24:2170-2180. [PMID: 31430542 DOI: 10.1016/j.drudis.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
Abstract
Urotensin II (UII) is a vasoactive peptide that interacts with a specific receptor called the UT receptor. UII has been implicated in cardiovascular regulation, with promising therapeutic applications based on UT receptor antagonism. The endogenous ligands of the UT receptor: UII and urotensin-related peptide (URP), differentially bind and activate this receptor. Also, the receptor localization is not restricted to the plasma membrane, possibly inducing different physiological responses that could support its inconsistent, but potent, vasoactive activity. These properties could explain the disappointing outcomes in clinical studies, in contrast to the positive preclinical results regarding heart failure, pulmonary hypertension, atherosclerosis and diabetes mellitus. These aspects should be considered in future investigations to a better comprehension of the role of UII as a potential therapeutic target.
Collapse
Affiliation(s)
- João Pereira-Castro
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, UnIC - Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
13
|
Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats. Front Med 2019; 13:398-408. [DOI: 10.1007/s11684-019-0689-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
|
14
|
Shenoda B, Boselli J. Vascular syndromes in liver cirrhosis. Clin J Gastroenterol 2019; 12:387-397. [PMID: 30980261 DOI: 10.1007/s12328-019-00956-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Liver cirrhosis is associated with multiple vascular syndromes affecting almost all body systems. Many of these syndromes are directly related to impaired liver function and sometimes reversible after liver transplantation while others arise secondary to portal hypertension and ascites. Altered expression of angiogenic and vasoactive compounds (most importantly nitric oxide), endothelial dysfunction, dysregulated neurohormonal control, and systemic inflammatory state play differential roles in mediating homeostatic instability and abnormal vasogenic response. Important vascular features encountered in liver disease include portal hypertension, splanchnic overflow, abnormal angiogenesis and shunts, portopulmonary syndrome, hepatopulmonary syndrome, and systemic hyperdynamic circulation. Redistribution of effective circulatory volume deviating from vital organs and pooling in splanchnic circulation is also encountered in liver patients which may lead to devastating outcomes as hepatorenal syndrome. Etiologically, vascular syndromes are not isolated phenomena and vascular dysfunction in one system may lead to the development of another in a different system. This review focuses on understanding the pathophysiological factors underlying vascular syndromes related to chronic liver disease and the potential links among them. Many of these syndromes are associated with high mortality, thus it is crucial to look for early biomarkers for these syndromes and develop novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Botros Shenoda
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Joseph Boselli
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA. .,Drexel Internal Medicine, 205 N. Broad Street, Philadelphia, 19107, USA.
| |
Collapse
|
15
|
Rho-kinase inhibitor coupled to peptide-modified albumin carrier reduces portal pressure and increases renal perfusion in cirrhotic rats. Sci Rep 2019; 9:2256. [PMID: 30783172 PMCID: PMC6381202 DOI: 10.1038/s41598-019-38678-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Rho-kinase (ROCK) activation in hepatic stellate cells (HSC) is a key mechanism promoting liver fibrosis and portal hypertension (PTH). Specific delivery of ROCK-inhibitor Y-27632 (Y27) to HSC targeting mannose-6-phosphate-receptors reduces portal pressure and fibrogenesis. In decompensated cirrhosis, presence of ascites is associated with reduced renal perfusion. Since in cirrhosis, platelet-derived growth factor receptor beta (PDGFRβ) is upregulated in the liver as well as the kidney, this study coupled Y27 to human serum albumin (HSA) substituted with PDGFRβ-recognizing peptides (pPB), and investigated its effect on PTH in cirrhotic rats. In vitro collagen contraction assays tested biological activity on LX2 cells. Hemodynamics were analyzed in BDL and CCl4 cirrhotic rats 3 h, 6 h and 24 h after i.v. administration of Y27pPBHSA (0.5/1 mg/kg b.w). Phosphorylation of moesin and myosin light chain (MLC) assessed ROCK activity in liver, femoral muscle, mesenteric artery, kidney and heart. Three Y27 molecules were coupled to pPBHSA as confirmed by HPLC/MS, which was sufficient to relax LX2 cells. In vivo, Y27pPBHSA-treated rats exhibited lower portal pressure, hepatic vascular resistance without effect on systemic vascular resistance, but a tendency towards lower cardiac output compared to non-treated cirrhotic rats. Y27pPBHSA reduced intrahepatic resistance by reduction of phosphorylation of moesin and MLC in Y27pPBHSA-treated cirrhotic rats. Y27pPBHSA was found in the liver of rats up to 6 hours after its injection, in the HSC demonstrated by double-immunostainings. Interestingly, Y27pPBHSA increased renal arterial flow over time combined with an antifibrotic effect as shown by decreased renal acta2 and col1a1 mRNA expression. Therefore, targeting the ROCK inhibitor Y27 to PDGFRβ decreases portal pressure with potential beneficial effects in the kidney. This unique approach should be tested in human cirrhosis.
Collapse
|
16
|
Vilaseca M, Guixé-Muntet S, Fernández-Iglesias A, Gracia-Sancho J. Advances in therapeutic options for portal hypertension. Therap Adv Gastroenterol 2018; 11:1756284818811294. [PMID: 30505350 PMCID: PMC6256317 DOI: 10.1177/1756284818811294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Portal hypertension represents one of the major clinical consequences of chronic liver disease, having a deep impact on patients' prognosis and survival. Its pathophysiology defines a pathological increase in the intrahepatic vascular resistance as the primary factor in its development, being subsequently aggravated by a paradoxical increase in portal blood inflow. Although extensive preclinical and clinical research in the field has been developed in recent decades, no effective treatment targeting its primary mechanism has been defined. The present review critically summarizes the current knowledge in portal hypertension therapeutics, focusing on those strategies driven by the disease pathophysiology and underlying cellular mechanisms.
Collapse
Affiliation(s)
- Marina Vilaseca
- Hepatic Hemodynamic Laboratory, IDIBAPS
Biomedical Research Institute, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Department of Biomedical Research, University of
Bern, Bern, Switzerland
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona
Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute,
CIBEREHD, Rosselló 149, 4th floor, 08036 Barcelona, Spain
| |
Collapse
|
17
|
Beneficial Effects of the Peroxisome Proliferator-Activated Receptor α/γ Agonist Aleglitazar on Progressive Hepatic and Splanchnic Abnormalities in Cirrhotic Rats with Portal Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1608-1624. [DOI: 10.1016/j.ajpath.2018.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
|
18
|
Abstract
Portal hypertension is one cause and a part of a dynamic process triggered by chronic liver disease, mostly induced by alcohol or incorrect nutrition and less often by viral infections and autoimmune or genetic disease. Adequate staging - continuously modified by current knowledge - should guide the prevention and treatment of portal hypertension with defined endpoints. The main goals are interruption of etiology and prevention of complications followed, if necessary, by treatment of these. For the past few decades, shunts, mostly as intrahepatic stent bypass between portal and hepatic vein branches, have played an important role in the prevention of recurrent bleeding and ascites formation, although their impact on survival remains ambiguous. Systemic drugs, such as non-selective beta-blockers, statins, or antibiotics, reduce portal hypertension by decreasing intrahepatic resistance or portal tributary blood flow or by blunting inflammatory stimuli inside and outside the liver. Here, the interactions among the gut, liver, and brain are increasingly examined for new therapeutic options. There is no general panacea. The interruption of initiating factors is key. If not possible or if not possible in a timely manner, combined approaches should receive more attention before considering liver transplantation.
Collapse
Affiliation(s)
| | | | - Jonel Trebicka
- Department of Internal Medicine, University of Bonn, Bonn, Germany.,European Foundation for Study of Chronic Liver Failure, Barcelona, Spain
| |
Collapse
|
19
|
Schwabl P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf) 2017; 5:90-103. [PMID: 28533907 PMCID: PMC5421460 DOI: 10.1093/gastro/gox011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective β-blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this context and address potentially interesting therapeutic options for the future.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Snowdon VK, Lachlan NJ, Hoy AM, Hadoke PWF, Semple SI, Patel D, Mungall W, Kendall TJ, Thomson A, Lennen RJ, Jansen MA, Moran CM, Pellicoro A, Ramachandran P, Shaw I, Aucott RL, Severin T, Saini R, Pak J, Yates D, Dongre N, Duffield JS, Webb DJ, Iredale JP, Hayes PC, Fallowfield JA. Serelaxin as a potential treatment for renal dysfunction in cirrhosis: Preclinical evaluation and results of a randomized phase 2 trial. PLoS Med 2017; 14:e1002248. [PMID: 28245243 PMCID: PMC5330452 DOI: 10.1371/journal.pmed.1002248] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/02/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic liver scarring from any cause leads to cirrhosis, portal hypertension, and a progressive decline in renal blood flow and renal function. Extreme renal vasoconstriction characterizes hepatorenal syndrome, a functional and potentially reversible form of acute kidney injury in patients with advanced cirrhosis, but current therapy with systemic vasoconstrictors is ineffective in a substantial proportion of patients and is limited by ischemic adverse events. Serelaxin (recombinant human relaxin-2) is a peptide molecule with anti-fibrotic and vasoprotective properties that binds to relaxin family peptide receptor-1 (RXFP1) and has been shown to increase renal perfusion in healthy human volunteers. We hypothesized that serelaxin could ameliorate renal vasoconstriction and renal dysfunction in patients with cirrhosis and portal hypertension. METHODS AND FINDINGS To establish preclinical proof of concept, we developed two independent rat models of cirrhosis that were characterized by progressive reduction in renal blood flow and glomerular filtration rate and showed evidence of renal endothelial dysfunction. We then set out to further explore and validate our hypothesis in a phase 2 randomized open-label parallel-group study in male and female patients with alcohol-related cirrhosis and portal hypertension. Forty patients were randomized 1:1 to treatment with serelaxin intravenous (i.v.) infusion (for 60 min at 80 μg/kg/d and then 60 min at 30 μg/kg/d) or terlipressin (single 2-mg i.v. bolus), and the regional hemodynamic effects were quantified by phase contrast magnetic resonance angiography at baseline and after 120 min. The primary endpoint was the change from baseline in total renal artery blood flow. Therapeutic targeting of renal vasoconstriction with serelaxin in the rat models increased kidney perfusion, oxygenation, and function through reduction in renal vascular resistance, reversal of endothelial dysfunction, and increased activation of the AKT/eNOS/NO signaling pathway in the kidney. In the randomized clinical study, infusion of serelaxin for 120 min increased total renal arterial blood flow by 65% (95% CI 40%, 95%; p < 0.001) from baseline. Administration of serelaxin was safe and well tolerated, with no detrimental effect on systemic blood pressure or hepatic perfusion. The clinical study's main limitations were the relatively small sample size and stable, well-compensated population. CONCLUSIONS Our mechanistic findings in rat models and exploratory study in human cirrhosis suggest the therapeutic potential of selective renal vasodilation using serelaxin as a new treatment for renal dysfunction in cirrhosis, although further validation in patients with more advanced cirrhosis and renal dysfunction is required. TRIAL REGISTRATION ClinicalTrials.gov NCT01640964.
Collapse
Affiliation(s)
- Victoria K Snowdon
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil J Lachlan
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna M Hoy
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick W F Hadoke
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott I Semple
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Dilip Patel
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Will Mungall
- Biological Services, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy J Kendall
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Thomson
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross J Lennen
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Maurits A Jansen
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Carmel M Moran
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonella Pellicoro
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Isaac Shaw
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca L Aucott
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Rajnish Saini
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, United States of America
| | - Judy Pak
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, United States of America
| | - Denise Yates
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | | | - Jeremy S Duffield
- Division of Nephrology and Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - David J Webb
- British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - John P Iredale
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter C Hayes
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan A Fallowfield
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Klein S, Rick J, Lehmann J, Schierwagen R, Schierwagen IG, Verbeke L, Hittatiya K, Uschner FE, Manekeller S, Strassburg CP, Wagner KU, Sayeski PP, Wolf D, Laleman W, Sauerbruch T, Trebicka J. Janus-kinase-2 relates directly to portal hypertension and to complications in rodent and human cirrhosis. Gut 2017; 66:145-155. [PMID: 26385087 DOI: 10.1136/gutjnl-2015-309600] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Angiotensin II (AngII) activates via angiotensin-II-type-I receptor (AT1R) Janus-kinase-2 (JAK2)/Arhgef1 pathway and subsequently RHOA/Rho-kinase (ROCK), which induces experimental and probably human liver fibrosis. This study investigated the relationship of JAK2 to experimental and human portal hypertension. DESIGN The mRNA and protein levels of JAK2/ARHGEF1 signalling components were analysed in 49 human liver samples and correlated with clinical parameters of portal hypertension in these patients. Correspondingly, liver fibrosis (bile duct ligation (BDL), carbon tetrachloride (CCl4)) was induced in floxed-Jak2 knock-out mice with SM22-promotor (SM22Cre+-Jak2f/f). Transcription and contraction of primary myofibroblasts from healthy and fibrotic mice and rats were analysed. In two different cirrhosis models (BDL, CCl4) in rats, the acute haemodynamic effect of the JAK2 inhibitor AG490 was assessed using microsphere technique and isolated liver perfusion experiments. RESULTS Hepatic transcription of JAK2/ARHGEF1 pathway components was upregulated in liver cirrhosis dependent on aetiology, severity and complications of human liver cirrhosis (Model for End-stage Liver disease (MELD) score, Child score as well as ascites, high-risk varices, spontaneous bacterial peritonitis). SM22Cre+- Jak2f/f mice lacking Jak2 developed less fibrosis and lower portal pressure (PP) than SM22Cre--Jak2f/f upon fibrosis induction. Myofibroblasts from SM22Cre+-Jak2f/f mice expressed less collagen and profibrotic markers upon activation. AG490 relaxed activated hepatic stellate cells in vitro. In cirrhotic rats, AG490 decreased hepatic vascular resistance and consequently the PP in vivo and in situ. CONCLUSIONS Hepatic JAK2/ARHGEF1/ROCK expression is associated with portal hypertension and decompensation in human cirrhosis. The deletion of Jak2 in myofibroblasts attenuated experimental fibrosis and acute inhibition of JAK2 decreased PP. Thus, JAK2 inhibitors, already in clinical use for other indications, might be a new approach to treat cirrhosis with portal hypertension.
Collapse
Affiliation(s)
- Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Johanna Rick
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jennifer Lehmann
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | - Len Verbeke
- Department of Liver and Biliopancreatic Disorders, University of Leuven, Leuven, Belgium
| | | | | | - Steffen Manekeller
- Department of General and Visceral Surgery, University of Bonn, Bonn, Germany
| | | | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Dominik Wolf
- Medical Clinic III, Oncology, Hematology and Rheumatology, University of Bonn, Bonn, Germany
| | - Wim Laleman
- Department of Liver and Biliopancreatic Disorders, University of Leuven, Leuven, Belgium
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Klein S, Schierwagen R, Uschner FE, Trebicka J. Mouse and Rat Models of Induction of Hepatic Fibrosis and Assessment of Portal Hypertension. Methods Mol Biol 2017; 1627:91-116. [PMID: 28836197 DOI: 10.1007/978-1-4939-7113-8_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Portal hypertension either develops due to progressive liver fibrosis or is the consequence of vascular liver diseases such as portal vein thrombosis or non-cirrhotic portal hypertension. This chapter focuses on different rodent models of liver fibrosis with portal hypertension and also in few non-cirrhotic portal hypertension models. Importantly, after the development of portal hypertension, the proper assessment of drug effects in the portal and systemic circulation should be discussed. The last part of the chapter is dedicated in these techniques to assess the in vivo hemodynamics and the ex vivo techniques of the isolated liver perfusion and vascular contractility.
Collapse
Affiliation(s)
- Sabine Klein
- Laboratory for Liver Fibrosis and Portal Hypertension, Department of Internal Medicine I, University of Clinic Bonn, Bonn, Germany
| | - Robert Schierwagen
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | | | - Jonel Trebicka
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| |
Collapse
|
23
|
Schierwagen R, Maybüchen L, Hittatiya K, Klein S, Uschner FE, Braga TT, Franklin BS, Nickenig G, Strassburg CP, Plat J, Sauerbruch T, Latz E, Lütjohann D, Zimmer S, Trebicka J. Statins improve NASH via inhibition of RhoA and Ras. Am J Physiol Gastrointest Liver Physiol 2016; 311:G724-G733. [PMID: 27634010 DOI: 10.1152/ajpgi.00063.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/18/2016] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH), especially as part of the metabolic syndrome (MS), is an increasing burden in Western countries. Statins are already used in MS and seem to be beneficial in liver diseases. The aim of this study was to investigate the molecular mechanisms underlying pleiotropic effects on small GTPases of statins in NASH. NASH within MS was induced in 12-wk-old apoE-/- mice after 7 wk of Western diet (NASH mice). Small GTPases were inhibited by activated simvastatin (SMV), NSC23766 (NSC), or Clostridium sordellii lethal toxin (LT) by using subcutaneous osmotic minipumps. Hepatic steatosis, inflammation, and fibrosis were assessed by histology, Western blot, and RT-PCR measurements of cholesterol and hydroxyproline content. SMV treatment significantly decreased hepatic inflammation and fibrosis, but had no significant effect on steatosis and hepatic cholesterol content in NASH. SMV blunted fibrosis due to inhibition of both RhoA/Rho kinase and Ras/ERK pathways. Interestingly, inhibition of RAC1 and Ras (by LT) failed to decrease fibrosis to the same extent. Inhibition of RAC1 (by NSC) showed no significant effect at all. Inhibition of RhoA and Ras downstream signaling by statins is responsible for the beneficial hepatic effects in NASH.
Collapse
Affiliation(s)
| | - Lara Maybüchen
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Frank E Uschner
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Tarcio T Braga
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | | | - Georg Nickenig
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | | | - Jogchum Plat
- Department of Human Biology, University of Maastricht, Maastricht, The Netherlands
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany; and
| | | | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany; .,Faculty of Health Sciences, Odense University Hospital, Odense, Denmark
| |
Collapse
|
24
|
Klein S, Hinüber C, Hittatiya K, Schierwagen R, Uschner FE, Strassburg CP, Fischer HP, Spengler U, Trebicka J. Novel Rat Model of Repetitive Portal Venous Embolization Mimicking Human Non-Cirrhotic Idiopathic Portal Hypertension. PLoS One 2016; 11:e0162144. [PMID: 27589391 PMCID: PMC5010239 DOI: 10.1371/journal.pone.0162144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/17/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-cirrhotic idiopathic portal hypertension (NCIPH) is characterized by splenomegaly, anemia and portal hypertension, while liver function is preserved. However, no animal models have been established yet. This study assessed a rat model of NCIPH and characterized the hemodynamics, and compared it to human NCIPH. METHODS Portal pressure (PP) was measured invasively and coloured microspheres were injected in the ileocecal vein in rats. This procedure was performed weekly for 3 weeks (weekly embolization). Rats without and with single embolization served as controls. After four weeks (one week after last embolization), hemodynamics were investigated, hepatic fibrosis and accumulation of myofibroblasts were analysed. General characteristics, laboratory analyses and liver histology were collected in patients with NCIPH. RESULTS Weekly embolization induced a hyperdynamic circulation, with increased PP. The mesenteric flow and hepatic hydroxyproline content was significantly higher in weekly embolized compared to single embolized rats (mesenteric flow +54.1%, hydroxyproline +41.7%). Mesenteric blood flow and shunt volumes increased, whereas splanchnic vascular resistance was decreased in the weekly embolization group. Fibrotic markers αSMA and Desmin were upregulated in weekly embolized rats. DISCUSSION This study establishes a model using repetitive embolization via portal veins, comparable with human NCIPH and may serve to test new therapies.
Collapse
Affiliation(s)
- Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Christian Hinüber
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
25
|
Sevelsted Møller L, Fialla AD, Schierwagen R, Biagini M, Liedtke C, Laleman W, Klein S, Reul W, Koch Hansen L, Rabjerg M, Singh V, Surra J, Osada J, Reinehr R, de Muckadell OBS, Köhler R, Trebicka J. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury. Sci Rep 2016; 6:28770. [PMID: 27354175 PMCID: PMC4926059 DOI: 10.1038/srep28770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury.
Collapse
Affiliation(s)
- Linda Sevelsted Møller
- Department of Medical Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Annette Dam Fialla
- Department of Medical Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Matteo Biagini
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Wim Laleman
- Department of Liver and Biliopancreatic disorders, University of Leuven, Leuven, Belgium
| | - Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Winfried Reul
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Lars Koch Hansen
- Department of Medical Gastroenterology and Hepatology, Vejle Hospital, Vejle, Denmark
| | - Maj Rabjerg
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Vikrant Singh
- Department of Pharmacology, University of California, Davis, California, USA
| | - Joaquin Surra
- Departament de Producción Animal, Escuela Politécnica Superior, Huesca, Spain
| | - Jesus Osada
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza-CIBEROBN, Zaragoza, Spain
| | - Roland Reinehr
- Elbe-Elster Klinikum, Krankenhaus Herzberg, Herzberg, Germany
| | | | - Ralf Köhler
- Aragon Institute of Health Science I CS, Zaragoza, Spain
| | - Jonel Trebicka
- Department of Medical Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark.,Department of Internal Medicine I, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Assessment of response to beta-blockers by expression of βArr2 and RhoA/ROCK2 in antrum mucosa in cirrhotic patients. J Hepatol 2016; 64:1265-73. [PMID: 26827791 DOI: 10.1016/j.jhep.2016.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/30/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-selective beta-blockers (NSBB) are first choice for prevention of variceal bleeding. But possible deleterious effects in refractory ascites and frequent non-response are clinical drawbacks. Since levels of vasoactive proteins in antrum mucosa reflect vascular dysfunction in cirrhosis, these expression levels might also reflect hemodynamic response to NSBB. METHODS Biopsies from the gastric and duodenal mucosa of 25 patients with cirrhosis were collected and the hepatic venous pressure gradient (HVPG) was measured before and after an acute propranolol challenge. Transcription and protein expression of Ras homolog family member A (RhoA), Rho-kinase (ROCK)2, beta-arrestin2 (βArr2), endothelial nitric oxide synthase (eNOS) and the phosphorylation of downstream effectors VASP and moesin were analyzed using PCR and Western blot. Further 21 patients on NSBB were evaluated on their follow up for events of variceal bleeding defined as non-response. RESULTS Ten patients showed HVPG <10mmHg, further seven patients showed significant hemodynamic response to NSBB, whereas eight patients were non-responders. The mucosal transcription of vasoactive proteins was higher in antrum mucosa compared to corpus and duodenum. The transcriptional levels of vasoactive proteins were higher in patients with HVPG >10mmHg and HVPG >16mmHg. Interestingly, mRNA levels of RhoA and ROCK2 were lower in patients with large varices at endoscopy. Moreover, RhoA and ROCK2 transcription correlated with the decrease of HVPG after acute NSBB challenge. Finally, acute and long-term non-responders showed lower expression of βArr2 in antrum mucosa. CONCLUSION This study shows for the first time that the expression of βArr2 in antrum mucosa biopsies might reflect the hemodynamic response to NSBB and their long-term protective effect. This finding might offer an easy approach at upper endoscopy to facilitate the decision to treat with NSBB if varices are present.
Collapse
|
27
|
Zhang CG, Zhang B, Deng WS, Duan M, Chen W, Wu ZY. Role of estrogen receptor β selective agonist in ameliorating portal hypertension in rats with CCl 4-induced liver cirrhosis. World J Gastroenterol 2016; 22:4484-4500. [PMID: 27182159 PMCID: PMC4858631 DOI: 10.3748/wjg.v22.i18.4484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/27/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of diarylpropionitrile (DPN), a selective agonist of estrogen receptor β (ERβ), in liver cirrhosis with portal hypertension (PHT) and isolated hepatic stellate cells (HSCs).
METHODS: Female Sprague-Dawley rats were ovariectomized (OVX), and liver cirrhosis with PHT was induced by CCl4 injection. DPN and PHTPP, the selective ERβ agonist and antagonist, were used as drug interventions. Liver fibrosis was assessed by hematoxylin and eosin (HE) and Masson’s trichrome staining and by analyzing smooth muscle actin expression. Hemodynamic parameters were determined in vivo using colored microspheres technique. Protein expression and phosphorylation were determined by immunohistochemical staining and Western blot analysis. Messenger RNA levels were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Collagen gel contraction assay was performed using gel lattices containing HSCs treated with DPN, PHTPP, or Y-27632 prior to ET-1 addition.
RESULTS: Treatment with DPN in vivo greatly lowered portal pressure and improved hemodynamic parameters without affecting mean arterial pressure, which was associated with the attenuation of liver fibrosis and intrahepatic vascular resistance (IHVR). In CCl4-treated rat livers, DPN significantly decreased the expression of RhoA and ROCK II, and even suppressed ROCK II activity. Moreover, DPN remarkedly increased the levels of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS, and promoted the activities of protein kinase G (PKG), which is an NO effector in the liver. Furthermore, DPN reduced the contractility of activated HSCs in the 3-dimensional stress-relaxed collagen lattices, and decreased the ROCK II activity in activated HSCs. Finally, in vivo/in vitro experiments demonstrated that MLC activity was inhibited by DPN.
CONCLUSION: For OVX rats with liver cirrhosis, DPN suppressed liver RhoA/ROCK signal, facilitated NO/PKG pathways, and decreased IHVR, giving rise to reduced portal pressure. Therefore, DPN represents a relevant treatment choice against PHT in cirrhotic patients, especially postmenopausal women.
Collapse
|
28
|
Choi BR, Soni KK, Zhang LT, Lee SW, So I, Kim HK, Park JK. Effect of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid on the intraurethral pressure in a rat model of benign prostatic hyperplasia. Int J Urol 2015; 23:259-65. [PMID: 26646436 DOI: 10.1111/iju.13018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the effect of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid, a new benzofuroindole derivative, on the intraurethral pressure in a rat model of benign prostatic hyperplasia. METHODS Benign prostatic hyperplasia was induced by testosterone and 17β-estradiol, which were administered intramuscularly once a day for 12 weeks. The effects of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid and tamsulosin on the intraurethral pressure induced by the electrostimulation of hypogastric nerves after a single intravenous injection of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid (10 mg/kg) or tamsulosin (10 μg/kg) were evaluated in a benign prostatic hyperplasia model. The electrostimulation-induced intraurethral pressure was measured just before and after the injection of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid. Bodyweight and genitourinary organ weights were recorded, and serums and tissues were subjected to hormone assays and histopathology. In addition, the expression of α1-adrenoceptors in the prostate was measured by western blotting. RESULTS The benign prostatic hyperplasia groups showed increased prostatic index, increased concentrations of testosterone, free testosterone and estradiol in serum, and increased epithelial thickness of the prostate. An injection of 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid or tamsulosin significantly inhibited the elevation of electrostimulation-induced intraurethral pressure. In addition, 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid did not cause a significant change in the blood pressure compared with tamsulosin. While the benign prostatic hyperplasia group showed increased the expression of α1-adrenoceptors, the 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid or tamsulosin injection into a rat model of benign prostatic hyperplasia decreased the expression of α1-adrenoceptors. CONCLUSIONS These findings show that 4-chloro-7-trifluoromethyl-10H-benzo[4,5]furo[3,2-b]indole-1-carboxylic acid might be beneficial for lowering the intraurethral pressure associated with benign prostatic hyperplasia, and it could represent a therapeutic option for benign prostatic hyperplasia patients.
Collapse
Affiliation(s)
- Bo Ram Choi
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| | - Kiran Kumar Soni
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| | - Li Tao Zhang
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Kyung Kim
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| | - Jong Kwan Park
- Department of Urology, Chonbuk National University and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University, Jeonju, Korea
| |
Collapse
|
29
|
Görtzen J, Schierwagen R, Bierwolf J, Klein S, Uschner FE, van der Ven PF, Fürst DO, Strassburg CP, Laleman W, Pollok JM, Trebicka J. Interplay of Matrix Stiffness and c-SRC in Hepatic Fibrosis. Front Physiol 2015; 6:359. [PMID: 26696895 PMCID: PMC4667086 DOI: 10.3389/fphys.2015.00359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction: In liver fibrosis activation of hepatic stellate cells (HSC) comprises phenotypical change into profibrotic and myofibroplastic cells with increased contraction and secretion of extracellular matrix (ECM) proteins. The small GTPase RhoA orchestrates cytoskeleton formation, migration, and mobility via non-receptor tyrosine-protein kinase c-SRC (cellular sarcoma) in different cells. Furthermore, RhoA and its downstream effector Rho-kinase also play a crucial role in hepatic stellate cells and hepatic fibrogenesis. Matrix stiffness promotes HSC activation via cytoskeleton modulation. This study investigated the interaction of c-SRC and RhoA under different matrix stiffness conditions. Methods: Liver fibrosis was induced in rats using bile duct ligation (BDL), thioacetamide (TAA) or carbon tetrachloride (CCl4) models. mRNA levels of albumin, PDGF-R, RHOA, COL1A1, and αSMA were analyzed via qRT-PCR. Western Blots using phospho-specific antibodies against p-c-SRC418 and p-c-SRC530 analyzed the levels of activating and inactivating c-SRC, respectively. LX2 cells and hepatocytes were cultured on acrylamide gels of 1 and 12 kPa or on plastic to mimic non-fibrotic, fibrotic, or cirrhotic environments then exposed to SRC-inhibitor PP2. Overexpression of RhoA was performed by transfection using RhoA-plasmids. Additionally, samples from cirrhotic patients and controls were collected at liver transplantations and tumor resections were analyzed for RhoA and c-SRC protein expression by Western Blot. Results: Transcription of albumin and RhoA was decreased, whereas transcription and activation of c-SRC was increased in hepatocytes cultured on 12 kPa compared to 1 kPa gels. LX2 cells cultured on 12 kPa gels showed upregulation of RHOA, COL1A1, and αSMA mRNA levels. Inhibition of c-SRC by PP2 in LX2 cells led to an increase in COL1A1 and αSMA most prominently in 12 kPa gels. In LX2 cells with RhoA overexpression, c-SRC inhibition by PP2 failed to improve fibrosis. RhoA expression was significantly elevated in human and experimental liver fibrosis, while c-SRC was inactivated. Conclusions: This study shows that c-SRC is inactive in activated myofibroblast-like HSC in liver cirrhosis. Inactivation of c-SRC is mediated by a crosstalk with RhoA upon hepatic stellate cell activation and fibrosis progression.
Collapse
Affiliation(s)
- Jan Görtzen
- Department of Internal Medicine I, University of Bonn Bonn, Germany
| | | | - Jeanette Bierwolf
- Department of General, Visceral, Thoracic, and Vascular Surgery, University of Bonn Bonn, Germany
| | - Sabine Klein
- Department of Internal Medicine I, University of Bonn Bonn, Germany
| | - Frank E Uschner
- Department of Internal Medicine I, University of Bonn Bonn, Germany
| | - Peter F van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn Bonn, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn Bonn, Germany
| | | | - Wim Laleman
- Department of Internal Medicine, University Hospital Gasthuisberg Leuven, Belgium
| | - Jörg-Matthias Pollok
- Department of General, Visceral, Thoracic, and Vascular Surgery, University of Bonn Bonn, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn Bonn, Germany ; Faculty of Health Sciences, University of Southern Denmark Odense, Denmark
| |
Collapse
|
30
|
Hartl J, Dietrich P, Moleda L, Müller-Schilling M, Wiest R. Neuropeptide Y restores non-receptor-mediated vasoconstrictive action in superior mesenteric arteries in portal hypertension. Liver Int 2015; 35:2556-63. [PMID: 26010514 DOI: 10.1111/liv.12874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/15/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Vascular hyporeactivity to vasoconstrictors contributes to splanchnic arterial vasodilatation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY), a sympathetic cotransmitter, has been shown to improve adrenergic vascular contractility in portal hypertensive rats and markedly attenuate hyperdynamic circulation. To further characterize the NPY-effects in portal hypertension, we investigated its role for non-receptor-mediated vasoconstriction in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham-operated rats. METHODS Ex vivo SMA perfusion of PVL and sham rats was used to analyse the effects of NPY on pressure response to non-receptor-mediated vasoconstriction. Dose-response curves to KCl (30-300 mM) were used to bypass G protein-coupled receptor mechanisms. Potential involvement of the cyclooxygenase-pathway was tested by non-selective cyclooxygenase-inhibition using indomethacin. RESULTS KCl-induced vascular contractility but not vascular sensitivity was significantly attenuated in PVL rats as compared with sham rats. Administration of NPY resulted in an augmentation of KCl-evoked vascular sensitivity being not different between study groups. However, KCl-induced vascular contractility was markedly more enhanced in PVL rats, thus, vascular response was no more significantly different between PVL and sham rats after addition of NPY. Administration of indomethacin abolished the NPY-induced enhancement of vasoconstriction. CONCLUSIONS Receptor-independent vascular contractility is impaired in mesenteric arteries in portal hypertension. NPY improves non-receptor mediated mesenteric vasoconstriction more effective in portal hypertension than in healthy conditions correcting splanchnic vascular hyporesponsiveness. This beneficial vasoactive action of NPY adds to its well known more pronounced effects on adrenergic vasoconstriction in portal hypertension making it a promising therapeutic agent in portal hypertension.
Collapse
Affiliation(s)
- Johannes Hartl
- First Medical Center University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Dietrich
- Department of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Moleda
- Department of Internal Medicine, University Medical Center, Regensburg, Germany
| | | | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Bern University Hospital Inselspital, Bern, Switzerland
| |
Collapse
|
31
|
Klein S, Herath CB, Schierwagen R, Grace J, Haltenhof T, Uschner FE, Strassburg CP, Sauerbruch T, Walther T, Angus PW, Trebicka J. Hemodynamic Effects of the Non-Peptidic Angiotensin-(1-7) Agonist AVE0991 in Liver Cirrhosis. PLoS One 2015; 10:e0138732. [PMID: 26406236 PMCID: PMC4583473 DOI: 10.1371/journal.pone.0138732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022] Open
Abstract
Background & Aims Although in cirrhosis with portal hypertension levels of the vasoconstrictor angiotensin II are increased, this is accompanied by increased production of angiotensin (Ang)-(1–7), the endogenous ligand of the Mas receptor (MasR), which blunts hepatic fibrosis and decreases hepatic vascular resistance. Therefore, we investigated the effects of the non-peptidic Ang-(1–7) agonist, AVE0991, in experimental cirrhosis. Methods Cirrhosis was induced by bile duct ligation (BDL) or carbon tetrachloride (CCl4) intoxication. The coloured microsphere technique assessed portal and systemic hemodynamic effects of AVE0991 in vivo. Hepatic expression of eNOS, p-eNOS, iNOS, JAK2, ROCK and p-Moesin were analyzed by western blots. Activities of ACE and ACE2 were investigated fluorometrically. Moreover, fibrosis was assessed in BDL rats receiving AVE0991. Results In vivo, AVE0991 decreased portal pressure (PP) in both rat models of cirrhosis. Importantly, systemic effects were not observed. The hepatic effects of AVE0991 were based on upregulation of vasodilating pathways involving p-eNOS and iNOS, as well as by downregulation of the vasoconstrictive pathways (ROCK, p-Moesin). Short-term treatment with AVE0991 decreased the activity of ACE2, long-term treatment did not affect hepatic fibrosis in BDL rats. Conclusions The non-peptidic agonist of Ang-(1–7), AVE0991, decreases portal pressure without influencing systemic pressure. Thus, although it does not inhibit fibrosis, AVE0991 may represent a promising new therapeutic strategy for lowering portal pressure.
Collapse
Affiliation(s)
- Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Chandana B. Herath
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | | | - Josephine Grace
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Tom Haltenhof
- Department of Obstetrics, Centre for Perinatal Medicine, Division of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Frank E. Uschner
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Thomas Walther
- Department of Obstetrics, Centre for Perinatal Medicine, Division of Women and Child Health, University of Leipzig, Leipzig, Germany
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Peter W. Angus
- Department of Gastronenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
32
|
Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis. Sci Rep 2015; 5:12931. [PMID: 26263022 PMCID: PMC4531783 DOI: 10.1038/srep12931] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis, inflammation and fibrosis, which might progress to cirrhosis. Human NASH is associated with metabolic syndrome (MS). Currently, rodent NASH models either lack significant fibrosis or MS. ApoE−/− mice are a MS model used in cardiovascular research. The aim of this work was to establish and characterise a novel mouse NASH model with significant fibrosis and MS. ApoE−/− and wild-type mice (wt) were fed either a western-diet (WD), methionine-choline-deficient-diet (MCD) or normal chow. Liver histology, RT-PCR, hepatic hydroxyproline content, triglycerides and cholesterol levels, and fasting glucose levels assessed hepatic steatosis, inflammation and fibrosis. Further, portal pressure was measured invasively, and kidney pathology was assessed by histology. ApoE−/− mice receiving WD showed abnormal glucose tolerance, hepatomegaly, weight gain and full spectrum of NASH including hepatic steatosis, fibrosis and inflammation, with no sign of renal damage. MCD-animals showed less severe liver fibrosis, but detectable renal pathological changes, besides weight loss and unchanged glucose tolerance. This study describes a murine NASH model with distinct hepatic steatosis, inflammation and fibrosis, without renal pathology. ApoE−/− mice receiving WD represent a novel and fast model with all characteristic features of NASH and MS well suitable for NASH research.
Collapse
|
33
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
34
|
Trebicka J, Wix C, von Heydebrand M, Hittatiya K, Reiberger T, Klein S, Schierwagen R, Kristiansen G, Peck-Radosavljevic M, Fischer HP, Møller S, Bendtsen F, Krag A, Sauerbruch T. Expression of vasoactive proteins in gastric antral mucosa reflects vascular dysfunction in patients with cirrhosis and portal hypertension. Liver Int 2015; 35:1393-402. [PMID: 24912856 DOI: 10.1111/liv.12613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/24/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Patients with cirrhosis display hypocontractility of splanchnic vessels because of dysregulation of vasoactive proteins, such as decreased effect of RhoA/ROCK and increased activity of β-Arrestin-2 and eNOS. However, it is unknown whether the dysregulation of vasoactive proteins is displayed in other vessels. We investigated whether expression of vasoactive proteins can be evaluated in gastric mucosa vessels. METHODS Biopsies from the gastric mucosa of 111 patients with cirrhosis were collected at three different centres and from 13 controls. Forty-nine patients had received TIPS. Portal pressure gradient was measured in 49 patients with TIPS and in 16 patients without TIPS. Biopsies from the antrum were conserved in formaldehyde for immunohistochemistry or shock-frozen for PCR and Western blot. RESULTS The mucosal transcription of vascular markers (αSMA, CD31) was higher in cirrhotic patients than controls, which was confirmed by immunohistochemistry. On average, relative mucosal levels of RhoA and ROCK were lower, while β-Arrestin-2 levels were higher in cirrhotic patients compared to controls. Transcriptional levels of eNOS increased with presence of ascites and grade of oesophageal varices. Patients with TIPS showed less pronounced markers of vascular dysfunction in gastric mucosa. CONCLUSION This is the first evidence that the expression of vasoactive proteins in mucosa from the gastric antrum of patients with cirrhosis reflects their vascular dysfunction and possibly changes after therapeutic interventions.
Collapse
Affiliation(s)
- Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany; Gastrounit, Medical Division, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kuroda S, Tashiro H, Kimura Y, Hirata K, Tsutada M, Mikuriya Y, Kobayashi T, Amano H, Tanaka Y, Ohdan H. Rho-kinase inhibitor targeting the liver prevents ischemia/reperfusion injury in the steatotic liver without major systemic adversity in rats. Liver Transpl 2015; 21:123-31. [PMID: 25307969 DOI: 10.1002/lt.24020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/22/2014] [Accepted: 10/04/2014] [Indexed: 02/07/2023]
Abstract
Rho-kinase (ROCK) inhibitors improve liver blood flow after ischemia/reperfusion (IR) injury, especially in the setting of steatosis, by decreasing the resistance of intrahepatic microcirculation through hepatic stellate cell (HSC) relaxation. However, the systemic administration of ROCK inhibitors causes severe hypotension; therefore, liver-specific ROCK inhibition is required. Here, we tested vitamin A (VA)-coupled liposomes carrying the ROCK inhibitor Y-27632 for targeted HSCs in steatotic rats. Rat livers with steatosis induced by a choline-deficient diet were subjected to IR injury. The delivery site and effect of the ROCK inhibitor were investigated. After liposomal Y-27632 injection, the survival rate after IR, the liver blood flow, the portal perfused pressure, and the hemodynamics were investigated. Immunohistochemical studies showed VA-coupled liposome accumulation in livers. Liposomal Y-27632 was 100-fold more effective in inhibiting HSC activation than free Y-27632. Liposomal Y-27632 improved the survival rate after IR injury, the liver blood flow, and the portal perfusion pressure without severe hypotension. In contrast, untargeted Y-27632 elicited severe systemic hypotension. We conclude that VA-coupled liposomes carrying the ROCK inhibitor yield enhanced drug accumulation in the liver and thus mitigate IR injury in the steatotic liver and reduce major systemic adversity.
Collapse
Affiliation(s)
- Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 2014; 61:912-24. [PMID: 24911462 PMCID: PMC4346093 DOI: 10.1016/j.jhep.2014.05.047] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022]
Abstract
Chronic liver disease is associated with remarkable alterations in the intra- and extrahepatic vasculature. Because of these changes, the fields of liver vasculature and portal hypertension have recently become closely integrated within the broader vascular biology discipline. As developments in vascular biology have evolved, a deeper understanding of vascular processes has led to a better understanding of the mechanisms of the dynamic vascular changes associated with portal hypertension and chronic liver disease. In this context, hepatic vascular cells, such as sinusoidal endothelial cells and pericyte-like hepatic stellate cells, are closely associated with one another, where they have paracrine and autocrine effects on each other and themselves. These cells play important roles in the pathogenesis of liver fibrosis/cirrhosis and portal hypertension. Further, a variety of signaling pathways have recently come to light. These include growth factor pathways involving cytokines such as transforming growth factor β, platelet derived growth factor, and others as well as a variety of vasoactive peptides and other molecules. An early and consistent feature of liver injury is the development of an increase in intra-hepatic resistance; this is associated with changes in hepatic vascular cells and their signaling pathway that cause portal hypertension. A critical concept is that this process aggregates signals to the extrahepatic circulation, causing derangement in this system's cells and signaling pathways, which ultimately leads to the collateral vessel formation and arterial vasodilation in the splanchnic and systemic circulation, which by virtue of the hydraulic derivation of Ohm's law (pressure = resistance × flow), worsens portal hypertension. This review provides a detailed review of the current status and future direction of the basic biology of portal hypertension with a focus on the physiology, pathophysiology, and signaling of cells within the liver, as well as those in the mesenteric vascular circulation. Translational implications of recent research and the future directions that it points to are also highlighted.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- The Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Vijay Shah
- The Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Don C Rockey
- The Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
37
|
Pioglitazone decreases portosystemic shunting by modulating inflammation and angiogenesis in cirrhotic and non-cirrhotic portal hypertensive rats. J Hepatol 2014; 60:1135-42. [PMID: 24530596 DOI: 10.1016/j.jhep.2014.01.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Development of the portal-hypertensive syndrome is mediated by splanchnic inflammation and neoangiogenesis. Since peroxisome proliferator-activated receptor gamma (PPARγ) agonists like pioglitazone (PIO) regulate inflammatory response and inhibit angiogenesis in endothelial cells, we evaluated PIO as treatment for experimental portal hypertension. METHODS PIO (10 mg/kg) or vehicle (VEH) was administered from day 21-28 after bile duct ligation (BDL), from day 0-7 after partial portal vein ligation (PPVL) or sham-operation (SO), respectively. After treatment, systemic hemodynamics, splanchnic blood flow (SMABF), portal pressure (PP), and portosystemic shunting (PSS) were assessed. Splanchnic and hepatic tissues were analyzed for angiogenic and inflammatory markers. RESULTS BDL and PPVL showed significantly increased PP, SMABF, and PSS compared to SO-VEH rats. While PIO treatment did not decrease PP or SMABF, PSS was significantly reduced both in cirrhotic (BDL-VEH: 71% to BDL-PIO: 41%; p<0.001) and non-cirrhotic (PPVL-VEH: 62% to PPVL-PIO: 40%; p=0.041) rats. PIO (10 μM, in vitro) inhibited endothelial cell migration and significantly increased PPARγ activity in vivo. In BDL rats, PIO decreased hepatic mRNA levels of PPARγ (p=0.01) and PlGF (p=0.071), and splanchnic mRNA expression of PPARγ (p=0.017), PDGFβ (p=0.053) and TNFα (p=0.075). Accordingly, splanchnic protein expression of PPARγ (p=0.032), VEGFR2 (p=0.035), CD31 (p=0.060) and PDGFβ (p=0.066) were lower in BDL-PIO vs. BDL-VEH animals. In PPVL rats, PIO treatment decreased splanchnic gene expression of Ang2 (-12.4 fold), eNOS (-9.3 fold), PDGF (-7.0 fold), PlGF (-11.9 fold), TGFb (-8.3 fold), VEGF-A (-11.3 fold), VEGFR1 (-5.9 fold), IL1b (-14.4 fold), and IL6 (-9.6 fold). CONCLUSIONS Pioglitazone treatment decreases portosystemic shunting via modulation of splanchnic inflammation and neoangiogenesis. Pioglitazone should be assessed for potential beneficial effects in patients with portosystemic collaterals due to portal hypertension.
Collapse
|
38
|
Abstract
Portal hypertension is a major complication of liver disease that results from a variety of pathologic conditions that increase the resistance to the portal blood flow into the liver. As portal hypertension develops, the formation of collateral vessels and arterial vasodilation progresses, which results in increased blood flow to the portal circulation. Hyperdynamic circulatory syndrome develops, leading to esophageal varices or ascites. This article summarizes the factors that increase (1) intrahepatic vascular resistance and (2) the blood flow in the splanchnic and systemic circulations in liver cirrhosis. In addition, the future directions of basic/clinical research in portal hypertension are discussed.
Collapse
|
39
|
Chen W, Liu DJ, Huo YM, Wu ZY, Sun YW. Reactive oxygen species are involved in regulating hypocontractility of mesenteric artery to norepinephrine in cirrhotic rats with portal hypertension. Int J Biol Sci 2014; 10:386-95. [PMID: 24719556 PMCID: PMC3979991 DOI: 10.7150/ijbs.8081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/18/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Oxidative stress is involved in the hypocontractility of visceral artery to vasoconstrictors and formation of hyperdynamic circulation in cirrhosis with portal hypertension. In the present study, we investigated the effect of reactive oxygen species (ROS) on the mesenteric artery contractility in CCl4-induced cirrhotic rats, and the roles of G protein-coupled receptors (GPCRs) desensitization and RhoA /Rho associated coiled-coil forming protein kinase (ROCK) pathways. Methods: The mesenteric artery contraction to norepinephrine (NE) was determined by vessel perfusion system following treatments with apocynin, tempol or PEG-catalase. The protein expression of α1 adrenergic receptor, β-arrestin-2, ROCK-1, moesin and p-moesin was measured by western blot. The interaction between α1 adrenergic receptor and β-arrestin-2 was assessed by co-immunoprecipitation. Results: Pretreatment with apocynin or PEG-catalase in cirrhotic rats, the hydrogen peroxide level in the mesenteric arteriole was significantly decreased, and the dose-response curve of mesenteric arteriole to NE moved to the left with EC50 decreased. There was no significant change for the expression of α1 adrenergic receptor. However, the protein expression of β-arrestin-2 and its affinity with α1 adrenergic receptor were significantly decreased. The ROCK-1 activity and anti- Y-27632 inhibition in cirrhotic rats increased significantly with the protein expression unchanged. Such effects were not observed in tempol-treated group. Conclusion: The H2O2 decrease in mesenteric artery from rats with cirrhosis resulted in down regulation of the β-arrestin-2 expression and its binding ability with α1 adrenergic receptor, thereby affecting the agonist-induced ROCK activation and improving the contractile response in blood vessels.
Collapse
Affiliation(s)
- Wei Chen
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - De-Jun Liu
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan-Miao Huo
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi-Yong Wu
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yong-Wei Sun
- Department of Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
40
|
de Franchis R, Dell’Era A. Pre-primary and Primary Prophylaxis of Variceal Hemorrhage. VARICEAL HEMORRHAGE 2014. [PMCID: PMC7121476 DOI: 10.1007/978-1-4939-0002-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Variceal hemorrhage is a life-threatening complication of portal hypertension. Thus, prevention of variceal formation (pre-primary prophylaxis) or at least prevention of variceal bleeding are important goals to improve life quality and—if possible—survival of patients with liver cirrhosis. Interruption of the underlying cause of liver disease is the most successful approach, which, however, often fails. For this situation interruption or modulation of different pathophysiological mechanisms leading to fibrosis, hyperdynamic circulation and portal hypertension have been shown effective in animal models. But few could be translated to humans. By contrast, different steps to prevent first bleeding from varices have proven successful in many clinical trials. These applied mainly drugs to lower portal pressure, such as nonselective β-blockers, or endoscopic obliteration of varices, while prophylactic shunt procedures are not advised.
Collapse
Affiliation(s)
| | - Alessandra Dell’Era
- Ospedale Universitario Luigi Sacco, Universitá degli Studi di Milano, UOC Gastroenterologia, Milano, Italy
| |
Collapse
|
41
|
Zhang B, Zhang CG, Zhou QB, Chen W, Wu ZY. Estrogen improves the hyperdynamic circulation and hyporeactivity of mesenteric arteries by alleviating oxidative stress in partial portal vein ligated rats. World J Gastroenterol 2013; 19:6863-6868. [PMID: 24187462 PMCID: PMC3812486 DOI: 10.3748/wjg.v19.i40.6863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/18/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of estrogen (E2) on systemic and splanchnic hyperdynamic circulation in portal hypertensive rats.
METHODS: Fifty castrated female Sprague-Dawley rats were divided into five groups: sham operation (SO), partial portal vein ligation (PPVL) + placebo (PLAC), PPVL + E2, PPVL + ICI and PPVL + E2 + ICI. Hemodynamic measurements were performed using ultrasonography. Mesenteric arteriole contractility in response to norepinephrine was determined using a vessel perfusion system. Oxidative stress in the mesenteric artery was investigated by in situ detection of the superoxide anion (O2•−) and hydrogen peroxide (H2O2) concentrations.
RESULTS: Treatment with E2 resulted in a significant decrease of portal pressure (P < 0.01) and portal venous inflow (P < 0.05), and higher systemic vascular resistance (P < 0.05) and splanchnic arteriolar resistance (P < 0.01) in PPVL + E2 rats compared to PPVL + PLAC rats. In the mesenteric arterioles of PPVL + E2 rats, the dose-response curve was shifted left, and the EC50 was decreased (P < 0.01). E2 reduced O2•− production and H2O2 concentration in the mesenteric artery. However, ICI182, 780 reversed the beneficial effects of E2, therefore, the systemic and splanchnic hyperdynamic circulation were more deteriorated in ICI182, 780-treated rats.
CONCLUSION: Treatment with estrogen improved the systemic and splanchnic hyperdynamic circulation in PPVL rats, in part due to the alleviation of oxidative stress.
Collapse
|
42
|
Liedtke C, Luedde T, Sauerbruch T, Scholten D, Streetz K, Tacke F, Tolba R, Trautwein C, Trebicka J, Weiskirchen R. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. FIBROGENESIS & TISSUE REPAIR 2013; 6:19. [PMID: 24274743 PMCID: PMC3850878 DOI: 10.1186/1755-1536-6-19] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - David Scholten
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - René Tolba
- Institute of Laboratory Animal Science, RWTH University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen D-52074, Germany
| |
Collapse
|
43
|
Liang DY, Hou YQ, Lou XL, Ye CG. Progress in understanding role of urotensin Ⅱ in hepatic cirrhosis. Shijie Huaren Xiaohua Zazhi 2013; 21:2164-2168. [DOI: 10.11569/wcjd.v21.i22.2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Urotensin Ⅱ (UⅡ) is a potent vasoactive substance that can result in vasoactive response through interaction with its specific orphan G-protein-coupled receptor GPR-14. In addition to the role of vasoactivity, UⅡ can promote mitosis and fibrosis. The vascular role of UⅡ is to some degree both species- and disease-specific. Studies have found that plasma levels of UⅡ are elevated in patients with cirrhosis, but the relationship between plasma levels of UⅡ and the development of chronic liver disease and portal hypertension has yet to be fully elucidated. This review focuses on the potential relevance of UⅡ as vasoactive substance in chronic liver disease and the site where UⅡ is overproduced.
Collapse
|
44
|
Schierwagen R, Leeming DJ, Klein S, Granzow M, Nielsen MJ, Sauerbruch T, Krag A, Karsdal MA, Trebicka J. Serum markers of the extracellular matrix remodeling reflect antifibrotic therapy in bile-duct ligated rats. Front Physiol 2013; 4:195. [PMID: 23908632 PMCID: PMC3726835 DOI: 10.3389/fphys.2013.00195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022] Open
Abstract
Background: Progression of liver fibrosis is characterized by synthesis and degradation of extracellular matrix (ECM). Matrix-metalloproteinases (MMP) cleave collagen fibers at a specific site and thereby generate soluble fragments of ECM (neo-epitopes). The levels of these neo-epitopes might reflect the stage of liver fibrosis and may allow monitoring of anti-fibrotic therapies. Here we analyzed these neo-epitopes as read-out for a liver directed therapy with statins. Methods: Bile duct ligation (BDL) was performed on wild type rats, which received atorvastatin (15 mg/kg*d) for 1 week starting at 1, 2, 3, 4 and 5 weeks after BDL (T1–T5), while controls remained untreated. Hepatic fibrosis was analyzed by immunohistochemistry and hepatic hydroxyproline content. TGFβ levels were measured by RT-PCR. Proteolytic activity of MMP-2 was examined by zymography. Levels of degradation MMP driven type I, III, IV and VI collagen degradation (C1M, C3M, C4M, and C6M) and type III and IV collagen formation (PRO-C3 and P4NP7S) markers were assessed by specific ELISAs in serum probes. Results: Serum markers of ECM neo-epitopes reflected significantly the deposition of ECM in the liver and were able to distinguish between early (T1–T3) and severe fibrosis (T4–T5). Statin treatment resulted in reduction of neo-epitope markers, especially when therapy was started in the stage of severe fibrosis (T4–T5). Furthermore, these markers correlated with hepatic expression of profibrotic cytokines TGFβ1 and TGFβ2. Formation markers of type III and IV collagen (PRO-C3 and P4NP7S) and degradation markers C4M and C6M correlated significantly with hepatic MMP-2 activity in rats with severe fibrosis. Conclusion: Determination of ECM remodeling turnover markers in serum allowed a distinction between mild and severe fibrosis. With respect to statin therapy, the markers may serve as read-out for efficacy of anti-fibrotic treatment.
Collapse
|
45
|
Liang DY, Liu LM, Ye CG, Zhao L, Yu FP, Gao DY, Wang YY, Yang ZW, Wang YY. Inhibition of UII/UTR system relieves acute inflammation of liver through preventing activation of NF-κB pathway in ALF mice. PLoS One 2013; 8:e64895. [PMID: 23755157 PMCID: PMC3670940 DOI: 10.1371/journal.pone.0064895] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/19/2013] [Indexed: 02/06/2023] Open
Abstract
Urotensin II (UII) is implicated in immune inflammatory diseases through its specific high-affinity UT receptor (UTR). Enhanced expression of UII/UTR was recently demonstrated in the liver with acute liver failure (ALF). Here, we analysed the relationship between UII/UTR expression and ALF in lipopolysaccharide (LPS)/D-galactosamine (GalN)-challenged mice. Thereafter, we investigated the effects produced by the inhibition of UII/UTR system using urantide, a special antagonist of UTR, and the potential molecular mechanisms involved in ALF. Urantide was administered to mice treated with LPS/GalN. Expression of UII/UTR, releases of proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interferon-γ (IFN-γ), and activation of nuclear factor κB (NF-κB) signaling pathway were assessed in the lethal ALF with or without urantide pretreatment. We found that LPS/GalN-challenged mice showed high mortality and marked hepatic inflammatory infiltration and cell apoptosis as well as a significant increase of UII/UTR expression. Urantide pretreatment protected against the injury in liver following downregulation of UII/UTR expression. A close relationship between the acutely flamed hepatic injury and UII/UTR expression was observed. In addition, urantide prevented the increases of proinflammatory cytokines such as TNF-α, IL-1β and IFN-γ, and activation of NF-κB signaling pathway induced by LPS/GalN in mice. Thus, we conclude that UII/UTR system plays a role in LPS/GalN-induced ALF. Urantide has a protective effect on the acutely inflamed injury of liver in part through preventing releases of proinflammatory cytokines and activation of NF-κB pathway.
Collapse
Affiliation(s)
- Dong-yu Liang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Liang-ming Liu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| | - Chang-gen Ye
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Liang Zhao
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Fang-ping Yu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - De-yong Gao
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Ying-ying Wang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Zhi-wen Yang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Yan-yan Wang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
46
|
Liu Y, Li Y, Yang W, Cao G. H2 S inhibits the activation of hepatic stellate cells and downregulates the expression of urotensin II. Hepatol Res 2013; 43:670-8. [PMID: 23131022 DOI: 10.1111/hepr.12002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 12/16/2022]
Abstract
AIM H2 S, a newly discovered signaling gasotransmitter, has been found involved in the pathogenesis of portal hypertension through the H2 S/CSE system. Studies also showed that urotensin II (UII), a recently discovered most potent vasoconstrictor, played an important role in cirrhotic portal hypertension. Therefore, studies were conducted to explore the relationship between H2 S and UII in cirrhosis. METHODS In the present study, the changes in the expression levels of cystathionine-γ-lyase (CSE), UII, urotensin II receptor (UT), collagen I, collagen III, tissue inhibitor of metalloproteinase-1 (TIMP-1) and α-smooth muscle actin (α-SMA) were determined by fluorescence quantitative polymerase chain reaction after exposure of hepatic stellate cells to H2 S. The influence of H2 S on UII was examined by western blotting, and the relationship between H2 S and UII was further confirmed by detection of cell proliferation and apoptosis. RESULTS Studies have shown that increase in H2 S concentration could reduce the expression of UII, UT, collagen I, collagen III, TIMP-1 and α-SMA without involvement of CSE. Moreover, the results of western blotting further proved that H2 S inhibited the expression of UII. The examination of cell proliferation by 5-ethynyl-2'-deoxyuridine assay suggests that H2 S significantly inhibited the proliferation of LX-2 cells and the proliferation-promoting effect of UII. Similarly, the examination of cell apoptosis revealed that H2 S could promote LX-2 cell apoptosis and inhibit the apoptosis-inhibiting effect of UII. CONCLUSION H2 S suppresses fibrosis by inhibiting the activation of hepatic stellate cells and reducing the expression of UII.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | |
Collapse
|
47
|
Chen W, Sang JY, Liu DJ, Qin J, Huo YM, Xu J, Wu ZY. Desensitization of G-protein-coupled receptors induces vascular hypocontractility in response to norepinephrine in the mesenteric arteries of cirrhotic patients and rats. Hepatobiliary Pancreat Dis Int 2013; 12:295-304. [PMID: 23742775 DOI: 10.1016/s1499-3872(13)60047-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The increased beta-arrestin-2 and its combination with G-protein-coupled receptors (GPCRs) lead to GPCRs desensitization. The latter may be responsible for decreased contractile reactivity in the mesenteric arteries of cirrhotic patients and rats. The present study is to investigate the machinery changes of alpha-adrenergic receptors and G proteins and their roles in the contractility of mesenteric arteries of cirrhotic patients and animal models. METHODS Patients with cirrhosis due to hepatitis B and cirrhotic rats induced by CCl4 were studied. Mesenteric artery contractility in response to norepinephrine was determined by a vessel perfusion system. The contractile effect of G protein-coupled receptor kinase-2 (GRK-2) inhibitor on the mesenteric artery was evaluated. The protein expression of the alpha1 adrenergic receptor, G proteins, beta-arrestin-2, GRK-2 as well as the activity of Rho associated coiled-coil forming protein kinase-1 (ROCK-1) were measured by Western blot. In addition, the interaction of alpha1 adrenergic receptor with beta-arrestin-2 was assessed by co-immunoprecipitation. RESULTS The portal vein pressure of cirrhotic patients and rats was significantly higher than that of controls. The dose-response curve to norepinephrine in mesenteric arteriole was shifted to the right, and EC50 was significantly increased in cirrhotic patients and rats. There were no significant differences in the expressions of the alpha1 adrenergic receptor and G proteins in the cirrhotic group compared with the controls. However, the protein expressions of GRK-2 and beta-arrestin-2 were significantly elevated in cirrhotic patients and rats compared with those of the controls. The interaction of the alpha1 adrenergic receptor and beta-arrestin-2 was significantly aggravated. This interaction was significantly reversed by GRK-2 inhibitor. Both the protein expression and activity of ROCK-1 were significantly decreased in the mesenteric artery in patients with cirrhosis compared with those of the controls, and this phenomenon was not shown in the cirrhotic rats. Norepinephrine significantly increased the activity of ROCK-1 in normal rats but not in cirrhotic ones. Norepinephrine significantly increased ROCK-1 activity in cirrhotic rats when GRK-2 inhibitor was used. CONCLUSIONS beta-arrestin-2 expression and its interaction with GPCRs are significantly upregulated in the mesenteric arteries in patients and rats with cirrhosis. These upregulations result in GPCR desensitization, G-protein dysfunction and ROCK inhibition. These may explain the decreased contractility of the mesenteric artery in response to vasoconstrictors.
Collapse
Affiliation(s)
- Wei Chen
- Department of Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Taylor SJ, Soleymanzadeh F, Muegge I, Akiba I, Taki N, Ueda S, Mainolfi E, Eldrup AB. Deconstruction of sulfonamide inhibitors of the urotensin receptor (UT) and design and synthesis of benzylamine and benzylsulfone antagonists. Bioorg Med Chem Lett 2013; 23:2177-80. [DOI: 10.1016/j.bmcl.2013.01.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
49
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease with unknown etiology and pathogenesis. With high mortality risks, most of the IPF cases emerged after a damage of alveolar epithelium, where this situation stimulates the over expression of matrix components. Inflammatory process observed as a reaction to emerged damage. Prolidase as an iminodipeptidase significantly increased during the development of fibrosis. The aim of this study is to measure prolidase activity as a marker of treatment and diagnosis in an experimental lung fibrosis animal model. Thirty male Wistar rats randomly divided into three experimental groups, with ten rats in each group. Group 1, control group; group 2, bleomycin (BLM)-induced lung fibrosis group, and group 3, BLM-induced lung fibrosis treated with palosuran (urotensin-II receptor antagonist). For histopathology, the middle lobes of right lungs were embedded in paraffin, followed by fixation in 10 % buffered formalin, and evaluation of IPF was performed using the Ashcroft scoring method. Prolidase activity was determined by a photometric method based on the measurement of proline levels produced by prolidase. The fibrosis scores and the prolidase activity were significantly enhanced by BLM stimulation. The BLM + palosuran treatment decreased prolidase activity in group 3. There was a positive correlation between prolidase activity and fibrosis scores. Palosuran seems to be effective in the treatment of lung fibrosis, and prolidase activity can be used for the diagnosis and/or for management of the treatment. However, further clinical and experimental studies with animals and/or patients are needed to verify these conclusions.
Collapse
|
50
|
Guo XH, Feng ZJ. Role of urotensin-Ⅱ in the pathogenesis of liver cirrhosis and portal hypertension and collateral circulation. Shijie Huaren Xiaohua Zazhi 2012; 20:3536-3541. [DOI: 10.11569/wcjd.v20.i35.3536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Urotensin-Ⅱ (U-Ⅱ) is a somatostatin-like cyclic peptide which has a potent vasoactive effect and can promote vascular reconstruction and hyperplasia. Research shows that UⅡ plays an important role in the development of liver cirrhosis and portal hypertension. UⅡ influences intrahepatic resistance and splanchnic hemodynamics through a variety of pathways, causing portal hypertension and participating in the formation of esophageal and gastric varices. UⅡ receptor antagonists can reduce portal pressure in cirrhotic rats, but this finding need to be confirmed clinically.
Collapse
|