1
|
Guo Y, Li J, Miao X, Wang H, Ge H, Xu H, Wang J, Wang Y. Phospholipase D2 drives cellular lipotoxicity and tissue inflammation in alcohol-associated liver disease. Life Sci 2024; 358:123166. [PMID: 39447730 DOI: 10.1016/j.lfs.2024.123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
AIMS Excessive alcohol consumption leads to alcoholic liver disease (ALD), a major contributing factor to cirrhosis and hepatocellular carcinoma. In the present study we investigated the involvement of phospholipase D2 (PLD2) in the pathogenesis of ALD. METHODS AND MATERIALS ALD was induced in mice by chronic and binge ethanol feeding (the NIAAA model). Cellular transcriptome was examined by RNA-seq. KEY FINDINGS Analysis of RNA-seq datasets indicated that PLD2 expression was up-regulated in liver tissues and in hepatocytes during ALD pathogenesis. Exposure of hepatocytes to ethanol treatment led to an increase in PLD2 expression. Similarly, ethanol feeding in mice stimulated PLD2 expression in the liver. On the contrary, PLD2 knockdown in hepatocytes down-regulated expression of pro-inflammatory and pro-lipogenic genes and dampened lipid accumulation. Consistently, PLD2 knockdown in mice significantly ameliorated ALD pathogenesis as evidenced by reduced steatosis and hepatic inflamamation. RNA-seq identified several metabolic pathways that were influenced by PLD2 deficiency. SIGNIFICANCE Our data demonstrate that PLD2 is a novel regulator of ALD and suggest that small-molecule PLD2 inhibitors can be considered as a reasonable strategy for ALD treatment.
Collapse
Affiliation(s)
- Yan Guo
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Jichen Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Hansong Wang
- Department of Emergency Medical Center, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Hailong Ge
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China
| | - Huihui Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Jianguo Wang
- Pediatric Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Yu Wang
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China.
| |
Collapse
|
2
|
Niu D, Wu X, Zhang Y, Wang X, Shiu-Hin Chan D, Jing S, Wong CY, Wang W, Leung CH. Tailoring obeticholic acid activity by iridium(III) complex conjugation to develop a farnesoid X receptor probe. J Adv Res 2024:S2090-1232(24)00483-1. [PMID: 39490736 DOI: 10.1016/j.jare.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION The farnesoid X receptor (FXR) is a crucial regulator in the intestine, maintaining bile acid homeostasis. Inhibiting intestinal FXR shows promise in managing inflammatory bowel and liver diseases by reducing bile acid accumulation. Additionally, changes in FXR expression could serve as a potential biomarker for intestinal diseases. Therefore, developing an imaging probe for FXR holds significant potential for the early detection, simultaneous treatment, and monitoring of FXR-related diseases. OBJECTIVES The study aimed to develop a bioimaging probe for FXR by conjugating obeticholic acid (OCA), an FXR agonist, to an iridium(III) complex, and to investigate its application for targeting FXR in intestinal cells. METHODS OCA was conjugated to an iridium(III) complex to generate the novel complex 1. The effect of complex 1 on FXR activity, nuclear translocation, and downstream targets was investigated in intestinal epithelial cells using various biochemical and cellular assays. Additionally, the photophysical properties of complex 1 were assessed for FXR imaging. RESULTS Complex 1 retained the desirable photophysical properties for monitoring FXR in intestinal cells while reversing OCA's activity from agonistic to antagonistic. It disrupted FXR-RXR heterodimerization, inhibited FXR nuclear translocation, and downregulated downstream targets responsible for bile acid absorption, transport, and metabolism in intestinal epithelial cells. CONCLUSION The study successfully developed an imaging probe and modulator of FXR by conjugating OCA to an iridium(III) complex. Complex 1 retained the favorable photophysical properties of the iridium(III) complex, while reversing OCA's activity from agonistic to antagonistic. The findings highlight the exciting application of using metals to tailor the activity of nuclear receptor modulators in living systems.
Collapse
Affiliation(s)
- Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xiaolei Wu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Yuxin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | | | - Shaozhen Jing
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
3
|
Cui S, Hu H, Chen A, Cui M, Pan X, Zhang P, Wang G, Wang H, Hao H. SIRT1 activation synergizes with FXR agonism in hepatoprotection via governing nucleocytoplasmic shuttling and degradation of FXR. Acta Pharm Sin B 2023; 13:559-576. [PMID: 36873184 PMCID: PMC9978964 DOI: 10.1016/j.apsb.2022.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Farnesoid X receptor (FXR) is widely accepted as a promising target for various liver diseases; however, panels of ligands in drug development show limited clinical benefits, without a clear mechanism. Here, we reveal that acetylation initiates and orchestrates FXR nucleocytoplasmic shuttling and then enhances degradation by the cytosolic E3 ligase CHIP under conditions of liver injury, which represents the major culprit that limits the clinical benefits of FXR agonists against liver diseases. Upon inflammatory and apoptotic stimulation, enhanced FXR acetylation at K217, closed to the nuclear location signal, blocks its recognition by importin KPNA3, thereby preventing its nuclear import. Concomitantly, reduced phosphorylation at T442 within the nuclear export signals promotes its recognition by exportin CRM1, and thereby facilitating FXR export to the cytosol. Acetylation governs nucleocytoplasmic shuttling of FXR, resulting in enhanced cytosolic retention of FXR that is amenable to degradation by CHIP. SIRT1 activators reduce FXR acetylation and prevent its cytosolic degradation. More importantly, SIRT1 activators synergize with FXR agonists in combating acute and chronic liver injuries. In conclusion, these findings innovate a promising strategy to develop therapeutics against liver diseases by combining SIRT1 activators and FXR agonists.
Collapse
Affiliation(s)
- Shuang Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Huijian Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - An Chen
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojie Pan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Pengfei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Suzuki H, Arinaga-Hino T, Sano T, Mihara Y, Kusano H, Mizuochi T, Togawa T, Ito S, Ide T, Kuwahara R, Amano K, Kawaguchi T, Yano H, Kage M, Koga H, Torimura T. Case Report: A Rare Case of Benign Recurrent Intrahepatic Cholestasis-Type 1 With a Novel Heterozygous Pathogenic Variant of ATP8B1. Front Med (Lausanne) 2022; 9:891659. [PMID: 35572954 PMCID: PMC9099094 DOI: 10.3389/fmed.2022.891659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Benign recurrent intrahepatic cholestasis type 1 (BRIC1) is a rare autosomal recessive disorder that is characterized by intermittent episodes of jaundice and intense pruritus and caused by pathogenic variants of adenosine triphosphatase phospholipid transporting 8B1 (ATP8B1). The presence of genetic heterogeneity in the variants of ATP8B1 is suggested. Herein, we describe a unique clinical course in a patient with BRIC1 and a novel heterozygous pathogenic variant of ATP8B1. A 20-year-old Japanese man experienced his first cholestasis attack secondary to elevated transaminase at 17 years of age. Laboratory examinations showed no evidence of liver injury caused by viral, autoimmune, or inborn or acquired metabolic etiologies. Since the patient also had elevated transaminase and hypoalbuminemia, he was treated with ursodeoxycholic acid and prednisolone. However, these treatments did not relieve his symptoms. Histopathological assessment revealed marked cholestasis in the hepatocytes, Kupffer cells, and bile canaliculi, as well as a well-preserved intralobular bile duct arrangement and strongly expressed bile salt export pump at the canalicular membrane. Targeted next-generation sequencing detected a novel heterozygous pathogenic variant of ATP8B1 (c.1429 + 2T > G). Taken together, the patient was highly suspected of having BRIC1. Ultimately, treatment with 450 mg/day of rifampicin rapidly relieved his symptoms and shortened the symptomatic period.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoya Sano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yutaro Mihara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
- Department of Diagnostic Pathology, National Hospital Organization Kokura Medical Center, Fukuoka, Japan
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Takao Togawa
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shogo Ito
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tatsuya Ide
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Reiichiro Kuwahara
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Amano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toshihiro Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masayoshi Kage
- Department of Medical Engineering, Junshin Gakuen University, Fukuoka, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
5
|
van Wessel DB, Thompson RJ, Gonzales E, Jankowska I, Shneider BL, Sokal E, Grammatikopoulos T, Kadaristiana A, Jacquemin E, Spraul A, Lipiński P, Czubkowski P, Rock N, Shagrani M, Broering D, Algoufi T, Mazhar N, Nicastro E, Kelly D, Nebbia G, Arnell H, Fischler B, Hulscher JB, Serranti D, Arikan C, Debray D, Lacaille F, Goncalves C, Hierro L, Muñoz Bartolo G, Mozer‐Glassberg Y, Azaz A, Brecelj J, Dezsőfi A, Luigi Calvo P, Krebs‐Schmitt D, Hartleif S, van der Woerd WL, Wang J, Li L, Durmaz Ö, Kerkar N, Hørby Jørgensen M, Fischer R, Jimenez‐Rivera C, Alam S, Cananzi M, Laverdure N, Targa Ferreira C, Ordonez F, Wang H, Sency V, Mo Kim K, Chen H, Carvalho E, Fabre A, Quintero Bernabeu J, Alonso EM, Sokol RJ, Suchy FJ, Loomes KM, McKiernan PJ, Rosenthal P, Turmelle Y, Rao GS, Horslen S, Kamath BM, Rogalidou M, Karnsakul WW, Hansen B, Verkade HJ. Impact of Genotype, Serum Bile Acids, and Surgical Biliary Diversion on Native Liver Survival in FIC1 Deficiency. Hepatology 2021; 74:892-906. [PMID: 33666275 PMCID: PMC8456904 DOI: 10.1002/hep.31787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Mutations in ATPase phospholipid transporting 8B1 (ATP8B1) can lead to familial intrahepatic cholestasis type 1 (FIC1) deficiency, or progressive familial intrahepatic cholestasis type 1. The rarity of FIC1 deficiency has largely prevented a detailed analysis of its natural history, effects of predicted protein truncating mutations (PPTMs), and possible associations of serum bile acid (sBA) concentrations and surgical biliary diversion (SBD) with long-term outcome. We aimed to provide insights by using the largest genetically defined cohort of patients with FIC1 deficiency to date. APPROACH AND RESULTS This multicenter, combined retrospective and prospective study included 130 patients with compound heterozygous or homozygous predicted pathogenic ATP8B1 variants. Patients were categorized according to the number of PPTMs (i.e., splice site, frameshift due to deletion or insertion, nonsense, duplication), FIC1-A (n = 67; no PPTMs), FIC1-B (n = 29; one PPTM), or FIC1-C (n = 34; two PPTMs). Survival analysis showed an overall native liver survival (NLS) of 44% at age 18 years. NLS was comparable among FIC1-A, FIC1-B, and FIC1-C (% NLS at age 10 years: 67%, 41%, and 59%, respectively; P = 0.12), despite FIC1-C undergoing SBD less often (% SBD at age 10 years: 65%, 57%, and 45%, respectively; P = 0.03). sBAs at presentation were negatively associated with NLS (NLS at age 10 years, sBAs < 194 µmol/L: 49% vs. sBAs ≥ 194 µmol/L: 15%; P = 0.03). SBD decreased sBAs (230 [125-282] to 74 [11-177] μmol/L; P = 0.005). SBD (HR 0.55, 95% CI 0.28-1.03, P = 0.06) and post-SBD sBA concentrations < 65 μmol/L (P = 0.05) tended to be associated with improved NLS. CONCLUSIONS Less than half of patients with FIC1 deficiency reach adulthood with native liver. The number of PPTMs did not associate with the natural history or prognosis of FIC1 deficiency. sBA concentrations at initial presentation and after SBD provide limited prognostic information on long-term NLS.
Collapse
Affiliation(s)
- Daan B.E. van Wessel
- Pediatric Gastroenterology and HepatologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | | | - Emmanuel Gonzales
- Pediatric Hepatology & Pediatric Liver Transplant DepartmentCentre de Référence de l’Atrésie des Voies Biliaires et des Cholestases GénétiquesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAssistance Publique‐Hôpitaux de ParisFaculté de Médecine Paris‐SaclayCHU BicêtreParisFrance
- European Reference Network on Hepatological Diseases
| | - Irena Jankowska
- European Reference Network on Hepatological Diseases
- Gastroenterology, Hepatology, Nutritional Disorders and Pediatricsthe Children’s Memorial Health InstituteWarsawPoland
| | - Benjamin L. Shneider
- Division of Pediatric Gastroenterology, Hepatology, and NutritionDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
- Childhood Liver Disease Research Network (ChiLDReN)
| | - Etienne Sokal
- European Reference Network on Hepatological Diseases
- Cliniques St. LucUniversité Catholique de LouvainBrusselsBelgium
| | | | | | - Emmanuel Jacquemin
- Pediatric Hepatology & Pediatric Liver Transplant DepartmentCentre de Référence de l’Atrésie des Voies Biliaires et des Cholestases GénétiquesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAssistance Publique‐Hôpitaux de ParisFaculté de Médecine Paris‐SaclayCHU BicêtreParisFrance
- INSERMUMR‐S 1193Université Paris‐SaclayOrsayFrance
| | - Anne Spraul
- INSERMUMR‐S 1193Université Paris‐SaclayOrsayFrance
- Biochemistry UnitCentre de Référence de l’Atrésie des Voies Biliaires et des Cholestases GénétiquesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAssistance Publique‐Hôpitaux de ParisFaculté de Médecine Paris‐SaclayCHU BicêtreParisFrance
| | - Patryk Lipiński
- European Reference Network on Hepatological Diseases
- Gastroenterology, Hepatology, Nutritional Disorders and Pediatricsthe Children’s Memorial Health InstituteWarsawPoland
| | - Piotr Czubkowski
- European Reference Network on Hepatological Diseases
- Gastroenterology, Hepatology, Nutritional Disorders and Pediatricsthe Children’s Memorial Health InstituteWarsawPoland
| | - Nathalie Rock
- Cliniques St. LucUniversité Catholique de LouvainBrusselsBelgium
| | - Mohammad Shagrani
- Department of Liver & SB Transplant & Hepatobiliary‐Pancreatic SurgeryKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
| | - Dieter Broering
- Department of Liver & SB Transplant & Hepatobiliary‐Pancreatic SurgeryKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
| | - Talal Algoufi
- Department of Liver & SB Transplant & Hepatobiliary‐Pancreatic SurgeryKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
| | - Nejat Mazhar
- Department of Liver & SB Transplant & Hepatobiliary‐Pancreatic SurgeryKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and TransplantationOspedale Papa Giovanni XXIIIBergamoItaly
| | - Deirdre Kelly
- European Reference Network on Hepatological Diseases
- Liver UnitBirmingham Women’s and Children’s HospitalUniversity of BirminghamBirminghamUnited Kingdom
| | - Gabriella Nebbia
- Servizio Di Epatologia e Nutrizione PediatricaFondazione Irccs Ca’ Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | - Henrik Arnell
- European Reference Network on Hepatological Diseases
- Pediatric Digestive DiseasesAstrid Lindgren Children’s HospitalCLINTECKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Björn Fischler
- European Reference Network on Hepatological Diseases
- Pediatric Digestive DiseasesAstrid Lindgren Children’s HospitalCLINTECKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Jan B.F. Hulscher
- European Reference Network on Hepatological Diseases
- Pediatric SurgeryUniversity Medical Center GroningenGroningenthe Netherlands
| | - Daniele Serranti
- Pediatric and Liver UnitMeyer Children’s University Hospital of FlorenceFlorenceItaly
| | - Cigdem Arikan
- Pediatric GI and Hepatology Liver Transplantation CenterKuttam System in Liver MedicineKoc University School of MedicineIstanbulTurkey
| | - Dominique Debray
- Pediatric Hepatology unit, Reference Center for Biliary Atresia and Genetic Cholestatic DiseasesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAPHP‐Neckler Enfants Malades University HospitalFaculté de Médecine Paris‐CentreParisFrance
| | - Florence Lacaille
- Pediatric Hepatology unit, Reference Center for Biliary Atresia and Genetic Cholestatic DiseasesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAPHP‐Neckler Enfants Malades University HospitalFaculté de Médecine Paris‐CentreParisFrance
| | - Cristina Goncalves
- European Reference Network on Hepatological Diseases
- Coimbra University Hospital CenterCoimbraPortugal
| | - Loreto Hierro
- European Reference Network on Hepatological Diseases
- Pediatric Liver ServiceLa Paz University HospitalMadridSpain
| | - Gema Muñoz Bartolo
- European Reference Network on Hepatological Diseases
- Pediatric Liver ServiceLa Paz University HospitalMadridSpain
| | - Yael Mozer‐Glassberg
- Institute of Gastroenterology, Nutrition and Liver DiseasesSchneider Children’s Medical Center of IsraelPetach TikvahIsrael
| | - Amer Azaz
- Sheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - Jernej Brecelj
- Department of Gastroenterology, Hepatology and NutritionUniversity Children’s Hospital LjubljanaLjubljanaSlovenia
- Department of PediatricsFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Antal Dezsőfi
- First Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Pier Luigi Calvo
- Pediatic Gastroenterology UnitRegina Margherita Children’s HospitalAzienda Ospedaliera Città Della Salute e Della Scienza University HospitalTorinoItaly
| | | | - Steffen Hartleif
- European Reference Network on Hepatological Diseases
- University Children’s Hospital TϋbingenTϋbingenGermany
| | - Wendy L. van der Woerd
- Pediatric Gastroenterology, Hepatology and NutritionWilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Jian‐She Wang
- Children’s Hospital of Fudan UniversityShanghaiChina
| | - Li‐ting Li
- Children’s Hospital of Fudan UniversityShanghaiChina
| | - Özlem Durmaz
- Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Nanda Kerkar
- Pediatric Gastroenterology, Hepatology and NutritionUniversity of Rochester Medical CenterRochesterNYUSA
| | - Marianne Hørby Jørgensen
- European Reference Network on Hepatological Diseases
- Pediatric and Adolescent DepartmentDepartment of Pediatrics and Adolescent MedicineRigshospitalet Copenhagen University HospitalCopenhagenDenmark
| | - Ryan Fischer
- Section of Hepatology and Transplant MedicineChildren’s Mercy HospitalKansas CityMOUSA
| | - Carolina Jimenez‐Rivera
- Department of PediatricsChildren’s Hospital of Eastern OntarioUniversity of OttawaOttawaCanada
| | - Seema Alam
- Pediatric HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Mara Cananzi
- European Reference Network on Hepatological Diseases
- Pediatric Gastroenterology and HepatologyUniversity Hospital of PadovaPadovaItaly
| | - Noémie Laverdure
- European Reference Network on Hepatological Diseases
- Service de Gastroentérologie, Hépatologie et Nutrition PédiatriquesHospices Civils de LyonHôpital Femme Mère EnfantLyonFrance
| | | | - Felipe Ordonez
- Fundación Cardioinfantil Instituto de CardiologiaPediatric Gastroenterology and HepatologyBogotáColombia
| | - Heng Wang
- DDC Clinic Center for Special Needs ChildrenMiddlefieldOHUSA
| | - Valerie Sency
- DDC Clinic Center for Special Needs ChildrenMiddlefieldOHUSA
| | - Kyung Mo Kim
- Department of PediatricsAsan Medical Center Children’s HospitalSeoulSouth Korea
| | - Huey‐Ling Chen
- Division of Pediatric Gastroenterology, Hepatology and NutritionNational Taiwan University Children’s HospitalTaipeiTaiwan
| | - Elisa Carvalho
- Pediatric Gastroenterology and HepatologyBrasília Children’s HospitalBrasiliaBrazil
| | - Alexandre Fabre
- INSERMMMGAix Marseille UniversityMarseilleFrance
- Serveice de Pédiatrie MultidisciplinaireTimone EnfantMarseilleFrance
| | - Jesus Quintero Bernabeu
- European Reference Network on Hepatological Diseases
- Pediatric Hepatology and Liver Transplant UnitBarcelonaSpain
| | - Estella M. Alonso
- Childhood Liver Disease Research Network (ChiLDReN)
- Division of Pediatric Gastroenterology, Hepatology and NutritionAnn & Robert H. Lurie Children’s HospitalChicagoILUSA
| | - Ronald J. Sokol
- Childhood Liver Disease Research Network (ChiLDReN)
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado School of MedicineAuroraCOUSA
| | - Frederick J. Suchy
- Childhood Liver Disease Research Network (ChiLDReN)
- Icahn School of Medicine at Mount SinaiMount Sinai Kravis Children’s HospitalNew YorkNYUSA
| | - Kathleen M. Loomes
- Childhood Liver Disease Research Network (ChiLDReN)
- Division of Gastroenterology, Hepatology and NutritionChildren’s Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Patrick J. McKiernan
- Childhood Liver Disease Research Network (ChiLDReN)
- Department of Pediatric Gastroenterology and HepatologyUniversity of Pittsburgh Medical Center Children’s Hospital of PittsburghPittsburghPAUSA
| | - Philip Rosenthal
- Childhood Liver Disease Research Network (ChiLDReN)
- Department of Pediatrics and SurgeryUCSF Benioff Children’s HospitalUniversity of California San Francisco School of MedicineSan FranciscoCAUSA
| | - Yumirle Turmelle
- Childhood Liver Disease Research Network (ChiLDReN)
- Section of HepatologyDepartment of PediatricsSt. Louis Children’s HospitalWashington University School of MedicineSt. LouisMOUSA
| | - Girish S. Rao
- Childhood Liver Disease Research Network (ChiLDReN)
- Riley Hospital for ChildrenIndiana University School of MedicineIndianapolisINUSA
| | - Simon Horslen
- Childhood Liver Disease Research Network (ChiLDReN)
- Department of PediatricsSeattle Children’s HospitalUniversity of WashingtonSeattleWAUSA
| | - Binita M. Kamath
- Childhood Liver Disease Research Network (ChiLDReN)
- The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
| | - Maria Rogalidou
- Division of Pediatric Gastroenterology & HepatologyFirst Pediatrics DepartmentUniversity of AthensAgia Sofia Children’s HospitalAthensGreece
| | - Wikrom W. Karnsakul
- Division of Pediatric Gastroenterology, Nutrition, and HepatologyDepartment of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bettina Hansen
- Toronto Center for Liver DiseaseUniversity Health NetworkTorontoCanada
- IHPMEUniversity of TorontoTorontoCanada
| | - Henkjan J. Verkade
- Pediatric Gastroenterology and HepatologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- European Reference Network on Hepatological Diseases
| | | |
Collapse
|
6
|
Petrescu AD, DeMorrow S. Farnesoid X Receptor as Target for Therapies to Treat Cholestasis-Induced Liver Injury. Cells 2021; 10:cells10081846. [PMID: 34440614 PMCID: PMC8392259 DOI: 10.3390/cells10081846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Recent studies on liver disease burden worldwide estimated that cirrhosis is the 11th most common cause of death globally, and there is a great need for new therapies to limit the progression of liver injuries in the early stages. Cholestasis is caused by accumulation of hydrophobic bile acids (BA) in the liver due to dysfunctional BA efflux or bile flow into the gall bladder. Therefore, strategies to increase detoxification of hydrophobic BA and downregulate genes involved in BA production are largely investigated. Farnesoid X receptor (FXR) has a central role in BA homeostasis and recent publications revealed that changes in autophagy due to BA-induced reactive oxygen species and increased anti-oxidant response via nuclear factor E2-related factor 2 (NRF2), result in dysregulation of FXR signaling. Several mechanistic studies have identified new dysfunctions of the cholestatic liver at cellular and molecular level, opening new venues for developing more performant therapies.
Collapse
Affiliation(s)
- Anca D. Petrescu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Central Texas Veterans Health Care System, Temple, TX 78712, USA
- Correspondence: ; Tel.: +1-512-495-5779
| |
Collapse
|
7
|
Girisa S, Henamayee S, Parama D, Rana V, Dutta U, Kunnumakkara AB. Targeting Farnesoid X receptor (FXR) for developing novel therapeutics against cancer. MOLECULAR BIOMEDICINE 2021; 2:21. [PMID: 35006466 PMCID: PMC8607382 DOI: 10.1186/s43556-021-00035-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the lethal diseases that arise due to the molecular alterations in the cell. One of those alterations associated with cancer corresponds to differential expression of Farnesoid X receptor (FXR), a nuclear receptor regulating bile, cholesterol homeostasis, lipid, and glucose metabolism. FXR is known to regulate several diseases, including cancer and cardiovascular diseases, the two highly reported causes of mortality globally. Recent studies have shown the association of FXR overexpression with cancer development and progression in different types of cancers of breast, lung, pancreas, and oesophagus. It has also been associated with tissue-specific and cell-specific roles in various cancers. It has been shown to modulate several cell-signalling pathways such as EGFR/ERK, NF-κB, p38/MAPK, PI3K/AKT, Wnt/β-catenin, and JAK/STAT along with their targets such as caspases, MMPs, cyclins; tumour suppressor proteins like p53, C/EBPβ, and p-Rb; various cytokines; EMT markers; and many more. Therefore, FXR has high potential as novel biomarkers for the diagnosis, prognosis, and therapy of cancer. Thus, the present review focuses on the diverse role of FXR in different cancers and its agonists and antagonists.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahu Henamayee
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Dey Parama
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Varsha Rana
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam, 781001, India.
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Koukoulioti E, Ziagaki A, Weber SN, Lammert F, Berg T. Long-Term Colestyramine Treatment Prevents Cholestatic Attacks in Refractory Benign Recurrent Intrahepatic Cholestasis Type 1 Disease. Hepatology 2021; 74:522-524. [PMID: 33277690 DOI: 10.1002/hep.31671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/07/2022]
Affiliation(s)
- Eleni Koukoulioti
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Athanasia Ziagaki
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
9
|
FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166133. [PMID: 33771667 DOI: 10.1016/j.bbadis.2021.166133] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The liver is the central metabolic hub which coordinates nutritional inputs and metabolic outputs. Food intake releases bile acids which can be sensed by the bile acid receptor FXR in the liver and the intestine. Hepatic and intestinal FXR coordinately regulate postprandial nutrient disposal in a network of interacting metabolic nuclear receptors. In this review we summarize and update the "classical roles" of FXR as a central integrator of the feeding state response, which orchestrates the metabolic processing of carbohydrates, lipids, proteins and bile acids. We also discuss more recent and less well studied FXR effects on amino acid, protein metabolism, autophagic turnover and inflammation. In addition, we summarize the recent understanding of how FXR signaling is affected by posttranslational modifications and by different FXR isoforms. These modifications and variations in FXR signaling might be considered when FXR is targeted pharmaceutically in clinical applications.
Collapse
|
10
|
Liver Steatosis and Diarrhea After Liver Transplantation for Progressive Familial Intrahepatic Cholestasis Type 1: Can Biliary Diversion Solve These Problems? J Pediatr Gastroenterol Nutr 2021; 72:341-342. [PMID: 33230072 DOI: 10.1097/mpg.0000000000002990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Appelman MD, van der Veen SW, van Mil SWC. Post-Translational Modifications of FXR; Implications for Cholestasis and Obesity-Related Disorders. Front Endocrinol (Lausanne) 2021; 12:729828. [PMID: 34646233 PMCID: PMC8503269 DOI: 10.3389/fendo.2021.729828] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The Farnesoid X receptor (FXR) is a nuclear receptor which is activated by bile acids. Bile acids function in solubilization of dietary fats and vitamins in the intestine. In addition, bile acids have been increasingly recognized to act as signaling molecules involved in energy metabolism pathways, amongst others via activating FXR. Upon activation by bile acids, FXR controls the expression of many genes involved in bile acid, lipid, glucose and amino acid metabolism. An inability to properly use and store energy substrates may predispose to metabolic disorders, such as obesity, diabetes, cholestasis and non-alcoholic fatty liver disease. These diseases arise through a complex interplay between genetics, environment and nutrition. Due to its function in metabolism, FXR is an attractive treatment target for these disorders. The regulation of FXR expression and activity occurs both at the transcriptional and at the post-transcriptional level. It has been shown that FXR can be phosphorylated, SUMOylated and acetylated, amongst other modifications, and that these modifications have functional consequences for DNA and ligand binding, heterodimerization and subcellular localization of FXR. In addition, these post-translational modifications may selectively increase or decrease transcription of certain target genes. In this review, we provide an overview of the posttranslational modifications of FXR and discuss their potential involvement in cholestatic and metabolic disorders.
Collapse
|
12
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
PL-S2, a homogeneous polysaccharide from Radix Puerariae lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism. Int J Biol Macromol 2020; 165:1694-1705. [PMID: 33058986 DOI: 10.1016/j.ijbiomac.2020.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/20/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharides are important active constituents of Radix Puerariae lobatae (RPL). In this study, a novel homogeneous polysaccharide from RPL was successfully obtained by HP-20 macroporous resin and purified by Sepharose G-100 column chromatography. Nuclear magnetic resonance (NMR) analysis showed that the main glycosidic bonds were composed of α-1,3-linked and α-1,4-linked glucose. The molecular weight of PL-S2 was 18.73 kDa. The hypolipidemic effect of PL-S2 on hyperlipidemic rats was evaluated in histopathology and metabolomics analyses. PL-S2 significantly reduced plasma lipid levels and inhibited bile acid metabolism. We also demonstrated that treatment with PL-S2 activated FXR, CYP7A1, BESP, and MRP2 in rat liver. Our findings first indicate that PL-S2 decreases plasma lipid levels in hyperlipidemic rats by activating the FXR signaling pathway and promoting bile acid excretion. Therefore, PL-S2 derived from RPL is implicated as a functional food factor with lipid-regulating activity, and highlighted as a potential food supplement for the treatment of hyperlipidemia.
Collapse
|
14
|
Yang N, Dong YQ, Jia GX, Fan SM, Li SZ, Yang SS, Li YB. ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed Pharmacother 2020; 132:110835. [PMID: 33035828 DOI: 10.1016/j.biopha.2020.110835] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Bile acids has gradually become a new focus in various diseases, and ASBT as a transporter responsible for the reabsorption of ileal bile acids, is a key hinge associated to the bile acids-cholesterol balance and bile acids of enterohepatic circulation. The cumulative studies have also shown that ASBT is a promising target for treatment of liver, gallbladder, intestinal and metabolic diseases. This article briefly reviewed the process of bile acids enterohepatic circulation, as well as the regulations of ASBT expression, covering transcription factors, nuclear receptors and gut microbiota. In addition, the relationship between ASBT and various diseases were discussed in this paper. According to the structural classification of ASBT inhibitors, the research status of ASBT inhibitors and potential ASBT inhibitors of traditional Chinese medicine (such resveratrol, jatrorrhizine in Coptis chinensis) were summarized. This review provides a basis for the development of ASBT inhibitors and the treatment strategy of related diseases.
Collapse
Affiliation(s)
- Na Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Ya-Qian Dong
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guo-Xiang Jia
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Si-Miao Fan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shan-Ze Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shen-Shen Yang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Yu-Bo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
15
|
Liu Y, Chen K, Li F, Gu Z, Liu Q, He L, Shao T, Song Q, Zhu F, Zhang L, Jiang M, Zhou Y, Barve S, Zhang X, McClain CJ, Feng W. Probiotic Lactobacillus rhamnosus GG Prevents Liver Fibrosis Through Inhibiting Hepatic Bile Acid Synthesis and Enhancing Bile Acid Excretion in Mice. Hepatology 2020; 71:2050-2066. [PMID: 31571251 PMCID: PMC7317518 DOI: 10.1002/hep.30975] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/22/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Cholestatic liver disease is characterized by gut dysbiosis and excessive toxic hepatic bile acids (BAs). Modification of gut microbiota and repression of BA synthesis are potential strategies for the treatment of cholestatic liver disease. The purpose of this study was to examine the effects and to understand the mechanisms of the probiotic Lactobacillus rhamnosus GG (LGG) on hepatic BA synthesis, liver injury, and fibrosis in bile duct ligation (BDL) and multidrug resistance protein 2 knockout (Mdr2-/- ) mice. APPROACH AND RESULTS Global and intestine-specific farnesoid X receptor (FXR) inhibitors were used to dissect the role of FXR. LGG treatment significantly attenuated liver inflammation, injury, and fibrosis with a significant reduction of hepatic BAs in BDL mice. Hepatic concentration of taurine-β-muricholic acid (T-βMCA), an FXR antagonist, was markedly increased in BDL mice and reduced in LGG-treated mice, while chenodeoxycholic acid, an FXR agonist, was decreased in BDL mice and normalized in LGG-treated mice. LGG treatment significantly increased the expression of serum and ileum fibroblast growth factor 15 (FGF-15) and subsequently reduced hepatic cholesterol 7α-hydroxylase and BA synthesis in BDL and Mdr2-/- mice. At the molecular level, these changes were reversed by global and intestine-specific FXR inhibitors in BDL mice. In addition, LGG treatment altered gut microbiota, which was associated with increased BA deconjugation and increased fecal and urine BA excretion in both BDL and Mdr2-/- mice. In vitro studies showed that LGG suppressed the inhibitory effect of T-βMCA on FXR and FGF-19 expression in Caco-2 cells. CONCLUSION LGG supplementation decreases hepatic BA by increasing intestinal FXR-FGF-15 signaling pathway-mediated suppression of BA de novo synthesis and enhances BA excretion, which prevents excessive BA-induced liver injury and fibrosis in mice.
Collapse
Affiliation(s)
- Yunhuan Liu
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Kefei Chen
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Liver Surgery and Liver Transplantation CenterWest China HospitalSichuan UniversityChengduChina
| | - Fengyuan Li
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
| | - Zelin Gu
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Qi Liu
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- The Second Affiliated HospitalWenzhou Medical UniversityWenzhouChina
| | - Liqing He
- Department of ChemistryUniversity of LouisvilleLouisvilleKY
| | - Tuo Shao
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Qing Song
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fenxia Zhu
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lihua Zhang
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Mengwei Jiang
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
| | - Yun Zhou
- Department of MedicineUniversity of LouisvilleLouisvilleKY
| | - Shirish Barve
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKY
- Hepatobiology & Toxicology CenterUniversity of LouisvilleLouisvilleKY
| | - Xiang Zhang
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
- Department of ChemistryUniversity of LouisvilleLouisvilleKY
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKY
- Hepatobiology & Toxicology CenterUniversity of LouisvilleLouisvilleKY
| | - Craig J. McClain
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKY
- Hepatobiology & Toxicology CenterUniversity of LouisvilleLouisvilleKY
- Robley Rex VA Medical CenterLouisvilleKY
| | - Wenke Feng
- Department of MedicineUniversity of LouisvilleLouisvilleKY
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKY
- Alcohol Research CenterUniversity of LouisvilleLouisvilleKY
- Hepatobiology & Toxicology CenterUniversity of LouisvilleLouisvilleKY
| |
Collapse
|
16
|
Farr S, Stankovic B, Hoffman S, Masoudpoor H, Baker C, Taher J, Dean AE, Anakk S, Adeli K. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G682-G693. [PMID: 32003602 DOI: 10.1152/ajpgi.00386.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Postprandial dyslipidemia is a common feature of insulin-resistant states and contributes to increased cardiovascular disease risk. Recently, bile acids have been recognized beyond their emulsification properties as important signaling molecules that promote energy expenditure, improve insulin sensitivity, and lower fasting lipemia. Although bile acid receptors have become novel pharmaceutical targets, their effects on postprandial lipid metabolism remain unclear. Here, we investigated the potential role of bile acids in regulation of postprandial chylomicron production and triglyceride excursion. Healthy C57BL/6 mice were given an intraduodenal infusion of taurocholic acid (TA) under fat-loaded conditions, and circulating lipids were measured. Targeting of bile acid receptors was achieved with GW4064, a synthetic agonist to the farnesoid X receptor (FXR), and deoxycholic acid (DCA), an activator of the Takeda G-protein-coupled receptor 5. TA, GW4064, and DCA treatments all lowered postprandial lipemia. FXR agonism also reduced intestinal triglyceride content and activity of microsomal triglyceride transfer protein, involved in chylomicron assembly. Importantly, TA (but not DCA) effects were largely lost in FXR knockout mice. These bile acid effects are reminiscent of the antidiabetic hormone glucagon-like peptide-1 (GLP-1). Although the GLP-1 receptor agonist exendin-4 retained its ability to acutely lower postprandial lipemia during bile acid sequestration and FXR deficiency, it did raise hepatic expression of the rate-limiting enzyme for bile acid synthesis. Bile acid signaling may be an important mechanism of controlling dietary lipid absorption, and bile acid receptors may constitute novel targets for the treatment of postprandial dyslipidemia.NEW & NOTEWORTHY We present new data suggesting potentially important roles for bile acids in regulation of postprandial lipid metabolism. Specific bile acid species, particularly secondary bile acids, were found to markedly inhibit absorption of dietary lipid and reduce postprandial triglyceride excursion. These effects appear to be mediated via bile acid receptors, farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Importantly, bile acid signaling may trigger glucagon-like peptide-1 (GLP-1) secretion, which may in turn mediate the marked inhibitory effects on dietary fat absorption.
Collapse
Affiliation(s)
- Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bogdan Stankovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Hoffman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hassan Masoudpoor
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris Baker
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Taher
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angela E Dean
- Molecular and Cellular Biology, University of Illinois-Urbana-Champaign, Urbana, Illinois
| | | | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
18
|
van Zutphen T, Bertolini A, de Vries HD, Bloks VW, de Boer JF, Jonker JW, Kuipers F. Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handb Exp Pharmacol 2019; 256:207-234. [PMID: 31236687 DOI: 10.1007/164_2019_233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Farnesoid X receptor controls bile acid metabolism, both in the liver and intestine. This potent nuclear receptor not only maintains homeostasis of its own ligands, i.e., bile acids, but also regulates glucose and lipid metabolism as well as the immune system. These findings have led to substantial interest for FXR as a therapeutic target and to the recent approval of an FXR agonist for treating primary biliary cholangitis as well as ongoing clinical trials for other liver diseases. Given that FXR biology is complex, including moderate expression in tissues outside of the enterohepatic circulation, temporal expression of isoforms, posttranscriptional modifications, and the existence of several other bile acid-responsive receptors such as TGR5, clinical application of FXR modulators warrants thorough understanding of its actions. Recent findings have demonstrated remarkable physiological effects of targeting FXR specifically in the intestine (iFXR), thereby avoiding systemic release of modulators. These include local effects such as improvement of intestinal barrier function and intestinal cholesterol turnover, as well as systemic effects such as improvements in glucose homeostasis, insulin sensitivity, and nonalcoholic fatty liver disease (NAFLD). Intriguingly, metabolic improvements have been observed with both an iFXR agonist that leads to production of enteric Fgf15 and increased energy expenditure in adipose tissues and antagonists by reducing systemic ceramide levels and hepatic glucose production. Here we review the recent findings on the role of intestinal FXR and its targeting in metabolic disease.
Collapse
Affiliation(s)
- Tim van Zutphen
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Anna Bertolini
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Hilde D de Vries
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Abstract
Genetic cholestasis has been dissected through genetic investigation. The major PFIC genes are now described. ATP8B1 encodes FIC1, ABCB11 encodes BSEP, ABCB4 encodes MDR3, TJP2 encodes TJP2, NR1H4 encodes FXR, and MYO5B encodes MYO5B. The full spectra of phenotypes associated with mutations in each gene are discussed, along with our understanding of the disease mechanisms. Differences in treatment response and targets for future treatment are emerging.
Collapse
Affiliation(s)
- Laura N Bull
- Department of Medicine and Institute for Human Genetics, University of California San Francisco, UCSF Liver Center Laboratory, Zuckerberg San Francisco General, 1001 Potrero Avenue, Building 40, Room 4102, San Francisco, CA 94110, USA.
| | - Richard J Thompson
- Institute of Liver Studies, King's College London, King's College Hospital, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
20
|
|
21
|
Hayashi H, Naoi S, Togawa T, Hirose Y, Kondou H, Hasegawa Y, Abukawa D, Sasaki M, Muroya K, Watanabe S, Nakano S, Minowa K, Inui A, Fukuda A, Kasahara M, Nagasaka H, Bessho K, Suzuki M, Kusuhara H. Assessment of ATP8B1 Deficiency in Pediatric Patients With Cholestasis Using Peripheral Blood Monocyte-Derived Macrophages. EBioMedicine 2017; 27:187-199. [PMID: 29104077 PMCID: PMC5828058 DOI: 10.1016/j.ebiom.2017.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
Progressive familial intrahepatic cholestasis type 1 (PFIC1), a rare inherited recessive disease resulting from a genetic deficiency in ATP8B1, progresses to liver failure. Because of the difficulty of discriminating PFIC1 from other subtypes of PFIC based on its clinical and histological features and genome sequencing, an alternative method for diagnosing PFIC1 is desirable. Herein, we analyzed human peripheral blood monocyte-derived macrophages (HMDM) and found predominant expression of ATP8B1 in interleukin-10 (IL-10)-induced M2c, a subset of alternatively activated macrophages. SiRNA-mediated depletion of ATP8B1 in IL-10-treated HMDM markedly suppressed the expression of M2c-related surface markers and increased the side scatter (SSC) of M2c, likely via impairment of the IL-10/STAT3 signal transduction pathway. These phenotypic features were confirmed in IL-10-treated HMDM from four PFIC1 patients with disease-causing mutations in both alleles, but not in those from four patients with other subtypes of PFIC. This method identified three PFIC1 patients in a group of PFIC patients undiagnosed by genome sequencing, an identical diagnostic outcome to that achieved by analysis of liver specimens and in vitro mutagenesis studies. In conclusion, ATP8B1 deficiency caused incomplete polarization of HMDM into M2c. Phenotypic analysis of M2c helps to identify PFIC1 patients with no apparent disease-causing mutations in ATP8B1. ATP8B1, a causal gene of PFIC1, was expressed in IL-10-induced M2c, a subset of alternatively activated macrophages. ATP8B1 deficiency caused incomplete polarization of HMDM into M2c, likely via impairment of IL-10/STAT3 signaling. Phenotypic analysis of M2c helps to discriminate PFIC1 from other pediatric liver diseases undiagnosed by genomic analysis.
PFIC1, a rare inherited recessive disease resulting from a genetic deficiency in ATP8B1, progresses to liver failure. PFIC1 shares many clinical and histological features with other subtypes of PFIC, but differs in its therapeutic options. Because genome sequencing in patients with a clinical diagnosis of PFIC cannot always identify disease-causing mutations, an alternative method for diagnosing PFIC1 is desirable. We identified expression of ATP8B1 in IL-10-induced M2c, a subset of macrophages, and demonstrated its contribution to normal phenotypic expression of M2c. The phenotypic analysis of M2c helps to discriminate PFIC1 from other pediatric liver diseases undiagnosed by genomic analysis.
Collapse
Affiliation(s)
- Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Sotaro Naoi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takao Togawa
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yu Hirose
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Kondou
- Department of Pediatrics, Nara Hospital, Kinki University Faculty of Medicine, Nara, Japan
| | - Yasuhiro Hasegawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daiki Abukawa
- Department of General Pediatrics, Miyagi Children's Hospital, Miyagi, Japan
| | - Mika Sasaki
- Department of Pediatrics, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Kanagawa, Japan
| | - Satoshi Watanabe
- Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan
| | - Satoshi Nakano
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Minowa
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | | | - Kazuhiko Bessho
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Liu L, Zhang L, Zhang L, Yang F, Zhu X, Lu Z, Yang Y, Lu H, Feng L, Wang Z, Chen H, Yan S, Wang L, Ju Z, Jin H, Zhu X. Hepatic Tmem30a Deficiency Causes Intrahepatic Cholestasis by Impairing Expression and Localization of Bile Salt Transporters. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2775-2787. [PMID: 28919113 DOI: 10.1016/j.ajpath.2017.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Mutations in ATP8B1 or ATP11C (members of P4-type ATPases) cause progressive familial intrahepatic cholestasis type 1 in human or intrahepatic cholestasis in mice. Transmembrane protein 30A (TMEM30A), a β-subunit, is essential for the function of ATP8B1 and ATP11C. However, its role in the etiology of cholestasis remains poorly understood. To investigate the function of TMEM30A in bile salt (BS) homeostasis, we developed Tmem30a liver-specific knockout (LKO) mice. Tmem30a LKO mice experienced hyperbilirubinemia, hypercholanemia, inflammatory infiltration, ductular proliferation, and liver fibrosis. The expression and membrane localization of ATP8B1 and ATP11C were significantly reduced in Tmem30a LKO mice, which correlated with the impaired expression and localization of BS transporters, such as OATP1A4, OATP1B2, NTCP, BSEP, and MRP2. The proteasome inhibitor bortezomib partially restored total protein levels of BS transporters but not the localization of BS transporters in the membrane. Furthermore, the expression of nuclear receptors, including FXRα, RXRα, HNF4α, LRH-1, and SHP, was also down-regulated. A cholic acid-supplemented diet exacerbated the liver damage in Tmem30a LKO mice. TMEM30A deficiency led to intrahepatic cholestasis in mice by impairing the expression and localization of BS transporters and the expression of related nuclear receptors. Therefore, TMEM30A may be a novel genetic determinant of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Leiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Lingling Zhang
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China; Leibniz Institute for Age Research - Fritz Lipmann Institute, Friedrich-Schiller University of Jena, Jena, Germany
| | - Xudong Zhu
- Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhongjie Lu
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqi Lu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhuo Wang
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Hepato-Biliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China; Institute of Aging Research, Leibniz Link Partner Group on Stem Cell Aging, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China; Key Laboratory for NeuroInformation of Ministry of Education and Medicine Information Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
23
|
Abstract
Bile acids (BA) are synthesized from cholesterol in the liver. They are essential for promotion of the absorption of lipids, cholesterol, and lipid-soluble vitamins from the intestines. BAs are hormones that regulate nutrient metabolism by activating nuclear receptors (farnesoid X receptor (FXR), pregnane X receptor, vitamin D) and G protein-coupled receptors (e.g., TGR5, sphingosine-1-phosphate receptor 2 (S1PR2)) in the liver and intestines. In the liver, S1PR2 activation by conjugated BAs activates the extracellular signal-regulated kinase 1/2 and AKT signaling pathways, and nuclear sphingosine kinase 2. The latter produces sphingosine-1-phosphate (S1P), an inhibitor of histone deacetylases 1/2, which allows for the differential up-regulation of expression of genes involved in the metabolism of sterols and lipids. We discuss here the emerging concepts of the interactions of BAs, FXR, insulin, S1P signaling and nutrient metabolism.
Collapse
|
24
|
Becares N, Gage MC, Pineda-Torra I. Posttranslational Modifications of Lipid-Activated Nuclear Receptors: Focus on Metabolism. Endocrinology 2017; 158:213-225. [PMID: 27925773 PMCID: PMC5413085 DOI: 10.1210/en.2016-1577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022]
Abstract
Posttranslational modifications (PTMs) occur to nearly all proteins, are catalyzed by specific enzymes, and are subjected to tight regulation. They have been shown to be a powerful means by which the function of proteins can be modified, resulting in diverse effects. Technological advances such as the increased sensitivity of mass spectrometry-based techniques and availability of mutant animal models have enhanced our understanding of the complexities of their regulation and the effect they have on protein function. However, the role that PTMs have in a pathological context still remains unknown for the most part. PTMs enable the modulation of nuclear receptor function in a rapid and reversible manner in response to varied stimuli, thereby dramatically altering their activity in some cases. This review focuses on acetylation, phosphorylation, SUMOylation, and O-GlcNAcylation, which are the 4 most studied PTMs affecting lipid-regulated nuclear receptor biology, as well as on the implications of such modifications on metabolic pathways under homeostatic and pathological situations. Moreover, we review recent studies on the modulation of PTMs as therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Natalia Becares
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| | - Matthew C Gage
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| | - Inés Pineda-Torra
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| |
Collapse
|
25
|
Han CY, Kim TH, Koo JH, Kim SG. Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. Arch Pharm Res 2016; 39:1062-74. [PMID: 27515052 DOI: 10.1007/s12272-016-0812-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/04/2016] [Indexed: 12/24/2022]
Abstract
Maintenance of energy homeostasis is crucial for survival of organism. There exists a close link between energy metabolism and cell survival, which are coordinately regulated by common signaling pathways. Farnesoid X receptor (FXR) serves as a ligand-mediated transcription factor to regulate diverse genes involved in bile acid, lipid, and glucose metabolism, controlling cellular and systemic energy metabolism. Another important aspect on FXR biology is related to its beneficial effect on cell survival. FXR exerts antioxidative and cytoprotective effect, which is closely associated with the ability of FXR to regulate mitochondrial function. To maintain complex biological processes under homeostasis, FXR activity needs to be dynamically and tightly controlled by different signaling pathways and modifications. In this review, we discuss the role of FXR in the regulation of energy metabolism and cell survival, with the goal of understanding molecular basis for FXR regulation in physiological and pathological conditions. This information may be of assistance in understanding recent advancements of FXR research and strategies for the prevention and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Chang Yeob Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
26
|
Korneenko TV, Pestov NB, Okkelman IA, Modyanov NN, Shakhparonov MI. [P4-ATP-ase Atp8b1/FIC1: structural properties and (patho)physiological functions]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:3-12. [PMID: 26050466 DOI: 10.1134/s1068162015010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
P4-ATP-ases comprise an interesting family among P-type ATP-ases, since they are thought to play a major role in the transfer of phospholipids such as phosphatydylserine from the outer leaflet to the inner leaflet. Isoforms of P4-ATP-ases are partially interchangeable but peculiarities of tissue-specific expression of their genes, intracellular localization of proteins, as well as regulatory pathways lead to the fact that, on the organismal level, serious pathologies may develop in the presence of structural abnormalities in certain isoforms. Among P4-ATP-ases a special place is occupied by ATP8B1, for which several mutations are known that lead to serious hereditary diseases: two forms of congenital cholestasis (PFIC1 or Byler disease and benign recurrent intrahepatic cholestasis) with extraliver symptoms such as sensorineural hearing loss. The physiological function of the Atp8b1/FIC1 protein is known in general outline: it is responsible for transport of certain phospholipids (phosphatydylserine, cardiolipin) for the outer monolayer of the plasma membrane to the inner one. It is well known that perturbation of membrane asymmetry, caused by the lack of Atp8B1 activity, leads to death of hairy cells of the inner ear, dysfunction of bile acid transport in liver-cells that causes cirrhosis. It is also probable that insufficient activity of Atp8b1/FIC1 increases susceptibility to bacterial pneumonia.Regulatory pathways of Atp8b1/FIC1 activity in vivo remain to be insufficiently studied and this opens novel perspectives for research in this field that may allow better understanding of molecular processes behind the development of certain pathologies and to reveal novel therapeutical targets.
Collapse
|
27
|
Naik J, de Waart DR, Utsunomiya K, Duijst S, Mok KH, Oude Elferink RPJ, Bosma PJ, Paulusma CC. ATP8B1 and ATP11C: Two Lipid Flippases Important for Hepatocyte Function. Dig Dis 2015; 33:314-8. [PMID: 26045263 DOI: 10.1159/000371665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
P4 ATPases are lipid flippases and transport phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes. Lipid flipping is important for the biogenesis of transport vesicles. Recently it was shown that loss of the P4 ATPases ATP8B1 and ATP11C are associated with severe Cholestatic liver disease. Mutation of ATP8B1 cause progressive familial Intrahepatic Cholestasis type 1 (PFIC1)and benign recurrent intrahepatic cholestasis type 1 (BRIC 1). From our observations we hypothesized that ATP8B1 deficiency causes a phospholipids randomization at the canalicular membrane, which results in extraction of cholesterol due to increase sensitivity of the canalicular membrane. Deficiency of ATP11C causes conjugated hyperbilirubinemia. In our preliminary result we observed accumulation of unconjugated bile salts in Atp11c deficient mice probably because of regulation in the expression or function of OATP1B2. Similar to ATP8B1, ATP11C have regulation on membrane transporters.
Collapse
Affiliation(s)
- Jyoti Naik
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mazuy C, Helleboid A, Staels B, Lefebvre P. Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci 2015; 72:1631-50. [PMID: 25511198 PMCID: PMC11113650 DOI: 10.1007/s00018-014-1805-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/16/2022]
Abstract
Bile acids (BAs) are amphipathic molecules produced from cholesterol by the liver. Expelled from the gallbladder upon meal ingestion, BAs serve as fat solubilizers in the intestine. BAs are reabsorbed in the ileum and return via the portal vein to the liver where, together with nutrients, they provide signals to coordinate metabolic responses. BAs act on energy and metabolic homeostasis through the activation of membrane and nuclear receptors, among which the nuclear receptor farnesoid X receptor (FXR) is an important regulator of several metabolic pathways. Highly expressed in the liver and the small intestine, FXR contributes to BA effects on metabolism, inflammation and cell cycle control. The pharmacological modulation of its activity has emerged as a potential therapeutic strategy for liver and metabolic diseases. This review highlights recent advances regarding the mechanisms by which the BA sensor FXR contributes to global signaling effects of BAs, and how FXR activity may be regulated by nutrient-sensitive signaling pathways.
Collapse
Affiliation(s)
- Claire Mazuy
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Audrey Helleboid
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), 59000 Lille, France
- INSERM UMR1011-Bâtiment J&K, 59000 Lille, France
- University Lille 2, 59000 Lille, France
- Institut Pasteur de Lille, 59019 Lille, France
| |
Collapse
|
29
|
Abstract
OBJECTIVES Byler disease, originally described in Amish kindred, results from mutations in ATPase Class I Type 8b Member 1 (ATP8b1). Specific clinical reports of Amish Byler disease were last published 40 years ago. These investigations were directed at the present detailed clinical understanding of the early course of hepatic manifestations of Byler disease. METHODS This study analyzed routine clinical practice and outcomes of children with Byler disease (defined by homozygous c.923G>T mutation in ATP8b1), who initially presented to Children's Hospital of Pittsburgh of UPMC between January 2007 and October 2014. Data were analyzed to the earlier of 24 months of age or partial external biliary diversion. RESULTS Six children presented between 1 and 135 days of life: 2 presented with newborn direct hyperbilirubinemia, 2 had complications of coagulopathy, 1 had failure to thrive and rickets, and 1 sibling was identified by newborn genetic testing. Intensive fat-soluble vitamin supplementation was required to prevent insufficiencies in vitamins D, E, and K. Hyperbilirubinemia was variable both over time and between children. Serum bile acid levels were elevated, whereas γ-glutamyltranspeptidase levels were low normal. Scratching behavior (pruritus) was intractable in 4 of 6 children with onset between 6 and 12 months of age. Features of portal hypertension were not observed. Partial external biliary diversion was used during the second year of life in 4 children. CONCLUSIONS Detailed analysis of Byler disease revealed varied disease presentation and course. Nutritional issues and pruritus dominated the clinical picture in the first 2 years of life.
Collapse
|
30
|
Bile acid pool dynamics in progressive familial intrahepatic cholestasis with partial external bile diversion. J Pediatr Gastroenterol Nutr 2015; 60:368-74. [PMID: 25383786 PMCID: PMC4418648 DOI: 10.1097/mpg.0000000000000630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Partial external bile diversion (PEBD) is an established therapy for low-γ-glutamyl transferase (GGT) progressive familial intrahepatic cholestasis (PFIC). This study sought to determine whether the dynamics of the cholic acid (CA) and chenodeoxycholic acid (CDCA) pools in subjects with low-GGT-PFIC with successful PEBD were equivalent to those achieved with successful liver transplantation (LTX). METHODS The kinetics of CA and CDCA metabolism were measured by stable isotope dilution in plasma samples in 5 subjects with PEBD, all with intact canalicular bile salt export pump expression and compared with subjects with low-GGT-PFIC with successful LTX. Stomal loss of bile acids was measured in subjects with PEBD. RESULTS The fractional turnover rate for CA in the PEBD group ranged from 0.5 to 4.2/day (LTX group, range 0.2-0.9/day, P = 0.076) and for CDCA from 0.7 to 4.5/day (LTX group 0.3-0.4/day, P = 0.009). The CA and CDCA pool sizes were equivalent between groups; however, pool composition in PEBD was somewhat more hydrophilic. The CA/CDCA ratio in PEBD ranged from 0.9 to 19.5, whereas in LTX it ranged from 0.5 to 2.6. Synthesis rates computed from isotope dilution correlated well with timed output for both CA (r2 = 0.760, P = 0.024) and CDCA (r2 = 0.690, P = 0.021). CONCLUSIONS PEBD results in bile acid fractional turnover rates greater than LTX, pool sizes equivalent to LTX, and pool composition that is at least as hydrophilic as produced by LTX.
Collapse
|
31
|
Bridging cell surface receptor with nuclear receptors in control of bile acid homeostasis. Acta Pharmacol Sin 2015; 36:113-8. [PMID: 25500873 DOI: 10.1038/aps.2014.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are traditionally considered as "physiological detergents" for emulsifying hydrophobic lipids and vitamins due to their amphipathic nature. But accumulating clinical and experimental evidence shows an association between disrupted BA homeostasis and various liver disease conditions including hepatitis infection, diabetes and cancer. Consequently, BA homeostasis regulation has become a field of heavy interest and investigation. After identification of the Farnesoid X Receptor (FXR) as an endogenous receptor for BAs, several nuclear receptors (SHP, HNF4α, and LRH-1) were also found to be important in regulation of BA homeostasis. Some post-translational modifications of these nuclear receptors have been demonstrated, but their physiological significance is still elusive. Gut secrets FGF15/19 that can activate hepatic FGFR4 and its downstream signaling cascade, leading to repressed hepatic BA biosynthesis. However, the link between the activated kinases and these nuclear receptors is not fully elucidated. Here, we review the recent literature on signal crosstalk in BA homeostasis.
Collapse
|
32
|
Smith KP, Gifford KM, Waitzman JS, Rice SE. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Proteins 2015; 83:25-36. [PMID: 24833420 PMCID: PMC4233198 DOI: 10.1002/prot.24605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
While it is currently estimated that 40 to 50% of eukaryotic proteins are phosphorylated, little is known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor binding sites. In this study, we investigated how frequently phosphorylation may affect the binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data Bank (PDB). We cross-referenced these structures with phosphorylation data available from the PhosphoSitePlus database. Three hundred twenty-two of 453 (71%) of drug targets have evidence of phosphorylation that has been validated by multiple methods or labs. For 132 of 453 (29%) of those, the phosphorylation site is within 12 Å of the small molecule-binding site, where it would likely alter small molecule binding affinity. We propose a framework for distinguishing between drug-phosphorylation site interactions that are likely to alter the efficacy of drugs versus those that are not. In addition we highlight examples of well-established drug targets, such as estrogen receptor alpha, for which phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that phosphorylation may affect drug binding and efficacy for a significant fraction of drug target proteins.
Collapse
Affiliation(s)
- Kyle P Smith
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611
| | | | | | | |
Collapse
|
33
|
Abstract
Bile salts play crucial roles in allowing the gastrointestinal system to digest, transport and metabolize nutrients. They function as nutrient signaling hormones by activating specific nuclear receptors (FXR, PXR, Vitamin D) and G-protein coupled receptors [TGR5, sphingosine-1 phosphate receptor 2 (S1PR2), muscarinic receptors]. Bile acids and insulin appear to collaborate in regulating the metabolism of nutrients in the liver. They both activate the AKT and ERK1/2 signaling pathways. Bile acid induction of the FXR-α target gene, small heterodimer partner (SHP), is highly dependent on the activation PKCζ, a branch of the insulin signaling pathway. SHP is an important regulator of glucose and lipid metabolism in the liver. One might hypothesize that chronic low grade inflammation which is associated with insulin resistance, may inhibit bile acid signaling and disrupt lipid metabolism. The disruption of these signaling pathways may increase the risk of fatty liver and non-alcoholic fatty liver disease (NAFLD). Finally, conjugated bile acids appear to promote cholangiocarcinoma growth via the activation of S1PR2.
Collapse
Affiliation(s)
- Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States; McGuire VA Medical Center, Richmond, VA 23249, United States.
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, United States; McGuire VA Medical Center, Richmond, VA 23249, United States.
| |
Collapse
|
34
|
Srivastava A. Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol 2014; 4:25-36. [PMID: 25755532 PMCID: PMC4017198 DOI: 10.1016/j.jceh.2013.10.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/31/2013] [Indexed: 12/12/2022] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a group of rare disorders which are caused by defect in bile secretion and present with intrahepatic cholestasis, usually in infancy and childhood. These are autosomal recessive in inheritance. The estimated incidence is about 1 per 50,000 to 1 per 100,000 births, although exact prevalence is not known. These diseases affect both the genders equally and have been reported from all geographical areas. Based on clinical presentation, laboratory findings, liver histology and genetic defect, these are broadly divided into three types-PFIC type 1, PFIC type 2 and PFIC type 3. The defect is in ATP8B1 gene encoding the FIC1 protein, ABCB 11 gene encoding BSEP protein and ABCB4 gene encoding MDR3 protein in PFIC1, 2 and 3 respectively. The basic defect is impaired bile salt secretion in PFIC1/2 whereas in PFIC3, it is reduced biliary phospholipid secretion. The main clinical presentation is in the form of cholestatic jaundice and pruritus. Serum gamma glutamyl transpeptidase (GGT) is normal in patients with PFIC1/2 while it is raised in patients with PFIC3. Treatment includes nutritional support (adequate calories, supplementation of fat soluble vitamins and medium chain triglycerides) and use of medications to relieve pruritus as initial therapy followed by biliary diversion procedures in selected patients. Ultimately liver transplantation is needed in most patients as they develop progressive liver fibrosis, cirrhosis and end stage liver disease. Due to the high risk of developing liver tumors in PFIC2 patients, monitoring is recommended from infancy. Mutation targeted pharmacotherapy, gene therapy and hepatocyte transplantation are being explored as future therapeutic options.
Collapse
Key Words
- ABC, ATP binding cassette
- ASBT, apical sodium bile salt transporter
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- BRIC, benign recurrent intrahepatic cholestasis
- BSEP, bile salt exporter protein
- CFTR, cystic fibrosis transmembrane conductance regulator
- CYP, cytochrome P
- DNA, deoxyribonucleic acid
- ERAD, endoplasmic reticulum associated degradation
- ESLD, end stage liver disease
- FIC1, familial intrahepatic cholestasis protein 1
- FXR, farnesoid X receptor
- HCC, hepatocellular carcinoma
- IB, ileal bypass
- ICP, intrahepatic cholestasis of pregnancy
- LT, liver transplant
- MARS, Molecular Adsorbent Recirculating System
- MDR, multidrug resistance protein
- MRCP, magnetic resonance cholangiopancreaticography
- PBD, partial biliary drainage
- PEBD, partial external biliary drainage
- PFIC, progressive familial intrahepatic cholestasis
- PIBD, partial internal biliary drainage
- PPAR, peroxisome proliferator activator receptor
- UDCA, ursodeoxycholic acid
- bile secretion
- children
- cholestasis
- familial
- mRNA, messenger ribonucleic acid
- pGp, p-glycoprotein
- pruritus
Collapse
Affiliation(s)
- Anshu Srivastava
- Address for correspondence: Anshu Srivastava, Associate Professor, Department of Pediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India. Tel.: +91 522 2495212, +91 9935219497 (mobile); fax: +91 522 2668017.
| |
Collapse
|
35
|
Ghosh A, Chen F, Banerjee S, Xu M, Shneider BL. c-Fos mediates repression of the apical sodium-dependent bile acid transporter by fibroblast growth factor-19 in mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G163-71. [PMID: 24309182 PMCID: PMC3920077 DOI: 10.1152/ajpgi.00276.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibroblast growth factor-19 (FGF-19), a bile acid-responsive enterokine, is secreted by the ileum and regulates a variety of metabolic processes. These studies examined the signal transduction pathways operant in FGF-19-mediated repression of the apical sodium-dependent bile acid transporter (ASBT). Responses to FGF-19 were assessed in Caco-2 and CT-26 cells and in mice where c-fos was conditionally silenced in the intestine by a cre-lox strategy. FGF-19 treatment of Caco-2 cells or wild-type mice led to a significant reduction in ASBT protein expression and enhanced phosphorylation of extracellular signaling kinase 1/2 (ERK1/2), c-Fos, and c-Jun. FGF-19 treatment of Caco-2 cells led to a reduction in activity of the human ASBT promoter and this repression could be blocked by treatment with a mitogen-activated protein kinase/ERK kinase (MEK1/2) inhibitor or by silencing jun kinase 1, jun kinase 2, c-fos, or c-jun. Site directed mutagenesis of a c-fos binding element in the ASBT promoter blocked FGF-19-mediated repression in luciferase reporter constructs. ASBT promoter activity was repressed by FGF-19 in CT-26 cells and this repression could be reduced by MEK1/2 inhibition or silencing c-fos. FGF-19-mediated repression of ASBT protein expression was abrogated in mice where c-fos was conditionally silenced in the intestine. In contrast, ASBT was repressed in the c-Fos expressing gallbladders of the same mice. The studies demonstrate that FGF-19 represses the expression of ASBT in the ileum and gallbladder via a signal transduction pathway involving MEK1/2, ERK1/2, JNK1, JNK2, and c-Fos.
Collapse
Affiliation(s)
- Ayantika Ghosh
- Children's Hospital of Pittsburgh of UPMC, Division of Pediatric Gastroenterology, Hepatology and Nutrition, 4401 Penn Ave., Pittsburgh, PA 15224.
| | - Frank Chen
- 1Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Swati Banerjee
- 1Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Ming Xu
- 2Department of Anesthesia and Critical Care, University of Chicago School of Medicine, Chicago, Illinois
| | - Benjamin L. Shneider
- 1Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| |
Collapse
|
36
|
Poly(ADP-ribose) polymerase 1 promotes oxidative-stress-induced liver cell death via suppressing farnesoid X receptor α. Mol Cell Biol 2013; 33:4492-503. [PMID: 24043304 DOI: 10.1128/mcb.00160-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Farnesoid X receptor α (FXR) is highly expressed in the liver and regulates the expression of various genes involved in liver repair. In this study, we demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP1) promoted hepatic cell death by inhibiting the expression of FXR-dependent hepatoprotective genes. PARP1 could bind to and poly(ADP-ribosyl)ate FXR. Poly(ADP-ribosyl)ation dissociated FXR from the FXR response element (FXRE), present in the promoters of target genes, and suppressed FXR-mediated gene transcription. Moreover, treatment with a FXR agonist attenuated poly(ADP-ribosyl)ation of FXR and promoted FXR-dependent gene expression. We further established the CCl4-induced acute liver injury model in wild-type and FXR-knockout mice and identified an essential role of FXR poly(ADP-ribosyl)ation in CCl4-induced liver injury. Thus, our results identified poly(ADP-ribosyl)ation of FXR by PARP1 as a key step in oxidative-stress-induced hepatic cell death. The molecular association between PARP1 and FXR provides new insight into the mechanism, suggesting that inhibition of PARP1 could prevent liver injury.
Collapse
|
37
|
Seok S, Kanamaluru D, Xiao Z, Ryerson D, Choi SE, Suino-Powell K, Xu HE, Veenstra TD, Kemper JK. Bile acid signal-induced phosphorylation of small heterodimer partner by protein kinase Cζ is critical for epigenomic regulation of liver metabolic genes. J Biol Chem 2013; 288:23252-63. [PMID: 23824184 PMCID: PMC3743497 DOI: 10.1074/jbc.m113.452037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/01/2013] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism.
Collapse
Affiliation(s)
- Sunmi Seok
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Deepthi Kanamaluru
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zhen Xiao
- the Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, and
| | - Daniel Ryerson
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Sung-E Choi
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kelly Suino-Powell
- the Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - H. Eric Xu
- the Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Timothy D. Veenstra
- the Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, and
| | - Jongsook Kim Kemper
- From the Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
38
|
Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem Pharmacol 2013; 86:926-39. [PMID: 23928191 DOI: 10.1016/j.bcp.2013.07.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
The farnesoid X receptor (FXR) is a key sensor in bile acid homeostasis. Although four human FXR isoforms have been identified, the physiological role of this diversity is poorly understood. Here we investigated their subcellular localization, agonist sensitivity and response of target genes. Measurement of mRNA revealed that liver predominantly expressed FXRα1(+/-), whereas FXRα2(+/-) were the most abundant isoforms in kidney and intestine. In all cases, the proportion of FXRα(1/2)(+) and FXRα(1/2)(-) isoforms, i.e., with and without a 12bp insert, respectively, was approximately 50%. When FXR was expressed in liver and intestinal cells the magnitude of the response to GW4064 and bile acids differs among FXR isoforms. In both cell types the strongest response was that of FXRα1(-). Different efficacy of bile acids species to activate FXR was found. The four FXR isoforms shared the order of sensitivity to bile acids species. When in FXR-deficient cells FXR was transfected, unconjugated, but not taurine- and glycine-amidated bile acids, were able to activate FXR. In contrast, human hepatocytes and cell lines showing an endogenous expression of FXR were sensitive to both unconjugated and conjugated bile acids. This suggests that to activate FXR conjugated, but not unconjugated, bile acids require additional component(s) of the intracellular machinery not related with uptake processes, which are missing in some tumor cells. In conclusion, cell-specific pattern of FXR isoforms determine the overall tissue sensitivity to FXR agonists and may be involved in the differential response of FXR target genes to FXR activation.
Collapse
|
39
|
Vaquero J, Briz O, Herraez E, Muntané J, Marin JJG. Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2212-9. [PMID: 23680185 DOI: 10.1016/j.bbamcr.2013.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
The success of pharmacological treatments in primary liver cancers is limited by the marked efficacy of mechanisms of chemoresistance already present in hepatocytes. The role of the nuclear receptor FXR is unclear. Although, in non-treated liver tumors, its expression is reduced, the refractoriness to anticancer drugs is high. Moreover, the treatment with cisplatin up-regulates FXR. The aim of this study was to investigate whether FXR is involved in stimulating chemoprotection/chemoresistance in healthy and tumor liver cells. In human hepatocytes, the activation of FXR with the agonist GW4064 resulted in a significant protection against cisplatin-induced toxicity. In human hepatoma Alexander cells, with negligible endogenous expression of FXR, GW4064 also protected against cisplatin-induced toxicity, but only if they were previously transfected with FXR/RXR. Investigation of 109 genes potentially involved in chemoresistance revealed that only ABCB4, TCEA2, CCL14, CCL15 and KRT13 were up-regulated by FXR activation both in human hepatocytes and FXR/RXR-expressing hepatoma cells. In both models, cisplatin, even in the absence of FXR agonists, such as bile acids and GW4064, was able to up-regulate FXR targets genes, which was due to FXR-mediated trans-activation of response elements in the promoter region. FXR-dependent chemoprotection was also efficient against other DNA-damaging compounds, such as doxorubicin, mitomycin C and potassium dichromate, but not against non-genotoxic drugs, such as colchicine, paclitaxel, acetaminophen, artesunate and sorafenib. In conclusion, ligand-dependent and independent activation of FXR stimulates mechanisms able to enhance the chemoprotection of hepatocytes against genotoxic compounds and to reduce the response of liver tumor cells to certain pharmacological treatments.
Collapse
|
40
|
van der Mark VA, Elferink RPJO, Paulusma CC. P4 ATPases: flippases in health and disease. Int J Mol Sci 2013; 14:7897-922. [PMID: 23579954 PMCID: PMC3645723 DOI: 10.3390/ijms14047897] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/28/2013] [Accepted: 04/07/2013] [Indexed: 12/26/2022] Open
Abstract
P4 ATPases catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes, a process termed “lipid flipping”. Accumulating evidence obtained in lower eukaryotes points to an important role for P4 ATPases in vesicular protein trafficking. The human genome encodes fourteen P4 ATPases (fifteen in mouse) of which the cellular and physiological functions are slowly emerging. Thus far, deficiencies of at least two P4 ATPases, ATP8B1 and ATP8A2, are the cause of severe human disease. However, various mouse models and in vitro studies are contributing to our understanding of the cellular and physiological functions of P4-ATPases. This review summarizes current knowledge on the basic function of these phospholipid translocating proteins, their proposed action in intracellular vesicle transport and their physiological role.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
41
|
Chen F, Ghosh A, Shneider BL. Phospholipase D2 mediates signaling by ATPase class I type 8B membrane 1. J Lipid Res 2013; 54:379-85. [PMID: 23213138 PMCID: PMC3588867 DOI: 10.1194/jlr.m030304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/03/2012] [Indexed: 01/12/2023] Open
Abstract
Functional defects in ATPase class I type 8B membrane 1 (ATP8B1 or familial intrahepatic cholestasis 1, FIC1) lead to cholestasis by mechanism(s) that are not fully understood. One proposed pathophysiology involves aberrant signaling to the bile acid sensor, the farnesoid X receptor (FXR), via protein kinase C ζ (PKCζ). The following cell line-based studies investigated whether phospholipase D2 may transduce a signal from FIC1 to FXR. PLD2 gain of function led to activation of the bile salt export pump (BSEP) promoter, a well-characterized FXR response. BSEP activation by PLD2 could be blocked by abrogating either PKCζ or FXR signaling. PLD2 loss of function led to a reduction in BSEP promoter activity. In addition, a variety of proteins that are activated by FXR, including BSEP, were reduced in HepG2 cells treated with PLD2 siRNA. Similar effects were observed in freshly isolated human hepatocytes. Activation of BSEP by FIC1 gain of function was blocked when PLD2 but not PLD1 was silenced. Overexpression of wild-type but not Byler mutant FIC1 led to an increase in membrane associated PLD activity. An intermediate level of activation of PLD activity was induced when a benign recurrent intrahepatic cholestasis FIC1 mutant construct was expressed. These studies show that FIC1 signals to FXR via a signaling pathway including PLD2 and PKCζ.
Collapse
Affiliation(s)
- Frank Chen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ayantika Ghosh
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Benjamin L. Shneider
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
42
|
Cebecauerová D, Strautnieks SS, Byrne JA, Jirsa M, Thompson RJ. ATP8B1 gene expression is driven by a housekeeping-like promoter independent of bile acids and farnesoid X receptor. PLoS One 2012; 7:e51650. [PMID: 23251605 PMCID: PMC3518472 DOI: 10.1371/journal.pone.0051650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/02/2012] [Indexed: 12/26/2022] Open
Abstract
Background Mutations in ATP8B1 gene were identified as a cause of low γ-glutamyltranspeptidase cholestasis with variable phenotype, ranging from Progressive Familial Intrahepatic Cholestasis to Benign Recurrent Intrahepatic Cholestasis. However, only the coding region of ATP8B1 has been described. The aim of this research was to explore the regulatory regions, promoter and 5′untranslated region, of the ATP8B1 gene. Methodology/Principal Findings 5′Rapid Amplification of cDNA Ends using human liver and intestinal tissue was performed to identify the presence of 5′ untranslated exons. Expression levels of ATP8B1 transcripts were determined by quantitative reverse-transcription PCR and compared with the non-variable part of ATP8B1. Three putative promoters were examined in vitro using a reporter gene assay and the main promoter was stimulated with chenodeoxycholic acid. Four novel untranslated exons located up to 71 kb upstream of the previously published exon 1 and twelve different splicing variants were found both in the liver and the intestine. Multiple transcription start sites were identified within exon −3 and the proximal promoter upstream of this transcription start site cluster was proven to be an essential regulatory element responsible for 70% of total ATP8B1 transcriptional activity. In vitro analysis demonstrated that the main promoter drives constitutive ATP8B1 gene expression independent of bile acids. Conclusions/Significance The structure of the ATP8B1 gene is complex and the previously published transcription start site is not significant. The basal expression of ATP8B1 is driven by a housekeeping-like promoter located 71 kb upstream of the first protein coding exon.
Collapse
Affiliation(s)
- Dita Cebecauerová
- Institute of Liver Studies, King's College London School of Medicine, at King's College Hospital, London, United Kingdom
- Laboratory of Experimental Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- * E-mail: (DC); (RJT)
| | - Sandra S. Strautnieks
- Institute of Liver Studies, King's College London School of Medicine, at King's College Hospital, London, United Kingdom
| | - Jane A. Byrne
- Institute of Liver Studies, King's College London School of Medicine, at King's College Hospital, London, United Kingdom
| | - Milan Jirsa
- Laboratory of Experimental Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Richard J. Thompson
- Institute of Liver Studies, King's College London School of Medicine, at King's College Hospital, London, United Kingdom
- * E-mail: (DC); (RJT)
| |
Collapse
|
43
|
Hollman DAA, Milona A, van Erpecum KJ, van Mil SWC. Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1443-52. [PMID: 22820415 DOI: 10.1016/j.bbalip.2012.07.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 06/29/2012] [Accepted: 07/05/2012] [Indexed: 01/03/2023]
Abstract
The farnesoid X receptor (FXR) is a ligand-activated transcription factor belonging to the nuclear receptor (NR) superfamily. FXR plays an important role in positively regulating genes (transactivation) involved in bile acid homeostasis, fat and glucose metabolism. Recently, it has become clear that an additional important role for FXR consists of downregulating genes involved in inflammation. Because of this broad spectrum of regulated genes, therapeutically targeting FXR with full agonists will likely result in adverse side effects, in line with what is described for other NRs. It may therefore be necessary to develop selective FXR modulators. However, the molecular mechanisms that distinguish between FXR-mediated transactivation and transrepression are currently unknown. For other NRs, post-translational modifications such as SUMOylation and phosphorylation have been reported to be unique to either transactivation or transrepression. Here, we review current knowledge on post-translational regulation of FXR with respect to transactivation and transrepression. Ultimately, increased understanding of the different mechanisms of transactivation and transrepression of nuclear receptors will aid in the development of NR drugs with fewer side effects.
Collapse
Affiliation(s)
- Danielle A A Hollman
- Department of Metabolic Diseases, UMC Utrecht and Netherlands Metabolomics Centre, The Netherlands
| | | | | | | |
Collapse
|
44
|
Allen RM, Marquart TJ, Albert CJ, Suchy FJ, Wang DQH, Ananthanarayanan M, Ford DA, Baldán A. miR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. EMBO Mol Med 2012; 4:882-95. [PMID: 22767443 PMCID: PMC3491822 DOI: 10.1002/emmm.201201228] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 12/25/2022] Open
Abstract
Bile secretion is essential for whole body sterol homeostasis. Loss-of-function mutations in specific canalicular transporters in the hepatocyte disrupt bile flow and result in cholestasis. We show that two of these transporters, ABCB11 and ATP8B1, are functional targets of miR-33, a micro-RNA that is expressed from within an intron of SREBP-2. Consequently, manipulation of miR-33 levels in vivo with adenovirus or with antisense oligonucleotides results in changes in bile secretion and bile recovery from the gallbladder. Using radiolabelled cholesterol, we show that systemic silencing of miR-33 leads to increased sterols in bile and enhanced reverse cholesterol transport in vivo. Finally, we report that simvastatin causes, in a dose-dependent manner, profound hepatotoxicity and lethality in mice fed a lithogenic diet. These latter results are reminiscent of the recurrent cholestasis found in some patients prescribed statins. Importantly, pretreatment of mice with anti-miR-33 oligonucleotides rescues the hepatotoxic phenotype. Therefore, we conclude that miR-33 mediates some of the undesired, hepatotoxic effects of statins.
Collapse
Affiliation(s)
- Ryan M Allen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol 2012; 130:147-58. [PMID: 21801835 PMCID: PMC4750880 DOI: 10.1016/j.jsbmb.2011.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/17/2011] [Accepted: 06/17/2011] [Indexed: 12/17/2022]
Abstract
Cholestatic liver disorders encompass hepatobiliary diseases of diverse etiologies characterized by the accumulation of bile acids, bilirubin and cholesterol as the result of impaired secretion of bile. Members of the nuclear receptor (NR) family of ligand-modulated transcription factors are implicated in the adaptive response to cholestasis. NRs coordinately regulate bile acid and phospholipid transporter genes required for hepatobiliary transport, as well as the phases I and II metabolizing enzymes involved in processing of their substrates. In this review we will focus on FXR and PXR, two members of the NR family whose activities are regulated by bile acids. In addition, we also discuss the potential of pharmacological modulators of these receptors as novel therapies for cholestatic disorders.
Collapse
Affiliation(s)
- Johan W. Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Corresponding author. Tel.: +31 050 361 1261; fax: +31 050 361 1746
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, 10010 Torrey Pines Road, La Jolla, CA 92037, USA
- Corresponding author. Tel.: +1 858 453 4100; fax: +1 858 455 1349
| |
Collapse
|
46
|
Balasubramaniyan N, Ananthanarayanan M, Suchy FJ. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Am J Physiol Gastrointest Liver Physiol 2012; 302:G937-47. [PMID: 22345554 PMCID: PMC3362072 DOI: 10.1152/ajpgi.00441.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The farnesoid X receptor (FXR) is a ligand (bile acid)-dependent nuclear receptor that regulates target genes involved in every aspect of bile acid homeostasis. Upon binding of ligand, FXR recruits an array of coactivators and associated proteins, some of which have intrinsic enzymatic activity that modify histones or even components of the transcriptional complex. In this study, we show chromatin occupancy by the Set7/9 methyltransferase at the FXR response element (FXRE) and direct methylation of FXR in vivo and in vitro at lysine 206. siRNA depletion of Set7/9 in the Huh-7 liver cell line decreased endogenous mRNAs of the FXR target genes, the short heterodimer partner (SHP) and bile salt export pump (BSEP). Mutation of the methylation site at K206 of FXR to an arginine prevented methylation by Set7/9. A pan-methyllysine antibody recognized the wild-type FXR but not the K206R mutant form. An electromobility shift assay showed that methylation by Set7/9 enhanced binding of FXR/retinoic X receptor-α to the FXRE. Interaction between hinge domain of FXR (containing K206) and Set7/9 was confirmed by coimmunoprecipitation, GST pull down, and mammalian two-hybrid experiments. Set7/9 overexpression in Huh-7 cells significantly enhanced transactivation of the SHP and BSEP promoters in a ligand-dependent fashion by wild-type FXR but not the K206R mutant FXR. A Set7/9 mutant deficient in methyltransferase activity was also not effective in increasing transactivation of the BSEP promoter. These studies demonstrate that posttranslational methylation of FXR by Set7/9 contributes to the transcriptional activation of FXR-target genes.
Collapse
Affiliation(s)
- Natarajan Balasubramaniyan
- 1Department of Pediatrics and Children's Hospital Research Institute, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Meena Ananthanarayanan
- 2Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Frederick J. Suchy
- 1Department of Pediatrics and Children's Hospital Research Institute, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
47
|
Pawlak M, Lefebvre P, Staels B. General molecular biology and architecture of nuclear receptors. Curr Top Med Chem 2012; 12:486-504. [PMID: 22242852 PMCID: PMC3637177 DOI: 10.2174/156802612799436641] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) regulate and coordinate multiple processes by integrating internal and external signals, thereby maintaining homeostasis in front of nutritional, behavioral and environmental challenges. NRs exhibit strong similarities in their structure and mode of action: by selective transcriptional activation or repression of cognate target genes, which can either be controlled through a direct, DNA binding-dependent mechanism or through crosstalk with other transcriptional regulators, NRs modulate the expression of gene clusters thus achieving coordinated tissue responses. Additionally, non genomic effects of NR ligands appear mediated by ill-defined mechanisms at the plasma membrane. These effects mediate potential therapeutic effects as small lipophilic molecule targets, and many efforts have been put in elucidating their precise mechanism of action and pathophysiological roles. Currently, numerous nuclear receptor ligand analogs are used in therapy or are tested in clinical trials against various diseases such as hypertriglyceridemia, atherosclerosis, diabetes, allergies and cancer and others.
Collapse
Affiliation(s)
- Michal Pawlak
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Philippe Lefebvre
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| | - Bart Staels
- Récepteurs nucléaires, maladies cardiovasculaires et diabète
INSERM : U1011Institut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex,FR
| |
Collapse
|
48
|
Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:867-78. [DOI: 10.1016/j.bbadis.2010.12.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 12/12/2022]
|
49
|
Berrabah W, Aumercier P, Lefebvre P, Staels B. Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett 2011; 585:1640-50. [PMID: 21486568 DOI: 10.1016/j.febslet.2011.03.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/30/2011] [Indexed: 12/24/2022]
Abstract
Nuclear receptors (NRs) are molecular transducers of endocrine and dietary signals allowing tissues to adapt their transcriptional responses to endogenous or exogenous cues. These signals act in many cases as specific ligands, converting of NRs into transcriptionally active molecules. This on-off mechanism needs, however, to be finely tuned with respect to the tissue environment and adjusted to the organism needs. These subtle adjustments of NR transcriptional activity are brought about by post-translational modifications (PTMs), which can be, in the case of orphan NRs, the sole regulatory mechanism. The role of PTMs, with a more specific focus on phosphorylation, affecting the functions of NR controlling metabolic events is described in this review.
Collapse
Affiliation(s)
- Wahiba Berrabah
- Université Lille Nord de France, INSERM, U1011, Lille, France
| | | | | | | |
Collapse
|
50
|
Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta Mol Basis Dis 2010; 1812:842-50. [PMID: 21130162 DOI: 10.1016/j.bbadis.2010.11.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 12/26/2022]
Abstract
Abnormally elevated lipid and glucose levels due to the disruption of metabolic homeostasis play causative roles in the development of metabolic diseases. A cluster of metabolic conditions, including dyslipidemia, abdominal obesity, and insulin resistance, is referred to as metabolic syndrome, which has been increasing globally at an alarming rate. The primary nuclear bile acid receptor, Farnesoid X Receptor (FXR, NR1H4), plays important roles in controlling lipid and glucose levels by regulating expression of target genes in response to bile acid signaling in enterohepatic tissues. In this review, I discuss how signal-dependent FXR transcriptional activity is dynamically regulated under normal physiological conditions and how it is dysregulated in metabolic disease states. I focus on the emerging roles of post-translational modifications (PTMs) and transcriptional cofactors in modulating FXR transcriptional activity and pathways. Dysregulation of nuclear receptor transcriptional signaling due to aberrant PTMs and cofactor interactions are key determinants in the development of metabolic diseases. Therefore, targeting such abnormal PTMs and transcriptional cofactors of FXR in disease states may provide a new molecular strategy for development of pharmacological agents to treat metabolic syndrome. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|