1
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
2
|
Ohta K, Ito M, Chida T, Nakashima K, Sakai S, Kanegae Y, Kawasaki H, Aoshima T, Takabayashi S, Takahashi H, Kawata K, Shoji I, Sawasaki T, Suda T, Suzuki T. Role of hepcidin upregulation and proteolytic cleavage of ferroportin 1 in hepatitis C virus-induced iron accumulation. PLoS Pathog 2023; 19:e1011591. [PMID: 37585449 PMCID: PMC10461841 DOI: 10.1371/journal.ppat.1011591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/28/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatitis C virus (HCV) is a pathogen characterized not only by its persistent infection leading to the development of cirrhosis and hepatocellular carcinoma (HCC), but also by metabolic disorders such as lipid and iron dysregulation. Elevated iron load is commonly observed in the livers of patients with chronic hepatitis C, and hepatic iron overload is a highly profibrogenic and carcinogenic factor that increases the risk of HCC. However, the underlying mechanisms of elevated iron accumulation in HCV-infected livers remain to be fully elucidated. Here, we observed iron accumulation in cells and liver tissues under HCV infection and in mice expressing viral proteins from recombinant adenoviruses. We established two molecular mechanisms that contribute to increased iron load in cells caused by HCV infection. One is the transcriptional induction of hepcidin, the key hormone for modulating iron homeostasis. The transcription factor cAMP-responsive element-binding protein hepatocyte specific (CREBH), which was activated by HCV infection, not only directly recognizes the hepcidin promoter but also induces bone morphogenetic protein 6 (BMP6) expression, resulting in an activated BMP-SMAD pathway that enhances hepcidin promoter activity. The other is post-translational regulation of the iron-exporting membrane protein ferroportin 1 (FPN1), which is cleaved between residues Cys284 and Ala285 in the intracytoplasmic loop region of the central portion mediated by HCV NS3-4A serine protease. We propose that host transcriptional activation triggered by endoplasmic reticulum stress and FPN1 cleavage by viral protease work in concert to impair iron efflux, leading to iron accumulation in HCV-infected cells.
Collapse
Affiliation(s)
- Kazuyoshi Ohta
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Chida
- Department of Regional Medical Care Support, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yumi Kanegae
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takuya Aoshima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Kazuhito Kawata
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ikuo Shoji
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Science, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Takafumi Suda
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
3
|
Saviano A, Habersetzer F, Lupberger J, Simo-Noumbissie P, Schuster C, Doffoël M, Schmidt-Mutter C, Baumert TF. Safety and Antiviral Activity of EGFR Inhibition by Erlotinib in Chronic Hepatitis C Patients: A Phase Ib Randomized Controlled Trial. Clin Transl Gastroenterol 2022; 13:e00492. [PMID: 35363627 PMCID: PMC9236598 DOI: 10.14309/ctg.0000000000000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Significant hepatocellular carcinoma (HCC) risk persists after chronic hepatitis C (CHC) cure. Preclinical studies have shown that erlotinib, an oral epidermal growth factor receptor (EGFR) inhibitor, has an antiviral activity and HCC chemopreventive effect. Erlotinib is metabolized in the liver, and its safety in patients with CHC is unknown. This study aimed to assess the safety and antiviral activity of erlotinib in patients with CHC. METHODS In this investigator-initiated dose-escalation phase Ib prospective randomized double-blind placebo-controlled study, noncirrhotic hepatitis C virus (HCV) patients received placebo or erlotinib (50 or 100 mg/d) for 14 days with a placebo-erlotinib ratio of 1:3. Primary end points were safety and viral load reduction at the end of treatment (EOT). The secondary end point was viral load reduction 14 days after EOT. RESULTS This study analyzed data of 3 patients receiving placebo, 3 patients receiving erlotinib 50 mg/d, and 3 patients receiving erlotinib 100 mg/d. One grade 3 adverse event was reported in the placebo group (liver enzymes elevation), leading to treatment discontinuation and patient replacement, and 1 in the erlotinib 100 mg/d group (pericarditis), which was not considered to be treatment-related. Grade 2 skin rash was observed in 1 erlotinib 100 mg/d patient. No significant HCV-RNA level reduction was noted during treatment, but 2 of the 3 patients in the erlotinib 100 mg/d group showed a decrease of >0.5 log HCV-RNA 14 days after EOT. DISCUSSION Erlotinib demonstrated to be safe in noncirrhotic CHC patients. An antiviral activity at 100 mg/d confirms a functional role of EGFR as an HCV host factor in patients. These results provide perspectives to further study erlotinib as an HCC chemopreventive agent in patients with CHC.
Collapse
Affiliation(s)
- Antonio Saviano
- Inserm, U1110, Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Centre d'Investigation Clinique, Inserm 1434, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - François Habersetzer
- Inserm, U1110, Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Centre d'Investigation Clinique, Inserm 1434, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Joachim Lupberger
- Inserm, U1110, Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), Université de Strasbourg, Strasbourg, France
| | - Pauline Simo-Noumbissie
- Institut Hospitalo-Universitaire, Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Strasbourg, France
- Institut de Recherche sur les Maladies Virales et Hépatiques (IVH), Université de Strasbourg, Strasbourg, France
| | - Michel Doffoël
- Institut Hospitalo-Universitaire, Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Schmidt-Mutter
- Centre d'Investigation Clinique, Inserm 1434, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | |
Collapse
|
4
|
Joechle K, Guenzle J, Hellerbrand C, Strnad P, Cramer T, Neumann UP, Lang SA. Role of mammalian target of rapamycin complex 2 in primary and secondary liver cancer. World J Gastrointest Oncol 2021; 13:1632-1647. [PMID: 34853640 PMCID: PMC8603445 DOI: 10.4251/wjgo.v13.i11.1632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) acts in two structurally and functionally distinct protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Upon deregulation, activated mTOR signaling is associated with multiple processes involved in tumor growth and metastasis. Compared with mTORC1, much less is known about mTORC2 in cancer, mainly because of the unavailability of a selective inhibitor. However, existing data suggest that mTORC2 with its two distinct subunits Rictor and mSin1 might play a more important role than assumed so far. It is one of the key effectors of the PI3K/AKT/mTOR pathway and stimulates cell growth, cell survival, metabolism, and cytoskeletal organization. It is not only implicated in tumor progression, metastasis, and the tumor microenvironment but also in resistance to therapy. Rictor, the central subunit of mTORC2, was found to be upregulated in different kinds of cancers and is associated with advanced tumor stages and a bad prognosis. Moreover, AKT, the main downstream regulator of mTORC2/Rictor, is one of the most highly activated proteins in cancer. Primary and secondary liver cancer are major problems for current cancer therapy due to the lack of specific medical treatment, emphasizing the need for further therapeutic options. This review, therefore, summarizes the role of mTORC2/Rictor in cancer, with special focus on primary liver cancer but also on liver metastases.
Collapse
Affiliation(s)
- Katharina Joechle
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Jessica Guenzle
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Sven Arke Lang
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| |
Collapse
|
5
|
Wang J, Zhong Y, Meng G. EGF rs4444903 polymorphism is associated with risk of HCV-related cirrhosis and HBV/HCV-related hepatocellular carcinoma. Int J Clin Oncol 2021; 26:2053-2064. [PMID: 34291370 DOI: 10.1007/s10147-021-01994-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/14/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The epidermal growth factor (EGF) rs4444903 polymorphism is associated with aberrant expression of EGF, which was a characteristic of cirrhotic liver diseases, induces highly malignant hepatocellular carcinoma (HCC). Numerous studies have uncovered the association of this polymorphism with the risk of liver disease, but with inconsistent findings. MATERIALS AND METHODS Therefore, this meta-analysis was performed to evaluate whether EGF rs4444903 polymorphism conferred susceptibility to liver disease. Totally 18 eligible articles were identified by searching PubMed, Google, CNKI and EMBASE up to December 1, 2020. RESULTS Our results indicated that there was no significant difference in the minor G allele frequency of rs4444903 polymorphism between HBV/HCV carriers and healthy controls. In other words, EGF rs4444903 polymorphism was not associated with the risk of HBV/HCV. Interestingly, this polymorphism increased the risk of liver cirrhosis in the controls with HCV infection. Additionally, EGF rs4444903 polymorphism is associated with the increased risk of HCC under the five models. Subgroup analysis by ethnicity shows that rs4444903 polymorphism intensifies the risk of HCC among Asians and Caucasians. Strong correlation is also reported in controls with cirrhosis or HCV infection and studies using PCR-RFLP genotyping. CONCLUSIONS The study supports that EGF rs4444903 polymorphism is a genetic contributor to liver cirrhosis and HCC in the overall population. Nevertheless, this conclusion must be confirmed by larger studies with more diverse ethnic populations.
Collapse
Affiliation(s)
- Jia Wang
- Department of Anesthesiology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Yanlin Zhong
- Department of Anesthesiology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Guixia Meng
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
6
|
Domovitz T, Gal-Tanamy M. Tracking Down the Epigenetic Footprint of HCV-Induced Hepatocarcinogenesis. J Clin Med 2021; 10:jcm10030551. [PMID: 33540858 PMCID: PMC7867330 DOI: 10.3390/jcm10030551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of death and morbidity globally and is a leading cause of hepatocellular carcinoma (HCC). Incidence of HCV infections, as well as HCV-related liver diseases, are increasing. Although now, with new direct acting antivirals (DAAs) therapy available, HCV is a curable cancer-associated infectious agent, HCC prevalence is expected to continue to rise because HCC risk still persists after HCV cure. Understanding the factors that lead from HCV infection to HCC pre- and post-cure may open-up opportunities to novel strategies for HCC prevention. Herein, we provide an overview of the reported evidence for the induction of alterations in the transcriptome of host cells via epigenetic dysregulation by HCV infection and describe recent reports linking the residual risk for HCC post-cure with a persistent HCV-induced epigenetic signature. Specifically, we discuss the contribution of the epigenetic changes identified following HCV infection to HCC risk pre- and post-cure, the molecular pathways that are epigenetically altered, the downstream effects on expression of cancer-related genes, the identification of targets to prevent or revert this cancer-inducing epigenetic signature, and the potential contribution of these studies to early prognosis and prevention of HCC as an approach for reducing HCC-related mortality.
Collapse
|
7
|
Dultz G, Shimakami T, Schneider M, Murai K, Yamane D, Marion A, Zeitler TM, Stross C, Grimm C, Richter RM, Bäumer K, Yi M, Biondi RM, Zeuzem S, Tampé R, Antes I, Lange CM, Welsch C. Extended interaction networks with HCV protease NS3-4A substrates explain the lack of adaptive capability against protease inhibitors. J Biol Chem 2020; 295:13862-13874. [PMID: 32747444 PMCID: PMC7535904 DOI: 10.1074/jbc.ra120.013898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
Inhibitors against the NS3-4A protease of hepatitis C virus (HCV) have proven to be useful drugs in the treatment of HCV infection. Although variants have been identified with mutations that confer resistance to these inhibitors, the mutations do not restore replicative fitness and no secondary mutations that rescue fitness have been found. To gain insight into the molecular mechanisms underlying the lack of fitness compensation, we screened known resistance mutations in infectious HCV cell culture with different genomic backgrounds. We observed that the Q41R mutation of NS3-4A efficiently rescues the replicative fitness in cell culture for virus variants containing mutations at NS3-Asp168 To understand how the Q41R mutation rescues activity, we performed protease activity assays complemented by molecular dynamics simulations, which showed that protease-peptide interactions far outside the targeted peptide cleavage sites mediate substrate recognition by NS3-4A and support protease cleavage kinetics. These interactions shed new light on the mechanisms by which NS3-4A cleaves its substrates, viral polyproteins and a prime cellular antiviral adaptor protein, the mitochondrial antiviral signaling protein MAVS. Peptide binding is mediated by an extended hydrogen-bond network in NS3-4A that was effectively optimized for protease-MAVS binding in Asp168 variants with rescued replicative fitness from NS3-Q41R. In the protease harboring NS3-Q41R, the N-terminal cleavage products of MAVS retained high affinity to the active site, rendering the protease susceptible for potential product inhibition. Our findings reveal delicately balanced protease-peptide interactions in viral replication and immune escape that likely restrict the protease adaptive capability and narrow the virus evolutionary space.
Collapse
Affiliation(s)
- Georg Dultz
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Markus Schneider
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Life Sciences, Technical University Munich, Freising-Weihenstephan, Germany
| | - Kazuhisa Murai
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa, Japan
| | - Daisuke Yamane
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Antoine Marion
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Life Sciences, Technical University Munich, Freising-Weihenstephan, Germany
| | - Tobias M Zeitler
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Life Sciences, Technical University Munich, Freising-Weihenstephan, Germany
| | - Claudia Stross
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Grimm
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Rebecca M Richter
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Katrin Bäumer
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ricardo M Biondi
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany; Biomedicine Research Institute of Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Stefan Zeuzem
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany; University Center for Infectious Diseases, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter and Cluster of Excellence-Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| | - Iris Antes
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Life Sciences, Technical University Munich, Freising-Weihenstephan, Germany
| | - Christian M Lange
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital Frankfurt, Frankfurt, Germany; University Center for Infectious Diseases, Goethe University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
8
|
OCIAD1 is a host mitochondrial substrate of the hepatitis C virus NS3-4A protease. PLoS One 2020; 15:e0236447. [PMID: 32697788 PMCID: PMC7375614 DOI: 10.1371/journal.pone.0236447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The hepatitis C virus (HCV) nonstructural protein 3-4A (NS3-4A) protease is a key component of the viral replication complex and the target of protease inhibitors used in current clinical practice. By cleaving and thereby inactivating selected host factors it also plays a role in the persistence and pathogenesis of hepatitis C. Here, we describe ovarian cancer immunoreactive antigen domain containing protein 1 (OCIAD1) as a novel cellular substrate of the HCV NS3-4A protease. OCIAD1 was identified by quantitative proteomics involving stable isotopic labeling using amino acids in cell culture coupled with mass spectrometry. It is a poorly characterized membrane protein believed to be involved in cancer development. OCIAD1 is cleaved by the NS3-4A protease at Cys 38, close to a predicted transmembrane segment. Cleavage was observed in heterologous expression systems, the replicon and cell culture-derived HCV systems, as well as in liver biopsies from patients with chronic hepatitis C. NS3-4A proteases from diverse hepacivirus species efficiently cleaved OCIAD1. The subcellular localization of OCIAD1 on mitochondria was not altered by NS3-4A-mediated cleavage. Interestingly, OCIAD2, a homolog of OCIAD1 with a cysteine residue in a similar position and identical subcellular localization, was not cleaved by NS3-4A. Domain swapping experiments revealed that the sequence surrounding the cleavage site as well as the predicted transmembrane segment contribute to substrate selectivity. Overexpression as well as knock down and rescue experiments did not affect the HCV life cycle in vitro, raising the possibility that OCIAD1 may be involved in the pathogenesis of hepatitis C in vivo.
Collapse
|
9
|
Goto K, Roca Suarez AA, Wrensch F, Baumert TF, Lupberger J. Hepatitis C Virus and Hepatocellular Carcinoma: When the Host Loses Its Grip. Int J Mol Sci 2020; 21:ijms21093057. [PMID: 32357520 PMCID: PMC7246584 DOI: 10.3390/ijms21093057] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma (HCC). Novel treatments with direct-acting antivirals achieve high rates of sustained virologic response; however, the HCC risk remains elevated in cured patients, especially those with advanced liver disease. Long-term HCV infection causes a persistent and accumulating damage of the liver due to a combination of direct and indirect pro-oncogenic mechanisms. This review describes the processes involved in virus-induced disease progression by viral proteins, derailed signaling, immunity, and persistent epigenetic deregulation, which may be instrumental to develop urgently needed prognostic biomarkers and as targets for novel chemopreventive therapies.
Collapse
Affiliation(s)
- Kaku Goto
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Florian Wrensch
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
- Pôle Hépato-digestif, Institut Hopitalo-Universitaire, F-67000 Strasbourg, France
- Institut Universitaire de France, F-75231 Paris, France
- Correspondence: (T.F.B.); (J.L.); Tel.: +33-3-68-85-37-03 (T.F.B. & J.L.); Fax: +33-3-68-85-37-24 (T.F.B. & J.L.)
| | - Joachim Lupberger
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
- Correspondence: (T.F.B.); (J.L.); Tel.: +33-3-68-85-37-03 (T.F.B. & J.L.); Fax: +33-3-68-85-37-24 (T.F.B. & J.L.)
| |
Collapse
|
10
|
Bojkova D, Westhaus S, Costa R, Timmer L, Funkenberg N, Korencak M, Streeck H, Vondran F, Broering R, Heinrichs S, Lang KS, Ciesek S. Sofosbuvir Activates EGFR-Dependent Pathways in Hepatoma Cells with Implications for Liver-Related Pathological Processes. Cells 2020; 9:cells9041003. [PMID: 32316635 PMCID: PMC7225999 DOI: 10.3390/cells9041003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Direct acting antivirals (DAAs) revolutionized the therapy of chronic hepatitis C infection. However, unexpected high recurrence rates of hepatocellular carcinoma (HCC) after DAA treatment became an issue in patients with advanced cirrhosis and fibrosis. In this study, we aimed to investigate an impact of DAA treatment on the molecular changes related to HCC development and progression in hepatoma cell lines and primary human hepatocytes. We found that treatment with sofosbuvir (SOF), a backbone of DAA therapy, caused an increase in EGFR expression and phosphorylation. As a result, enhanced translocation of EGFR into the nucleus and transactivation of factors associated with cell cycle progression, B-MYB and Cyclin D1, was detected. Serine/threonine kinase profiling identified additional pathways, especially the MAPK pathway, also activated during SOF treatment. Importantly, the blocking of EGFR kinase activity by erlotinib during SOF treatment prevented all downstream events. Altogether, our findings suggest that SOF may have an impact on pathological processes in the liver via the induction of EGFR signaling. Notably, zidovudine, another nucleoside analogue, exerted a similar cell phenotype, suggesting that the observed effects may be induced by additional members of this drug class.
Collapse
Affiliation(s)
- Denisa Bojkova
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Sandra Westhaus
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Rui Costa
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Lejla Timmer
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Nora Funkenberg
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Marek Korencak
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Hendrik Streeck
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Florian Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Infection Research (DZIF), 45147 Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
- German Center for Infection Research (DZIF), 45147 Essen, Germany
- Correspondence: ; Tel.: +49-69-63015219
| |
Collapse
|
11
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Rewiring Host Signaling: Hepatitis C Virus in Liver Pathogenesis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037366. [PMID: 31501266 DOI: 10.1101/cshperspect.a037366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease including metabolic disease, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HCV induces and promotes liver disease progression by perturbing a range of survival, proliferative, and metabolic pathways within the proinflammatory cellular microenvironment. The recent breakthrough in antiviral therapy using direct-acting antivirals (DAAs) can cure >90% of HCV patients. However, viral cure cannot fully eliminate the HCC risk, especially in patients with advanced liver disease or comorbidities. HCV induces an epigenetic viral footprint that promotes a pro-oncogenic hepatic signature, which persists after DAA cure. In this review, we summarize the main signaling pathways deregulated by HCV infection, with potential impact on liver pathogenesis. HCV-induced persistent signaling patterns may serve as biomarkers for the stratification of HCV-cured patients at high risk of developing HCC. Moreover, these signaling pathways are potential targets for novel chemopreventive strategies.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.,Institut Universitaire de France (IUF), 75231 Paris, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
12
|
Ninio L, Nissani A, Meirson T, Domovitz T, Genna A, Twafra S, Srikanth KD, Dabour R, Avraham E, Davidovich A, Gil-Henn H, Gal-Tanamy M. Hepatitis C Virus Enhances the Invasiveness of Hepatocellular Carcinoma via EGFR-Mediated Invadopodia Formation and Activation. Cells 2019; 8:cells8111395. [PMID: 31694343 PMCID: PMC6912298 DOI: 10.3390/cells8111395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents the fifth most common cancer worldwide and the third cause of cancer-related mortality. Hepatitis C virus (HCV) is the leading cause of chronic hepatitis, which often results in liver fibrosis, cirrhosis, and eventually HCC. HCV is the most common risk factor for HCC in western countries and leads to a more aggressive and invasive disease with poorer patient survival rates. However, the mechanism by which the virus induces the metastatic spread of HCC tumor cells through the regulation of invadopodia, the key features of invasive cancer, is still unknown. Here, the integration of transcriptome with functional kinome screen revealed that HCV infection induced invasion and invadopodia-related gene expression combined with activation of host cell tyrosine kinases, leading to invadopodia formation and maturation and consequent cell invasiveness in vitro and in vivo. The promotion of invadopodia following HCV infection was mediated by the sustained stimulation of epidermal growth factor receptor (EGFR) via the viral NS3/4A protease that inactivates the T-cell protein tyrosine phosphatase (TC-PTP), which inhibits EGFR signaling. Characterization of an invadopodia-associated gene signature in HCV-mediated HCC tumors correlated with the invasiveness of HCC and poor patient prognosis. These findings might lead to new prognostic and therapeutic strategies for virus-mediated invasive cancer.
Collapse
Affiliation(s)
- Liat Ninio
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
| | - Abraham Nissani
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Tomer Meirson
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
- Drug Discovery Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Tom Domovitz
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Alessandro Genna
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
| | - Shams Twafra
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
| | - Kolluru D. Srikanth
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
| | - Roba Dabour
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Erez Avraham
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Ateret Davidovich
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
| | - Hava Gil-Henn
- Cell Migration and Invasion Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (T.M.); (A.G.); (S.T.); (K.D.S.)
- Correspondence: (H.G.-H.); (M.G.-T.)
| | - Meital Gal-Tanamy
- Molecular Virology Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (L.N.); (A.N.); (T.D.); (R.D.); (E.A.); (A.D.)
- Correspondence: (H.G.-H.); (M.G.-T.)
| |
Collapse
|
13
|
Hepatitis C Virus NS3 Protein Plays a Dual Role in WRN-Mediated Repair of Nonhomologous End Joining. J Virol 2019; 93:JVI.01273-19. [PMID: 31462559 DOI: 10.1128/jvi.01273-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) NS3 protein possesses protease and helicase activities and is considered an oncoprotein in virus-derived hepatocellular carcinoma. The NS3-associated oncogenesis has been studied but not fully understood. In this study, we have identified novel interactions of the NS3 protein with DNA repair factors, Werner syndrome protein (WRN) and Ku70, in both an HCV subgenomic replicon system and Huh7 cells expressing NS3. HCV NS3 protein inhibits WRN-mediated DNA repair and reduces the repair efficiency of nonhomologous end joining. It interferes with Ku70 recruitment to the double-strand break sites and alters the nuclear distribution of WRN-Ku repair complex. In addition, WRN is a substrate of the NS3/4A protease; the level of WRN protein is regulated by both the proteasome degradation pathway and HCV NS3/4A protease activity. The dual role of HCV NS3 and NS3/4A proteins in regulating the function and expression level of the WRN protein intensifies the effect of impairment on DNA repair. This may lead to an accumulation of DNA mutations and genome instability and, eventually, tumor development.IMPORTANCE HCV infection is a worldwide problem of public health and a major contributor to hepatocellular carcinoma. The single-stranded RNA virus with RNA-dependent RNA polymerase experiences a high error rate and develops strategies to escape the immune system and hepatocarcinogenesis. Studies have revealed the involvement of HCV proteins in the impairment of DNA repair. The present study aimed to further elucidate mechanisms by which the viral NS3 protein impairs the repair of DNA damage. Our results clearly indicate that HCV NS3/4A protease targets WRN for degradation, and, at the same time, diminishes the repair efficiency of nonhomologous end joining by interfering with the recruitment of Ku protein to the DNA double-strand break sites. The study describes a novel mechanism by which the NS3 protein influences DNA repair and provides new insight into the molecular mechanism of HCV pathogenesis.
Collapse
|
14
|
Perez S, Kaspi A, Domovitz T, Davidovich A, Lavi-Itzkovitz A, Meirson T, Alison Holmes J, Dai CY, Huang CF, Chung RT, Nimer A, El-Osta A, Yaari G, Stemmer SM, Yu ML, Haviv I, Gal-Tanamy M. Hepatitis C virus leaves an epigenetic signature post cure of infection by direct-acting antivirals. PLoS Genet 2019; 15:e1008181. [PMID: 31216276 PMCID: PMC6602261 DOI: 10.1371/journal.pgen.1008181] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/01/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing worldwide prevalence of Hepatocellular carcinoma (HCC), characterized by resistance to conventional chemotherapy, poor prognosis and eventually mortality, place it as a prime target for new modes of prevention and treatment. Hepatitis C Virus (HCV) is the predominant risk factor for HCC in the US and Europe. Multiple epidemiological studies showed that sustained virological responses (SVR) following treatment with the powerful direct acting antivirals (DAAs), which have replaced interferon-based regimes, do not eliminate tumor development. We aimed to identify an HCV-specific pathogenic mechanism that persists post SVR following DAAs treatment. We demonstrate that HCV infection induces genome-wide epigenetic changes by performing chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) for histone post-translational modifications that are epigenetic markers for active and repressed chromatin. The changes in histone modifications correlate with reprogramed host gene expression and alter signaling pathways known to be associated with HCV life cycle and HCC. These epigenetic alterations require the presence of HCV RNA or/and expression of the viral proteins in the cells. Importantly, the epigenetic changes induced following infection persist as an "epigenetic signature" after virus eradication by DAAs treatment, as detected using in vitro HCV infection models. These observations led to the identification of an 8 gene signature that is associated with HCC development and demonstrate persistent epigenetic alterations in HCV infected and post SVR liver biopsy samples. The epigenetic signature was reverted in vitro by drugs that inhibit epigenetic modifying enzyme and by the EGFR inhibitor, Erlotinib. This epigenetic "scarring" of the genome, persisting following HCV eradication, suggest a novel mechanism for the persistent pathogenesis of HCV after its eradication by DAAs. Our study offers new avenues for prevention of the persistent oncogenic effects of chronic hepatitis infections using specific drugs to revert the epigenetic changes to the genome.
Collapse
Affiliation(s)
- Shira Perez
- Molecular Virology Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
- Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Antony Kaspi
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Tom Domovitz
- Molecular Virology Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Ateret Davidovich
- Molecular Virology Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Anat Lavi-Itzkovitz
- Molecular Virology Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Tomer Meirson
- Drug Discovery Laboratory, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Jacinta Alison Holmes
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Raymond T. Chung
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Assy Nimer
- Internal Medicine Department A, Western Galilee Medical Center, Naharyia, and Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Salomon M. Stemmer
- Davidoff Center, Rabin Medical Center, Beilinson Campus, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail: (MLY); (IH); (MGT)
| | - Izhak Haviv
- Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
- * E-mail: (MLY); (IH); (MGT)
| | - Meital Gal-Tanamy
- Molecular Virology Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
- * E-mail: (MLY); (IH); (MGT)
| |
Collapse
|
15
|
Roca Suarez AA, Baumert TF, Lupberger J. Beyond viral dependence: The pathological consequences of HCV-induced EGF signaling. J Hepatol 2018; 69:564-566. [PMID: 29937068 PMCID: PMC7613413 DOI: 10.1016/j.jhep.2018.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Groepper C, Rufinatscha K, Schröder N, Stindt S, Ehlting C, Albrecht U, Bock HH, Bartenschlager R, Häussinger D, Bode JG. HCV modifies EGF signalling and upregulates production of CXCR2 ligands: Role in inflammation and antiviral immune response. J Hepatol 2018; 69:594-602. [PMID: 29705238 DOI: 10.1016/j.jhep.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS To affect immune response and inflammation, the hepatitis C virus (HCV) substantially influences intercellular communication pathways that are decisive for immune cell recruitment. The present study investigates mechanisms by which HCV modulates chemokine-mediated intercellular communication from infected cells. METHODS Chemokine expression was studied in HCVcc-infected cell lines or cell lines harbouring a subgenomic replicon, as well as in serum samples from patients. Expression or activity of mediators and signalling intermediates was manipulated using knockdown approaches or specific inhibitors. RESULTS HCV enhances expression of CXCR2 ligands in its host cell via the induction of epidermal growth factor (EGF) production. Knockdown of EGF or of the p65 subunit of the NF-κB complex results in a substantial downregulation of HCV-induced CXCR2 ligand expression, supporting the involvement of an EGF-dependent mechanism as well as activation of NF-κB. Furthermore, HCV upregulates expression of CXCR2 ligands in response to EGF stimulation via downregulation of the T-cell protein tyrosine phosphatase (TC-PTP [PTPN2]), activation of NF-κB, and enhancement of EGF-inducible signal transduction via MEK1 (MAP2K1). This results in the production of a cytokine/chemokine pattern by the HCV-infected cell that can recruit neutrophils but not monocytes. CONCLUSIONS These data reveal a novel EGF-dependent mechanism by which HCV influences chemokine-mediated intercellular communication. We propose that this mechanism contributes to modulation of the HCV-induced inflammation and the antiviral immune response. LAY SUMMARY In most cases hepatitis C virus (HCV) results in chronic infection and persistent viral replication, taking decades until development of overt disease. To achieve such a course, the respective virus must have developed mechanisms to circumvent antiviral response, to modulate the inflammatory response and to utilise the infrastructure of its host with moderate effect on its viability. The present study provides novel data indicating that HCV induces epidermal growth factor production in its host cell, enhancing epidermal growth factor-inducible expression of chemokines that bind to the CXCR2 receptor and recruit neutrophile granulocytes. Importantly, chemokines are critical mediators determining the pattern of immune cells recruited to the site of injury and thereby the local inflammatory and immunological milieu. These data strongly suggest that HCV triggers mechanisms that enable the virus to influence the inflammatory and immunological processes of its host.
Collapse
Affiliation(s)
- Christina Groepper
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kerstin Rufinatscha
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nadja Schröder
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sabine Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ute Albrecht
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans H Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
17
|
Tornesello ML, Buonaguro L, Izzo F, Buonaguro FM. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 2018; 7:25087-102. [PMID: 26943571 PMCID: PMC5041890 DOI: 10.18632/oncotarget.7837] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/20/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic infections with hepatitis B (HBV) and hepatitis C viruses (HCV) are the leading cause of cirrhosis and hepatocellular carcinoma (HCC) worldwide. Both viruses encode multifunctional regulatory proteins activating several oncogenic pathways, which induce accumulation of multiple genetic alterations in the infected hepatocytes. Gene mutations in HBV- and HCV-induced HCCs frequently impair the TP53, Wnt/b-catenin, RAS/RAF/MAPK kinase and AKT/mTOR pathways, which represent important anti-cancer targets. In this review, we highlight the molecular mechanisms underlying the pathogenesis of primary liver cancer, with particular emphasis on the host genetic variations identified by high-throughput technologies. In addition, we discuss the importance of genetic alterations, such as mutations in the telomerase reverse transcriptase (TERT) promoter, for the diagnosis, prognosis, and tumor stratification for development of more effective treatment approaches.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Francesco Izzo
- Hepato-Biliary Surgery Department, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| |
Collapse
|
18
|
Novel peptidyl α-aminoalkylphosphonates as inhibitors of hepatitis C virus NS3/4A protease. Antiviral Res 2017; 144:286-298. [DOI: 10.1016/j.antiviral.2017.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
|
19
|
|
20
|
Elsebai MF, Mocan A, Atanasov AG. Cynaropicrin: A Comprehensive Research Review and Therapeutic Potential As an Anti-Hepatitis C Virus Agent. Front Pharmacol 2016; 7:472. [PMID: 28008316 PMCID: PMC5143615 DOI: 10.3389/fphar.2016.00472] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/21/2016] [Indexed: 01/18/2023] Open
Abstract
The different pharmacologic properties of plants-containing cynaropicrin, especially artichokes, have been known for many centuries. More recently, cynaropicrin exhibited a potential activity against all genotypes of hepatitis C virus (HCV). Cynaropicrin has also shown a wide range of other pharmacologic properties such as anti-hyperlipidemic, anti-trypanosomal, anti-malarial, antifeedant, antispasmodic, anti-photoaging, and anti-tumor action, as well as activation of bitter sensory receptors, and anti-inflammatory properties (e.g., associated with the suppression of the key pro-inflammatory NF-κB pathway). These pharmacological effects are very supportive factors to its outstanding activity against HCV. Structurally, cynaropicrin might be considered as a potential drug candidate, since it has no violations for the rule of five and its water-solubility could allow formulation as therapeutic injections. Moreover, cynaropicrin is a small molecule that can be easily synthesized and as the major constituent of the edible plant artichoke, which has a history of safe dietary use. In summary, cynaropicrin is a promising bioactive natural product that, with minor hit-to-lead optimization, might be developed as a drug for HCV.
Collapse
Affiliation(s)
- Mahmoud F. Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and PharmacyCluj-Napoca, Romania
| | - Atanas G. Atanasov
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| |
Collapse
|
21
|
Hepacivirus NS3/4A Proteases Interfere with MAVS Signaling in both Their Cognate Animal Hosts and Humans: Implications for Zoonotic Transmission. J Virol 2016; 90:10670-10681. [PMID: 27654291 DOI: 10.1128/jvi.01634-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple novel members of the genus Hepacivirus have recently been discovered in diverse mammalian species. However, to date, their replication mechanisms and zoonotic potential have not been explored in detail. The NS3/4A serine protease of hepatitis C virus (HCV) is critical for cleavage of the viral polyprotein. It also cleaves the cellular innate immune adaptor MAVS, thus decreasing interferon (IFN) production and contributing to HCV persistence in the human host. To investigate the conservation of fundamental aspects of the hepaciviral life cycle, we explored if MAVS cleavage and suppression of innate immune signaling represent a common mechanism employed across different clades of the genus Hepacivirus to enhance viral replication. To estimate the zoonotic potential of these nonhuman hepaciviruses, we assessed if their NS3/4A proteases were capable of cleaving human MAVS. NS3/4A proteases of viruses infecting colobus monkeys, rodents, horses, and cows cleaved the MAVS proteins of their cognate hosts and interfered with the ability of MAVS to induce the IFN-β promoter. All NS3/4A proteases from nonhuman viruses readily cleaved human MAVS. Thus, NS3/4A-dependent cleavage of MAVS is a conserved replication strategy across multiple clades within the genus Hepacivirus Human MAVS is susceptible to cleavage by these nonhuman viral proteases, indicating that it does not pose a barrier for zoonotic transmission of these viruses to humans. IMPORTANCE Virus infection is recognized by cellular sensor proteins triggering innate immune signaling and antiviral defenses. While viruses have evolved strategies to thwart these antiviral programs in their cognate host species, these evasion mechanisms are often ineffective in a novel host, thus limiting viral transmission across species. HCV, the best-characterized member of the genus Hepacivirus within the family Flaviviridae, uses its NS3/4A protease to disrupt innate immune signaling by cleaving the cellular adaptor protein MAVS. Recently, a large number of HCV-related viruses have been discovered in various animal species, including wild, livestock, and companion animals. We show that the NS3/4A proteases of these hepaciviruses from different animals and representing various clades of the genus cleave their cognate host MAVS proteins in addition to human MAVS. Therefore, cleavage of MAVS is a common strategy of hepaciviruses, and human MAVS is likely unable to limit replication of these nonhuman viruses upon zoonotic exposure.
Collapse
|
22
|
Nonstructural 3 Protein of Hepatitis C Virus Modulates the Tribbles Homolog 3/Akt Signaling Pathway for Persistent Viral Infection. J Virol 2016; 90:7231-7247. [PMID: 27252525 DOI: 10.1128/jvi.00326-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) infection often causes chronic hepatitis, liver cirrhosis, and ultimately hepatocellular carcinoma. However, the mechanisms underlying HCV-induced liver pathogenesis are still not fully understood. By transcriptome sequencing (RNA-Seq) analysis, we recently identified host genes that were significantly differentially expressed in cell culture-grown HCV (HCVcc)-infected cells. Of these, tribbles homolog 3 (TRIB3) was selected for further characterization. TRIB3 was initially identified as a binding partner of protein kinase B (also known as Akt). TRIB3 blocks the phosphorylation of Akt and induces apoptosis under endoplasmic reticulum (ER) stress conditions. HCV has been shown to enhance Akt phosphorylation for its own propagation. In the present study, we demonstrated that both mRNA and protein levels of TRIB3 were increased in the context of HCV replication. We further showed that promoter activity of TRIB3 was increased by HCV-induced ER stress. Silencing of TRIB3 resulted in increased RNA and protein levels of HCV, whereas overexpression of TRIB3 decreased HCV replication. By employing an HCV pseudoparticle entry assay, we further showed that TRIB3 was a negative host factor involved in HCV entry. Both in vitro binding and immunoprecipitation assays demonstrated that HCV NS3 specifically interacted with TRIB3. Consequently, the association of TRIB3 and Akt was disrupted by HCV NS3, and thus, TRIB3-Akt signaling was impaired in HCV-infected cells. Moreover, HCV modulated TRIB3 to promote extracellular signal-regulated kinase (ERK) phosphorylation, activator protein 1 (AP-1) activity, and cell migration. Collectively, these data indicate that HCV exploits the TRIB3-Akt signaling pathway to promote persistent viral infection and may contribute to HCV-mediated pathogenesis. IMPORTANCE TRIB3 is a pseudokinase protein that acts as an adaptor in signaling pathways for important cellular processes. So far, the functional involvement of TRIB3 in virus-infected cells has not yet been demonstrated. We showed that both mRNA and protein expression levels of TRIB3 were increased in the context of HCV RNA replication. Gene silencing of TRIB3 increased HCV RNA and protein levels, and thus, overexpression of TRIB3 decreased HCV replication. TRIB3 is known to promote apoptosis by negatively regulating the Akt signaling pathway under ER stress conditions. Most importantly, we demonstrated that the TRIB3-Akt signaling pathway was disrupted by NS3 in HCV-infected cells. These data provide evidence that HCV modulates the TRIB3-Akt signaling pathway to establish persistent viral infection.
Collapse
|
23
|
Stindt S, Cebula P, Albrecht U, Keitel V, Schulte am Esch J, Knoefel WT, Bartenschlager R, Häussinger D, Bode JG. Hepatitis C Virus Activates a Neuregulin-Driven Circuit to Modify Surface Expression of Growth Factor Receptors of the ErbB Family. PLoS One 2016; 11:e0148711. [PMID: 26886748 PMCID: PMC4757098 DOI: 10.1371/journal.pone.0148711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/20/2016] [Indexed: 01/19/2023] Open
Abstract
Recently, the epidermal growth factor (EGF) receptor (EGFR), a member of the ErbB receptor family, and its down-stream signalling have been identified as co-factors for HCV entry and replication. Since EGFR also functions as a heterodimer with other ErbB receptor family members, the subject of the present study was to investigate a possible viral interference with these cellular components. By using genotype 1b replicon cells as well as an infection-based system we found that while transcript and protein levels of EGFR and ErbB2 were up-regulated or unaffected, respectively, HCV induced a substantial reduction of ErbB3 and ErbB4 expression. Down-regulation of ErbB3 expression by HCV involves specificity protein (Sp)1-mediated induction of Neuregulin (NRG)1 expression as well as activation of Akt. Consistently, at transcript level disruption of ErbB3 expression by HCV can be prevented by knockdown of NRG1 or Sp1 expression, whereas reconstitution of ErbB3 protein levels requires inhibition of HCV-induced NRG1 expression and of Akt activity. Interestingly, the NRG1-mediated suppression of ErbB3 expression by HCV results in an enhanced expression of EGFR and ErbB2 on the cell surface, which can be mimicked by siRNA-mediated knockdown of ErbB3 expression. These data delineate a novel mechanism enabling HCV to sway the composition of the ErbB family members on the surface of its host cell by an NRG1-driven circuit and unravels a yet unknown cross-regulation between ErbB3 and the two other family members ErbB2 and EGFR. The shift of the receptor surface expression of the ErbB family towards enhanced expression of ErbB2 and EGFR triggered by HCV was found to promote viral RNA replication and infectivity. This suggests that HCV rearranges expression of ErbB family members to adapt the cellular environment to its requirements.
Collapse
Affiliation(s)
- Sabine Stindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Patricia Cebula
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Ute Albrecht
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jan Schulte am Esch
- Department of General, Visceral, and Pediatric Surgery, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Wolfram T. Knoefel
- Department of General, Visceral, and Pediatric Surgery, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Ralf Bartenschlager
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division for Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
24
|
Dietz J, Lutz T, Knecht G, Gute P, Berkowski C, Lange CM, Khaykin P, Stephan C, Brodt HR, Herrmann E, Zeuzem S, Sarrazin C. Evolution and function of the HCV NS3 protease in patients with acute hepatitis C and HIV coinfection. Virology 2015; 485:213-22. [PMID: 26295281 DOI: 10.1016/j.virol.2015.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/12/2015] [Accepted: 06/26/2015] [Indexed: 01/03/2023]
Abstract
Little is known about the importance of the hepatitis C virus (HCV) NS3 protease in acute hepatitis C. In this prospective study, 82 consecutive patients with acute hepatitis C and human immunodeficiency virus (HIV) coinfection were enrolled. Individuals were infected with highly related HCV strains and the baseline NS3 quasispecies diversity and complexity was higher compared to a chronic hepatitis C control group (P<0.0001). Both parameters were comparable in patients with spontaneous clearance (n=6) versus treatment-induced SVR (n=5) or development of chronic hepatitis C (n=9). Longitudinal NS3 quasispecies kinetics showed a trend to a decreasing diversity and complexity (P<0.05) within 4 weeks in patients with spontaneous clearance compared to the other groups. The innate immune signalling protein CARDIF was cleaved to a similar extent independent of the outcome. Together with a more pronounced viral load decline (P<0.05), an early decreasing NS3 quasispecies evolution indicates spontaneous clearance of acute hepatitis C.
Collapse
Affiliation(s)
- Julia Dietz
- Department of Internal Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | | | | | | | - Caterina Berkowski
- Department of Internal Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | | | - Pavel Khaykin
- Department of Internal Medicine 2, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Christoph Stephan
- Department of Internal Medicine 2, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Hans-Reinhard Brodt
- Department of Internal Medicine 2, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modeling, J.W. Goethe University, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Internal Medicine 1, J.W. Goethe University Hospital, Frankfurt, Germany.
| |
Collapse
|
25
|
Vercauteren K, de Jong YP, Meuleman P. HCV animal models and liver disease. J Hepatol 2014; 61:S26-33. [PMID: 25443343 DOI: 10.1016/j.jhep.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023]
Abstract
The development and evaluation of effective therapies and vaccines for the hepatitis C virus (HCV) and the study of its interactions with the mammalian host have been hindered for a long time by the absence of suitable small animal models. Due to the narrow host tropism of HCV, the development of mice that can be robustly engrafted with human hepatocytes was a major breakthrough since they recapitulate the complete HCV life cycle. This model has been useful to investigate many aspects of the HCV life cycle, including antiviral interventions. However, studies of cellular immunity, immunopathogenesis and resulting liver diseases have been hampered by the lack of a small animal model with a functional immune system. In this review, we summarize the evolution of in vivo models for the study of HCV.
Collapse
Affiliation(s)
- Koen Vercauteren
- Center for Vaccinology, Ghent University Hospital, Ghent University, Gent, Belgium
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, USA
| | - Philip Meuleman
- Center for Vaccinology, Ghent University Hospital, Ghent University, Gent, Belgium.
| |
Collapse
|
26
|
Ratnoglik SL, Jiang DP, Aoki C, Sudarmono P, Shoji I, Deng L, Hotta H. Induction of cell-mediated immune responses in mice by DNA vaccines that express hepatitis C virus NS3 mutants lacking serine protease and NTPase/RNA helicase activities. PLoS One 2014; 9:e98877. [PMID: 24901478 PMCID: PMC4046998 DOI: 10.1371/journal.pone.0098877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 05/07/2014] [Indexed: 12/14/2022] Open
Abstract
Effective therapeutic vaccines against virus infection must induce sufficient levels of cell-mediated immune responses against the target viral epitopes and also must avoid concomitant risk factors, such as potential carcinogenic properties. The nonstructural protein 3 (NS3) of hepatitis C virus (HCV) carries a variety of CD4(+) and CD8(+) T cell epitopes, and induces strong HCV-specific T cell responses, which are correlated with viral clearance and resolution of acute HCV infection. On the other hand, NS3 possesses serine protease and nucleoside triphosphatase (NTPase)/RNA helicase activities, which not only play important roles in viral life cycle but also concomitantly interfere with host defense mechanisms by deregulating normal cellular functions. In this study, we constructed a series of DNA vaccines that express NS3 of HCV. To avoid the potential harm of NS3, we introduced mutations to the catalytic triad of the serine protease (H57A, D81A and S139A) and the NTPase/RNA helicase domain (K210N, F444A, R461Q and W501A) to eliminate the enzymatic activities. Immunization of BALB/c mice with each of the DNA vaccine candidates (pNS3[S139A/K210N], pNS3[S139A/F444A], pNS3[S139A/R461Q] and pNS3[S139A/W501A]) that expresses an NS3 mutant lacking both serine protease and NTPase/helicase activities induced T cell immune responses to the degree comparable to that induced by the wild type NS3 and the NS3/4A complex, as demonstrated by interferon-γ production and cytotoxic T lymphocytes activities against NS3. The present study has demonstrated that plasmids expressing NS3 mutants, NS3(S139A/K210N), NS3(S139A/F444A), NS3(S139A/R461Q) and NS3(S139A/W501A), which lack both serine protease and NTPase/RNA helicase activities, would be good candidates for safe and efficient therapeutic DNA vaccines against HCV infection.
Collapse
Affiliation(s)
- Suratno Lulut Ratnoglik
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Da-Peng Jiang
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chie Aoki
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
- JST/JICA SATREPS Laboratory of Kobe University, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | | - Ikuo Shoji
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
27
|
Zheng K, Kitazato K, Wang Y. Viruses exploit the function of epidermal growth factor receptor. Rev Med Virol 2014; 24:274-86. [PMID: 24888553 DOI: 10.1002/rmv.1796] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that regulates cellular homeostatic processes. Following ligand binding, EGFR activates different downstream signalling cascades that promote cell survival, proliferation, motility, and angiogenesis and induces F-actin-dependent EGFR endocytosis, which relocalises the activated receptors for degradation or recycling. The responses that are induced by ligand binding to EGFR, including cell signalling activation, protein kinase phosphorylation and cytoskeletal network rearrangement, resemble those induced by virus infection. Increasing evidence demonstrates that many viruses usurp EGFR endocytosis or EGFR-mediated signalling for entry, replication, inflammation, and viral antagonism to the host antiviral system. In addition, viruses have acquired sophisticated mechanisms to regulate EGFR functions by interrupting the EGFR-recycling process and modulating EGFR expression. In this review, we provide an overview of the mechanisms by which viruses alter EGFR signalling in favour of their continued survival.
Collapse
Affiliation(s)
- Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering, Research Center of Genetic Medicine, Jinan University, Guangzhou, China; College of Life Science and Technology, Jinan University, Guangzhou, China
| | | | | |
Collapse
|
28
|
The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci 2014; 15:4747-79. [PMID: 24646914 PMCID: PMC3975423 DOI: 10.3390/ijms15034747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus (HCV) is a global health problem affecting more than 170 million people. A chronic HCV infection is associated with liver fibrosis, liver cirrhosis and hepatocellular carcinoma. To enable viral persistence, HCV has developed mechanisms to modulate both innate and adaptive immunity. The recruitment of antiviral immune cells in the liver is mainly dependent on the release of specific chemokines. Thus, the modulation of their expression could represent an efficient viral escape mechanism to hamper specific immune cell migration to the liver during the acute phase of the infection. HCV-mediated changes in hepatic immune cell chemotaxis during the chronic phase of the infection are significantly affecting antiviral immunity and tissue damage and thus influence survival of both the host and the virus. This review summarizes our current understanding of the HCV-mediated modulation of chemokine expression and of its impact on the development of liver disease. A profound knowledge of the strategies used by HCV to interfere with the host's immune response and the pro-fibrotic and pro-carcinogenic activities of HCV is essential to be able to design effective immunotherapies against HCV and HCV-mediated liver diseases.
Collapse
|
29
|
Morikawa K, Gouttenoire J, Hernandez C, Dao Thi VL, Tran HTL, Lange CM, Dill MT, Heim MH, Donzé O, Penin F, Quadroni M, Moradpour D. Quantitative proteomics identifies the membrane-associated peroxidase GPx8 as a cellular substrate of the hepatitis C virus NS3-4A protease. Hepatology 2014; 59:423-33. [PMID: 23929719 DOI: 10.1002/hep.26671] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/30/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. CONCLUSION We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease.
Collapse
Affiliation(s)
- Kenichi Morikawa
- From the Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brenndörfer ED, Brass A, Karthe J, Ahlén G, Bode JG, Sällberg M. Cleavage of the T cell protein tyrosine phosphatase by the hepatitis C virus nonstructural 3/4A protease induces a Th1 to Th2 shift reversible by ribavirin therapy. THE JOURNAL OF IMMUNOLOGY 2014; 192:1671-80. [PMID: 24442435 DOI: 10.4049/jimmunol.1301077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ribavirin has proven to be a key component of hepatitis C therapies both involving IFNs and new direct-acting antivirals. The hepatitis C virus-mediated interference with intrahepatic immunity by cleavage of mitochondrial antiviral signaling protein (MAVS) and T cell protein tyrosine phosphatase (TCPTP) suggests an avenue for compounds that may counteract these effects. We therefore studied the effects of ribavirin, with or without inhibition of the nonstructural (NS)3/4A protease, on intrahepatic immunity. The intrahepatic immunity of wild-type and NS3/4A-transgenic mice was determined by Western blot, ELISA, flow cytometry, and survival analysis. Various MAVS or TCPTP constructs were injected hydrodynamically to study their relevance. Ribavirin pretreatment was performed in mice expressing a functional or inhibited NS3/4A protease to analyze its effect on NS3/4A-mediated changes. Intrahepatic NS3/4A expression made mice resistant to TNF-α-induced liver damage and caused an alteration of the intrahepatic cytokine (IFN-γ and IL-10) and chemokine (CCL3, CCL17, CCL22, CXCL9, and CXCL11) profiles toward an anti-inflammatory state. Consistent with this, the number of intrahepatic Th1 cells and IFN-γ(+) T cells in NS3/4A-transgenic mice decreased, whereas the amount of Th2 cells increased. These effects could be reversed by injection of uncleavable TCPTP but not uncleavable MAVS and were absent in a mouse expressing a nonfunctional NS3/4A protease. Importantly, the NS3/4A-mediated effects were reversed by ribavirin treatment. Thus, cleavage of TCPTP by NS3/4A induces a shift of the intrahepatic immune response toward a nonantiviral Th2-dominated immunity. These effects are reversed by ribavirin, supporting that ribavirin complements the effects of direct-acting antivirals as an immunomodulatory compound.
Collapse
Affiliation(s)
- Erwin Daniel Brenndörfer
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm S-141 86, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Weiland O, Ahlén G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, Sällberg M. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 2013; 21:1796-805. [PMID: 23752314 PMCID: PMC3776630 DOI: 10.1038/mt.2013.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was performed in treatment naive HCV genotype 1 patients, receiving four monthly vaccinations in the deltoid muscles with 167, 500, or 1,500 μg codon-optimized HCV nonstructural (NS) 3/4A-expressing DNA vaccine delivered by in vivo electroporation (EP). Enrollment was done with 2 weeks interval between patients for safety reasons. Treatment was safe and well tolerated. The vaccinations significantly improved IFN-γ-producing responses to HCV NS3 during the first 6 weeks of therapy. Five patients experienced 2-10 weeks 0.6-2.4 log10 reduction in serum HCV RNA. Six out of eight patients starting SOC therapy within 1-30 months after the last vaccine dose were cured. This first-in-man therapeutic HCV DNA vaccine study with the vaccine delivered by in vivo EP shows transient effects in patients with chronic HCV genotype 1 infection. The interesting result noted after SOC therapy suggests that therapeutic vaccination can be explored in a combination with SOC treatment.
Collapse
Affiliation(s)
- Ola Weiland
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helmut Diepolder
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Maria-Christina Jung
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
- ImmuSystems, Munich, Germany
| | - Sepideh Levander
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael Fons
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | | | | | - Anders Vahlne
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- ChronTech Pharma AB, Huddinge, Sweden
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
32
|
Moradpour D, Penin F. Hepatitis C virus proteins: from structure to function. Curr Top Microbiol Immunol 2013; 369:113-42. [PMID: 23463199 DOI: 10.1007/978-3-642-27340-7_5] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Great progress has been made over the past years in elucidating the structure and function of the hepatitis C virus (HCV) proteins, most of which are now actively being pursued as antiviral targets. The structural proteins, which form the viral particle, include the core protein and the envelope glycoproteins E1 and E2. The nonstructural proteins include the p7 viroporin, the NS2 protease, the NS3-4A complex harboring protease and NTPase/RNA helicase activities, the NS4B and NS5A proteins, and the NS5B RNA-dependent RNA polymerase. NS4B is a master organizer of replication complex formation while NS5A is a zinc-containing phosphoprotein involved in the regulation of HCV RNA replication versus particle production. Core to NS2 make up the assembly module while NS3 to NS5B represent the replication module (replicase). However, HCV proteins exert multiple functions during the viral life cycle, and these may be governed by different structural conformations and/or interactions with viral and/or cellular partners. Remarkably, each viral protein is anchored to intracellular membranes via specific determinants that are essential to protein function in the cell. This review summarizes current knowledge of the structure and function of the HCV proteins and highlights recent advances in the field.
Collapse
Affiliation(s)
- Darius Moradpour
- Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
33
|
Rahbin N, Frelin L, Aleman S, Hultcrantz R, Sällberg M, Brenndörfer ED. Non-structural 3 protein expression is associated with T cell protein tyrosine phosphatase and viral RNA levels in chronic hepatitis C patients. Biochem Biophys Res Commun 2013; 433:31-5. [PMID: 23454379 DOI: 10.1016/j.bbrc.2013.02.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 12/20/2022]
Abstract
The hepatitis C virus (HCV) non-structural 3 (NS3) protein plays key roles in both the viral life cycle and in the modulation of intrahepatic signaling and immunity. We recently showed that NS3 cleaves the T cell protein tyrosine phosphatase (TCPTP). To better understand the inactivation of TCPTP in HCV-infected humans, we investigated whether there is an association between TCPTP cleavage, NS3 protein levels and clinical parameters in hepatitis C patients. Liver biopsies were obtained from 69 HCV RNA positive patients with confirmed chronic HCV infection and 16 control patients. Hepatic NS3 and TCPTP protein levels were determined and correlated to viral load or clinical parameters for the severity of liver disease. We found a positive correlation between the viral load and the intrahepatic NS3 protein levels in patients infected with HCV. HCV-infected patients had significantly lower intrahepatic TCPTP levels than non-infected control patients. In HCV-infected patients both intrahepatic NS3 expression and the viral load were inversely correlated with the intrahepatic TCPTP protein levels. Detection of NS3 did not associate with any other clinical parameters such as liver damage, the grade of liver inflammation or fibrosis stage. This is the first study reporting a detailed analysis of HCV NS3 and TCPTP protein levels in the liver. It demonstrates a clear link between HCV viral load, NS3 expression in the liver and intrahepatic TCPTP levels. Thus, the association between TCPTP cleavage and viral replication may have important consequences for the HCV life cycle and HCV-induced liver diseases.
Collapse
Affiliation(s)
- Nogol Rahbin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Horwitz JA, Dorner M, Friling T, Donovan BM, Vogt A, Loureiro J, Oh T, Rice CM, Ploss A. Expression of heterologous proteins flanked by NS3-4A cleavage sites within the hepatitis C virus polyprotein. Virology 2013; 439:23-33. [PMID: 23485372 DOI: 10.1016/j.virol.2013.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) contributes substantially to human morbidity and mortality world-wide. The development of HCV genomes expressing heterologous proteins has enhanced the ability to study viral infection, but existing systems have drawbacks. Recombinant viruses often require adaptive mutations to compensate for reduced viral titers, or rely on an artificial genomic organization that uncouples viral protein expression from recombinant gene expression. Here, we sought to exploit the viral polyprotein processing machinery to express heterologous proteins within the context of the HCV polyprotein. We show that HCV genotypes 2a and 1b permit insertion of reporter proteins between NS5A and NS5B with minimal impact on viral fitness. Using this strategy we constructed reporter genomes exhibiting a wide dynamic range, simplifying analysis of HCV infection in primary hepatocytes. Expression of heterologous proteins within the HCV genome offers new opportunities to analyze HCV infection in experimental systems without perturbing functions of individual viral proteins.
Collapse
Affiliation(s)
- Joshua A Horwitz
- Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Interplay between Hepatitis C Virus and Redox Cell Signaling. Int J Mol Sci 2013; 14:4705-21. [PMID: 23443167 PMCID: PMC3634496 DOI: 10.3390/ijms14034705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world’s population. Currently licensed treatment of HCV chronic infection with pegylated-interferon-α and ribavirin, is not fully effective against all HCV genotypes and is associated to severe side effects. Thus, development of novel therapeutics and identification of new targets for treatment of HCV infection is necessary. Current opinion is orienting to target antiviral drug discovery to the host cell pathways on which the virus relies, instead of against viral structures. Many intracellular signaling pathways manipulated by HCV for its own replication are finely regulated by the oxido-reductive (redox) state of the host cell. At the same time, HCV induces oxidative stress that has been found to affect both virus replication as well as progression and severity of HCV infection. A dual role, positive or negative, for the host cell oxidized conditions on HCV replication has been reported so far. This review examines current information about the effect of oxidative stress on HCV life cycle and the main redox-regulated intracellular pathways activated during HCV infection and involved in its replication.
Collapse
|
36
|
Sandmann L, Ploss A. Barriers of hepatitis C virus interspecies transmission. Virology 2013; 435:70-80. [PMID: 23217617 PMCID: PMC3523278 DOI: 10.1016/j.virol.2012.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/28/2012] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is a major causative agent of severe liver disease including fibrosis, cirrhosis and liver cancer. Therapy has improved over the years, but continues to be associated with adverse side effects and variable success rates. Furthermore, a vaccine protecting against HCV infection remains elusive. Development of more effective intervention measures has been delayed by the lack of a suitable animal model. Naturally, HCV infects only humans and chimpanzees. The determinants of this limited host range are poorly understood in part due to difficulties of studying HCV in cell culture. Some progress has been made elucidating the barriers for the HCV lifecycle in non-permissive species which will help in the future to construct animal models for HCV infection, immunity and pathogenesis.
Collapse
|
37
|
Kang X, Chen X, He Y, Guo D, Guo L, Zhong J, Shu HB. DDB1 is a cellular substrate of NS3/4A protease and required for hepatitis C virus replication. Virology 2013; 435:385-94. [DOI: 10.1016/j.virol.2012.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
38
|
Brenndörfer ED, Sällberg M. Hepatitis C virus-mediated modulation of cellular immunity. Arch Immunol Ther Exp (Warsz) 2012; 60:315-29. [PMID: 22911132 DOI: 10.1007/s00005-012-0184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 03/09/2012] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is a major cause of chronic liver disease globally. A chronic infection can result in liver fibrosis, liver cirrhosis, hepatocellular carcinoma and liver failure in a significant ratio of the patients. About 170 million people are currently infected with HCV. Since 80 % of the infected patients develop a chronic infection, HCV has evolved sophisticated escape strategies to evade both the innate and the adaptive immune system. Thus, chronic hepatitis C is characterized by perturbations in the number, subset composition and/or functionality of natural killer cells, natural killer T cells, dendritic cells, macrophages and T cells. The balance between HCV-induced immune evasion and the antiviral immune response results in chronic liver inflammation and consequent immune-mediated liver injury. This review summarizes our current understanding of the HCV-mediated interference with cellular immunity and of the factors resulting in HCV persistence. A profound knowledge about the intrinsic properties of HCV and its effects on intrahepatic immunity is essential to be able to design effective immunotherapies against HCV such as therapeutic HCV vaccines.
Collapse
Affiliation(s)
- Erwin Daniel Brenndörfer
- Division of Clinical Microbiology F68, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| | | |
Collapse
|
39
|
Lan KH, Wang YW, Lee WP, Lan KL, Tseng SH, Hung LR, Yen SH, Lin HC, Lee SD. Multiple effects of Honokiol on the life cycle of hepatitis C virus. Liver Int 2012; 32:989-97. [PMID: 22098176 DOI: 10.1111/j.1478-3231.2011.02621.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Honokiol, a small active molecular compound extracted from magnolia, has recently been shown to inhibit hepatitis C virus (HCV) infection in vitro. AIMS This study further characterized aspects of the HCV lifecycle affected by the antiviral functions of honokiol. METHODS The influence of honokiol on HCV infection, entry, translation and replication was assessed in Huh-7.5.1 cells using cell culture-derived HCV (HCVcc), HCV pseudo-type (HCVpp) and sub-genomic replicons. RESULTS Honokiol had strong antiviral effect against HCVcc infection at non-toxic concentrations. Combined with interferon-α, its inhibitory effect on HCVcc was more profound than that of ribavirin. Honokiol inhibited the cell entry of lentiviral particles pseudo-typed with glycoproteins from HCV genotypes 1a, 1b, and 2a, but not of the vesicular stomatitis virus. It had inefficient activity on HCV internal ribosome entry site (IRES)-translation at concentrations with significant anti-HCVcc effects. The expression levels of components of replication complex, NS3, NS5A and NS5B, were down-regulated by honokiol in a dose-dependent manner. It also inhibited HCV replication dose dependently in both genotypes 1b and 2a sub-genomic replicons. CONCLUSIONS Honokiol inhibits HCV infection by targeting cell entry and replication and, only at a concentration >30 μM, IRES-mediated translation of HCV life cycle. Based on its high therapeutic index (LD(50) /EC(90) = 5.4), honokiol may be a promising drug for the treatment of HCV infection.
Collapse
Affiliation(s)
- Keng-Hsin Lan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Horner SM, Park HS, Gale M. Control of innate immune signaling and membrane targeting by the Hepatitis C virus NS3/4A protease are governed by the NS3 helix α0. J Virol 2012; 86:3112-20. [PMID: 22238314 PMCID: PMC3302330 DOI: 10.1128/jvi.06727-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/03/2012] [Indexed: 12/28/2022] Open
Abstract
Hepatitis C virus (HCV) infection is sensed in the host cell by the cytosolic pathogen recognition receptor RIG-I. RIG-I signaling is propagated through its signaling adaptor protein MAVS to drive activation of innate immunity. However, HCV blocks RIG-I signaling through viral NS3/4A protease cleavage of MAVS on the mitochondrion-associated endoplasmic reticulum (ER) membrane (MAM). The multifunctional HCV NS3/4A serine protease is associated with intracellular membranes, including the MAM, through membrane-targeting domains within NS4A and also at the amphipathic helix α(0) of NS3. The serine protease domain of NS3 is required for both cleavage of MAVS, a tail-anchored membrane protein, and processing the HCV polyprotein. Here, we show that hydrophobic amino acids in the NS3 helix α(0) are required for selective cleavage of membrane-anchored portions of the HCV polyprotein and for cleavage of MAVS for control of RIG-I pathway signaling of innate immunity. Further, we found that the hydrophobic composition of NS3 helix α(0) is essential to establish HCV replication and infection. Alanine substitution of individual hydrophobic amino acids in the NS3 helix α(0) impaired HCV RNA replication in cells with a functional RIG-I pathway, but viral RNA replication was rescued in cells lacking RIG-I signaling. Therefore, the hydrophobic amphipathic helix α(0) of NS3 is required for NS3/4A control of RIG-I signaling and HCV replication by directing the membrane targeting of both viral and cellular substrates.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
41
|
Falleti E, Cmet S, Fabris C, Bitetto D, Cussigh A, Fornasiere E, Bignulin E, Feruglio C, Mosanghini E, Fontanini E, Pirisi M, Toniutto P. Association between the epidermal growth factor rs4444903 G/G genotype and advanced fibrosis at a young age in chronic hepatitis C. Cytokine 2011; 57:68-73. [PMID: 22122913 DOI: 10.1016/j.cyto.2011.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/05/2011] [Accepted: 10/22/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND The epidermal growth factor (EGF) rs4444903 A>G polymorphism has been associated with the development of liver cancer, which commonly complicates cirrhosis of viral origin; however, whether this polymorphism might be associated with fibrosis progression in chronic viral hepatitis is unknown. The present study was performed to assess the allelic and genotypic frequencies of the rs4444903 A>G polymorphism in patients with chronic hepatitis C virus HCV infection and to ascertain whether this polymorphism might be an independent predictor of the degree of fibrosis. METHODS An RFLP-PCR technique was used to genotype 645 patients (211 with cirrhosis); 528 were referred for the diagnosis and treatment of chronic hepatitis C, and 117 were transplanted for HCV-related end stage liver disease. A group of 428 healthy subjects served as a control. All the subjects were of Caucasian ethnicity. RESULTS The EGF rs4444903 A>G polymorphism genotype frequencies in HCV chronic infected patients were as follows: A/A=227 (35.3%), A/G=328 (50.9%), and G/G=90 (14.8%). Genotype frequencies were found to differ between patients with an Ishak staging score⩽2 (A/A=117, A/G=157, G/G=34) and patients with a score>2 (A/A=110, A/G=171, G/G=56, p=0.038). A highly significant linear relationship between increasing stage scores and EGF genotype was detected in younger patients (A/A: 2.02±0.18, A/G: 2.55±0.17, G/G: 3.00±0.32, p=0.008). However, no significant association was detected between the stage score and EGF genotype in older patients (A/A: 3.79±0.19, A/G: 3.64±0.15, G/G: 3.98±0.30 p=0.579). CONCLUSIONS The EGF rs4444903 A>G polymorphism may facilitate liver fibrosis progression in Caucasian patients with chronic hepatitis C, especially in younger patients.
Collapse
Affiliation(s)
- Edmondo Falleti
- Department of Laboratory Medicine, University of Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ehrhardt C. From virus entry to release: the diverse functions of PI3K during RNA virus infections. Future Virol 2011. [DOI: 10.2217/fvl.11.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA viruses are the causative agents of severe diseases in vertebrates. Upon viral infection, various intracellular signaling pathways are induced within the infected cells. While most of the different cellular signaling responses are initiated as antiviral defense mechanisms to counteract invading pathogens, they may also be exploited by viruses to support their replication. Recently, PI3K has been added to the growing list of signaling factors and pathways that are activated upon viral infections and regulate the replication process. Here, the current knowledge on RNA virus-induced PI3K-regulated signaling processes and how the pathogens take advantage of these activities within the infected cells is summarized.
Collapse
Affiliation(s)
- Christina Ehrhardt
- Institute of Molecular Virology (IMV), ZMBE, Westfaelische-Wilhelms-University, Von Esmarch-Str. 56, D-48149 Münster, Germany
| |
Collapse
|
43
|
Norovirus RNA-dependent RNA polymerase is phosphorylated by an important survival kinase, Akt. J Virol 2011; 85:10894-8. [PMID: 21849454 DOI: 10.1128/jvi.05562-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Viruses commonly use host cell survival mechanisms to their own advantage. We show that Akt, an important signaling kinase involved in cell survival, phosphorylates the RNA-dependent RNA polymerase (RdRp) from norovirus, the major cause of gastroenteritis outbreaks worldwide. The Akt phosphorylation of RdRp appears to be a feature unique to the more prevalent norovirus genotypes such as GII.4 and GII.b. This phosphorylation event occurs at a residue (Thr33) located at the interface where the RdRp finger and thumb domains interact and decreases de novo activity of the polymerase. This finding provides fresh insights into virus-host cell interactions.
Collapse
|
44
|
Pei R, Chen H, Lu L, Zhu W, Beckebaum S, Cicinnati V, Lu M, Chen X. Hepatitis C virus infection induces the expression of amphiregulin, a factor related to the activation of cellular survival pathways and required for efficient viral assembly. J Gen Virol 2011; 92:2237-2248. [PMID: 21653755 DOI: 10.1099/vir.0.032581-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor (EGF) receptor and may play a role in the development of cirrhosis and hepatocellular carcinoma in patients infected with hepatitis C virus (HCV). AREG showed an enhanced expression in HCV-infected human hepatoma cells according to gene array analysis. Therefore, we addressed the question about the role of AREG in HCV infection. AREG expression level was elevated in hepatoma cells containing a subgenomic HCV replicon or infected by HCV. Using a reporter assay, AREG promoter activity was found to be upregulated upon HCV infection. The enhanced AREG expression in hepatoma cells was partly caused by dsRNAs, HCV NS3 protein and autocrine stimulation. AREG was able to activate cellular signalling pathways including ERK, Akt and p38, promote cell proliferation, and protect cells from HCV-induced cell death. Further, knockdown of AREG expression increased the efficiency of HCV entry, as proven by HCV pseudoparticles reporter assay. However, the formation and release of infectious HCV particles were reduced by AREG silencing with a concomitant accumulation of intracellular HCV RNA pool, indicating that the assembly and release of HCV progeny may require AREG expression. Blocking the MAPK-ERK pathway by U0126 in Huh7.5.1 cells had a similar effect on HCV replication. In conclusion, HCV infection leads to an increase in AREG expression in hepatocytes. AREG expression is essential for efficient HCV assembly and virion release. Due to the activation of the cellular survival pathways, AREG may counteract HCV-induced apoptosis of infected hepatocytes and facilitate the development of liver cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rongjuan Pei
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Institute of Virology, University Hospital of Essen, Essen, Germany.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Honghe Chen
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Lu Lu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Wandi Zhu
- Graduate University of Chinese Academy of Sciences, Beijing, PR China.,Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Susanne Beckebaum
- Department of Gastroenterology and Hepatology, University Hospital of Essen, Essen, Germany
| | - Vito Cicinnati
- Department of Gastroenterology and Hepatology, University Hospital of Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
45
|
Morikawa K, Lange CM, Gouttenoire J, Meylan E, Brass V, Penin F, Moradpour D. Nonstructural protein 3-4A: the Swiss army knife of hepatitis C virus. J Viral Hepat 2011; 18:305-15. [PMID: 21470343 DOI: 10.1111/j.1365-2893.2011.01451.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) nonstructural protein 3-4A (NS3-4A) is a complex composed of NS3 and its cofactor NS4A. It harbours serine protease as well as NTPase/RNA helicase activities and is essential for viral polyprotein processing, RNA replication and virion formation. Specific inhibitors of the NS3-4A protease significantly improve sustained virological response rates in patients with chronic hepatitis C when combined with pegylated interferon-α and ribavirin. The NS3-4A protease can also target selected cellular proteins, thereby blocking innate immune pathways and modulating growth factor signalling. Hence, NS3-4A is not only an essential component of the viral replication complex and prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. This review provides a concise update on the biochemical and structural aspects of NS3-4A, its role in the pathogenesis of chronic hepatitis C and the clinical development of NS3-4A protease inhibitors.
Collapse
Affiliation(s)
- K Morikawa
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Zemel R, Issachar A, Tur-Kaspa R. The role of oncogenic viruses in the pathogenesis of hepatocellular carcinoma. Clin Liver Dis 2011; 15:261-79, vii-x. [PMID: 21689612 DOI: 10.1016/j.cld.2011.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HBV and HCV have major roles in hepatocarcinogenesis. More than 500 million people are infected with hepatitis viruses and, therefore, HCC is highly prevalent, especially in those countries endemic for HBV and HCV. Viral and host factors contribute to the development of HCC. The main viral factors include the circulating load of HBV DNA or HCV RNA and specific genotypes. Various mechanisms are involved in the host-viral interactions that lead to HCC development, among which are genetic instability, self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasiveness. Prevention of HBV by vaccination, as well as antiviral therapy against HBV and for HCV seem able to inhibit the development of HCC.
Collapse
Affiliation(s)
- Romy Zemel
- Department of Medicine D and the Liver Institute, Rabin Medical Center, Beilinson Hospital, Molecular Hepatology Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, 39 Jabotinsky Street, Petah-Tikva 49100, Israel
| | | | | |
Collapse
|
47
|
Pfannkuche A, Büther K, Karthe J, Poenisch M, Bartenschlager R, Trilling M, Hengel H, Willbold D, Häussinger D, Bode JG. c-Src is required for complex formation between the hepatitis C virus-encoded proteins NS5A and NS5B: a prerequisite for replication. Hepatology 2011; 53:1127-36. [PMID: 21480319 DOI: 10.1002/hep.24214] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a leading cause of chronic liver disease worldwide and establishes a persistent infection in more than 60% of infected individuals. This high frequency of persistent infection indicates that HCV has evolved efficient strategies to interfere with the adaptive and innate immune response and to occupy and use host cell infrastructure. The present study provides evidence that c-Src, a member of the Src family kinases that participates in many signal transduction pathways, represents an essential host factor exploited for viral replication. c-Src directly interacts with the viral RNA-dependent RNA polymerase (NS5B) via its SH3 domain and with the nonstructural phosphoprotein NS5A via its SH2 domain. Both interactions are required to maintain the protein-protein interaction of NS5A and NS5B, which has been previously demonstrated to be essential for viral replication. Accordingly, HCV genome replication and production of the viral proteins was strongly reduced upon small interfering RNA-mediated knockdown of c-Src or in the presence of the tyrosine kinase inhibitor herbimycin A. This effect could not be rescued by supplementation of the two other ubiquitously expressed Src family kinases Fyn or Yes. CONCLUSION Our data suggest that c-Src participates in the formation of an NS5A/NS5B protein complex that is required for efficient replication of HCV.
Collapse
Affiliation(s)
- Andreas Pfannkuche
- Department of Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine University of Dusseldorf, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang D, Feng GH. Advances in research of interaction between hepatitis C virus nonstructural proteins and host proteins. Shijie Huaren Xiaohua Zazhi 2011; 19:161-169. [DOI: 10.11569/wcjd.v19.i2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is another common cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma after hepatitis B virus (HBV). Up to now, the mechanisms by which HCV promotes persistent infection and cancer remain unclear, and there are neither effective drugs nor vaccines against HCV available. Interaction between virus proteins and host proteins is a hot topic in research of the pathogenesis of viral hepatitis. Recent research shows that interaction between HCV nonstructural proteins and host proteins has an important impact on viral replication, carcinogenesis, interferon resistance, and disorders of glycometabolism and lipid metabolism. This paper summarizes the recent advances in research of interaction between HCV nonstructural proteins and host proteins.
Collapse
|
49
|
Brenndörfer ED, Weiland M, Frelin L, Derk E, Ahlén G, Jiao J, Bode JG, Sällberg M. Anti-tumor necrosis factor α treatment promotes apoptosis and prevents liver regeneration in a transgenic mouse model of chronic hepatitis C. Hepatology 2010; 52:1553-63. [PMID: 20886569 DOI: 10.1002/hep.23870] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Tumor necrosis factor α (TNFα) has been implicated in a variety of inflammatory diseases, and anti-TNFα has been shown to improve therapy when added to standard of care in chronic hepatitis C virus (HCV) infection. In addition, patients with chronic HCV have increased serum levels of TNFα and the macrophage-attracting chemokine (C-C motif) ligand 2 (CCL2). A mouse model of chronic HCV with hepatic nonstructural (NS) 3/4A protein expression mimics the human infection through a reduced response to double-stranded RNA and cleavage of the T cell protein tyrosine phosphatase. The mice also display a resistance to TNFα in vivo. We therefore analyzed the relationship between NS3/4A and TNFα. Wild-type and NS3/4A-transgenic (Tg) mice were treated with TNFα/D-galactosamine (D-galN), acting through the TNF receptor 1 on hepatocytes and macrophages, or lipopolysaccharide (LPS)/D-galN, acting through Toll-like receptor 4 on sinusoidal endothelial cells, macrophages, and dendritic cells. Mice were analyzed for hepatic signaling, liver damage, TNFα, and CCL2. Similar to HCV-infected humans, NS3/4A-Tg mice displayed elevated basal levels of TNFα and CCL2. Treatment of NS3/4A-Tg mice with TNFα/D-galN or LPS/D-galN led to increased hepatic nuclear factor kappa B (NFκB) activation, increased TNFα and CCL2 levels, decreased apoptosis, and increased hepatocyte regeneration. Importantly, blocking NFκB activation (bortezomib) or administering anti-TNFα (infliximab) 4 hours after LPS/D-galN injection reversed the resistance of NS3/4A-Tg mice to TNFα-induced liver injury. CONCLUSION Resistance to TNFα seen in NS3/4A-Tg mice is explained by a hepatoprotective effect of NFκB and TNFα. Hence, anti-TNFα agents block these effects and are antiviral by promoting hepatocyte apoptosis and preventing hepatocyte regeneration.
Collapse
Affiliation(s)
- Erwin Daniel Brenndörfer
- Division of Clinical Microbiology, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bellecave P, Sarasin-Filipowicz M, Donzé O, Kennel A, Gouttenoire J, Meylan E, Terracciano L, Tschopp J, Sarrazin C, Berg T, Moradpour D, Heim MH. Cleavage of mitochondrial antiviral signaling protein in the liver of patients with chronic hepatitis C correlates with a reduced activation of the endogenous interferon system. Hepatology 2010; 51:1127-36. [PMID: 20044805 DOI: 10.1002/hep.23426] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre-activated IFN system are less likely to respond to the current standard therapy with pegylated IFN-alpha. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN-beta. The HCV NS3-4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN-induced Janus kinase (Jak)-signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN-stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre-activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS.
Collapse
Affiliation(s)
- Pantxika Bellecave
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|