1
|
Abstract
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
Collapse
|
2
|
Raudenska M, Gumulec J, Balvan J, Masarik M. Caveolin-1 in oncogenic metabolic symbiosis. Int J Cancer 2020; 147:1793-1807. [PMID: 32196654 DOI: 10.1002/ijc.32987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Metabolic phenotypes of cancer cells are heterogeneous and flexible as a tumor mass is a hurriedly evolving system capable of constant adaptation to oxygen and nutrient availability. The exact type of cancer metabolism arises from the combined effects of factors intrinsic to the cancer cells and factors proposed by the tumor microenvironment. As a result, a condition termed oncogenic metabolic symbiosis in which components of the tumor microenvironment (TME) promote tumor growth often occurs. Understanding how oncogenic metabolic symbiosis emerges and evolves is crucial for perceiving tumorigenesis. The process by which tumor cells reprogram their TME involves many mechanisms, including changes in intercellular communication, alterations in metabolic phenotypes of TME cells, and rearrangement of the extracellular matrix. It is possible that one molecule with a pleiotropic effect such as Caveolin-1 may affect many of these pathways. Here, we discuss the significance of Caveolin-1 in establishing metabolic symbiosis in TME.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
3
|
Caveolin-1 Function in Liver Physiology and Disease. Trends Mol Med 2016; 22:889-904. [DOI: 10.1016/j.molmed.2016.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
|
4
|
Gao L, Chen X, Peng T, Yang D, Wang Q, Lv Z, Shen J. Caveolin-1 protects against hepatic ischemia/reperfusion injury through ameliorating peroxynitrite-mediated cell death. Free Radic Biol Med 2016; 95:209-15. [PMID: 27021966 DOI: 10.1016/j.freeradbiomed.2016.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022]
Abstract
Nitrative stress is considered as an important pathological process of hepatic ischemia and reperfusion injury but its regulating mechanisms are largely unknown. In this study, we tested the hypothesis that caveolin-1 (Cav-1), a plasma membrane scaffolding protein, could be an important cellular signaling against hepatic I/R injury through inhibiting peroxynitrite (ONOO(-))-induced cellular damage. Male wild-type mice and Cav-1 knockout (Cav-1(-/-)) were subjected to 1h hepatic ischemia following 1, 6 and 12h of reperfusion by clipping and releasing portal vessels respectively. Immortalized human hepatocyte cell line (L02) was subjected to 1h hypoxia and 6h reoxygenation and treated with Cav-1 scaffolding domain peptide. The major discoveries included: (1) the expression of Cav-1 in serum and liver tissues of wild-type mice was time-dependently elevated during hepatic ischemia-reperfusion injury. (2) Cav-1 scaffolding domain peptide treatment inhibited cleaved caspase-3 expression in the hypoxia-reoxygenated L02 cells; (3) Cav-1 knockout (Cav-1(-/-)) mice had significantly higher levels of serum transaminases (ALT&AST) and TNF-α, and higher rates of apoptotic cell death in liver tissues than wild-type mice after subjected to 1h hepatic ischemia and 6hour reperfusion; (4) Cav-1(-/-) mice revealed higher expression levels of iNOS, ONOO(-) and 3-nitrotyrosine (3-NT) in the liver than wild-type mice, and Fe-TMPyP, a representative peroxynitrite decomposition catalyst (PDC), remarkably reduced level of ONOO(-) and 3-NT and ameliorated the serum ALT, AST and TNF-α levels in both wild-type and Cav-1(-/-) mice. Taken together, we conclude that Cav-1 could play a critical role in preventing nitrative stress-induced liver damage during hepatic ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lei Gao
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xingmiao Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; Research Centre of Heart, Brain, Hormone & Healthy Aging, the University of Hong Kong, Hong Kong, China
| | - Tao Peng
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China; Research Centre of Heart, Brain, Hormone & Healthy Aging, the University of Hong Kong, Hong Kong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Singh S, Liu S, Rockey DC. Caveolin-1 is upregulated in hepatic stellate cells but not sinusoidal endothelial cells after liver injury. Tissue Cell 2016; 48:126-32. [PMID: 26847875 DOI: 10.1016/j.tice.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 01/03/2023]
Abstract
Sinusoidal endothelial cells (SEC) and hepatic stellate cells (HSC) are closely associated specialized vascular cells residing in the hepatic sinusoid. These cells have been shown to play important roles in many different pathophysiologic processes, in particular in liver fibrosis/cirrhosis and portal hypertension. Caveolin-1 functions as a scaffolding protein, and has a variety of functions including in many disease states, such as liver cirrhosis. Although previous studies have shown that in the injured rat liver, caveolin-1 is upregulated, the precise cells in which remains unclear. Therefore, the purpose of this study was to clarify the cell type (or types) in which caveolin-1 is expressed in normal and injured rat liver. We have utilized both detailed immunohistochemical labeling with cell specific markers as well as cell isolation techniques (isolating sinusoidal endothelial cells, HSCs, and hepatocytes) in normal and injured (bile duct ligation) rat liver. We show here that in the normal liver caveolin-1 is expressed predominantly in HSCs and SECs but after liver injury there is upregulation of caveolin-1 in HSCs, but not in SECs. These data have functional implications for the cells in which caveolin-1 is regulated.
Collapse
Affiliation(s)
- Shweta Singh
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States
| | - Songling Liu
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States
| | - Don C Rockey
- Medical University of South Carolina, Department of Medicine, Charleston, SC 29425, United States.
| |
Collapse
|
6
|
Ding L, Yang Y, Qu Y, Yang T, Wang K, Liu W, Xia W. Bile acid promotes liver regeneration via farnesoid X receptor signaling pathways in rats. Mol Med Rep 2015; 11:4431-7. [PMID: 25634785 DOI: 10.3892/mmr.2015.3270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 10/29/2014] [Indexed: 11/05/2022] Open
Abstract
Bile acids, which are synthesized from cholesterol in the hepatocytes of the liver, are amphipathic molecules with a steroid backbone. Studies have shown that bile acid exhibits important effects on liver regeneration. However, the mechanism underlying these effects remains unclear. The aim of the present study was to investigate the effect of bile acid and the farnesoid X receptor (FXR) on hepatic regeneration and lipid metabolism. Rats were fed with 0.2% bile acid or glucose for 7 days and then subjected to a 50 or 70% hepatectomy. Hepatic regeneration rate, serum and liver levels of bile acid, and expression of FXR and Caveolin‑1, were detected at 24, 48 or 72 h following hepatectomy. The expression of proliferating cell nuclear antigen (PCNA) in the liver was measured using immunohistochemistry at the end of the study. Hepatocytes isolated from rats were treated with bile acid, glucose, FXR agonist and FXR antagonist, separately or in combination. Lipid metabolism, the expression of members of the FXR signaling pathway and energy metabolism‑related factors were measured using ELISA kits or western blotting. Bile acid significantly increased the hepatic regeneration rate and the expression of FXR, Caveolin‑1 and PCNA. Levels of total cholesterol and high density lipoprotein were increased in bile acid‑ or FXR agonist‑treated hepatocytes in vitro. Levels of triglyceride, low density lipoprotein and free fatty acid were decreased. In addition, bile acid and FXR agonists increased the expression of bile salt export pump and small heterodimer partner, and downregulated the expression of apical sodium‑dependent bile acid transporter, Na+/taurocholate cotransporting polypeptide and cholesterol 7α‑hydroxylase. These results suggested that physiological concentrations of bile acid may promote liver regeneration via FXR signaling pathways, and may be associated with energy metabolism.
Collapse
Affiliation(s)
- Long Ding
- The Second Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yu Yang
- Department of Topographical Anatomy, College of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yikun Qu
- The Second Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Ting Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Kaifeng Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Weixin Liu
- The Second Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Weibin Xia
- The Second Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
7
|
Gao L, Zhou Y, Zhong W, Zhao X, Chen C, Chen X, Gu Y, Chen J, Lv Z, Shen J. Caveolin-1 is essential for protecting against binge drinking-induced liver damage through inhibiting reactive nitrogen species. Hepatology 2014; 60:687-99. [PMID: 24710718 DOI: 10.1002/hep.27162] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/02/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Caveolin-1 (Cav-1) is known to participate in many diseases, but its roles in alcoholic liver injury remain unknown. In the present study, we aimed to explore the roles of Cav-1 in protecting hepatocytes from ethanol-mediated nitrosative injury. We hypothesized that Cav-1 could attenuate ethanol-mediated nitrosative stress and liver damage through regulating epidermal growth factor receptor/signal transducer and activator of transcription 3/inducible nitric oxide synthase (EGFR/STAT3/iNOS)-signaling cascades. Ethanol-fed mice had time- and dose-dependent increases of Cav-1 in serum and liver with peak increase at 12 hours. Compared to wild-type mice, Cav-1 deficiency mice revealed higher expression of iNOS, higher levels of nitrate/nitrite and peroxynitrite, and had more serious liver damage, accompanied with higher levels of cleaved caspase-3 and apoptotic cell death in liver, and higher levels of alanine aminotransferase and aspartate aminotransferase in serum. Furthermore, the results revealed that the ethanol-mediated Cav-1 increase was in an extracellular signal-regulated kinase-dependent manner, and Cav-1 protected hepatocytes from ethanol-mediated apoptosis by inhibiting iNOS activity and regulating EGFR- and STAT3-signaling cascades. In agreement with these findings, clinical trials in human subjects revealed that serum Cav-1 level was time dependently elevated and peak concentration was observed 12 hours after binge drinking. Alcohol-induced liver lesions were negatively correlated with Cav-1 level, but positively correlated with nitrate/nitrite level, in serum of binge drinkers. CONCLUSIONS Cav-1 could be a cellular defense protein against alcoholic hepatic injury through inhibiting reactive nitrogen species and regulating EGFR/STAT3/iNOS-signaling cascades.
Collapse
Affiliation(s)
- Lei Gao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fridolfsson HN, Roth DM, Insel PA, Patel HH. Regulation of intracellular signaling and function by caveolin. FASEB J 2014; 28:3823-31. [PMID: 24858278 DOI: 10.1096/fj.14-252320] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/12/2014] [Indexed: 12/28/2022]
Abstract
Caveolae, flask-like invaginations of the plasma membrane, were discovered nearly 60 years ago. Originally regarded as fixation artifacts of electron microscopy, the functional role for these structures has taken decades to unravel. The discovery of the caveolin protein in 1992 (by the late Richard G.W. Anderson) accelerated progress in defining the contribution of caveolae to cellular physiology and pathophysiology. The three isoforms of caveolin (caveolin-1, -2, and -3) are caveolae-resident structural and scaffolding proteins that are critical for the formation of caveolae and their localization of signaling entities. A PubMed search for "caveolae" reveals ∼280 publications from their discovery in the 1950s to the early 1990s, whereas a search for "caveolae or caveolin" after 1990, identifies ∼7000 entries. Most work on the regulation of biological responses by caveolae and caveolin since 1990 has focused on caveolae as plasma membrane microdomains and the function of caveolin proteins at the plasma membrane. By contrast, our recent work and that of others has explored the localization of caveolins in multiple cellular membrane compartments and in the regulation of intracellular signaling. Cellular organelles that contain caveolin include mitochondria, nuclei and the endoplasmic reticulum. Such intracellular localization allows for a complexity of responses to extracellular stimuli by caveolin and the possibility of novel organelle-targeted therapeutics. This review focuses on the impact of intracellular localization of caveolin on signal transduction and cell regulation.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology
| | - David M Roth
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology
| | - Paul A Insel
- Medicine, and Pharmacology, University of California San Diego, La Jolla, California
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, California and the Departments of Anesthesiology,
| |
Collapse
|
9
|
Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Rep 2013; 4:238-47. [DOI: 10.1016/j.celrep.2013.06.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 03/04/2013] [Accepted: 06/14/2013] [Indexed: 12/14/2022] Open
|
10
|
Fowler S, Akins M, Zhou H, Figeys D, Bennett SA. The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. J Proteome Res 2013; 12:2597-610. [PMID: 23590695 PMCID: PMC3714164 DOI: 10.1021/pr301166p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Connexins are the structural subunits of gap junctions and act as protein platforms for signaling complexes. Little is known about tissue-specific connexin signaling nexuses, given significant challenges associated with affinity-purifying endogenous channel complexes to the level required for interaction analyses. Here, we used multiple subcellular fractionation techniques to isolate connexin32-enriched membrane microdomains from murine liver. We show, for the first time, that connexin32 localizes to both the plasma membrane and inner mitochondrial membrane of hepatocytes. Using a combination of immunoprecipitation-high throughput mass spectrometry, reciprocal co-IP, and subcellular fractionation methodologies, we report a novel interactome validated using null mutant controls. Eighteen connexin32 interacting proteins were identified. The majority represent resident mitochondrial proteins, a minority represent plasma membrane, endoplasmic reticulum, or cytoplasmic partners. In particular, connexin32 interacts with connexin26 and the mitochondrial protein, sideroflexin-1, at the plasma membrane. Connexin32 interaction enhances connexin26 stability. Converging bioinformatic, biochemical, and confocal analyses support a role for connexin32 in transiently tethering mitochondria to connexin32-enriched plasma membrane microdomains through interaction with proteins in the outer mitochondrial membrane, including sideroflexin-1. Complex formation increases the pool of sideroflexin-1 that is present at the plasma membrane. Together, these data identify a novel plasma membrane/mitochondrial signaling nexus in the connexin32 interactome.
Collapse
Affiliation(s)
- Stephanie
L. Fowler
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mark Akins
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hu Zhou
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai,
China
| | - Daniel Figeys
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Steffany A.L. Bennett
- Neural
Regeneration Laboratory, Ottawa Institute of Systems Biology, Department of
Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|
12
|
Witkiewicz H, Oh P, Schnitzer JE. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis. F1000Res 2013; 2:9. [PMID: 24555024 PMCID: PMC3869488 DOI: 10.12688/f1000research.2-9.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 12/12/2022] Open
Abstract
Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic mimicry were seen here as well but contained non-circulating erythrosomes formed between tumor nodules. The host's response to the implantation included coordinated formation of new vessels and peripheral nerves.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
13
|
Witkiewicz H, Oh P, Schnitzer JE. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: cellular mechanisms of metastasis. F1000Res 2013; 2:9. [PMID: 24555024 PMCID: PMC3869488 DOI: 10.12688/f1000research.2-9.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 03/22/2024] Open
Abstract
Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic mimicry were seen here as well but contained non-circulating erythrosomes formed between tumor nodules. The host's response to the implantation included coordinated formation of new vessels and peripheral nerves.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
14
|
Li PL, Zhang Y. Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb Exp Pharmacol 2013:171-97. [PMID: 23563657 DOI: 10.1007/978-3-7091-1511-4_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial-temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
15
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Bosch M, Marí M, Gross SP, Fernández-Checa JC, Pol A. Mitochondrial cholesterol: a connection between caveolin, metabolism, and disease. Traffic 2011; 12:1483-9. [PMID: 21801290 DOI: 10.1111/j.1600-0854.2011.01259.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Caveolin (CAV) is an essential component of caveolae, cholesterol-enriched invaginations of the plasma membrane of most mammalian cells. However, CAV is not restricted to plasma membrane caveolae, and pools of CAV are present in myriad intracellular membranes. CAV proteins tightly bind cholesterol and contribute to regulation of cholesterol fluxes and distributions within cells. In this context, we recently showed that CAV1 regulates the poorly understood process controlling mitochondrial cholesterol levels. Cholesterol accumulates in mitochondrial membranes in the absence of CAV1, promoting the organelle's dysfunction with important metabolic consequences for cells and animals. In this article, we suggest a working hypothesis that addresses the role of CAV1 within the homeostatic network that regulates the influx/efflux of mitochondrial cholesterol.
Collapse
Affiliation(s)
- Marta Bosch
- Equip de Proliferació i Senyalització Cel·lular, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|
18
|
Biazik JM, Jahn KA, Braet F. Caveolae and caveolin-1 in reptilian liver. Micron 2011; 42:656-61. [DOI: 10.1016/j.micron.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 11/26/2022]
|
19
|
Mastrodonato M, Calamita G, Rossi R, Mentino D, Bonfrate L, Portincasa P, Ferri D, Liquori GE. Altered distribution of caveolin-1 in early liver steatosis. Eur J Clin Invest 2011; 41:642-51. [PMID: 21250982 DOI: 10.1111/j.1365-2362.2010.02459.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Caveolin-1, the main structural protein of caveolae, is involved in cholesterol homoeostasis, transcytosis, endocytosis and signal transduction and thought to play an important role in lipidogenesis. Little is known about the pathophysiological role of caveolin-1 in nonalcoholic fatty liver disease (NAFLD), a condition frequently associated with the metabolic syndrome and characterized by abnormal accumulation of intrahepatic triglycerides with a potentially harmful risk of evolution to liver fibrosis, cirrhosis and hepatocellular carcinoma. MATERIALS AND METHODS Liver steatosis (micro/macrovesicular) was induced in adult rats fed a choline-deficient diet for 14days and compared with a control normal diet. The expression and subcellular distribution of caveolin-1 was assessed using light and electron microscopy by immunohistochemical and immunocytochemical techniques and by Western blotting. RESULTS Caveolin-1 was mainly associated with the hepatocyte basolateral plasma membrane. Fatty hepatocytes were characterized by a significant increase in the expression of caveolin-1 around and within the lipid droplets as well as in the inner membrane of mitochondria. CONCLUSIONS Our data suggest the involvement of caveolin-1 in the case of abnormal lipogenesis and mitochondrial function typical of steatotic hepatocytes in NAFLD. Addressing the role played by caveolin-1 in liver membranes in NAFLD may help future therapeutic choices in a frequent metabolic liver disease.
Collapse
Affiliation(s)
- Maria Mastrodonato
- Department of Animal and Environmental Biology, Aldo Moro University, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Opaliński Ł, Veenhuis M, van der Klei IJ. Peroxisomes: Membrane events accompanying peroxisome proliferation. Int J Biochem Cell Biol 2011; 43:847-51. [DOI: 10.1016/j.biocel.2011.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
|
21
|
Saraya R, Veenhuis M, van der Klei IJ. Peroxisomes as dynamic organelles: peroxisome abundance in yeast. FEBS J 2010; 277:3279-88. [DOI: 10.1111/j.1742-4658.2010.07740.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|