1
|
De Vos K, Mavrogiannis A, Wolters JC, Schlenner S, Wierda K, Cortés Calabuig Á, Chinnaraj R, Dermesrobian V, Armoudjian Y, Jacquemyn M, Corthout N, Daelemans D, Annaert P. Tankyrase1/2 inhibitor XAV-939 reverts EMT and suggests that PARylation partially regulates aerobic activities in human hepatocytes and HepG2 cells. Biochem Pharmacol 2024; 227:116445. [PMID: 39053638 DOI: 10.1016/j.bcp.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/β-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.
Collapse
Affiliation(s)
- Kristof De Vos
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Adamantios Mavrogiannis
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Justina Clarinda Wolters
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands
| | - Susan Schlenner
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Reena Chinnaraj
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vera Dermesrobian
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | | | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; VIB Bio Imaging Core, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Pieter Annaert
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; BioNotus GCV, 2845 Niel, Belgium.
| |
Collapse
|
2
|
Cai S, Su Y, Shi M, Wang D, Chen DDY, Yan B. Simultaneous quantification of six proteins related to liver injury using nano liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9754. [PMID: 38605420 DOI: 10.1002/rcm.9754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
RATIONALE In clinical diagnosis of liver injury, which is an important health concern, serum aminotransferase assays have been the go-to method used worldwide. However, the measurement of serum enzyme activity has limitations, including inadequate disease specificity and enzyme specificity. METHODS With the high selectivity and specificity provided by nano liquid chromatography-tandem mass spectrometry (LC/MS/MS), this work describes a method for the simultaneous determination of six proteins in liver that can be potentially used as biomarkers for liver injury: glutamic-pyruvic transaminase 1 (GPT1), glutamic oxaloacetic transaminase 1 (GOT1), methionine adenosyl transferase 1A (MAT1A), glutathione peroxidase 1 (GPX1), cytokeratin 18 (KRT18) and apolipoprotein E (APOE). RESULTS In validation, the method was shown to have good selectivity and sensitivity (limits of detection at pg/mL level). The analytical method revealed that, compared with normal mice, in carbon tetrachloride-induced acute liver injury mice, liver MAT1A and GPX1 were significantly lower (p < 0.01 and p < 0.05, respectively), KRT18 was significantly higher (p < 0.05) and APOE and GPT1 were marginally significantly lower (p between 0.05 and 0.1). This is the first work reporting the absolute contents of GPT1, GOT1, MAT1A, GPX1 and KRT18 proteins based on LC/MS. CONCLUSIONS The proposed method provides a basis for establishing more specific diagnostic indicators of liver injury.
Collapse
Affiliation(s)
- Siyu Cai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Yuan Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Mengtian Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Dandan Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Binjun Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Ma L, Wang D. Sex differences in the susceptibility to valproic acid-associated liver injury in epileptic patients. Clin Toxicol (Phila) 2024; 62:101-106. [PMID: 38512019 DOI: 10.1080/15563650.2024.2316144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Valproic acid has been widely used as an antiepileptic drug for several decades. Long-term valproic acid treatment is usually accompanied by liver injury. Although both men and women are susceptible to valproic acid-associated liver injury, hepatotoxicity differs between the sexes. However, the mechanisms underlying sex differences in valproic acid-associated liver injury remain unclear. METHODS To explore potential risk factors for the susceptibility to valproic acid-associated liver injury, 231 pediatric patients with epilepsy (119 males, 112 females) were enrolled for laboratory and genetic analysis. RESULTS Heterozygous genotype of catalase C-262T (P = 0.045) and the concentrations of glutathione (P = 0.002) and thiobarbituric acid-reactive substances (P = 0.011) were associated with the sex-specific susceptibility to valproic acid-associated liver injury. Meanwhile, logistic regression analysis revealed that carriers of heterozygous genotype of catalase C-262T (P = 0.010, odds ratio: 4.163; 95 percent confidence interval 1.400 - 7.378), glutathione concentration (P = 0.001, odds ratio: 2.421; 95 percent confidence interval 2.262 - 2.591) and male patients (P = 0.005, odds ratio: 1.344; 95% confidence interval 0.782 - 2.309) had a higher risk for valproic acid-associated liver injury. DISCUSSION The mechanism underlying valproic acid-induced hepatotoxicity remains unclear. Additionally, factors that may contribute to the observed differences in the incidence of hepatotoxicity between males and females have yet to be defined. This study identifies several genetic factors that may predispose patients to valproic acid-associated hepatotoxicity. LIMITATIONS This relatively small sample size of children with one ethnicity some of whom were taking other antiepileptics that are potentially hepatotoxic. CONCLUSION Catalase C-262T genotype, glutathione concentration and gender (male) are potential risk factors for the susceptibility to valproic acid-associated liver injury.
Collapse
Affiliation(s)
- Linfeng Ma
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Dan Wang
- School of life science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Abad-Santos F, Aliño SF, Borobia AM, García-Martín E, Gassó P, Maroñas O, Agúndez JAG. Developments in pharmacogenetics, pharmacogenomics, and personalized medicine. Pharmacol Res 2024; 200:107061. [PMID: 38199278 DOI: 10.1016/j.phrs.2024.107061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The development of Pharmacogenetics and Pharmacogenomics in Western Europe is highly relevant in the worldwide scenario. Despite the usually low institutional support, many research groups, composed of basic and clinical researchers, have been actively working for decades in this field. Their contributions made an international impact and paved the way for further studies and pharmacogenomics implementation in clinical practice. In this manuscript, that makes part of the Special Issue entitled Spanish Pharmacology, we present an analysis of the state of the art of Pharmacogenetics and Pharmacogenomics research in Europe, we compare it with the developments in Spain, and we summarize the most salient contributions since 1988 to the present, as well as recent developments in the clinical application of pharmacogenomics knowledge. Finally, we present some considerations on how we could improve translation to clinical practice in this specific scenario.
Collapse
Affiliation(s)
- Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), CIBEREHD, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.
| | - Salvador F Aliño
- Gene Therapy and Pharmacogenomics Group, Department of Pharmacology, Faculty of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid (UAM), IdiPAZ, Madrid, Spain
| | - Elena García-Martín
- Department of Pharmacology, Universidad de Extremadura, Avda de la Universidad s/n, 10071 Cáceres, Spain
| | - Patricia Gassó
- Basic Clinical Practice Department, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona Clínic Schizophrenia Unit (BCSU), IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Olalla Maroñas
- Public Foundation of Genomic Medicine, Santiago University Hospital, Genomic Medicine group, Pharmacogenetics and Drug Discovery (GenDeM), CIBERER, Santiago Health Research Institute (IDIS), Galicia, Spain
| | - José A G Agúndez
- Universidad de Extremadura. University Institute of Molecular Pathology Biomarkers, Avda de las Ciencias s/n, 10071 Cáceres, Spain.
| |
Collapse
|
5
|
Tatsumi K, Wada H, Hasegawa S, Asukai K, Nagata S, Ekawa T, Akazawa T, Mizote Y, Okumura S, Okamura R, Ohue M, Obama K, Tahara H. Prediction for oxaliplatin-induced liver injury using patient-derived liver organoids. Cancer Med 2024; 13:e7042. [PMID: 38400666 PMCID: PMC10891453 DOI: 10.1002/cam4.7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Liver injury associated with oxaliplatin (L-OHP)-based chemotherapy can significantly impact the treatment outcomes of patients with colorectal cancer liver metastases, especially when combined with surgery. To date, no definitive biomarker that can predict the risk of liver injury has been identified. This study aimed to investigate whether organoids can be used as tools to predict the risk of liver injury. METHODS We examined the relationship between the clinical signs of L-OHP-induced liver injury and the responses of patient-derived liver organoids in vitro. Organoids were established from noncancerous liver tissues obtained from 10 patients who underwent L-OHP-based chemotherapy and hepatectomy for colorectal cancer. RESULTS Organoids cultured in a galactose differentiation medium, which can activate the mitochondria of organoids, showed sensitivity to L-OHP cytotoxicity, which was significantly related to clinical liver toxicity induced by L-OHP treatment. Organoids from patients who presented with a high-grade liver injury to the L-OHP regimen showed an obvious increase in mitochondrial superoxide levels and a significant decrease in mitochondrial membrane potential with L-OHP exposure. L-OHP-induced mitochondrial oxidative stress was not observed in the organoids from patients with low-grade liver injury. CONCLUSIONS These results suggested that L-OHP-induced liver injury may be caused by mitochondrial oxidative damage. Furthermore, patient-derived liver organoids may be used to assess susceptibility to L-OHP-induced liver injury in individual patients.
Collapse
Affiliation(s)
- Kumiko Tatsumi
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroshi Wada
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Shinichiro Hasegawa
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Kei Asukai
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Shigenori Nagata
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Tomoya Ekawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Yu Mizote
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Shintaro Okumura
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryosuke Okamura
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masayuki Ohue
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
- Project Division of Cancer Biomolecular TherapyThe Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
6
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
7
|
Hispanic ethnicity and the rs4880 variant in SOD2 are associated with elevated liver enzymes and bilirubin levels in children receiving asparaginase-containing chemotherapy for acute lymphoblastic leukemia. Biomed Pharmacother 2022; 150:113000. [PMID: 35658244 PMCID: PMC9450009 DOI: 10.1016/j.biopha.2022.113000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 01/29/2023] Open
Abstract
Asparaginase is an integral component of acute lymphoblastic leukemia (ALL)3 treatment. Hepatotoxicity related to asparaginase is one of the most common treatment-related toxicities in ALL therapy. Hispanic children are at higher risk of developing ALL, and toxicities from ALL therapy. The rs4880 variant in the superoxide dismutase 2 (SOD2)4 gene, a critical mitochondrial enzyme that protects cells against oxidative stress, was found to be associated with increased incidence of asparaginase-related hepatotoxicity in adult cohort of largely White non-Hispanics patients with ALL. The risk genotype (rs4880-CC) is more frequent among adult Hispanic patients with ALL. To assess the prevalence of hepatotoxicity and risk genotype among pediatric patients with ALL, particularly of Hispanic ethnicity, we conducted a prospective study of 143 pediatric patients with ALL (62.2% Hispanic). Bilirubin and hepatic transaminase levels were collected at different times during multiagent therapy including asparaginase treatment. Germline DNA blood samples were genotyped for the SOD2 rs4880. We found that the frequency of hepatotoxicity and the rs4880-CC risk genotype are higher in Hispanic patients than non-Hispanic. Patients with the CC genotype exhibit higher bilirubin and hepatic transaminase levels compared with patients with the TT and CT genotypes. In a multivariate Cox analysis, Hispanic ethnicity was identified as a strong predictor of hepatotoxicity (hazard ratio [HR] = 1.9, 95% confidence interval [95% CI] 1.0-3.5, p = 0.05). Altogether, these findings demonstrate that hepatotoxicity is highly prevalent among Hispanic pediatric patients with ALL, and those with rs4880-CC genotype.
Collapse
|
8
|
Mirahmad M, Sabourian R, Mahdavi M, Larijani B, Safavi M. In vitro cell-based models of drug-induced hepatotoxicity screening: progress and limitation. Drug Metab Rev 2022; 54:161-193. [PMID: 35403528 DOI: 10.1080/03602532.2022.2064487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drug-induced liver injury (DILI) is one of the major causes of post-approval withdrawal of therapeutics. As a result, there is an increasing need for accurate predictive in vitro assays that reliably detect hepatotoxic drug candidates while reducing drug discovery time, costs, and the number of animal experiments. In vitro hepatocyte-based research has led to an improved comprehension of the underlying mechanisms of chemical toxicity and can assist the prioritization of therapeutic choices with low hepatotoxicity risk. Therefore, several in vitro systems have been generated over the last few decades. This review aims to comprehensively present the development and validation of 2D (two-dimensional) and 3D (three-dimensional) culture approaches on hepatotoxicity screening of compounds and highlight the main factors affecting predictive power of experiments. To this end, we first summarize some of the recognized hepatotoxicity mechanisms and related assays used to appraise DILI mechanisms and then discuss the challenges and limitations of in vitro models.
Collapse
Affiliation(s)
- Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Sabourian
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
9
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
10
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
11
|
Zhang Y, Han Y, He J, Ouyang K, Zhao M, Cai L, Zhao Z, Meng W, Chen L, Wang W. Digestive properties and effects of Chimonanthus nitens Oliv polysaccharides on antioxidant effects in vitro and in immunocompromised mice. Int J Biol Macromol 2021; 185:306-316. [PMID: 34166692 DOI: 10.1016/j.ijbiomac.2021.06.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
The study was aimed to investigate the simulated digestion behavior of the bioactive polysaccharides from Chimonanthus nitens Oliv (COP1), antioxidant activity in vitro, and prevention against cyclophosphamide (CP) induced oxidative damage in mice. The results showed that COP1 were 18.843 kDa, and consisted of arabinose (56.6 mol%), galactose (24.9 mol%), xylose (11.1 mol%), and glucose (7.4 mol%). Gastrointestinal digestion significantly improved the radical (DPPH, OH, and ABTS+) scavenging activities of COP1. Meanwhile, administration of COP1 (150, 300, and 600 mg/kg, continuous 16 days) prevented hepatotoxicity in CP-induced mice (reducing liver index and transaminase levels, alleviating liver damage). COP1 also attenuated oxidative stress as evident from as shown by reduced levels of MDA and enhanced activity of antioxidant enzymes (CAT, SOD, and GSH-Px). In addition, COP1 regulated the Nrf2/Keap1 signaling pathway in CP-treated mice, decreasing the upstream factor Keap1 and increasing the upstream factor Nrf2, which in turn enhanced the expression of downstream factors (NQO1, HO-1, GSH-Px, SOD1, and CAT). COP1 also protected the body from CP-induced oxidative damage by down-regulating Bax and caspase3 in the apoptosis pathway and up-regulating Bcl-2 mRNA levels. Overall, COP1 might be harnessed as an effective natural antioxidant for medical and food industries.
Collapse
Affiliation(s)
- Yang Zhang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yi Han
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing He
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Cai
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zitong Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenya Meng
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingli Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
12
|
Zhang Y, Han Y, He J, Ouyang K, Zhao M, Cai L, Zhao Z, Meng W, Chen L, Wang W. Digestive properties and effects of Chimonanthus nitens Oliv polysaccharides on antioxidant effects in vitro and in immunocompromised mice. Int J Biol Macromol 2021. [DOI: https://doi.org/10.1016/j.ijbiomac.2021.06.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Bessone F, Hernandez N, Mendizabal M, Ridruejo E, Gualano G, Fassio E, Peralta M, Fainboim H, Anders M, Tanno H, Tanno F, Parana R, Medina-Caliz I, Robles-Diaz M, Alvarez-Alvarez I, Niu H, Stephens C, Colombato L, Arrese M, Reggiardo MV, Ono SK, Carrilho F, Lucena MI, Andrade RJ. Serious liver injury induced by Nimesulide: an international collaborative study. Arch Toxicol 2021; 95:1475-1487. [PMID: 33759010 DOI: 10.1007/s00204-021-03000-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
Nimesulide is a non-steroidal anti-inflammatory drug still marketed in many countries. We aim to analyze the clinical phenotype, outcome, and histological features of nimesulide-induced liver injury (nimesulide-DILI). We analyzed 57 cases recruited from the Spanish and Latin American DILI registries. Causality was assessed by the RUCAM scale. Mean age of the whole case series was 59 years (86% women) with a median time to onset of 40 days. A total of 46 patients (81%) were jaundiced. Nimesulide-DILI pattern was hepatocellular in 38 (67%), mixed in 12 (21%), and cholestatic in 7 (12%) cases. Transaminases were elevated with a mean of nearly 20-fold the upper limit of normality (ULN), while alkaline phosphatase showed a twofold mean elevation above ULN. Total bilirubin showed a mean elevation of 13-fold the ULN. Liver histology was obtained in 14 cases (25%), most of them with a hepatocellular pattern. Median time to recovery was 60 days. Overall, 12 patients (21%) developed acute liver failure (ALF), five (8.8%) died, three underwent liver transplantation (5.3%), and the remaining four resolved. Latency was ≤ 15 days in 12 patients (21%) and one patient developed ALF within 7 days from treatment initiation. Increased total bilirubin and aspartate transaminase levels were independently associated with the development of ALF. In summary, nimesulide-DILI affects mainly women and presents typically with a hepatocellular pattern. It is associated with ALF and death in a high proportion of patients. Shorter (≤ 15 days) duration of therapy does not prevent serious nimesulide hepatotoxicity, making its risk/benefit ratio clearly unfavorable.
Collapse
Affiliation(s)
- Fernando Bessone
- Department of Gastroenterology and Hepatology, Hospital Provincial del Centenario, University of Rosario School of Medicine, Urquiza 3101, 200, Rosario, Argentina.
| | - Nelia Hernandez
- Facultad de Medicina, Hospital de Clínicas, Montevideo, Uruguay
| | | | - Ezequiel Ridruejo
- Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | | | | | | | | | | | - Hugo Tanno
- Department of Gastroenterology and Hepatology, Hospital Provincial del Centenario, University of Rosario School of Medicine, Urquiza 3101, 200, Rosario, Argentina
| | - Federico Tanno
- Department of Gastroenterology and Hepatology, Hospital Provincial del Centenario, University of Rosario School of Medicine, Urquiza 3101, 200, Rosario, Argentina
| | - Raymundo Parana
- Facultad de Medicina, Universidad Nacional de Bahia, Salvador de Bahia, Brazil
| | - Inmaculada Medina-Caliz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain. CIBERehd, Madrid, Spain
| | - Mercedes Robles-Diaz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain. CIBERehd, Madrid, Spain
| | - Ismael Alvarez-Alvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain. CIBERehd, Madrid, Spain
| | - Hao Niu
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain. CIBERehd, Madrid, Spain
| | - Camilla Stephens
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain. CIBERehd, Madrid, Spain
| | | | - Marco Arrese
- Pontificia Universidad Catolica de Chile, Santiago de Chile, Chile
| | - M Virginia Reggiardo
- Department of Gastroenterology and Hepatology, Hospital Provincial del Centenario, University of Rosario School of Medicine, Urquiza 3101, 200, Rosario, Argentina
| | | | | | - M Isabel Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain. CIBERehd, Madrid, Spain.
| | - Raul J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain. CIBERehd, Madrid, Spain
| |
Collapse
|
14
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
15
|
Ayuso P, García-Martín E, Agúndez JAG. Variability of the Genes Involved in the Cellular Redox Status and Their Implication in Drug Hypersensitivity Reactions. Antioxidants (Basel) 2021; 10:antiox10020294. [PMID: 33672092 PMCID: PMC7919686 DOI: 10.3390/antiox10020294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse drug reactions are a major cause of morbidity and mortality. Of the great diversity of drugs involved in hypersensitivity drug reactions, the most frequent are non-steroidal anti-inflammatory drugs followed by β-lactam antibiotics. The redox status regulates the level of reactive oxygen and nitrogen species (RONS). RONS interplay and modulate the action of diverse biomolecules, such as inflammatory mediators and drugs. In this review, we address the role of the redox status in the initiation, as well as in the resolution of inflammatory processes involved in drug hypersensitivity reactions. We summarize the association findings between drug hypersensitivity reactions and variants in the genes that encode the enzymes related to the redox system such as enzymes related to glutathione: Glutathione S-transferase (GSTM1, GSTP, GSTT1) and glutathione peroxidase (GPX1), thioredoxin reductase (TXNRD1 and TXNRD2), superoxide dismutase (SOD1, SOD2, and SOD3), catalase (CAT), aldo-keto reductase (AKR), and the peroxiredoxin system (PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, PRDX6). Based on current evidence, the most relevant candidate redox genes related to hypersensitivity drug reactions are GSTM1, TXNRD1, SOD1, and SOD2. Increasing the understanding of pharmacogenetics in drug hypersensitivity reactions will contribute to the development of early diagnostic or prognosis tools, and will help to diminish the occurrence and/or the severity of these reactions.
Collapse
Affiliation(s)
- Pedro Ayuso
- Correspondence: ; Tel.: +34-927257000 (ext. 51038)
| | | | | |
Collapse
|
16
|
Huang YS, Chang TE, Perng CL, Huang YH. Genetic variations of three important antioxidative enzymes SOD2, CAT, and GPX1 in nonalcoholic steatohepatitis. J Chin Med Assoc 2021; 84:14-18. [PMID: 33009206 DOI: 10.1097/jcma.0000000000000437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is closely related to reactive oxygen species (ROS). Superoxide anion radicals, the main product of ROS, can be reduced by manganese superoxide dismutase (SOD2) to hydrogen peroxide, which is further reduced by catalase (CAT) and glutathione peroxidase (GPX) to water. We aimed to investigate the association between the most important genetic variants of SOD2, CAT, and GPX1 and susceptibility to NASH. METHODS A total of 126 adults with liver tissue-verified NASH, 56 patients with liver tissue-verified nonalcoholic fatty liver (NAFL), and 153 healthy controls were enrolled. Their DNA profiles were retrieved for genotype assessment of SOD2 47T>C (rs4880), CAT -262C>T (rs1001179), and GPX1 593C>T (rs1050450) variation. RESULTS There were statistical differences between the SOD2 and CAT genotypes across the NASH, NAFL, and control groups, but not GPX1. The NASH group had a significantly higher frequency of subjects with SOD2 C allele (38.8%) compared with the NASL group (25.0%) and the controls (22.9%, p = 0.010). Similarly, the NASH group had a significantly higher percentage of subjects with CAT T allele (23.0%) compared with the NAFL group (10.7%) and the controls (7.2%, p = 0.001). For subjects with both the SOD2 C allele and CAT T allele, 88.2% were in the NASH group. After adjusting for confounders, the CAT mutant T allele and SOD2 mutant C allele were still the highest independent risk factors for NASH (odds ratio [OR] 3.10 and 2.36, respectively). In addition, there was a synergistic effect for those two alleles and the occurrence of NASH with an adjusted OR of 8.57 (p = 0.030). CONCLUSION The genetic variations of CAT and SOD2 may increase the risk of NASH, which may aid in the screening of patients who are at high risk of NASH, and offer a potential anti-oxidant targeting route for the treatment of NASH.
Collapse
Affiliation(s)
- Yi-Shin Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, and National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
17
|
Stephens C, Lucena MI, Andrade RJ. Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opin Drug Metab Toxicol 2020; 17:153-169. [DOI: 10.1080/17425255.2021.1854726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Camilla Stephens
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| |
Collapse
|
18
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
19
|
Khojasteh SC, Driscoll JP, Jackson KD, Miller GP, Mitra K, Rietjens IMCM, Zhang D. Novel advances in biotransformation and bioactivation research-2019 year in review .. Drug Metab Rev 2020; 52:333-365. [PMID: 32645275 PMCID: PMC10805366 DOI: 10.1080/03602532.2020.1772281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 01/25/2023]
Abstract
Biotransformation is one of the main mechanisms used by the body to eliminate drugs. As drug molecules become more complicated, the involvement of drug metabolizing enzymes increases beyond those that are typically studied, such as the cytochrome P450 enzymes. In this review, we try to capture the many outstanding articles that were published in the past year in the field of biotransformation (see Table 1). We have divided the articles into two categories of (1) metabolites and drug metabolizing enzymes, and (2) bioactivation and safety. This annual review is the fifth of its kind since 2016 (Baillie et al. 2016; Khojasteh et al. 2017, 2018, 2019). This effort in itself also continues to evolve. We have followed the same format we used in previous years in terms of the selection of articles and the authoring of each section. I am pleased of the continued support of Rietjens, Miller, Zhang, Driscoll and Mitra to this review. We would like to welcome Klarissa D. Jackson as a new author for this year's issue. We strive to maintain a balance of authors from academic and industry settings. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. Cyrus Khojasteh, on behalf of the authors.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, MyoKardia, Inc, South San Francisco, CA, USA
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kaushik Mitra
- Department of Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories (MRL), Merck & Co., Inc, West Point, PA, USA
| | | | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
20
|
Herbal formulation MIT ameliorates high-fat diet-induced non-alcoholic fatty liver disease. Integr Med Res 2020; 9:100422. [PMID: 32489856 PMCID: PMC7260683 DOI: 10.1016/j.imr.2020.100422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases and is caused by obesity, diabetes, high blood pressure, and insulin resistance. Many studies have explored novel candidates to treat NAFLD using herbal medicines owing to their fewer side effects. In this study, we examined the effect of MIT, an herbal formula comprising Ephedra sinica, Panax ginseng, and Alisma orientale, on the murine model of NAFLD. Methods To evaluate the effect of MIT on NAFLD, we used the high-fat diet (HFD)-induced NAFLD mice model. The mice were divided into four groups: control, HFD, HFD with metformin administration, and HFD with MIT administration. Freeze-dried MIT was dissolved in phosphate buffered saline and orally administered for 8 weeks to MIT-treated mice (60 mg/kg) after feeding them with HFD for 16 weeks. Results MIT treatment significantly attenuated fat accumulation, serum glucose levels, and excessive cholesterol. It also reduced the activation of NF-κB, JNK, ERK, mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ in the HFD-induced NAFLD mice. The expression level of enzymes involved in the synthesis and oxidation of fatty acids, acetyl-coA carboxylase and CYP2E1, were clearly reduced by MIT treatment. Reactive oxygen species (ROS) production and subsequent liver damage were effectively reduced by MIT treatment. Conclusion We suggest that MIT is a potent herbal formula that can be used for the prevention and treatment of obesity-related NAFLD via regulating the levels of serum glucose and free fatty acids, inflammation, lipid accumulation, and ROS-mediated liver damage.
Collapse
|
21
|
Alshabeeb MA, Aithal GP, Daly AK. Investigation of Oxidative Stress-Related Candidate Genes as Risk Factors for Drug-Induced Liver Injury due to Co-Amoxiclav. DNA Cell Biol 2020; 39:349-354. [PMID: 31905014 DOI: 10.1089/dna.2019.4982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver is susceptible to drug toxicity due to its vital role in xenobiotic metabolism and elimination. In addition to human leukocyte antigen (HLA) variants, which were previously determined as risk factors for drug-induced liver injury (DILI) due to co-amoxiclav, other non-HLA genes may contribute to hepatotoxicity risk. In this study, the association between DILI due to co-amoxiclav and several non-HLA genes was investigated. Association of variants in candidate genes (SOD2, GPX1, GSTM1, and GSTT1) with DILI due to various drugs was reported previously in other DILI cohorts. This study examined relevance in a co-amoxiclav-DILI cohort. One hundred sixty-five co-amoxiclav DILI cases were recruited from several European countries by two different studies (DILIGEN and iDILIC). A North-East England population group (n = 334) was used as the control group. PCR assays were used to genotype for the GSTM1 and GSTT1 null alleles with TaqMan SNP genotyping assays used for SOD2 (rs4880) and GPX1 (rs1050450). Fisher's exact test was used to assess differences in significance between cases and controls. None of the studied variants (SOD2 rs4880, GPX1 rs1050450, GSTM1 null allele, and GSTT1 null allele) was significantly associated with co-amoxiclav DILI compared with the control group. No significant differences between cases and controls were seen when combined SOD2/GPX1 genotypes and GST genotypes were considered. Despite the possible functional relevance and the previously reported contribution of the selected genes to DILI, our study failed to confirm associations between the selected genes and liver injury induced by co-amoxiclav.
Collapse
Affiliation(s)
- Mohammad A Alshabeeb
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Developmental Medicine, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
23
|
Superoxide Dismutase 2 Val16Ala Polymorphism is Associated with Amiodarone-Associated Liver Injury. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2019-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Association of SOD2 V16A single-nucleotide polymorphism (rs4880) with drug hepatotoxicity were reported but relationships with amiodarone prescriptions remained unexplored. Research was an exploratory, controlled prospective clinical trial. Patients hospitalized and treated in Clinical Center in Kragujevac, Serbia (in year 2017) were divided into experimental (using amiodarone, having liver injury, n=29, 19 males, the mean age 66.8±10.4 years), control A (neither amiodarone use nor hepatotoxicity, n=29, 19, 66.1±10.3) and control B group (using amiodarone, not having hepatotoxicity, n=29, 19, 66.8±9.8). From blood samples, among other routine biochemistry, genotyping for SOD2 polymorphism Val16Ala was conducted using real-time PCR method with TaqMan® Genotyping Master Mix and TaqMan® DME Genotyping Assay for rs4880. Patients taking amiodarone and having liver injury were mostly carriers of Val/Val (TT) genotype (13 of 24 patients, 54.2%) while Val/Ala (TC) and Ala/Ala (CC) genotypes prevailed in control group A (19 of 40, 47.5%) and control group B (9 of 23, 39.1%), respectively (2=10.409, p=0.034). Frequency of Val (T) and Ala (C) alleles were 0.51 and 0.49, respectively in the whole study sample (Hardy Weinberg equilibrium, 2=0.56, p=0.454). Carriers of TT genotype had significantly higher ALT (437.0±1158.0 vs 81.9131.5 U/L), total bilirubin (28.320.5 vs 15.313.0 mol/L) and total bile acid concentrations (10.910.2 vs 6.45.3 mol/L) compared to carriers of TC genotype (U=2.331, p=0.020, U=3.204, p=0.001 and U=2.172, p=0.030, respectively). Higher incidence of 47T allele of SOD2 was inpatients with amiodarone-associated liver injury as compared to patients on amiodarone not experiencing hepatotoxic effects.
Collapse
|
24
|
Ma N, Liu W, Zhang X, Gao X, Yu F, Guo W, Meng Y, Gao P, Zhou J, Yuan M, Mi Y, Zhang L, Qi S, Li L, Wang L, Su Q, Yang L, Liu D. Oxidative Stress-Related Gene Polymorphisms Are Associated With Hepatitis B Virus-Induced Liver Disease in the Northern Chinese Han Population. Front Genet 2020; 10:1290. [PMID: 31969899 PMCID: PMC6960262 DOI: 10.3389/fgene.2019.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is closely related to the occurrence and development of various diseases such as cancer, diabetes, and cardiovascular and infectious diseases. We identified six critical genetic variants related to oxidative stress, and evaluated their main effects and their interaction effects on hepatitis B virus (HBV)-induced liver diseases. We enrolled 3,128 Han Chinese subjects into five groups: healthy controls, chronic hepatitis B (CHB), liver cirrhosis (LC), hepatocellular carcinoma (HCC), and natural clearance. We then determined the genotypes in each group for CYBA-rs4673, NCF4-rs1883112, NOX4-rs1836882, rs3017887, SOD2-rs4880, and GCLM-rs41303970, and evaluated the association between these variants and HBV-induced liver diseases. Gene-gene interactions were evaluated using generalized multifactor dimensionality reduction, logistic regression, and four-by-two tables. Significant associations were observed between healthy controls and the CIB group (CHB+LC+HCC). The CYBA-rs4673AG genotype was associated with a 1.356 rate of susceptibility of HBV-induced liver disease compared to the wild type GG genotype. The NCF4-rs1883112G allele occurred more frequently in healthy controls than in the CIB group in all three models (dominant, codominant, and recessive). Nox4-rs1836882 TC showed a protective association, being more frequent in healthy controls compared to the wild type TT genotype. GCLM-rs41303970A was associated with HBV-induced liver disease. The overall best model by multifactor dimensionality reduction was a five factor interaction model that had the highest cross validation consistency (10/10) and test accuracy (0.5669), P= 0.001. Oxidative stress-related gene polymorphisms are likely to be associated with HBV-induced liver disease, suggesting that information on these variations is useful for risk assessment of HBV-induced liver disease.
Collapse
Affiliation(s)
- Ning Ma
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wenxuan Liu
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Zhang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xia Gao
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Fengxue Yu
- The Hebei Key Laboratory of Gastroenterology, Division of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weiheng Guo
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yanxin Meng
- Antenatal Diagnosis Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Ping Gao
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Jin Zhou
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Meina Yuan
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yingjun Mi
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lei Zhang
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Sufen Qi
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lu Li
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Luyao Wang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Qiao Su
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Dianwu Liu
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
25
|
Chen W, Chen X, Chen AC, Shi Q, Pan G, Pei M, Yang H, Liu T, He F. Melatonin restores the osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells by preserving SIRT1-mediated intracellular antioxidant properties. Free Radic Biol Med 2020; 146:92-106. [PMID: 31669348 PMCID: PMC9805353 DOI: 10.1016/j.freeradbiomed.2019.10.412] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023]
Abstract
Postmenopausal osteoporosis (OP) is one of the most common bone diseases that affects millions of aging women. Reduced osteogenesis and increased oxidative stress have been implicated in bone marrow mesenchymal stem cells (BMMSCs) derived from OP patients. Melatonin has shown positive effects on osteoblast differentiation and bone formation; however, it was unknown whether melatonin could restore OP-impaired osteogenic potential of BMMSCs and what the underlying mechanisms entailed. The objective of this study is to investigate (1) whether melatonin can restore the impaired osteogenic potential of OP BMMSCs by preserving their antioxidant functions, and if so, (2) whether intravenous administration of melatonin can prevent OP-induced bone loss in ovariectomized (OVX) rats. Ovariectomies were performed in female rats and BMMSCs were isolated from the osteoporotic rats 3 months later. In vitro treatment with melatonin successfully improved the osteogenic differentiation of OP BMMSCs, as evidenced by increased levels of matrix mineralization and osteoblast-specific genes. In melatonin-treated OP BMMSCs, intracellular oxidative stress was significantly attenuated, while levels of intracellular antioxidant enzymes were noticeably up-regulated - particularly superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPX1). Silent information regulator type 1 (SIRT1) was involved in the melatonin-mediated recovery of osteogenesis and antioxidant functions. Meanwhile, in vivo injections of melatonin via the tail vein successfully ameliorated the bone micro-architecture in ovariectomized rat femurs. Further experiments confirmed that BMMSCs derived from melatonin-treated OVX rats exerted well-preserved antioxidant properties and osteogenic potential. Our findings demonstrate that the administration of melatonin is a promising strategy for treating patients with postmenopausal OP by preserving the antioxidant properties and osteogenic potential of their BMMSCs.
Collapse
Affiliation(s)
- Weikai Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xi Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Angela Carley Chen
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, Morgantown, WV, 26506, USA
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China.
| |
Collapse
|
26
|
Sun Q, Sha W, Liu HP, Wang P, Liu ZB, Sun WW, Xiao HP. Genetic Polymorphisms in Antioxidant Enzymes Modulate the Susceptibility of Idiosyncratic Antituberculous Drug-Induced Liver Injury and Treatment Outcomes in Patients with Tuberculosis. Pharmacotherapy 2019; 40:4-16. [PMID: 31742742 DOI: 10.1002/phar.2349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The pathogenic mechanism of antituberculous drug-induced liver injury (ATDILI) is associated with antioxidant enzymes. The objective of the present study was to investigate the associations of ATDILI susceptibility with genetic polymorphisms of antioxidant enzyme genes including nitric oxide synthase 2 (NOS2), thioredoxin reductase 1 (TXNRD1), superoxide dismutase 2 (SOD2), BTB domain and CNC homolog 1 (BACH1), and MAF bZIP transcription factor K (MAFK). METHODS Thirty tag single nucleotide polymorphisms (tag-SNPs) from the all candidate genes were genotyped in a 2-stage cohort study including an initial discovery stage with 461 ATDILI patients and 466 controls and a replication stage with 216 ATDILI patients and 432 controls. The frequencies and distributions of genotypes and haplotypes were compared between the case and control groups. Three different genetic models including dominant, recessive, and additive models were used to determine the associations with susceptibility to ATDILI. RESULTS The SNPs rs9906835, rs944725, and rs3794764 of the NOS2 gene were significantly associated with an increased risk of ATDILI. The MAFK rs3735656 SNP was significantly associated with a decreased risk for ATDILI. The AAA haplotype of the NOS2 gene was associated with susceptibility to ATDILI. The treatment outcomes of patients with tuberculosis were further affected by genetic variants of the NOS2 and MAFK genes. CONCLUSIONS Genetic polymorphisms of NOS2 and MAFK are associated with ATDILI susceptibility in Chinese patients with tuberculosis. The variants in NOS2 and MAFK affect treatment outcomes of tuberculosis patients. Further studies are needed to better understand the molecular mechanisms of ATDILI susceptibility via regulation of the expression of ATDILI-susceptibility genes and proteins.
Collapse
Affiliation(s)
- Qin Sun
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-Peng Liu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi-Bin Liu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Wen Sun
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - He-Ping Xiao
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Fromenty B. Letter to the Editor Regarding the Article Rotenone Increases Isoniazid Toxicity but Does Not Cause Significant Liver Injury: Implications for the Hypothesis that Inhibition of the Mitochondrial Electron Transport Chain Is a Common Mechanism of Idiosyncratic Drug-Induced Liver Injury by Cho and Co-Workers, 2019. Chem Res Toxicol 2019; 33:2-4. [DOI: 10.1021/acs.chemrestox.9b00416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bernard Fromenty
- INSERM, Université de Rennes, INRAE, Nutrition, Metabolisms, and Cancer (NuMeCan) Institut, UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
28
|
Wu T, Bai H, Zhao Z, Wang M, Hu X, Jiao L, Wu Q, Liu T, Zhang C, Chen H, Zhang J, Song J, Wu L, Zhou W, Tong C, Ying B. A prospective study on associations between superoxide dismutase gene polymorphisms and antituberculosis drug‐induced liver injury in a Chinese Han population. J Gene Med 2019; 21:e3121. [PMID: 31415712 DOI: 10.1002/jgm.3121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tao Wu
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Hao Bai
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Minjin Wang
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Xuejiao Hu
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Lin Jiao
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Qian Wu
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Tangyuheng Liu
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Chunying Zhang
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Hao Chen
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Jingwei Zhang
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Jiajia Song
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Lijuan Wu
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Wenjing Zhou
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| | - Chongxiang Tong
- Department of Laboratory MedicinePulmonary Hospital of Lanzhou Lanzhou China
| | - Binwu Ying
- Department of Laboratory Medicine and National Clinical Research Center for GeriatricsWest China Hospital of Sichuan University Chengdu China
| |
Collapse
|
29
|
Abstract
Idiosyncratic (unpredictable) drug-induced liver injury is one of the most challenging liver disorders faced by hepatologists, because of the myriad of drugs used in clinical practice, available herbs and dietary supplements with hepatotoxic potential, the ability of the condition to present with a variety of clinical and pathological phenotypes and the current absence of specific biomarkers. This makes the diagnosis of drug-induced liver injury an uncertain process, requiring a high degree of awareness of the condition and the careful exclusion of alternative aetiologies of liver disease. Idiosyncratic hepatotoxicity can be severe, leading to a particularly serious variety of acute liver failure for which no effective therapy has yet been developed. These Clinical Practice Guidelines summarize the available evidence on risk factors, diagnosis, management and risk minimization strategies for drug-induced liver jury.
Collapse
|
30
|
Ivashkin VT, Baranovsky AY, Raikhelson KL, Palgova LK, Maevskaya MV, Kondrashina EA, Marchenko NV, Nekrasova TP, Nikitin IG. Drug-Induced Liver Injuries (Clinical Guidelines for Physicians). ACTA ACUST UNITED AC 2019. [DOI: 10.22416/1382-4376-2019-29-1-101-131] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aim.Clinical guidelines for the management of adult patients suffering from drug-induced liver injuries (DILI) are intended for all medical specialists, who treat such patients in their clinical practice.Key findings.The presented recommendations contain information about the epidemiological data, terminology, diagnostic principles, classification, prognosis and management of patients with DILI. The recommendations list pharmacological agents that most commonly cause DILI, including its fatal cases. Dose-dependent and predictable (hepatotoxic), as well as dose-independent and unpredictable (idiosyncratic) DILI forms are described in detail, which information has a particular practical significance. The criteria and types of DILI are described in detail, with the most reliable diagnostic and prognostic scales and indices being provided. The pathogenesis and risk factors for the development of DILI are considered. The clinical and morphological forms (phenotypes) of DILI are described. The diseases that are included into the differential diagnosis of DILI, as well as the principles of its implementation, are given. The role and significance of various diagnostic methods for examining a patient with suspected DILI is described, with the liver biopsy role being discussed. Clinical situations, in which DILI can acquire a chronic course, are described. A section on the assessment of causal relationships in the diagnosis of DILI is presented; the practical value of using the CIOMS-RUCAM scale is shown. All possible therapeutic measures and pharmacological approaches to the treatment of patients with various DILI phenotypes are investigated in detail. A particular attention is paid to the use of glucocorticosteroids in the treatment of DILI.Conclusion.The presented clinical recommendations are important for improving the quality of medical care in the field of hepatology.
Collapse
|
31
|
Abstract
Drug-induced liver injury (DILI) is a major clinical and regulatory challenge. As a result, interest in DILI biomarkers is growing. So far, considerable progress has been made in identification of biomarkers for diagnosis (acetaminophen-cysteine protein adducts), prediction (genetic biomarkers), and prognosis (microRNA-122, high mobility group box 1 protein, keratin-18, glutamate dehydrogenase, mitochondrial DNA). Many of those biomarkers also provide mechanistic insight. The purpose of this chapter is to review major advances in DILI biomarker research over the last decade, and to highlight some of the challenges involved in implementation. Although much work has been done, more liver-specific biomarkers, more DILI-specific biomarkers, and better prognostic biomarkers for survival are all still needed. Furthermore, more work is needed to define reference intervals and medical decision limits.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
32
|
Lucena MI, García-Martín E, Daly AK, Blanca M, Andrade RJ, Agúndez JAG. Next-Generation Sequencing of PTGS Genes Reveals an Increased Frequency of Non-synonymous Variants Among Patients With NSAID-Induced Liver Injury. Front Genet 2019; 10:134. [PMID: 30873208 PMCID: PMC6403122 DOI: 10.3389/fgene.2019.00134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/08/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose: The etiopathogenesis of drug-induced liver injury (DILI) is still far from being elucidated. This study aims to the study of genetic variations in DILI, related to the drug target, and specifically in the genes coding for the cyclooxygenase enzymes. Methods: By using Next-generation Sequencing we analyzed the genes coding for COX enzymes (PTGS1 and PTGS2) in 113 individuals, 13 of which were patients with DILI caused by COX-inhibitors. Results: The key findings of the study are the increased frequency, among DILI patients, of SNPs causing alterations in transcription factor binding sites and non-synonymous PTGS gene variants, as compared to control subjects. Moreover, the association with non-synonymous SNPs was exclusive of DILI patients with late-onset (50 days or more) Pc < 0.001 as compared to DILI patients with early onset, or with control subjects. Conclusions: Our findings suggest an interaction of long-term exposure to COX inhibitors combined with functional variants of the COX enzymes in the risk of developing DILI. This is a novel observation that might have been overlooked by previous genetic studies on DILI because of the limited coverage of PTGS genes in exome chips.
Collapse
Affiliation(s)
- María Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Elena García-Martín
- Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, UNEx, ARADyAL, Cáceres, Spain
| | - Ann K Daly
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Miguel Blanca
- Servicio de Alergología, Hospital Infanta Leonor, ARADyAL, Madrid, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas Málaga, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - José A G Agúndez
- Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, UNEx, ARADyAL, Cáceres, Spain
| |
Collapse
|
33
|
Catalase C-262T Polymorphism Is a Risk Factor for Valproic Acid–Induced Abnormal Liver Function in Chinese Patients With Epilepsy. Ther Drug Monit 2019; 41:91-96. [DOI: 10.1097/ftd.0000000000000574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1031-1039. [PMID: 31007174 DOI: 10.1016/j.bbadis.2018.08.037] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Drug-induced liver injury (DILI) presents unique challenges for consumers, clinicians, and regulators. It is the most common cause of acute liver failure in the US. It is also one of the most common reasons for termination of new drugs during pre-clinical testing and withdrawal of new drugs post-marketing. DILI is generally divided into two forms: intrinsic and idiosyncratic. Many of the challenges with DILI are due in large part to poor understanding of the mechanisms of toxicity. Although useful models of intrinsic DILI are available, they are frequently misused. Modeling idiosyncratic DILI presents greater challenges, but promising new models have recently been developed. The purpose of this manuscript is to provide a critical review of the most popular animal models of DILI, and to discuss the future of DILI research.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
35
|
García-Cortés M, Ortega-Alonso A, Lucena MI, Andrade RJ. Drug-induced liver injury: a safety review. Expert Opin Drug Saf 2018; 17:795-804. [PMID: 30059261 DOI: 10.1080/14740338.2018.1505861] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (DILI) remains one of the most important causes of drug attrition both in the early phases of clinical drug development and in the postmarketing scenario. This is because, in spite of emerging data on genetic susceptibility variants associated to the risk of hepatotoxicity, the precise identification of the individual who will develop DILI when exposed to a given drug remains elusive. AREAS COVERED In this review, we have addressed recent progress made and initiatives taken in the field of DILI from a safety perspective through a comprehensive search of the literature. EXPERT OPINION Despite the substantial progress made over this century, new approaches using big data analysis to characterize the true incidence of DILI are needed and to categorize the drugs' hepatotoxic potential. Genetic studies have highlighted the role of the adaptive immune system yet the mechanisms leading adaptation versus progression remain to be elucidated. There is a compelling need for development and qualification of sensitive, specific, and affordable biomarkers in DILI to foster drug development, patient treatment stratification and, improvement of causality assessment methods. Gaining mechanistic insights in DILI is essential to uncover therapeutic targets and design prospective clinical trials with appropriate endpoints.
Collapse
Affiliation(s)
- Miren García-Cortés
- a Instituto de Investigación Biomédica-IBIMA , Hospital Universitario Virgen de la Victoria, Universidad de Málaga , Málaga , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBERehd , Málaga , Spain
| | - Aida Ortega-Alonso
- a Instituto de Investigación Biomédica-IBIMA , Hospital Universitario Virgen de la Victoria, Universidad de Málaga , Málaga , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBERehd , Málaga , Spain
| | - M Isabel Lucena
- b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBERehd , Málaga , Spain.,c Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria , Universidad de Málaga , Málaga , Spain
| | - Raúl J Andrade
- a Instituto de Investigación Biomédica-IBIMA , Hospital Universitario Virgen de la Victoria, Universidad de Málaga , Málaga , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas CIBERehd , Málaga , Spain
| | | |
Collapse
|
36
|
Wu S, Wang Y, Zhang M, Wang M, He JQ. Transforming growth factor-beta 1 polymorphisms and anti-tuberculosis drug-induced liver injury. Polymorphisms in TGFβ1 and its relationship with anti-tuberculosis drug-induced liver injury. Therapie 2018; 74:399-406. [PMID: 30093157 DOI: 10.1016/j.therap.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/05/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023]
Abstract
AIM There is evidence to suggest that transforming growth factor-beta 1 takes part in a series of physiological and pathological processes in the human body, including wound healing, tissue fibrosis and embryonic development. We hypothesized that polymorphisms in the transforming growth factor-beta 1 gene single nucleotide polymorphisms (SNPs) were associated with anti-tuberculosis drug-induced liver injury (ATLI). METHODS In a prospective study, 280 newly diagnosed tuberculosis patients were followed up for three months after initiating anti-tuberculosis therapy. Tag-SNPs of transforming growth factor-beta 1 were genotyped with the MassARRAY platform. The associations between SNPs and ATLI were analyzed by logistic regression analysis adjusting for confounding factors. RESULTS Of the 280 patients recruited in this study, 33 were excluded during the three months of follow-up, and 24 were diagnosed with ATLI and were considered as the ATLI group. The remaining 223 subjects without ATLI were considered as the non-ATLI group. After correction for potential confounding factors using a multivariate logistic regression analysis, we found that the frequencies of polymorphisms and haplotypes of transforming growth factor-beta 1 were similar in patients with ATLI and without ATLI. CONCLUSION The present results suggest that transforming growth factor-beta 1 polymorphisms do not play essential roles in the pathogenesis of ATLI in Chinese patients.
Collapse
Affiliation(s)
- Shouquan Wu
- Department of respiratory and critical care medicine, West China hospital, Sichuan university, Chengdu 610041, Sichuan, PR China
| | - Yu Wang
- Department of respiratory and critical care medicine, West China hospital, Sichuan university, Chengdu 610041, Sichuan, PR China
| | - Miaomiao Zhang
- Department of respiratory and critical care medicine, West China hospital, Sichuan university, Chengdu 610041, Sichuan, PR China
| | - Minggui Wang
- Department of respiratory and critical care medicine, West China hospital, Sichuan university, Chengdu 610041, Sichuan, PR China
| | - Jian-Qing He
- Department of respiratory and critical care medicine, West China hospital, Sichuan university, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
37
|
Ramachandran A, Visschers RGJ, Duan L, Akakpo JY, Jaeschke H. Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives. J Clin Transl Res 2018. [PMID: 30873497 PMCID: PMC6261533 DOI: 10.18053/jctres.04.201801.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critical cellular organelles for energy generation and are now also recognized as playing important roles in cellular signaling. Their central role in energy metabolism, as well as their high abundance in hepatocytes, make them important targets for drug-induced hepatotoxicity. This review summarizes the current mechanistic understanding of the role of mitochondria in drug-induced hepatotoxicity caused by acetaminophen, diclofenac, anti-tuberculosis drugs such as rifampin and isoniazid, anti-epileptic drugs such as valproic acid and constituents of herbal supplements such as pyrrolizidine alkaloids. The utilization of circulating mitochondrial-specific biomarkers in understanding mechanisms of toxicity in humans will also be examined. In summary, it is well-established that mitochondria are central to acetaminophen-induced cell death. However, the most promising areas for clinically useful therapeutic interventions after acetaminophen toxicity may involve the promotion of adaptive responses and repair processes including mitophagy and mitochondrial biogenesis, In contrast, the limited understanding of the role of mitochondria in various aspects of hepatotoxicity by most other drugs and herbs requires more detailed mechanistic investigations in both animals and humans. Development of clinically relevant animal models and more translational studies using mechanistic biomarkers are critical for progress in this area. Relevance for patients:This review focuses on the role of mitochondrial dysfunction in liver injury mechanisms of clinically important drugs like acetaminophen, diclofenac, rifampicin, isoniazid, amiodarone and others. A better understanding ofthe mechanisms in animal models and their translation to patients will be critical for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ruben G J Visschers
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
38
|
Stephens C, Lucena MI, Andrade RJ. Host Risk Modifiers in Idiosyncratic Drug-Induced Liver Injury (DILI) and Its Interplay with Drug Properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7677-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Yang Y, Shi R, Soomro MH, Hu F, Du F, She R. Hepatitis E Virus Induces Hepatocyte Apoptosis via Mitochondrial Pathway in Mongolian Gerbils. Front Microbiol 2018; 9:460. [PMID: 29615994 PMCID: PMC5864903 DOI: 10.3389/fmicb.2018.00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
Previous studies demonstrated that Mongolian gerbils can be infected by hepatitis E virus (HEV), which induces the hepatic injury. Here, the mitochondria in hepatocytes from HEV-infected gerbils were considerably swollen, thin cristae. After HEV infection, the activity of superoxide dismutase significantly decreased (p < 0.01), while malondialdehyde concentrations significantly increased, compared with those in the control group (p < 0.01). Adenosine triphosphatase levels decreased significantly in the hepatocyte of the inoculated groups, compared with those in control group (p < 0.05) at days 21, 28, 42 post-inoculation (dpi) as well. Furthermore, the levels of ATP synthetase ATP5A1 significantly decreased during HEV infection, compared with those in the control group (p < 0.05). According to the TdT mediated dUTP nick end labeling (TUNEL) detection, TUNEL positive hepatocytes increased in the inoculated group, compared with that in the control group (p < 0.05). Up-regulation of the mitochondrion-mediated apoptosis regulating proteins, Bax and Bcl-2, in the HEV-infected gerbils (p < 0.05) was observed. However, cytochrome c levels in mitochondria decreased, while this molecule was detected in the cytoplasm of the infected animals, in contrast to that in the control group. Apaf-1, and active caspase-9 and -3 levels were shown to be significantly higher in the inoculated group compared with those in the control group (p < 0.05). Taken together, our results demonstrated that HEV infection induces hepatocyte injuries and activity of the mitochondrial apoptotic pathway, which trigger the hepatocyte apoptosis in Mongolian gerbils.
Collapse
Affiliation(s)
- Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihan Shi
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Majid H Soomro
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengjiao Hu
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Du
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiping She
- Laboratory of Animal Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Kakisaka K, Yoshida Y, Suzuki Y, Sato T, Kuroda H, Miyasaka A, Takikawa Y. Serum markers for mitochondrial dysfunction and cell death are possible predictive indicators for drug-induced liver injury by direct acting antivirals. Hepatol Res 2018; 48:78-86. [PMID: 28304119 DOI: 10.1111/hepr.12893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023]
Abstract
AIM We prospectively screened patients treated with direct-acting antivirals (DAA) in order to detect and analyze serum markers that are present prior to the development of drug-induced liver injury (DILI). METHODS The levels of various serum markers among DILI, non-DILI and control groups were compared. The DILI group consisted of eight patients whose alanine aminotransferase (ALT) levels exceeded 32 IU/L during the DAA treatment. Eight patients without DILI were selected for the non-DILI group via a matched-group design based on age, sex and disease severity. Additionally, eight healthy volunteers were employed as the controls. Serum measurements of cytokines/chemokines, cytokeratin-18 fragment (CK-18F) and super oxidase dismutase-2 (SOD2) were evaluated on the date at which hepatitis C virus RNA was absent (baseline). For patients with DILI, serum measurements taken before treatment, 1 week before pronounced transaminase elevation (prominence-1 W) and on the date at which pronounced elevation of transaminase occurred (prominence) were also evaluated. RESULTS All patients treated with DAA had normalized transaminase levels at baseline. In patients with DILI, interferon-inducible protein-10 (IP-10) levels were higher at prominence-1 W than at baseline. Those patients also had significantly higher levels of SOD2 and CK-18F at prominence-1 W than at baseline. CONCLUSION Elevated IP-10 may be a preconditioning chemokine for DAA-induced liver injury, and damage markers associated with cell death and mitochondrial dysfunction are potential predictive serum markers for DILI.
Collapse
Affiliation(s)
- Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yuichi Yoshida
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yuji Suzuki
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Takuro Sato
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Akio Miyasaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
41
|
Sebode M, Schulz L, Lohse AW. "Autoimmune(-Like)" Drug and Herb Induced Liver Injury: New Insights into Molecular Pathogenesis. Int J Mol Sci 2017; 18:ijms18091954. [PMID: 28895915 PMCID: PMC5618603 DOI: 10.3390/ijms18091954] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) and hepatic injury due to herbal and dietary supplements (HDS) can adapt clinical characteristics of autoimmune hepatitis (AIH), such as the appearance of autoantibodies and infiltration of the liver by immune competent cells. To describe these cases of DILI/HDS, the poorly-defined term "autoimmune(-like)" DILI/HDS came up. It is uncertain if these cases represent a subgroup of DILI/HDS with distinct pathomechanistic and prognostic features different from "classical" DILI/HDS. Besides, due to the overlap of clinical characteristics of "immune-mediated" DILI/HDS and AIH, both entities are not easy to differentiate. However, the demarcation is important, especially with regard to treatment: AIH requires long-term, mostly lifelong immunosuppression, whereas DILI/HDS does not. Only through exact diagnostic evaluation, exclusion of differential diagnoses and prolonged follow-up can the correct diagnosis reliably be made. Molecular mechanisms have not been analysed for the subgroup of "autoimmune(-like)" DILI/HDS yet. However, several pathogenetic checkpoints of DILI/HDS in general and AIH are shared. An analysis of these shared mechanisms might hint at relevant molecular processes of "autoimmune(-like)" DILI/HDS.
Collapse
Affiliation(s)
- Marcial Sebode
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Lisa Schulz
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
42
|
Roth AD, Lee MY. Idiosyncratic Drug-Induced Liver Injury (IDILI): Potential Mechanisms and Predictive Assays. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9176937. [PMID: 28133614 PMCID: PMC5241492 DOI: 10.1155/2017/9176937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a significant source of drug recall and acute liver failure (ALF) in the United States. While current drug development processes emphasize general toxicity and drug metabolizing enzyme- (DME-) mediated toxicity, it has been challenging to develop comprehensive models for assessing complete idiosyncratic potential. In this review, we describe the enzymes and proteins that contain polymorphisms believed to contribute to IDILI, including ones that affect phase I and phase II metabolism, antioxidant enzymes, drug transporters, inflammation, and human leukocyte antigen (HLA). We then describe the various assays that have been developed to detect individual reactions focusing on each of the mechanisms described in the background. Finally, we examine current trends in developing comprehensive models for examining these mechanisms. There is an urgent need to develop a panel of multiparametric assays for diagnosing individual toxicity potential.
Collapse
Affiliation(s)
- Alexander D. Roth
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street, Cleveland, OH 44115-2214, USA
| |
Collapse
|
43
|
Gamma-Glutamylcysteine Ethyl Ester Protects against Cyclophosphamide-Induced Liver Injury and Hematologic Alterations via Upregulation of PPAR γ and Attenuation of Oxidative Stress, Inflammation, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4016209. [PMID: 28074115 PMCID: PMC5198194 DOI: 10.1155/2016/4016209] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022]
Abstract
Gamma-glutamylcysteine ethyl ester (GCEE) is a precursor of glutathione (GSH) with promising hepatoprotective effects. This investigation aimed to evaluate the hepatoprotective effects of GCEE against cyclophosphamide- (CP-) induced toxicity, pointing to the possible role of peroxisome proliferator activated receptor gamma (PPARγ). Wistar rats were given GCEE two weeks prior to CP. Five days after CP administration, animals were sacrificed and samples were collected. Pretreatment with GCEE significantly alleviated CP-induced liver injury by reducing serum aminotransferases, increasing albumin, and preventing histopathological and hematological alterations. GCEE suppressed lipid peroxidation and nitric oxide production and restored GSH and enzymatic antioxidants in the liver, which were associated with downregulation of COX-2, iNOS, and NF-κB. In addition, CP administration significantly increased serum proinflammatory cytokines and the expression of liver caspase-3 and BAX, an effect that was reversed by GCEE. CP-induced rats showed significant downregulation of PPARγ which was markedly upregulated by GCEE treatment. These data demonstrated that pretreatment with GCEE protected against CP-induced hepatotoxicity, possibly by activating PPARγ, preventing GSH depletion, and attenuating oxidative stress, inflammation, and apoptosis. Our findings point to the role of PPARγ and suggest that GCEE might be a promising agent for the prevention of CP-induced liver injury.
Collapse
|
44
|
Amo G, Cornejo-García JA, García-Menaya JM, Cordobes C, Torres MJ, Esguevillas G, Mayorga C, Martinez C, Blanca-Lopez N, Canto G, Ramos A, Blanca M, Agúndez JAG, García-Martín E. FCERI and Histamine Metabolism Gene Variability in Selective Responders to NSAIDS. Front Pharmacol 2016; 7:353. [PMID: 27746735 PMCID: PMC5040715 DOI: 10.3389/fphar.2016.00353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
The high-affinity IgE receptor (Fcε RI) is a heterotetramer of three subunits: Fcε RIα, Fcε RIβ, and Fcε RIγ (αβγ2) encoded by three genes designated as FCER1A, FCER1B (MS4A2), and FCER1G, respectively. Recent evidence points to FCERI gene variability as a relevant factor in the risk of developing allergic diseases. Because Fcε RI plays a key role in the events downstream of the triggering factors in immunological response, we hypothesized that FCERI gene variants might be related with the risk of, or with the clinical response to, selective (IgE mediated) non-steroidal anti-inflammatory (NSAID) hypersensitivity. From a cohort of 314 patients suffering from selective hypersensitivity to metamizole, ibuprofen, diclofenac, paracetamol, acetylsalicylic acid (ASA), propifenazone, naproxen, ketoprofen, dexketoprofen, etofenamate, aceclofenac, etoricoxib, dexibuprofen, indomethacin, oxyphenylbutazone, or piroxicam, and 585 unrelated healthy controls that tolerated these NSAIDs, we analyzed the putative effects of the FCERI SNPs FCER1A rs2494262, rs2427837, and rs2251746; FCER1B rs1441586, rs569108, and rs512555; FCER1G rs11587213, rs2070901, and rs11421. Furthermore, in order to identify additional genetic markers which might be associated with the risk of developing selective NSAID hypersensitivity, or which may modify the putative association of FCERI gene variations with risk, we analyzed polymorphisms known to affect histamine synthesis or metabolism, such as rs17740607, rs2073440, rs1801105, rs2052129, rs10156191, rs1049742, and rs1049793 in the HDC, HNMT, and DAO genes. No major genetic associations with risk or with clinical presentation, and no gene-gene interactions, or gene-phenotype interactions (including age, gender, IgE concentration, antecedents of atopy, culprit drug, or clinical presentation) were identified in patients. However, logistic regression analyses indicated that the presence of antecedents of atopy and the DAO SNP rs2052129 (GG) were strongly related (P < 0.001 and P = 0.005, respectively) with selective hypersensitivity to ibuprofen. With regard to patients with selective hypersensitivity to ASA, men were more prone to develop such a reaction than women (P = 0.011), and the detrimental DAO SNP rs10156191 in homozygosity increased the risk of developing such hypersensitivity (P = 0.039).
Collapse
Affiliation(s)
- Gemma Amo
- Departamento de Farmacología, Universidad de Extremadura Cáceres, Spain
| | - José A Cornejo-García
- Laboratorio de Investigación, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | | | | | - M J Torres
- UGC de Alergia, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Gara Esguevillas
- Departamento de Farmacología, Universidad de Extremadura Cáceres, Spain
| | - Cristobalina Mayorga
- Laboratorio de Investigación, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Carmen Martinez
- Departamento de Farmacología, Universidad de Extremadura Cáceres, Spain
| | | | - Gabriela Canto
- Servicio de Alergologia, Hospital Infanta Leonor Madrid, Spain
| | - Alfonso Ramos
- Departamento de Matemáticas, Universidad de Extremadura Cáceres, Spain
| | - Miguel Blanca
- Servicio de Alergologia, Hospital Infanta Leonor Madrid, Spain
| | - José A G Agúndez
- Departamento de Farmacología, Universidad de Extremadura Cáceres, Spain
| | | |
Collapse
|
45
|
Ortega-Alonso A, Stephens C, Lucena MI, Andrade RJ. Case Characterization, Clinical Features and Risk Factors in Drug-Induced Liver Injury. Int J Mol Sci 2016; 17:E714. [PMID: 27187363 PMCID: PMC4881536 DOI: 10.3390/ijms17050714] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) caused by xenobiotics (drugs, herbals and dietary supplements) presents with a range of both phenotypes and severity, from acute hepatitis indistinguishable of viral hepatitis to autoimmune syndromes, steatosis or rare chronic vascular syndromes, and from asymptomatic liver test abnormalities to acute liver failure. DILI pathogenesis is complex, depending on the interaction of drug physicochemical properties and host factors. The awareness of risk factors for DILI is arising from the analysis of large databases of DILI cases included in Registries and Consortia networks around the world. These networks are also enabling in-depth phenotyping with the identification of predictors for severe outcome, including acute liver failure and mortality/liver transplantation. Genome wide association studies taking advantage of these large cohorts have identified several alleles from the major histocompatibility complex system indicating a fundamental role of the adaptive immune system in DILI pathogenesis. Correct case definition and characterization is crucial for appropriate phenotyping, which in turn will strengthen sample collection for genotypic and future biomarkers studies.
Collapse
Affiliation(s)
- Aida Ortega-Alonso
- Unidad de Gestión Clínica de Enfermedades Digestivas y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain.
| | - Camilla Stephens
- Unidad de Gestión Clínica de Enfermedades Digestivas y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Enfermedades Digestivas y Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Raúl J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| |
Collapse
|
46
|
Alachkar H, Fulton N, Sanford B, Malnassy G, Mutonga M, Larson RA, Bloomfield CD, Marcucci G, Nakamura Y, Stock W. Expression and polymorphism (rs4880) of mitochondrial superoxide dismutase (SOD2) and asparaginase induced hepatotoxicity in adult patients with acute lymphoblastic leukemia. THE PHARMACOGENOMICS JOURNAL 2016; 17:274-279. [PMID: 27019981 PMCID: PMC5089920 DOI: 10.1038/tpj.2016.7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 01/28/2023]
Abstract
Asparaginase, which depletes asparagine and glutamine, activates amino acid stress response. Oxidative stress mediated by excessive reactive oxygen species (ROS) causes enhanced mitochondrial permeabilization and subsequent cell apoptosis and is considered a plausible mechanism for drug-induced hepatotoxicity, a common toxicity of asparaginase in adults with acute lymphoblastic leukemia (ALL). Studies investigating the pharmacogenetics of asparaginase in ALL are limited and focused on asparaginase-induced allergic reaction common in pediatric patients. Here, we sought to determine a potential association between the variant rs4880 in SOD2 gene, a key mitochondrial enzyme that protects cells against ROS, and hepatotoxicity during asparaginase-based therapy in 224 patients enrolled on CALGB-10102, a treatment trial for adults with ALL. We report that the CC genotype of rs4880 is associated with increased hepatotoxicity following asparaginase-based treatment. Thus, rs4880 likely contributes to asparaginase-induced hepatotoxicity, and functional studies investigating this SNP are needed to develop therapeutic approaches that mitigate this toxicity.
Collapse
Affiliation(s)
- H Alachkar
- Department of Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - N Fulton
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - B Sanford
- Alliance/CALGB Statistical Center, Duke Cancer Institute, Biostatistics, Durham, NC, USA
| | - G Malnassy
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - M Mutonga
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - R A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - C D Bloomfield
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH, USA
| | - G Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Y Nakamura
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - W Stock
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Wang CR, Chen LP, Tan C. Liver cell injury caused by bad habits. Shijie Huaren Xiaohua Zazhi 2015; 23:5642-5648. [DOI: 10.11569/wcjd.v23.i35.5642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptosis and necrosis of liver cells induced by environmental or genetic factors are the main features of liver injury. Liver injury is usually caused by apoptosis of liver cells, which is controlled by a complex regulatory system involved in liver damage and secondary inflammation. This article aims to review liver injury caused by bad habits and the underlying molecular mechanisms.
Collapse
|
48
|
Czaja AJ. Transitioning from Idiopathic to Explainable Autoimmune Hepatitis. Dig Dis Sci 2015; 60:2881-900. [PMID: 25999246 DOI: 10.1007/s10620-015-3708-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis lacks an identifiable cause, and its diagnosis requires the exclusion of etiologically defined diseases that resemble it. Insights into its pathogenesis are moving autoimmune hepatitis from an idiopathic to explainable disease, and the goal of this review is to describe the insights that are hastening this transition. Two types of autoimmune hepatitis are justified by serological markers, but they also have distinctive genetic associations (DRB1 and DQB1 genes) and autoantigens. DRB1 alleles are the principal susceptibility factors in white adults, and a six amino acid sequence encoded in the antigen-binding groove of class II molecules of the major histocompatibility complex can influence the selection of autoantigens. Polymorphisms, including variants of SH2B3 and CARD10 genes, may affect immune reactivity and disease severity. The cytochrome mono-oxygenase, CYP2D6, is the autoantigen associated with type 2 autoimmune hepatitis, and it shares homologies with multiple viruses that might promote self-intolerance by molecular mimicry. Chemokines, especially CXCL9 and CXCL10, orchestrate the migration of effector cells to sites of injury and are associated with disease severity. Cells of the innate and adaptive immune responses promote tissue damage, and possible deficiencies in the number and function of regulatory T cells may facilitate the injurious process. Receptor-mediated apoptosis is the principal mechanism of hepatocyte loss, and cell-mediated and antibody-dependent mechanisms of cytotoxicity also contribute. Insights that explain autoimmune hepatitis will allow triggering exogenous antigens to be characterized, risk management to be improved, prognostic indices to be refined, and site-specific therapeutic interventions to emerge.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Chen M, Suzuki A, Borlak J, Andrade RJ, Lucena MI. Drug-induced liver injury: Interactions between drug properties and host factors. J Hepatol 2015; 63:503-14. [PMID: 25912521 DOI: 10.1016/j.jhep.2015.04.016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a common cause for drug withdrawal from the market and although infrequent, DILI can result in serious clinical outcomes including acute liver failure and the need for liver transplantation. Eliminating the iatrogenic "harm" caused by a therapeutic intent is a priority in patient care. However, identifying culprit drugs and individuals at risk for DILI remains challenging. Apart from genetic factors predisposing individuals at risk, the role of the drugs' physicochemical and toxicological properties and their interactions with host and environmental factors need to be considered. The influence of these factors on mechanisms involved in DILI is multi-layered. In this review, we summarize current knowledge on 1) drug properties associated with hepatotoxicity, 2) host factors considered to modify an individuals' risk for DILI and clinical phenotypes, and 3) drug-host interactions. We aim at clarifying knowledge gaps needed to be filled in as to improve risk stratification in patient care. We therefore broadly discuss relevant areas of future research. Emerging insight will stimulate new investigational approaches to facilitate the discovery of clinical DILI risk modifiers in the context of disease complexity and associated interactions with drug properties, and hence will be able to move towards safety personalized medicine.
Collapse
Affiliation(s)
- Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Ayako Suzuki
- Gastroenterology, Central Arkansas Veterans Healthcare System, Little Rock, AR, United States; Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jürgen Borlak
- Center of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Enfermedades Digestivas, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Enfermedades Digestivas, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
50
|
Khoury T, Rmeileh AA, Yosha L, Benson AA, Daher S, Mizrahi M. Drug Induced Liver Injury: Review with a Focus on Genetic Factors, Tissue Diagnosis, and Treatment Options. J Clin Transl Hepatol 2015; 3:99-108. [PMID: 26356634 PMCID: PMC4548351 DOI: 10.14218/jcth.2015.00007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is a rare but potentially life threatening adverse drug reaction. DILI may mimic any morphologic characteristic of acute or chronic liver disease, and the histopathologic features of DILI may be indistinguishable from those of other causes of liver injury, such as acute viral hepatitis. In this review article, we provide an update on causative agents, clinical features, pathogenesis, diagnosis modalities, and outcomes of DILI. In addition, we review results of recently reported genetic studies and updates on pharmacological and invasive treatments.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- These authors contributed equally to this work
| | - Ayman Abu Rmeileh
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- These authors contributed equally to this work
| | - Liron Yosha
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ariel A. Benson
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Saleh Daher
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Meir Mizrahi
- Center for Advanced Endoscopy, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Correspondence to: Meir Mizrahi, Center for Advanced Endoscopy, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA. Tel: +1-617-6672135, Fax: +1-617-6671728, E-mail:
| |
Collapse
|