1
|
Fardel O, Moreau A, Jouan E, Denizot C, Le Vée M, Parmentier Y. Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs. Expert Opin Drug Metab Toxicol 2025:1-18. [PMID: 39799554 DOI: 10.1080/17425255.2025.2453486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays. AREA COVERED This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results. Applications of the assays to drugs are summarized, with special emphasis to the performance values of some assays for predicting hepatotoxicity/cholestatic effects of drugs. EXPERT OPINION Human liver cell-based assays for evaluating drug-mediated inhibition of bile acid efflux transporters face various limitations, such as the lack of method standardization and validation, the present poor adaptability to high throughput approaches, and some pitfalls with respect to interpretation of bile acid biliary excretion indexes. Hepatotoxicity of drugs is additionally likely multifactorial, highlighting that inhibition of hepatic bile salt efflux by drugs provides important, but not full, information about potential drug hepatotoxicity.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay Gif-sur-Yvette, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | | |
Collapse
|
2
|
Ramírez-Mejía MM, Castillo-Castañeda SM, Pal SC, Qi X, Méndez-Sánchez N. The Multifaceted Role of Bilirubin in Liver Disease: A Literature Review. J Clin Transl Hepatol 2024; 12:939-948. [PMID: 39544246 PMCID: PMC11557368 DOI: 10.14218/jcth.2024.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Bilirubin, the primary breakdown product of hemoproteins, particularly hemoglobin, plays a key role in the diagnosis, prognosis, and monitoring of liver diseases. In acute liver diseases, such as acute liver failure, drug-induced liver injury, and viral hepatitis, bilirubin serves as a biomarker reflecting the extent of hepatocyte loss and liver damage. Chronic liver diseases, including alcohol-related liver disease, chronic hepatitis C virus infection, metabolic dysfunction-associated fatty liver disease, and autoimmune liver diseases, are marked by persistent liver injury and inflammation. Bilirubin levels in chronic liver diseases provide insight into liver function, disease severity, and prognosis. As a versatile biomarker, bilirubin offers valuable information on the pathophysiology of liver diseases and aids in guiding clinical decision-making regarding the treatment of liver diseases and their complications. This review aimed to explore the multifunctional role of bilirubin in liver diseases by analyzing its biological functions beyond its role as a biomarker of liver damage.
Collapse
Affiliation(s)
- Mariana M. Ramírez-Mejía
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Stephany M. Castillo-Castañeda
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Medical, Dental and Health Sciences Master and Doctorate Program, National Autonomous University of Mexico, Mexico City, Mexico
| | - Shreya C. Pal
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Shenyang, Liaoning, China
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Shang T, Zhang C, Liu D. Drug disposition in cholestasis: An important concern. Pharmacol Res Perspect 2024; 12:e1220. [PMID: 38899589 PMCID: PMC11187734 DOI: 10.1002/prp2.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Cholestasis, a chronic liver condition, disrupts bile acid homeostasis and complicates drug disposition, posing significant challenges in medicating cholestatic patients. Drug metabolism enzymes and transporters (DMETs) are pivotal in drug clearance. Research indicates that cholestasis leads to alterations in both hepatic and extrahepatic DMETs, with changes in expression and function documented in rodents and humans. This review synthesizes the modifications in key drug disposition components within cholestasis, focusing on cytochrome P450 (CYP450), drug transporters, and their substrates. Additionally, we briefly discuss certain drugs that have demonstrated efficacy in restoring DMET expression in cholestatic conditions. Ultimately, these insights necessitate a reevaluation of drug selection and dosing guidelines for patients with cholestasis.
Collapse
Affiliation(s)
- Tianze Shang
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Vujic E, Ferguson SS, Brouwer KLR. Effects of PFAS on human liver transporters: implications for health outcomes. Toxicol Sci 2024; 200:213-227. [PMID: 38724241 DOI: 10.1093/toxsci/kfae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become internationally recognized over the past three decades as persistent organic pollutants used in the production of various consumer and industrial goods. Research efforts continue to gauge the risk that historically used, and newly produced, PFAS may cause to human health. Numerous studies report toxic effects of PFAS on the human liver as well as increased serum cholesterol levels in adults. A major concern with PFAS, also dubbed "forever chemicals," is that they accumulate in the liver and kidney and persist in serum. The mechanisms responsible for their disposition and excretion in humans are poorly understood. A better understanding of the interaction of PFAS with liver transporters, as it pertains to the disposition of PFAS and other xenobiotics, could provide mechanistic insight into human health effects and guide efforts toward risk assessment of compounds in development. This review summarizes the current state of the literature on the emerging relationships (eg, substrates, inhibitors, modulators of gene expression) between PFAS and specific hepatic transporters. The adaptive and toxicological responses of hepatocytes to PFAS that reveal linkages to pathologies and epidemiological findings are highlighted. The evidence suggests that our understanding of the molecular landscape of PFAS must improve to determine their impact on the expression and function of hepatocyte transporters that play a key role in PFAS or other xenobiotic disposition. From here, we can assess what role these changes may have in documented human health outcomes.
Collapse
Affiliation(s)
- Ena Vujic
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Hari A, AbdulHameed MDM, Balik-Meisner MR, Mav D, Phadke DP, Scholl EH, Shah RR, Casey W, Auerbach SS, Wallqvist A, Pannala VR. Exposure to PFAS chemicals induces sex-dependent alterations in key rate-limiting steps of lipid metabolism in liver steatosis. FRONTIERS IN TOXICOLOGY 2024; 6:1390196. [PMID: 38903859 PMCID: PMC11188372 DOI: 10.3389/ftox.2024.1390196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Toxicants with the potential to bioaccumulate in humans and animals have long been a cause for concern, particularly due to their association with multiple diseases and organ injuries. Per- and polyfluoro alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) are two such classes of chemicals that bioaccumulate and have been associated with steatosis in the liver. Although PFAS and PAH are classified as chemicals of concern, their molecular mechanisms of toxicity remain to be explored in detail. In this study, we aimed to identify potential mechanisms by which an acute exposure to PFAS and PAH chemicals can induce lipid accumulation and whether the responses depend on chemical class, dose, and sex. To this end, we analyzed mechanisms beginning with the binding of the chemical to a molecular initiating event (MIE) and the consequent transcriptomic alterations. We collated potential MIEs using predictions from our previously developed ToxProfiler tool and from published steatosis adverse outcome pathways. Most of the MIEs are transcription factors, and we collected their target genes by mining the TRRUST database. To analyze the effects of PFAS and PAH on the steatosis mechanisms, we performed a computational MIE-target gene analysis on high-throughput transcriptomic measurements of liver tissue from male and female rats exposed to either a PFAS or PAH. The results showed peroxisome proliferator-activated receptor (PPAR)-α targets to be the most dysregulated, with most of the genes being upregulated. Furthermore, PFAS exposure disrupted several lipid metabolism genes, including upregulation of fatty acid oxidation genes (Acadm, Acox1, Cpt2, Cyp4a1-3) and downregulation of lipid transport genes (Apoa1, Apoa5, Pltp). We also identified multiple genes with sex-specific behavior. Notably, the rate-limiting genes of gluconeogenesis (Pck1) and bile acid synthesis (Cyp7a1) were specifically downregulated in male rats compared to female rats, while the rate-limiting gene of lipid synthesis (Scd) showed a PFAS-specific upregulation. The results suggest that the PPAR signaling pathway plays a major role in PFAS-induced lipid accumulation in rats. Together, these results show that PFAS exposure induces a sex-specific multi-factorial mechanism involving rate-limiting genes of gluconeogenesis and bile acid synthesis that could lead to activation of an adverse outcome pathway for steatosis.
Collapse
Affiliation(s)
- Archana Hari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Deepak Mav
- Sciome LLC, Research Triangle Park, NC, United States
| | | | | | | | - Warren Casey
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Scott S. Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
6
|
Zertuche-Martínez C, Velázquez-Enríquez JM, González-García K, Baltiérrez-Hoyos R, Carrasco-Torres G, García-Román R, Romero-Díaz RI, Pérez-Hernández JL, Muriel P, Villa-Treviño S, Arellanes-Robledo J, Vásquez-Garzón VR. Identification of ABCC3 and its isoforms as potential biomarker in hepatocellular carcinoma. Toxicol Mech Methods 2024; 34:398-407. [PMID: 38083799 DOI: 10.1080/15376516.2023.2294475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Liver diseases preceding the occurrence of hepatocellular carcinoma (HCC) play a crucial role in the progression and establishment of HCC, a malignancy ranked as the third deadliest cancer worldwide. Late diagnosis, alongside ineffective treatment, leads patients to a poor survival rate. This scenario argues for seeking novel alternatives for detecting liver alterations preceding the early occurrence of HCC. Experimental studies have reported that ABCC3 protein increases within HCC tumors but not in adjacent tissue. Therefore, we analyzed ABCC3 expression in public databases and investigated the presence of ABCC3 and its isoforms in plasma, urine and its release in extracellular vesicles (EVs) cargo from patients bearing cirrhosis and HCC. The UALCAN and GEPIA databases were used to analyze the expression of ABCC3 in HCC. The results were validated in a case-control study including 41 individuals bearing cirrhosis and HCC, and the levels of ABCC3 in plasma and urine samples, as well as EVs, were analyzed by ELISA and western blot. Our data showed that ABCC3 expression was higher in HCC tissues than in normal tissues and correlated with HCC grade and stage. ABCC3 protein levels were highly increased in both plasma and urine and correlated with liver disease progression and severity. The isoforms MRP3A and MRP3B of ABCC3 were significantly increased in both EVs and plasma/urine of patients bearing HCC. ABCC3 expression gradually increases in HCC tissues, and its protein levels are increased in both plasma and urine of patients with cirrhosis and HCC. MRP3A and MRP3B isoforms have the potential to be prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Cecilia Zertuche-Martínez
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Karina González-García
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Rafael Baltiérrez-Hoyos
- CONACYT-Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca-UABJO, Oaxaca, Mexico
| | - Gabriela Carrasco-Torres
- Centre for Research in Applied Science and Advanced Technology, Morelos Unit, National Polytechnic Institute, Atlacholoaya, Mexico
| | | | | | | | - Pablo Muriel
- Department of Pharmacology, Laboratory of Experimental Hepatology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Arellanes-Robledo
- CONACYT-Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico
| | | |
Collapse
|
7
|
Fendt R, Ghallab A, Myllys M, Hofmann U, Hassan R, Hobloss Z, González D, Brackhagen L, Marchan R, Edlund K, Seddek AL, Abdelmageed N, Blank LM, Schlender JF, Holland CH, Hengstler JG, Kuepfer L. Increased sinusoidal export of drug glucuronides is a compensative mechanism in liver cirrhosis of mice. Front Pharmacol 2023; 14:1279357. [PMID: 38053838 PMCID: PMC10694292 DOI: 10.3389/fphar.2023.1279357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Rationale: Liver cirrhosis is known to affect drug pharmacokinetics, but the functional assessment of the underlying pathophysiological alterations in drug metabolism is difficult. Methods: Cirrhosis in mice was induced by repeated treatment with carbon tetrachloride for 12 months. A cocktail of six drugs was administered, and parent compounds as well as phase I and II metabolites were quantified in blood, bile, and urine in a time-dependent manner. Pharmacokinetics were modeled in relation to the altered expression of metabolizing enzymes. In discrepancy with computational predictions, a strong increase of glucuronides in blood was observed in cirrhotic mice compared to vehicle controls. Results: The deviation between experimental findings and computational simulations observed by analyzing different hypotheses could be explained by increased sinusoidal export and corresponded to increased expression of export carriers (Abcc3 and Abcc4). Formation of phase I metabolites and clearance of the parent compounds were surprisingly robust in cirrhosis, although the phase I enzymes critical for the metabolism of the administered drugs in healthy mice, Cyp1a2 and Cyp2c29, were downregulated in cirrhotic livers. RNA-sequencing revealed the upregulation of numerous other phase I metabolizing enzymes which may compensate for the lost CYP isoenzymes. Comparison of genome-wide data of cirrhotic mouse and human liver tissue revealed similar features of expression changes, including increased sinusoidal export and reduced uptake carriers. Conclusion: Liver cirrhosis leads to increased blood concentrations of glucuronides because of increased export from hepatocytes into the sinusoidal blood. Although individual metabolic pathways are massively altered in cirrhosis, the overall clearance of the parent compounds was relatively robust due to compensatory mechanisms.
Collapse
Affiliation(s)
- Rebekka Fendt
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Daniela González
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Lisa Brackhagen
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Abdel-Latif Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Lars M. Blank
- Institute of Applied Microbiology—iAMB, Aachen Biology and Biotechnology—ABBt, RWTH Aachen University, Aachen, Germany
| | - Jan-Frederik Schlender
- Pharmacometrics, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Christian H. Holland
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
8
|
Tan Y, Zhao N, Xie Q, Xu Z, Chai J, Zhang X, Li Y. Melatonin attenuates cholestatic liver injury via inhibition of the inflammatory response. Mol Cell Biochem 2023; 478:2527-2537. [PMID: 36869985 DOI: 10.1007/s11010-023-04682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Melatonin, an indole neurohormone secreted mainly by the pineal gland, has been found to be involved in a variety of liver diseases. However, the underlying mechanism by which melatonin ameliorates cholestatic liver injury is not fully understood. In this study, we investigated the mechanism by which melatonin attenuates cholestatic liver injury via inhibition of the inflammatory response. We measured the levels of serum melatonin in patients with obstructive cholestasis (n = 9), patients with primary biliary cholangitis (PBC) (n = 11), and control patients (n = 7). We performed experiments with C57BL/6 J mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and melatonin to verify the role of melatonin in the mouse model of cholestasis. Primary mouse hepatocytes were used for in vitro studies to study the mechanisms of action of melatonin in cholestasis. The levels of serum melatonin were markedly increased and negatively correlated with serum markers of liver injury in cholestatic patients. As expected, oral administration of melatonin significantly attenuated cholestasis-induced liver inflammation and fibrosis in 0.1% DDC diet-fed mice. Further mechanistic studies in cholestatic mice and primary hepatocytes revealed that melatonin reduced the conjugate BA-stimulated expression of cytokines (e.g. Ccl2, Tnfα, and Il6) through the ERK/Egr1 signalling pathway in these models. The levels of serum melatonin are significantly elevated in cholestatic patients. Melatonin treatment ameliorates cholestatic liver injury by suppressing the inflammatory response in vivo and in vitro. Therefore, melatonin is a promising novel therapeutic strategy for cholestasis.
Collapse
Affiliation(s)
- Ya Tan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nan Zhao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiaoling Xie
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziqian Xu
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiaoxun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yan Li
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
9
|
Zhang L, Pan Q, Zhang L, Xia H, Liao J, Zhang X, Zhao N, Xie Q, Liao M, Tan Y, Li Q, Zhu J, Li L, Fan S, Li J, Zhang C, Cai SY, Boyer JL, Chai J. Runt-related transcription factor-1 ameliorates bile acid-induced hepatic inflammation in cholestasis through JAK/STAT3 signaling. Hepatology 2023; 77:1866-1881. [PMID: 36647589 PMCID: PMC10921919 DOI: 10.1097/hep.0000000000000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Bile acids trigger a hepatic inflammatory response, causing cholestatic liver injury. Runt-related transcription factor-1 (RUNX1), primarily known as a master modulator in hematopoiesis, plays a pivotal role in mediating inflammatory responses. However, RUNX1 in hepatocytes is poorly characterized, and its role in cholestasis is unclear. Herein, we aimed to investigate the role of hepatic RUNX1 and its underlying mechanisms in cholestasis. APPROACH AND RESULTS Hepatic expression of RUNX1 was examined in cholestatic patients and mouse models. Mice with liver-specific ablation of Runx1 were generated. Bile duct ligation and 1% cholic acid diet were used to induce cholestasis in mice. Primary mouse hepatocytes and the human hepatoma PLC/RPF/5- ASBT cell line were used for mechanistic studies. Hepatic RUNX1 mRNA and protein levels were markedly increased in cholestatic patients and mice. Liver-specific deletion of Runx1 aggravated inflammation and liver injury in cholestatic mice induced by bile duct ligation or 1% cholic acid feeding. Mechanistic studies indicated that elevated bile acids stimulated RUNX1 expression by activating the RUNX1 -P2 promoter through JAK/STAT3 signaling. Increased RUNX1 is directly bound to the promotor region of inflammatory chemokines, including CCL2 and CXCL2 , and transcriptionally repressed their expression in hepatocytes, leading to attenuation of liver inflammatory response. Blocking the JAK signaling or STAT3 phosphorylation completely abolished RUNX1 repression of bile acid-induced CCL2 and CXCL2 in hepatocytes. CONCLUSIONS This study has gained initial evidence establishing the functional role of hepatocyte RUNX1 in alleviating liver inflammation during cholestasis through JAK/STAT3 signaling. Modulating hepatic RUNX1 activity could be a new therapeutic target for cholestasis.
Collapse
Affiliation(s)
- Liangjun Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haihan Xia
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Liao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Central South University School of Life Sciences, Changsha, Hunan Province, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiaoling Xie
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Min Liao
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ya Tan
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiao Li
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jinfei Zhu
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ling Li
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianwei Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengcheng Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Disease of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, the First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
10
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
11
|
Hepatic TNFRSF12A promotes bile acid-induced hepatocyte pyroptosis through NFκB/Caspase-1/GSDMD signaling in cholestasis. Cell Death Dis 2023; 9:26. [PMID: 36690641 PMCID: PMC9871041 DOI: 10.1038/s41420-023-01326-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Tumor necrosis factor receptor superfamily member-12A (TNFRSF12A) plays a critical role in inflammation and cell death. It is expressed in multiple tissues yet extremely low in normal liver. To date, little is known about its role in cholestasis. Therefore, we sought to delineate the role of TNFRSF12A in cholestasis and its underlying mechanisms. Human liver tissues were collected from patients with obstructive cholestasis (OC) or primary biliary cholangitis (PBC). Tnfrsf12a knockout (KO) mice were generated. Cholestasis was induced by bile-duct ligation (BDL) or 0.1% 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-feeding. Human hepatoma PLC/PRF/5-ASBT and THP1 cell lines or primary mouse hepatocytes were used for mechanistic studies. Hepatic TNFRSF12A expression was markedly increased in OC or PBC patients. Genetic ablation of Tnfrsf12a in BDL- and 0.1%DDC-induced cholestatic mice significantly attenuated cholestatic liver injury with remarkable reduction of hepatocyte pyroptosis but without changing scores of necroptosis and apoptosis. Morphological features of hepatocyte pyroptosis and increased levels of pyroptosis-related proteins, NLRP3, cleaved-Caspase-1, and cleaved-GSDMD in OC patients and BDL-mice confirmed this observation. Further mechanistic studies revealed that bile acids (BAs) induced TNFRSF12A expression by enhancing the transcription factor c-JUN binding to the TNFRSF12A promoter and subsequently initiated hepatocyte pyroptosis by the NFκB/Caspase-1/GSDMD signaling. Interestingly, TWEAK, a typical ligand of TNFRSF12A, secreted by infiltrated macrophages in cholestatic livers, enhanced TNFRSF12A-induced hepatocyte pyroptosis. Taken together, we report, for the first time, that hepatic TNFRSF12A is dramatically increased in human cholestasis. Deletion of TNFRSF12A inhibits BAs-induced hepatocyte pyroptosis through the NFκB/Caspase-1/GSDMD signaling and thereby ameliorates cholestatic liver injury. As such, targeting TNFRSF12A could be a promising approach to treating cholestasis.
Collapse
|
12
|
Noordam L, de Beijer MT, Mancham S, Vogler I, Boor PP, de Ruiter V, Luijten R, IJzermans JN, Sahin U, Bruno MJ, Sprengers D, Buschow SI, Kwekkeboom J. Systemic T-cell and humoral responses against cancer testis antigens in hepatocellular carcinoma patients. Oncoimmunology 2022; 11:2131096. [PMID: 36211805 PMCID: PMC9542711 DOI: 10.1080/2162402x.2022.2131096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide due to high recurrence rates after curative treatment and being frequently diagnosed at an advanced stage. Immune-checkpoint inhibition (ICPI) has yielded impressive clinical successes in a variety of solid cancers, however results in treatment of HCC have been modest. Vaccination could be a promising treatment to synergize with ICPI and enhance response rates. Cancer testis antigens (CTAs) were recently discovered to be widely expressed in HCC and expression in macroscopically tumor-free tissues correlated with recurrence, implying the presence of micro-satellites. To determine whether CTAs are immunogenic in HCC patients, we analyzed systemic T-cell and humoral responses against seven CTAs in 38 HCC patients using a multitude of techniques; flowcytometry, ELISA and whole antigen and peptide stimulation assays. CTA-specific T-cells were detected in all (25/25) analyzed patients, of which most had a memory phenotype but did not exhibit unequivocal signs of chronic stimulation or recent antigen encounter. Proliferative CD4+ and CD8+ T-cell responses against these CTAs were found in 14/16 analyzed HCC patients. CTA-peptide stimulation-induced granzyme B, IL2, and TNFa in 8/8 analyzed patients, including two MAGEA1 peptides included based on in silico prediction. Finally, IgG responses were observed in 13/32 patients, albeit with low titers. The presence of CD4+ and CD8+ T-cells and IgG responses shows the immunogenicity of these CTAs in HCC-patients. We hypothesize that vaccines based on these tumor-specific antigens may boost preexisting CTA-specific immunity and could enhance therapeutic efficacy of ICPI in advanced HCC.
Collapse
Affiliation(s)
- Lisanne Noordam
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Monique T.A. de Beijer
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Shanta Mancham
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | | | - Patrick P.C. Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Valeska de Ruiter
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Robbie Luijten
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jan N.M. IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | | | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Role of Hepatocyte Transporters in Drug-Induced Liver Injury (DILI)-In Vitro Testing. Pharmaceutics 2022; 15:pharmaceutics15010029. [PMID: 36678658 PMCID: PMC9866820 DOI: 10.3390/pharmaceutics15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Bile acids and bile salts (BA/BS) are substrates of both influx and efflux transporters on hepatocytes. Canalicular efflux transporters, such as BSEP and MRP2, are crucial for the removal of BA/BS to the bile. Basolateral influx transporters, such as NTCP, OATP1B1/1B3, and OSTα/β, cooperate with canalicular transporters in the transcellular vectorial flux of BA/BS from the sinusoids to the bile. The blockage of canalicular transporters not only impairs the bile flow but also causes the intracellular accumulation of BA/BS in hepatocytes that contributes to, or even triggers, liver injury. In the case of BA/BS overload, the efflux of these toxic substances back to the blood via MRP3, MRP4, and OST α/β is considered a relief function. FXR, a key regulator of defense against BA/BS toxicity suppresses de novo bile acid synthesis and bile acid uptake, and promotes bile acid removal via increased efflux. In drug development, the early testing of the inhibition of these transporters, BSEP in particular, is important to flag compounds that could potentially inflict drug-induced liver injury (DILI). In vitro test systems for efflux transporters employ membrane vesicles, whereas those for influx transporters employ whole cells. Additional in vitro pharmaceutical testing panels usually include cellular toxicity tests using hepatocytes, as well as assessments of the mitochondrial toxicity and accumulation of reactive oxygen species (ROS). Primary hepatocytes are the cells of choice for toxicity testing, with HepaRG cells emerging as an alternative. Inhibition of the FXR function is also included in some testing panels. The molecular weight and hydrophobicity of the drug, as well as the steady-state total plasma levels, may positively correlate with the DILI potential. Depending on the phase of drug development, the physicochemical properties, dosing, and cut-off values of BSEP IC50 ≤ 25-50 µM or total Css,plasma/BSEP IC50 ≥ 0.1 may be an indication for further testing to minimize the risk of DILI liability.
Collapse
|
14
|
Liao M, Yu W, Xie Q, Zhang L, Pan Q, Zhao N, Li L, Cheng Y, Zhang X, Sun D, Chai J. Hepatic Aquaporin 10 Expression Is Downregulated by Activated NFκB Signaling in Human Obstructive Cholestasis. GASTRO HEP ADVANCES 2022; 2:412-423. [PMID: 39132646 PMCID: PMC11307722 DOI: 10.1016/j.gastha.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Recent studies reported that the hepatic expression of AQP8 and AQP9 was downregulated in bile duct-ligated (BDL) rats and that overexpression of human AQP1 in the rat liver attenuated cholestasis. However, the hepatic expression of AQP10 and its regulatory mechanism in human cholestasis remain unclear. Methods Serum and liver samples were collected from 34 patients with obstructive cholestasis and from 12 control patients. Eight-week-old male C57BL/6J mice were intravenously injected with an adeno-associated virus 8 (AAV8) encoding human AQP10 driven by a hepatocyte-specific Alb promotor (AAV8-Alb promotor-hAQP10) for functional studies. Constructs of the AQP10 promoter and PLC/PRF/5-ASBT cell lines were used for regulatory mechanism studies. Results AQP10 was significantly downregulated in patients with obstructive cholestasis and negatively associated with the serum levels of total bile acid (TBA). The hepatocyte-specific overexpression of hAQP10 significantly attenuated the cholestatic liver injury and intrahepatic bile acids (BA) accumulation in BDL mice. Conjugated BAs, such as TCA and inflammatory factor TNFα, significantly repressed AQP10 expression. Furthermore, NFκB p65/p50 directly bound to the AQP10 promotor and decreased its activity in PLC/RPF/5-ASBT cells and in the livers of patients with obstructive cholestasis. However, these changes were diminished by BAY 11-7082 (a specific inhibitor of NFκB signaling). Conclusion We are the first to report that AQP10 was significantly decreased in patients with obstructive cholestasis. AQP10 overexpression significantly attenuated cholestatic liver injury in BDL mice. Therefore, overexpression of hAQP10 in the liver may be a valuable strategy for cholestasis intervention.
Collapse
Affiliation(s)
- Min Liao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenjing Yu
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Marine College, Shandong University, Weihai, China
| | - Qiaoling Xie
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangjun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Li
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Cheng
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Dequn Sun
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Center for Cholestatic Liver Diseases and Center for Metabolic-Associated Fatty Liver Diseases, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
15
|
Loss of FOXA2 induces ER stress and hepatic steatosis and alters developmental gene expression in human iPSC-derived hepatocytes. Cell Death Dis 2022; 13:713. [PMID: 35973994 PMCID: PMC9381545 DOI: 10.1038/s41419-022-05158-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
FOXA2 has been known to play important roles in liver functions in rodents. However, its role in human hepatocytes is not fully understood. Recently, we generated FOXA2 mutant induced pluripotent stem cell (FOXA2-/-iPSC) lines and illustrated that loss of FOXA2 results in developmental defects in pancreatic islet cells. Here, we used FOXA2-/-iPSC lines to understand the role of FOXA2 on the development and function of human hepatocytes. Lack of FOXA2 resulted in significant alterations in the expression of key developmental and functional genes in hepatic progenitors (HP) and mature hepatocytes (MH) as well as an increase in the expression of ER stress markers. Functional assays demonstrated an increase in lipid accumulation, bile acid synthesis and glycerol production, while a decrease in glucose uptake, glycogen storage, and Albumin secretion. RNA-sequencing analysis further validated the findings by showing a significant increase in genes associated with lipid metabolism, bile acid secretion, and suggested the activation of hepatic stellate cells and hepatic fibrosis in MH lacking FOXA2. Overexpression of FOXA2 reversed the defective phenotypes and improved hepatocyte functionality in iPSC-derived hepatic cells lacking FOXA2. These results highlight a potential role of FOXA2 in regulating human hepatic development and function and provide a human hepatocyte model, which can be used to identify novel therapeutic targets for FOXA2-associated liver disorders.
Collapse
|
16
|
Goetzl L, Darbinian N, Merabova N, Devane LC, Ramamoorthy S. Gestational Age Variation in Human Placental Drug Transporters. Front Pharmacol 2022; 13:837694. [PMID: 35462922 PMCID: PMC9019509 DOI: 10.3389/fphar.2022.837694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Patient and providers’ fear of fetal exposure to medications may lead to discontinuation of treatment, disease relapse, and maternal morbidity. Placental drug transporters play a critical role in fetal exposure through active transport but the majority of data are limited to the 3rd trimester, when the majority of organogenesis has already occurred. Our objective was to define gestational age (GA) dependent changes in protein activity, expression and modifications of five major placental drug transporters: SERT, P-gp, NET, BCRP and MRP3. Apical brush border membrane fractions were prepared from fresh 1st, 2nd and 3rd trimester human placentas collected following elective pregnancy termination or planned cesarean delivery. A structured maternal questionnaire was used to identify maternal drug use and exclude exposed subjects. Changes in placental transporter activity and expression relative to housekeeping proteins were quantified. There was evidence for strong developmental regulation of SERT, NET, P-gp, BCRP and MRP3. P-gp and BCRP decreased with gestation (r = −0.72, p < 0.001 and r = −0.77, p < 0.001, respectively). Total SERT increased with gestation but this increase was due to a decrease in SERT cleavage products across trimesters. Uncleaved SERT increased with GA (r = 0.89, p < 0.001) while cleaved SERT decreased with GA (r = −0.94, p < 0.001). Apical membrane NET overall did not appear to be developmentally regulated (r = −0.08, p = 0.53). Two forms of MRP3 were identified; the 50 kD form did not change across GA; the 160 kD form was steady in the 1st and 2nd trimester and increased in the 3rd trimester (r = 0.24, p = 0.02). The 50 kD form was expressed at higher levels. The observed patterns of SERT, NET P-gp, BCRP and MRP3 expression and activity may be associated with transporter activity or decreased placental permeability in the 1st trimester to transporter specific substrates including commonly used psychoactive medications such as anti-depressants, anti-psychotics, and amphetamines, while transport of nutrients and serotonin is important in the 1st trimester. Overall these observations are consistent with a strong protective effect during organogenesis. 3rd trimester estimates of fetal exposure obtained from cord blood likely significantly overestimate early fetal exposure to these medications at any fixed maternal dose.
Collapse
|
17
|
Tumor necrosis factor α upregulates the bile acid efflux transporter OATP3A1 via multiple signaling pathways in cholestasis. J Biol Chem 2021; 298:101543. [PMID: 34971708 PMCID: PMC8784341 DOI: 10.1016/j.jbc.2021.101543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Cholestasis is a common condition in which the flow of bile from the liver to the intestines is inhibited. It has been shown that organic anion–transporting polypeptide 3A1 (OATP3A1) is upregulated in cholestasis to promote bile acid efflux transport. We have previously shown that the growth factor fibroblast growth factor 19 and inflammatory mediator tumor necrosis factor α (TNFα) increased OATP3A1 mRNA levels in hepatoma peritoneal lavage cell/PRF/5 cell lines. However, the mechanism underlying TNFα-stimulated OATP3A1 expression in cholestasis is unknown. To address this, we collected plasma samples from control and obstructive cholestasis patients and used ELISA to detect TNFα levels. We found that the TNFα levels of plasma and hepatic mRNA transcripts were significantly increased in obstructive cholestatic patients relative to control patients. A significant positive correlation was also observed between plasma TNFα and liver OATP3A1 mRNA transcripts in patients with obstructive cholestasis. Further mechanism analysis revealed that recombinant TNFα induced OATP3A1 expression and activated NF-κB and extracellular signal–regulated kinase (ERK) signaling pathways as well as expression of related transcription factors p65 and specificity protein 1 (SP1). Dual-luciferase reporter and chromatin immunoprecipitation assays showed that recombinant TNFα upregulated the binding activities of NF-κB p65 and SP1 to the OATP3A1 promoter in peritoneal lavage cell/PRF/5 cells. These effects were diminished following the application of NF-κB and ERK inhibitors BAY11-7082 and PD98059. We conclude that TNFα stimulates hepatic OATP3A1 expression in human obstructive cholestasis by activating NF-κB p65 and ERK–SP1 signaling. These results suggest that TNFα-activated NF-κB p65 and ERK–SP1 signaling may be a potential target to ameliorate cholestasis-associated liver injury.
Collapse
|
18
|
Hu T, Wang H. Hepatic Bile Acid Transporters in Drug‐Induced Cholestasis. TRANSPORTERS AND DRUG‐METABOLIZING ENZYMES IN DRUG TOXICITY 2021:307-337. [DOI: 10.1002/9781119171003.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Boyer JL, Soroka CJ. Bile formation and secretion: An update. J Hepatol 2021; 75:190-201. [PMID: 33617926 DOI: 10.1016/j.jhep.2021.02.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
Bile formation is a fundamental physiological process that is vital to the survival of all vertebrates. However, little was known about the mechanisms of this secretion until after World War II. Initial studies involved classic physiologic studies in animal models and humans, which progressed to include studies in isolated cells and membrane vesicles. The advent of molecular biology then led to the identification of specific transport systems that are the determinants of this secretion. Progress in this field was reviewed in the American Physiologic Society's series on "Comprehensive Physiology" in 2013. Herein, we provide an in-depth update of progress since that time.
Collapse
Affiliation(s)
- James Lorenzen Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Carol Jean Soroka
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Lowjaga KAAT, Kirstgen M, Müller SF, Goldmann N, Lehmann F, Glebe D, Geyer J. Long-term trans-inhibition of the hepatitis B and D virus receptor NTCP by taurolithocholic acid. Am J Physiol Gastrointest Liver Physiol 2021; 320:G66-G80. [PMID: 33174454 DOI: 10.1152/ajpgi.00263.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human hepatic bile acid transporter Na+/taurocholate cotransporting polypeptide (NTCP) represents the liver-specific entry receptor for the hepatitis B and D viruses (HBV/HDV). Chronic hepatitis B and D affect several million people worldwide, but treatment options are limited. Recently, HBV/HDV entry inhibitors targeting NTCP have emerged as promising novel drug candidates. Nevertheless, the exact molecular mechanism that NTCP uses to mediate virus binding and entry into hepatocytes is still not completely understood. It is already known that human NTCP mRNA expression is downregulated under cholestasis. Furthermore, incubation of rat hepatocytes with the secondary bile acid taurolithocholic acid (TLC) triggers internalization of the rat Ntcp protein from the plasma membrane. In the present study, the long-term inhibitory effect of TLC on transport function, HBV/HDV receptor function, and membrane expression of human NTCP were analyzed in HepG2 and human embryonic kidney (HEK293) cells stably overexpressing NTCP. Even after short-pulse preincubation, TLC had a significant long-lasting inhibitory effect on the transport function of NTCP, but the NTCP protein was still present at the plasma membrane. Furthermore, binding of the HBV/HDV myr-preS1 peptide and susceptibility for in vitro HDV infection were significantly reduced by TLC preincubation. We hypothesize that TLC rapidly accumulates in hepatocytes and mediates long-lasting trans-inhibition of the transport and receptor function of NTCP via a particular TLC-binding site at an intracellularly accessible domain of NTCP. Physiologically, this trans-inhibition might protect hepatocytes from toxic overload of bile acids. Pharmacologically, it provides an interesting novel NTCP target site for potential long-acting HBV/HDV entry inhibitors.NEW & NOTEWORTHY The hepatic bile acid transporter NTCP is a high-affinity receptor for hepatitis B and D viruses. This study shows that TLC rapidly accumulates in NTCP-expressing hepatoma cells and mediates long-lasting trans-inhibition of NTCP's transporter and receptor function via an intracellularly accessible domain, without substantially affecting its membrane expression. This domain is a promising novel NTCP target site for pharmacological long-acting HBV/HDV entry inhibitors.
Collapse
Affiliation(s)
- Kira A A T Lowjaga
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Michael Kirstgen
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Simon F Müller
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
21
|
Siemienowicz KJ, Filis P, Shaw S, Douglas A, Thomas J, Mulroy S, Howie F, Fowler PA, Duncan WC, Rae MT. Fetal androgen exposure is a determinant of adult male metabolic health. Sci Rep 2019; 9:20195. [PMID: 31882954 PMCID: PMC6934666 DOI: 10.1038/s41598-019-56790-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Androgen signalling is a critical driver of male development. Fetal steroid signalling can be dysregulated by a range of environmental insults and clinical conditions. We hypothesised that poor adult male health was partially attributable to aberrant androgen exposure during development. Testosterone was directly administered to developing male ovine fetuses to model excess prenatal androgenic overexposure associated with conditions such as polycystic ovary syndrome (PCOS). Such in utero androgen excess recreated the dyslipidaemia and hormonal profile observed in sons of PCOS patients. 1,084 of 15,134 and 408 of 2,766 quantifiable genes and proteins respectively, were altered in the liver during adolescence, attributable to fetal androgen excess. Furthermore, prenatal androgen excess predisposed to adolescent development of an intrahepatic cholestasis-like condition with attendant hypercholesterolaemia and an emergent pro-fibrotic, pro-oxidative stress gene and protein expression profile evident in both liver and circulation. We conclude that prenatal androgen excess is a previously unrecognised determinant of lifelong male metabolic health.
Collapse
Affiliation(s)
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sophie Shaw
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Alex Douglas
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Jennifer Thomas
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Sally Mulroy
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Forbes Howie
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mick T Rae
- School of Applied Science, Edinburgh Napier University, Edinburgh, EH11 4BN, UK.
| |
Collapse
|
22
|
ABCC3 Expressed by CD56 dim CD16 + NK Cells Predicts Response in Glioblastoma Patients Treated with Combined Chemotherapy and Dendritic Cell Immunotherapy. Int J Mol Sci 2019; 20:ijms20235886. [PMID: 31771235 PMCID: PMC6928625 DOI: 10.3390/ijms20235886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Recently, we found that temozolomide (TMZ) can upregulate the expression of the multidrug-resistance protein ABCC3 in NK cells from both glioma-bearing mice and glioblastoma patients treated with dendritic cell immunotherapy combined with TMZ, allowing NK cells to escape apoptosis and favoring their role as antitumor effector cells. Here, we demonstrate that CD56dim NK cells expressing CD16+ are predominant in patients surviving more than 12 months after surgery without disease progression. CD56dim CD16+ NK cells co-expressed high levels of ABCC3 and IFN-γ. Notably, not only basal but also TMZ-induced ABCC3 expression was related to a strong, long-term NK cell response and a better prognosis of patients. The identification of the single nucleotide polymorphism (SNP) rs35467079 with the deletion of a cytosine (−897DelC) in the promoter region of the ABCC3 gene resulted associated with a better patient outcome. ABCC3 expression in patients carrying DelC compared to patients with reference haplotype was higher and modulated by TMZ. The transcription factor NRF2, involved in ABCC3 induction, was phosphorylated in CD56dim CD16+ NK cells expressing ABCC3 under TMZ treatment. Thus, ABCC3 protein and the SNP −897DelC can play a predictive role in patients affected by GBM, and possibly other cancers, treated with dendritic cell immunotherapy combined with chemotherapy.
Collapse
|
23
|
Ito K, Sjöstedt N, Brouwer KLR. Mechanistic Modeling of the Hepatic Disposition of Estradiol-17 β-Glucuronide in Sandwich-Cultured Human Hepatocytes. Drug Metab Dispos 2019; 48:116-122. [PMID: 31744810 DOI: 10.1124/dmd.119.088898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022] Open
Abstract
Estradiol-17β-glucuronide (E217G) is an estrogen metabolite that has cholestatic properties. In humans, circulating E217G is transported into hepatocytes by organic anion transporting polypeptides (OATPs) and is excreted into bile by multidrug-resistance associated protein 2 (MRP2). E217G is also a substrate of the basolateral efflux transporters MRP3 and MRP4, which translocate E217G from hepatocytes to blood. However, the contribution of basolateral efflux to hepatocyte disposition of E217G has not been evaluated previously. To address this question, E217G disposition was studied in sandwich-cultured human hepatocytes and mechanistic modeling was applied to calculate clearance values (mean ± S.D.) for uptake, intrinsic biliary excretion (CLint,bile) and intrinsic basolateral efflux (CLint,BL). The biliary excretion index of E217G was 45% ± 6%. The CLint,BL of E217G [0.18 ± 0.03 (ml/min)/g liver) was 1.6-fold higher than CLint,bile [0.11 ± 0.06 (ml/min)/g liver]. Simulations were performed to study the effects of increased CLint,BL and a concomitant decrease in CLint,bile on hepatic E217G exposure. Results demonstrated that increased CLint,BL can effectively reduce hepatocellular and biliary exposure to this potent cholestatic agent. Simulations also revealed that basolateral efflux can compensate for impaired biliary excretion and, vice versa, to avoid accumulation of E217G in hepatocytes. However, when both clearance processes are impaired by 90%, hepatocyte E217G exposure increases up to 10-fold. These data highlight the contribution of basolateral efflux transport, in addition to MRP2-mediated biliary excretion, to E217G disposition in human hepatocytes. This elimination route could be important, especially in cases where basolateral efflux is induced, such as cholestasis. SIGNIFICANCE STATEMENT: The disposition of the cholestatic estrogen metabolite estradiol-17β-glucuronide (E217G) was characterized in sandwich-cultured human hepatocytes. The intrinsic basolateral efflux clearance was estimated to be 1.6-fold higher than the intrinsic biliary excretion clearance, emphasizing the contribution of basolateral elimination in addition to biliary excretion. Simulations highlight how hepatocytes can effectively cope with increased E217G through the regulation of both basolateral and biliary transporters.
Collapse
Affiliation(s)
- Katsuaki Ito
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| |
Collapse
|
24
|
Lian W, Liu X, Chen W. TNFα Induces Multidrug Resistance-Associated Protein 4 Expression through p38-E2F1-Nrf2 Signaling in Obstructive Cholestasis. Yonsei Med J 2019; 60:1045-1053. [PMID: 31637886 PMCID: PMC6813138 DOI: 10.3349/ymj.2019.60.11.1045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To explore the molecular mechanism of the upregulation of multidrug resistance-associated protein 4 (MRP4) in cholestasis. MATERIALS AND METHODS The mRNA and protein levels of MRP4 in liver samples from cholestatic patients were determined by quantitative real-time PCR and Western blot. In human hepatoma HepG2 cells, electrophoretic mobility shift assay (EMSA) was used to determine the affinity of nuclear factor-E2-related factor (Nrf2) binding to MRP4 promoter. Dual-luciferase reporter assay was used to detect the binding of tumor necrosis factor α (TNFα) to the promotor of E2F1. The bile duct ligation mouse models were established using male C57BL/6 mice. RESULTS The mRNA and protein levels of MRP4 were significantly increased in cholestatic patients. TNFα treatment induced the expression of MRP4 and Nrf2 and enhanced cell nuclear extract binding activity to MRP4 promoter, as demonstrated by EMSA. Nrf2 knockdown reduced MRP4 mRNA levels in both HepG2 and Hep-3B cells. In addition, TNFα increased Rb phosphorylation and expression of MRP4 and Nrf2 and activated E2F1 and phosphorylated p38 in HepG2 and Hep-3B cells. These effects were markedly inhibited by pretreatment with E2F1 siRNA. Dual-luciferase reporter assay validated that TNFα induces the transcription of E2F1. Furthermore, the expression of MRP4, Nrf2, E2F1, and p-p38 proteins was improved with treatment of TNFα in a mouse model of cholestasis. E2F1 siRNA lentivirus or SB 203580 (p38 inhibitor) inhibited these positive effects. CONCLUSION Our findings indicated that TNFα induces hepatic MRP4 expression through activation of the p38-E2F1-Nrf2 signaling pathway in human obstructive cholestasis.
Collapse
Affiliation(s)
- Wei Lian
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaocong Liu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
25
|
Xu F, Xu F, Xie S, Zuo W, Wen G, Zhao T, Wan X. MicroRNA-448 overexpression inhibits fibroblast proliferation and collagen synthesis and promotes cell apoptosis via targeting ABCC3 through the JNK signaling pathway. J Cell Physiol 2019; 235:1374-1385. [PMID: 31506947 DOI: 10.1002/jcp.29056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a condition that results in the progressive deterioration of lung function with poor prognosis. The current study is aimed at exploring how microRNA-448 (miR-448) targeting ABCC3 affects fibroblast proliferation, apoptosis, and collagen synthesis of mice with IPF via the Jun N-terminal kinase (JNK) signaling pathway. Bioinformatics and dual-luciferase polymerase chain reaction were used to predict the relationship of miR-448 and ABCC3. The expression of miR-448 and ABCC3 was detected in IPF tissues. Using IPF mouse models, lung fibroblasts for the experiments were treated with miR-448 mimic, miR-448 inhibitor, si-ABCC3, or SP600125 (inhibitor of JNK) to evaluate the cell proliferation and apoptosis in response to miR-448. Reverse transcription quantitative polymerase chain reaction and western blot analysis were used to identify the expression of miR-448, ABCC3, and the activation of the JNK signaling pathway. ABCC3 was targeted and downregulated by miR-448 based on bioinformatics prediction and dual-luciferase reporter gene assay. Additionally, miR-448 was found to be highly expressed in IPF lung tissues with low expression levels of ABCC3. In response to the treatment of miR-448 mimic or si-ABCC3, lung fibroblasts exhibited decreased cell proliferation and increased apoptotic rates, whereas the miR-448 inhibitor reversed the conditions. Notably, we also found that miR-448 mimic inhibited the JNK signaling pathway. In conclusion, by using miR-448 to target and downregulate ABCC3 to block the JNK signaling pathway in mice with IPF, we found an increase in fibroblast apoptosis, inhibited cell proliferation, and decreased collagen synthesis of fibroblasts.
Collapse
Affiliation(s)
- Feihong Xu
- Clinical Medicine, Queen Mary College, Nanchang University, Nanchang, China
| | - Fei Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shiguang Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Zuo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guilan Wen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiantian Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Xie C, Takahashi S, Brocker CN, He S, Chen L, Xie G, Jang K, Gao X, Krausz KW, Qu A, Levi M, Gonzalez FJ. Hepatocyte peroxisome proliferator-activated receptor α regulates bile acid synthesis and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1396-1411. [PMID: 31195146 DOI: 10.1016/j.bbalip.2019.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/05/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) controls lipid homeostasis through regulation of lipid transport and catabolism. PPARα activators are clinically used for hyperlipidemia treatment. The role of PPARα in bile acid (BA) homeostasis is beginning to emerge. Herein, Ppara-null and hepatocyte-specific Ppara-null (Ppara∆Hep) as well as the respective wild-type mice were treated with the potent PPARα agonist Wy-14,643 (Wy) and global metabolomics performed to clarify the role of hepatocyte PPARα in the regulation of BA homeostasis. Levels of all serum BAs were markedly elevated in Wy-treated wild-type mice but not in Ppara-null and Ppara∆Hep mice. Gene expression analysis showed that PPARα activation (1) down-regulated the expression of sodium-taurocholate acid transporting polypeptide and organic ion transporting polypeptide 1 and 4, responsible for the uptake of BAs into the liver; (2) decreased the expression of bile salt export pump transporting BA from hepatocytes into the bile canaliculus; (3) upregulated the expression of multidrug resistance-associated protein 3 and 4 transporting BA from hepatocytes into the portal vein. Moreover, there was a notable increase in the compositions of serum, hepatic and biliary cholic acid and taurocholic acid following Wy treatment, which correlated with the upregulated expression of the Cyp8b1 gene encoding sterol 12α-hydroxylase. The effects of Wy were identical between the Ppara∆Hep and Ppara-null mice. Hepatocyte PPARα controlled BA synthesis and transport not only via direct transcriptional regulation but also via crosstalk with hepatic farnesoid X receptor signaling. These findings underscore a key role for hepatocyte PPARα in the control of BA homeostasis.
Collapse
Affiliation(s)
- Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States of America.
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| | - Shijun He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Li Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| | - Katrina Jang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| | - Xiaoxia Gao
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, PR China.
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, United States of America.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089, United States of America.
| |
Collapse
|
27
|
Gan L, Pan S, Cui J, Bai J, Jiang P, He Y. Functional analysis of the correlation between ABCB11 gene mutation and primary intrahepatic stone. Mol Med Rep 2018; 19:195-204. [PMID: 30431138 PMCID: PMC6297787 DOI: 10.3892/mmr.2018.9661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
The adenosine 5'‑triphosphate binding cassette subfamily B member (ABCB)11 gene is involved in bile transport, and mutations in this gene are associated with cholestasis and cholelithiasis. Therefore, the aim of the present study was to investigate the association between ABCB11 gene mutation and primary intrahepatic stone (PIS)s and to investigate the mechanism through which ABCB11 gene mutations affect the expression of the corresponding protein. Mutations of the ABCB11 gene in 443 PIS patients and 560 healthy participants were detected by exon sequencing. The expression levels of ABCB11 mRNA and bile salt export pump (BSEP) protein in the liver tissues of patients with PISs were measured by quantitative polymerase chain reaction and western blot analysis. The mutant plasmids constructed by site‑directed mutagenesis of the human BSEP gene were transfected into human embryonic kidney 293 (293) cells and Madin‑Darby canine kidney (MDCK) cells, and the expression and distribution of rs118109635 of BSEP was measured. There were two significant mutations in the ABCB11 gene of the PIS patients compared with the healthy population; a missense mutation, rs118109635 (P=0.025), and a synonymous mutation, rs497692 (P=0.006). The two mutations were associated with the occurrence of preoperative jaundice (P=0.026, and P=0.011, respectively). The expression levels of BSEP in PIS patients with the missense mutation rs118109635 was decreased, whereas its mRNA expression levels remained unchanged. In PIS patients with the synonymous mutation rs497692, the expression levels of ABCB11 were decreased at both the mRNA and protein level. It was also found that mutation A865V reduced the expression levels of BSEP in 293 cells at the cellular level; its distribution in MDCK cell membranes was decreased, whereas its mRNA levels remained unchanged. The mutated loci at rs118109635 and rs497692 of the ABCB11 gene were correlated with PISs, causing a decreased expression of BSEP and reduced distribution of the protein in the cell membrane. Therefore, mutations at rs118109635 and rs497692 of the ABCB11 gene may be risk factors for PISs.
Collapse
Affiliation(s)
- Lang Gan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Shuguang Pan
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jinchi Cui
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jie Bai
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
28
|
Pan Q, Zhang X, Zhang L, Cheng Y, Zhao N, Li F, Zhou X, Chen S, Li J, Xu S, Huang D, Chen Y, Li L, Wang H, Chen W, Cai SY, Boyer JL, Chai J. Solute Carrier Organic Anion Transporter Family Member 3A1 Is a Bile Acid Efflux Transporter in Cholestasis. Gastroenterology 2018; 155:1578-1592.e16. [PMID: 30063921 PMCID: PMC6221191 DOI: 10.1053/j.gastro.2018.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/23/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Bile acid transporters maintain bile acid homeostasis. Little is known about the functions of some transporters in cholestasis or their regulatory mechanism. We investigated the hepatic expression of solute carrier organic anion transporter family member 3A1 (SLCO3A1, also called OATP3A1) and assessed its functions during development of cholestasis. METHODS We measured levels of OATP3A1 protein and messenger RNA and localized the protein in liver tissues from 22 patients with cholestasis and 21 patients without cholestasis, using real-time quantitative polymerase chain reaction, immunoblot, and immunofluorescence analyses. We performed experiments with Slco3a1-knockout and C57BL/6J (control) mice. Mice and Sprague-Dawley rats underwent bile duct ligation (BDL) or a sham operation. Some mice were placed on a 1% cholic acid (CA) diet to induce cholestasis or on a control diet. Serum and liver tissues were collected and analyzed; hepatic levels of bile acids and 7-α-C4 were measured using liquid chromatography/mass spectrometry. Human primary hepatocytes and hepatoma (PLC/PRF/5) cell lines were used to study mechanisms that regulate OATP3A1 expression and transport. RESULTS Hepatic levels of OATP3A1 messenger RNA and protein were significantly increased in liver tissues from patients with cholestasis and from rodents with BDL or 1% CA diet-induced cholestasis. Levels of fibroblast growth factor 19 (FGF19, FGF15 in rodents) were also increased in liver tissues from patients and rodents with cholestasis. FGF19 signaling activated the Sp1 transcription factor and nuclear factor κB to increase expression of OATP3A1 in hepatocytes; we found binding sites for these factors in the SLCO3A1 promoter. Slco3a1-knockout mice had shorter survival times and increased hepatic levels of bile acid, and they developed more liver injury after the 1% CA diet or BDL than control mice. In hepatoma cell lines, we found OATP3A1 to take prostaglandin E2 and thyroxine into cells and efflux bile acids. CONCLUSIONS We found levels of OATP3A1 to be increased in cholestatic liver tissues from patients and rodents compared with healthy liver tissues. We show that OATP3A1 functions as a bile acid efflux transporter that is up-regulated as an adaptive response to cholestasis.
Collapse
Affiliation(s)
- Qiong Pan
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoxun Zhang
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liangjun Zhang
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Cheng
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Zhao
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fengju Li
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueqian Zhou
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianwei Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Senlin Xu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yue Chen
- Department of Nuclear Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lihua Li
- Department of Cell Biology, Jinzhou Medical University, Liaoning, China
| | - Huaizhi Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wensheng Chen
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Jin Chai
- Cholestatic Liver Diseases Center and Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
29
|
Hammann F, Schöning V, Drewe J. Prediction of clinically relevant drug-induced liver injury from structure using machine learning. J Appl Toxicol 2018; 39:412-419. [DOI: 10.1002/jat.3741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Felix Hammann
- Division of Clinical Pharmacology and Toxicology; University Hospital Basel; Basel Switzerland
| | - Verena Schöning
- Division of Clinical Pharmacology and Toxicology; University Hospital Basel; Basel Switzerland
| | - Jürgen Drewe
- Division of Clinical Pharmacology and Toxicology; University Hospital Basel; Basel Switzerland
| |
Collapse
|
30
|
Yuan Z, Wang G, Qu J, Wang X, Li K. 9-cis-retinoic acid elevates MRP3 expression by inhibiting sumoylation of RXRα to alleviate cholestatic liver injury. Biochem Biophys Res Commun 2018; 503:188-194. [PMID: 29885283 DOI: 10.1016/j.bbrc.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022]
Abstract
AIMS Vitamin A and its metabolites has been found to be protective against cholestatic liver injury, but the exact underlying mechanisms involved in cholestatic liver injury remain unclear. The objective of this study was to determine the function and mechanisms of 9-cis-retinoic acid, the metabolite of vitamin A, in cholestatic liver injury. METHODS The bile duct ligated (BDL) mice were treated with 9-cis-retinoic acid by intravenous injection through the tail for 10 days. The liver function and histology were assessed in the matched group and experimental group. The expression of MRP3 in liver tissue was tested by qRT-PCR, Western blotting, and IHC. Effect of RXRα sumoylation on MRP3 expression was investigated at a cellular level. Influence of 9-cis-retinoic acid on RXRα sumoylation was also tested in cells. RESULTS Our findings showed that 9-cis-retinoic acid significantly decreases the serum ALT and AST level, alleviates hepatic necrosis of the BDL-mice. We also identified MRP3, an important protective hepatobiliary transporter in cholestasis, was elevated by 9-cis-retinoic acid in vivo and in vitro. 9-cis-retinoic acid weakened the sumoylation of RXRα, which promotes the cytoplasmic location of RXRα and lightens the interaction of RXRα and RARα. Inhibition of RXRα and RARα interaction increased MRP3 expression. CONCLUSIONS 9-cis-retinoic acid alleviates cholestatic liver injury by elevating MRP3 expression through its mechanism of inhibiting sumoylation of RXRα.
Collapse
Affiliation(s)
- Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Guiyang Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Junwen Qu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Kewei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| |
Collapse
|
31
|
Guo C, LaCerte C, Edwards JE, Brouwer KR, Brouwer KLR. Farnesoid X Receptor Agonists Obeticholic Acid and Chenodeoxycholic Acid Increase Bile Acid Efflux in Sandwich-Cultured Human Hepatocytes: Functional Evidence and Mechanisms. J Pharmacol Exp Ther 2018; 365:413-421. [PMID: 29487110 DOI: 10.1124/jpet.117.246033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/20/2018] [Indexed: 01/04/2023] Open
Abstract
The farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in bile acid homeostasis. FXR agonists, obeticholic acid (OCA) and chenodeoxycholic acid (CDCA), increase mRNA expression of efflux transporters in sandwich-cultured human hepatocytes (SCHH). This study evaluated the effects of OCA and CDCA treatment on the uptake, basolateral efflux, and biliary excretion of a model bile acid, taurocholate (TCA), in SCHH. In addition, changes in the protein expression of TCA uptake and efflux transporters were investigated. SCHH were treated with 1 µM OCA, 100 µM CDCA, or vehicle control for 72 hours followed by quantification of deuterated TCA uptake and efflux over time in Ca2+-containing and Ca2+-free conditions (n = 3 donors). A mechanistic pharmacokinetic model was fit to the TCA mass-time data to obtain estimates for total uptake clearance (CLUptake), total intrinsic basolateral efflux clearance (CLint,BL), and total intrinsic biliary clearance (CLint,Bile). Modeling results revealed that FXR agonists significantly increased CLint,BL by >6-fold and significantly increased CLint,Bile by 2-fold, with minimal effect on CLUptake Immunoblotting showed that protein levels of the basolateral transporter subunits organic solute transporter α and β (OSTα and OSTβ) in FXR agonist-treated SCHH were significantly induced by >2.5- and 10-fold, respectively. FXR agonist-mediated changes in the expression of other TCA transporters in SCHH were modest. In conclusion, this is the first report demonstrating that OCA and CDCA increased TCA efflux in SCHH, which contributed to reduced intracellular TCA concentrations. Increased basolateral efflux of TCA was consistent with increased OSTα/β protein expression in OCA- and CDCA-treated SCHH.
Collapse
Affiliation(s)
- Cen Guo
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| | - Carl LaCerte
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| | - Jeffrey E Edwards
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| | - Kenneth R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.G., K.L.R.B.); Intercept Pharmaceuticals, San Diego, California (C.L., J.E.E.); and Qualyst Transporter Solutions, Durham, North Carolina (K.R.B.)
| |
Collapse
|
32
|
An Q, Hu Q, Wang B, Cui W, Wu F, Ding Y. Oleanolic acid alleviates diabetic rat carotid artery injury through the inhibition of NLRP3 inflammasome signaling pathways. Mol Med Rep 2017; 16:8413-8419. [PMID: 28944913 DOI: 10.3892/mmr.2017.7594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
The overexpression of inflammasome components is correlated with diabetes‑associated complications. Oleanolic acid is a triterpenoid compound which is important in arterial injury. The present study evaluated whether oleanolic acid improved diabetic rat carotid artery injury through the inhibition of nucleotide‑binding domain, leucine‑rich‑containing family, pyrin domain‑containing‑3 (NLRP3) inflammasomes signaling pathways. A diabetic rat model was induced using streptozotocin (60 mg/kg) and underwent carotid artery injury. Morphometric analysis was performed using hematoxylin and eosin staining. The mRNA and protein levels were assayed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. It was found that oleanolic acid (100 mg/kg/day) improved body weight, glucose metabolic disorders, neointimal hyperplasia and endothelial dysfunction in diabetic rats with carotid artery injury. In addition, oleanolic acid administration significantly downregulated the mRNA and protein expression levels of endothelin 1 in diabetic rats. Oleanolic acid decreased the intimal area and the ratio of neointima to media in diabetic rats. Serum levels of tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and IL‑18 in the oleanolic acid‑treated diabetic rats were downregulated. Consistent with the serum results, it was demonstrated that oleanolic acid administration caused a significant decrease in the levels of NLRP3, caspase‑1 and IL‑1β in the carotid arteries of diabetic rats. Taken together, these observations suggested that oleanolic acid attenuated carotid artery injury in diabetic rats and the underlying mechanism was mediated, at least partially, through the suppression of NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Qian An
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Qian Hu
- Staff Room of Surgery, Zhengzhou Railway Vocational Technical College, Zhengzhou, Henan 450052, P.R. China
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Wenjun Cui
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Fei Wu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| | - Yu Ding
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 470000, P.R. China
| |
Collapse
|
33
|
Wang X, Ma Y, Liu J, Yin X, Zhang Z, Wang C, Li Y, Wang H. Reproductive toxicity of β-diketone antibiotic mixtures to zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:160-170. [PMID: 28342328 DOI: 10.1016/j.ecoenv.2017.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/03/2023]
Abstract
So far, few data are available on the reproductive toxicological assessment of β-diketone antibiotics (DKAs), a class of ubiquitous pseudo-persistent pollutant, in zebrafish (Danio rerio). Herein, we reported the reproductive effects of DKAs by means of transcriptome analysis (F1-zebrafish), changes in a series of reproductive indices (F0-zebrafish) and histopathological observations. A total of 1170, 983 and 1399 genes were found to be differentially expressed when compared control vs. 6.25mg/L, control vs. 12.5mg/L and 6.25 vs. 12.5mg/L DKA-exposure treatments, respectively. Among three comparison groups, 670, 569 and 821 genes were respectively assigned for GO analyses based on matches with sequences of known functions. In 149 KEGG-noted metabolic pathways, the preferential one was the MAPK (mitogen-activated protein kinase) signaling pathway, followed by oxidative phosphorylation, neuroactive ligand-receptor interaction and so on. By qPCR verification, 6 genes (c6ast4, igfbp1b, mrpl42, tnnc2, emc4 and ddit4) showed consistent gene expression with those identified by transcriptome sequencing. Due to DKA-exposure, the concentrations of plasma estradiol and testosterone, and the gonado-somatic index were significantly dose-dependently declined. Also, DKA-exposure led to declining in zebrafish reproductive capacity, reflecting in fertilization, hatchability and egg production. Histopathological observations demonstrated that zebrafish ovary and testis suffered serious damage after DKA-exposure. The 4-oxo-TEMP signals increased obviously with increasing DKA-exposed concentrations, implying disruption of balance between generation and clearance of 1O2. In summary, DKAs not only produce reproductive toxicological effects on F0-zebrafish, but also result in adverse consequences for growth and development of F1-zebrafish.
Collapse
Affiliation(s)
- Xuedong Wang
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan Ma
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinfeng Liu
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohan Yin
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiheng Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Caihong Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanyan Li
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
34
|
Kozlov AV, Lancaster JR, Meszaros AT, Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 2017; 13:170-181. [PMID: 28578275 PMCID: PMC5458092 DOI: 10.1016/j.redox.2017.05.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023] Open
Abstract
Liver failure induced by systemic inflammatory response (SIRS) is often associated with mitochondrial dysfunction but the mechanism linking SIRS and mitochondria-mediated liver failure is still a matter of discussion. Current hypotheses suggest that causative events could be a drop in ATP synthesis, opening of mitochondrial permeability transition pore, specific changes in mitochondrial morphology, impaired Ca2+ uptake, generation of mitochondrial reactive oxygen species (mtROS), turnover of mitochondria and imbalance in electron supply to the respiratory chain. The aim of this review is to critically analyze existing hypotheses, in order to highlight the most promising research lines helping to prevent liver failure induced by SIRS. Evaluation of the literature shows that there is no consistent support that impaired Ca++ metabolism, electron transport chain function and ultrastructure of mitochondria substantially contribute to liver failure. Moreover, our analysis suggests that the drop in ATP levels has protective rather than a deleterious character. Recent data suggest that the most critical mitochondrial event occurring upon SIRS is the release of mtROS in cytoplasm, which can activate two specific intracellular signaling cascades. The first is the mtROS-mediated activation of NADPH-oxidase in liver macrophages and endothelial cells; the second is the acceleration of the expression of inflammatory genes in hepatocytes. The signaling action of mtROS is strictly controlled in mitochondria at three points, (i) at the site of ROS generation at complex I, (ii) the site of mtROS release in cytoplasm via permeability transition pore, and (iii) interaction with specific kinases in cytoplasm. The systems controlling mtROS-signaling include pro- and anti-inflammatory mediators, nitric oxide, Ca2+ and NADPH-oxidase. Analysis of the literature suggests that further research should be focused on the impact of mtROS on organ failure induced by inflammation and simultaneously providing a new theoretical basis for a targeted therapy of overwhelmed inflammatory response. Relationship between mitochondrial dysfunction and high lethality upon sepsis. Criteria to define critical for lethality mitochondrial dysfunction. ATP, calcium, mitochondrial ultrastructure and apoptosis, upon inflammation. Regulation of inflammatory processes by mitochondrial ROS.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria.
| | - Jack R Lancaster
- University of Pittsburgh, Departments of Pharmacology & Chemical Biology, Surgery, and Medicine, 1341A Thomas E. Starzl Biomedical Science Tower, PA 15261, United States
| | - Andras T Meszaros
- University of Szeged, Institute of Surgical Research, 6720 Szeged, Hungary
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria
| |
Collapse
|
35
|
Thakkar N, Slizgi JR, Brouwer KLR. Effect of Liver Disease on Hepatic Transporter Expression and Function. J Pharm Sci 2017; 106:2282-2294. [PMID: 28465155 DOI: 10.1016/j.xphs.2017.04.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition.
Collapse
Affiliation(s)
- Nilay Thakkar
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jason R Slizgi
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
36
|
Cheng Y, Freeden C, Zhang Y, Abraham P, Shen H, Wescott D, Humphreys WG, Gan J, Lai Y. Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment. Biopharm Drug Dispos 2017; 37:276-86. [PMID: 27059119 DOI: 10.1002/bdd.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/15/2016] [Accepted: 03/28/2016] [Indexed: 01/07/2023]
Abstract
The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Chris Freeden
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Pamela Abraham
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Debra Wescott
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Jinping Gan
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Research and Development Bristol-Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
37
|
Yang J, Luo M, Tan Z, Dai M, Xie M, Lin J, Hua H, Ma Q, Zhao J, Liu A. Oral administration of nano-titanium dioxide particle disrupts hepatic metabolic functions in a mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:112-118. [PMID: 27984778 DOI: 10.1016/j.etap.2016.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/26/2016] [Accepted: 12/09/2016] [Indexed: 05/28/2023]
Abstract
TiO2 nano-particle (TiO2 NP) is widely used in industrial, household necessities, as well as medicinal products. However, the effect of TiO2 NP on liver metabolic function has not been reported. In this study, after mice were orally administered TiO2 NP (21nm) for 14days, the serum and liver tissues were assayed by biochemical analysis, real time quantitative polymerase chain reaction, western blot and transmission electron microscopy. The serum bilirubin was increased in a dose dependent manner. Deposition of TiO2 NP in hepatocytes and the abnormality of microstructures was observed. Expression of metabolic genes involved in the endogenous and exogenous metabolism was modified, supporting the toxic phenotype. Collectively, oral administration of TiO2 NP (21nm) led to deposition of particles in hepatocytes, mitochondrial edema, and the disturbance of liver metabolism function. These data suggested oral administration disrupts liver metabolic functions, which was more sensitive than regular approaches to detect material hepatotoxicity. This study provided useful information for risk analysis and regulation of TiO2 NPs by administration agencies.
Collapse
Affiliation(s)
- Julin Yang
- Ningbo College of Health Sciences, Ningbo 315100, China
| | - Min Luo
- Medical School of Ningbo University, Ningbo 315211, China
| | - Zhen Tan
- Medical School of Ningbo University, Ningbo 315211, China
| | - Manyun Dai
- Medical School of Ningbo University, Ningbo 315211, China
| | - Minzhu Xie
- Medical School of Ningbo University, Ningbo 315211, China
| | - Jiao Lin
- Medical School of Ningbo University, Ningbo 315211, China
| | - Huiying Hua
- Medical School of Ningbo University, Ningbo 315211, China
| | - Qing Ma
- Medical School of Ningbo University, Ningbo 315211, China
| | - Jinshun Zhao
- Medical School of Ningbo University, Ningbo 315211, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
38
|
Kotiya D, Jaiswal B, Ghose S, Kaul R, Datta K, Tyagi RK. Role of PXR in Hepatic Cancer: Its Influences on Liver Detoxification Capacity and Cancer Progression. PLoS One 2016; 11:e0164087. [PMID: 27760163 PMCID: PMC5070842 DOI: 10.1371/journal.pone.0164087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
The role of nuclear receptor PXR in detoxification and clearance of xenobiotics and endobiotics is well-established. However, its projected role in hepatic cancer is rather illusive where its expression is reported altered in different cancers depending on the tissue-type and microenvironment. The expression of PXR, its target genes and their biological or clinical significance have not been examined in hepatic cancer. In the present study, by generating DEN-induced hepatic cancer in mice, we report that the expression of PXR and its target genes CYP3A11 and GSTa2 are down-regulated implying impairment of hepatic detoxification capacity. A higher state of inflammation was observed in liver cancer tissues as evident from upregulation of inflammatory cytokines IL-6 and TNF-α along with NF-κB and STAT3. Our data in mouse model suggested a negative correlation between down-regulation of PXR and its target genes with that of higher expression of inflammatory proteins (like IL-6, TNF-α, NF-κB). In conjunction, our findings with relevant cell culture based assays showed that higher expression of PXR is involved in reduction of tumorigenic potential in hepatic cancer. Overall, the findings suggest that inflammation influences the expression of hepatic proteins important in drug metabolism while higher PXR level reduces tumorigenic potential in hepatic cancer.
Collapse
Affiliation(s)
- Deepak Kotiya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Bharti Jaiswal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sampa Ghose
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rachna Kaul
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Kasturi Datta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
39
|
Sasaki T, Inami K, Numata Y, Funakoshi K, Yoshida M, Kumagai T, Kanno S, Matsui S, Toriyabe T, Yamazoe Y, Yoshinari K, Nagata K. Activation of p38 Mitogen-Activated Protein Kinase by Clotrimazole Induces Multidrug Resistance-Associated Protein 3 Activation through a Novel Transcriptional Element. J Pharmacol Exp Ther 2016; 359:102-9. [PMID: 27507784 DOI: 10.1124/jpet.115.231589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/02/2016] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance-associated protein 3 (MRP3) is a basolaterally localized transporter in the liver and contributes to the transport of various metabolites such as conjugates of endogenous compounds and drugs from hepatocytes. MRP3 expression in the human liver is low under normal physiologic conditions but is induced by drug treatment. Although several studies have identified a region necessary for the basal transcription of MRP3, no region that responds to drugs has been reported. To identify the xenobiotic-responsive elements of MRP3, we constructed a luciferase reporter plasmid containing the MRP3 5'-flanking region up to -10 kb upstream from the transcription start site. Among typical nuclear receptor ligands, clotrimazole dramatically enhanced MRP3 reporter activity in HepG2 cells, whereas rifampicin had no effect. We then conducted MRP3 reporter assays with deletion or mutation constructs to identify a clotrimazole-responsive element. The element was located approximately -6.8 kb upstream from the MRP3 transcription start site. Overexpression of the pregnane X receptor did not enhance clotrimazole-mediated transcription. We found that clotrimazole was toxic to HepG2 cells and we therefore investigated whether mitogen-activated protein kinase (MAPK) activation is involved in the transactivation of MRP3 by clotrimazole. p38 MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole] suppressed MRP3 mRNA expression induced by clotrimazole, whereas c-Jun N-terminal kinase inhibitor SP600125 (1,9-pyrazoloanthrone) and extracellular signal-regulated kinase inhibitor PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one] did not. Phosphorylated p38 MAPK was detected in HepG2 cells treated with clotrimazole. These results suggest that activation of the p38 MAPK pathway induces the transcriptional activation of MRP3.
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Keita Inami
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Yoshihiro Numata
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Kodai Funakoshi
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Midori Yoshida
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Takeshi Kumagai
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Shuichi Kanno
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Satomi Matsui
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Takayoshi Toriyabe
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Yasushi Yamazoe
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Kouichi Yoshinari
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| | - Kiyoshi Nagata
- Department of Environmental and Health Science (T.S., K.I., Y.N., K.F., M.Y., T.K., K.N.) and Clinical Pharmacotherapeutics (S.K.), Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan (T.S., K.Y.); and Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan (S.M., T.T., Y.Y.)
| |
Collapse
|
40
|
Wu X, Liang X, DU Y, Zhang Y, Yang M, Gong W, Liu B, Dong J, Zhang N, Zhang H. Prevention of gallstones by Lidan Granule: Insight into underlying mechanisms using a guinea pig model. Biomed Rep 2016; 5:50-56. [PMID: 27347405 PMCID: PMC4906940 DOI: 10.3892/br.2016.672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of the study was to examine the mechanism of action of Lidan Granule (LDG) for the prevention of gallstones using a guinea pig model. One hundred guinea pigs were divided into five groups randomly: control (standard diet and saline), model [lithogenic diet (LD) and saline], LDG-H (LD and 2 g/kg of LDG), LDG-L (LD and 1 g/kg of LDG), and ursodeoxycholic acid (UDCA) (LD and UDCA) as the positive control. At 6 weeks, the rate of gallstone formation and weight of the adrenal gland were recorded and serum levels of inflammatory cytokines were measured. Levels of corticotrophin-releasing hormone (CRH) in the hypothalamus, adrenocorticotropic hormone (ACTH) in the hypophysis, and serum cortisol were determined. Bile components were tested with colorimetry. At 6 weeks, the rate of gallstone formation was significantly decreased in the LDG-H (14.29%) and LDG-L (21.43%) groups compared to the model group (81.25%; P<0.01). LDG treatment decreased the serum levels of interleukin (IL)-1, IL-6, and tumor necrosis factor-α (P<0.01). LDG decreased bile cholesterol and increased bile acid and phospholipid levels in the bile (P<0.01). LDG treatment recovered the function of the hypothalamic-pituitary-adrenal (HPA) axis by increasing the expression of CRH (P<0.01) and ACTH (P<0.05). LDG made the bile less lithogenic, improved the function of the HPA axis, and regulated the expression of inflammatory cytokines for the prevention of cholelithiasis.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiaoqiang Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yijie DU
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yan Zhang
- General Surgery, Dong'e People's Hospital, Liaocheng, Shandong 252200, P.R. China
| | - Meng Yang
- General Surgery, Dong'e People's Hospital, Liaocheng, Shandong 252200, P.R. China
| | - Weiyi Gong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ningxia Zhang
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China; Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
41
|
Lian W, Liu X, Yang L, Zhang L, Feng X, Chen W. WITHDRAWN: The role of TNFα in promoting hepatic MRP4 expression via the p38-Rb-E2F1 pathway in human obstructive cholestasis. Biochem Biophys Res Commun 2016:S0006-291X(16)30061-4. [PMID: 26792717 DOI: 10.1016/j.bbrc.2016.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
This article has been withdrawn at the request of the editor and the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Wei Lian
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaocong Liu
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Long Yang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Liangjun Zhang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xinchan Feng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
42
|
Chai J, Cai SY, Liu X, Lian W, Chen S, Zhang L, Feng X, Cheng Y, He X, He Y, Chen L, Wang R, Wang H, Boyer JL, Chen W. Canalicular membrane MRP2/ABCC2 internalization is determined by Ezrin Thr567 phosphorylation in human obstructive cholestasis. J Hepatol 2015; 63. [PMID: 26212029 PMCID: PMC4686151 DOI: 10.1016/j.jhep.2015.07.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Multidrug resistance-associated protein 2 (MRP2) excretes conjugated organic anions including bilirubin and bile acids. Malfunction of MRP2 leads to jaundice in patients. Studies in rodents indicate that Radixin plays a critical role in determining Mrp2 canalicular membrane expression. However, it is not known how human hepatic MRP2 expression is regulated in cholestasis. METHODS We assessed liver MRP2 expression in patients with obstructive cholestasis caused by gallstone blockage of bile ducts, and investigated the regulatory mechanism in HepG2 cells. RESULTS Western blot detected that liver MRP2 protein expression in obstructive cholestatic patients (n=30) was significantly reduced to 25% of the non-cholestatic controls (n=23). Immunoprecipitation identified Ezrin but not Radixin associating with MRP2 in human livers, and the increased amount of phospho-Ezrin Thr567 was positively correlated with the amount of co-precipitated MRP2 in cholestatic livers, whereas Ezrin and Radixin total protein levels were unchanged in cholestasis. Further detailed studies indicate that Ezrin Thr567 phosphorylation plays an important role in MRP2 internalization in HepG2 cells. Since increased expression of PKCα, δ and ε were detected in these cholestatic livers, we further confirmed that these PKCs stimulated Ezrin phosphorylation and reduced MRP2 membrane expression in HepG2 cells. Finally, we identified GP78 as the key ubiquitin ligase E3 involved in MRP2 proteasome degradation. CONCLUSIONS Activation of liver PKCs during cholestasis leads to Ezrin Thr567 phosphorylation resulting in MRP2 internalization and degradation where ubiquitin ligase E3 GP78 is involved. This process provides a mechanistic explanation for jaundice seen in patients with obstructive cholestasis.
Collapse
Affiliation(s)
- Jin Chai
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shi-Ying Cai
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaocong Liu
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wei Lian
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Sheng Chen
- Department of Pediatrics, Third Military Medical University, Chongqing 400038, P.R. China
| | - Liangjun Zhang
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xinchan Feng
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Ying Cheng
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaochong He
- School of Nursing, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yu He
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Lei Chen
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Rongquan Wang
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huaizhi Wang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | - James L. Boyer
- Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wensheng Chen
- Department of Gastroenterology, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
43
|
Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, Brock WJ, Brouwer KLR. Inhibition of Human Hepatic Bile Acid Transporters by Tolvaptan and Metabolites: Contributing Factors to Drug-Induced Liver Injury? Toxicol Sci 2015; 149:237-50. [PMID: 26507107 DOI: 10.1093/toxsci/kfv231] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 μM, respectively), BSEP (31.6, 4.15, and 119 μM, respectively), MRP2 (>50, ∼51.0, and >200 μM, respectively), MRP3 (>50, ∼44.6, and 61.2 μM, respectively), and MRP4 (>50, 4.26, and 37.9 μM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 μM after a 10-min incubation duration with tolvaptan (15 μM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 μM) and TCA (2.5 μM). When tolvaptan (15 μM) was co-incubated with 2.5 μM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD.
Collapse
Affiliation(s)
- Jason R Slizgi
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| | - Yang Lu
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | | | | | - Maxwell Pan
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - William J Brock
- Otsuka Pharmaceutical Development and Commercialization, Inc., Rockville, Maryland 20850
| | - Kim L R Brouwer
- *Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599;
| |
Collapse
|
44
|
Liver Expression of Sulphotransferase 2A1 Enzyme Is Impaired in Patients with Primary Sclerosing Cholangitis: Lack of the Response to Enhanced Expression of PXR. J Immunol Res 2015; 2015:571353. [PMID: 26504856 PMCID: PMC4609469 DOI: 10.1155/2015/571353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Sulphotransferase 2A1 (SULT2A1) exerts hepatoprotective effects. Transcription of SULT2A1 gene is induced by pregnane-X-receptor (PXR) and can be repressed by miR-378a-5p. We studied the PXR/SULT2A1 axis in chronic cholestatic conditions: primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). MATERIALS/METHODS Western-blot/PCRs for SULT2A1/PXR were performed in PSC (n = 11), PBC (n = 19), and control liver tissues (n = 19). PXR and SULT2A1 mRNA was analyzed in intestinal tissues from 22 PSC patients. Genomic DNA was isolated from blood of PSC patients (n = 120) and an equal number of healthy volunteers. Liver miRNA expression was evaluated using Affymetrix-Gene-Chip miRNA4.0. RESULTS Increased PXR protein was observed in both PSC and PBC compared to controls and was accompanied by a significant increase of SULT2A1 in PBC but not in PSC. Decreased expression of SULT2A1 mRNA was also seen in ileum of patients with PSC. Unlike PBC, miRNA analysis in PSC has shown a substantial increase in liver miR-378a-5p. CONCLUSIONS PSC is characterized by disease-specific impairment of SULT2A1 expression following PXR activation, a phenomenon which is not noted in PBC, and may account for the impaired hepatoprotection in PSC. miRNA analysis suggests that SULT2A1 expression in PSC may be regulated by miR-378a-5p, connoting its pathogenic role.
Collapse
|
45
|
Subhani S, Jamil K, Nirni SS. Association of MDR1 gene (C3435T) polymorphism and gene expression profiling in lung cancer patients treated with platinum-based chemotherapy. Mol Diagn Ther 2015; 19:289-97. [PMID: 26288241 DOI: 10.1007/s40291-015-0154-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Chemotherapy is the standard and recommended treatment for lung cancer apart from surgery and radiotherapy. Chemotherapy is administered as mono-agents or as combination therapy. In this study, we examined the role of MDR1 C3435T polymorphisms in lung cancer patients undergoing chemotherapy. METHODS AND RESULTS We genotyped 126 cases with lung cancer and 111 healthy controls, using the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). Frequencies of MDR1 C3435C, C3435T and T3435T genotypes were 61, 16 and 23 % in lung cancer patients and 86, 9 and 5 % in the controls, respectively. The T3435T genotypes had a 5.23-fold increased risk for lung cancer. (OR 5.23; 95 % CI 2.082-13.146; p = 0.0004). Patients with TT genotypes were more frequent in stage IV and were significantly associated with the disease (p = 0.05). Habitual smoker lung cancer patients were 50 % CC genotypes whereas TT genotypes were 34 %. The non-smokers had 46 % CC genotypes and 23 % TT genotypes. Furthermore, we collected tissue biopsy samples for expression analysis from 20 patients (for controls we used the non-cancerous region of the same tissue). The present study showed mRNA expression of MDR1 was up-regulated in 80 % of the cancer group in comparison with the control group (p = 0.0002). We also correlated the association between MDR1 genotypes with different combinations of chemotherapy. The combinations and genotype distributions in the group receiving paclitaxel + cisplatin were as follows: CC (67 %), CT (24 %) and TT (9 %) genotypes, respectively, and the group receiving carboplatin + gemcitabine CC (46 %), CT (19 %) and TT (35 %) genotypes, respectively. We found that MDR1 (rs1045642) C3435T polymorphism and gene expression was significantly associated with the clinical outcome in lung carcinoma patients. CONCLUSION In conclusion, it is suggested that MDR1 TT genotypes had higher risk for the development of lung cancer. Also, this polymorphism could be used as a genetic marker for predicting the clinical outcome of lung cancer patients.
Collapse
Affiliation(s)
- Syed Subhani
- Genetics Department, Bhagwan Mahavir Medical Research Centre, #10-1-1, Mahavir Marg, Masab Tank, Hyderabad, 500004, Telangana, India
| | - Kaiser Jamil
- Genetics Department, Bhagwan Mahavir Medical Research Centre, #10-1-1, Mahavir Marg, Masab Tank, Hyderabad, 500004, Telangana, India.
| | | |
Collapse
|
46
|
Interleukin-18 Down-Regulates Multidrug Resistance-Associated Protein 2 Expression through Farnesoid X Receptor Associated with Nuclear Factor Kappa B and Yin Yang 1 in Human Hepatoma HepG2 Cells. PLoS One 2015; 10:e0136215. [PMID: 26292095 PMCID: PMC4546195 DOI: 10.1371/journal.pone.0136215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/31/2015] [Indexed: 01/25/2023] Open
Abstract
Multidrug resistance-associated protein 2 (MRP2) plays an important role in bile acid metabolism by transporting toxic organic anion conjugates, including conjugated bilirubin, glutathione, sulfate, and multifarious drugs. MRP2 expression is reduced in cholestatic patients and rodents. However, the molecular mechanism of MRP2 down-regulation remains elusive. In this report, we treated human hepatoma HepG2 cells with interleukin-18 (IL-18) and measured the expression of MRP2, nuclear factor kappa B (NF-κB), farnesoid X receptor (FXR), and the transcription factor Yin Yang 1 (YY1) by quantitative real-time quantitative polymerase chain reaction (PCR) and western blotting. We found that expression of MRP2 was repressed by IL-18 at both the mRNA and protein levels in a dose- and time-dependent manner. Furthermore, the activated NF-κB pathway increased YY1 and reduced FXR. These changes were all attenuated in HepG2 cells with knockdown of the NF-κB subunit, p65. The reduced expression of FXR and MRP2 in HepG2 cells that had been caused by IL-18 treatment was also attenuated by YY1 knockdown. We further observed significantly elevated IL-18, NF-κB, and YY1 expression and decreased FXR and MRP2 expression in bile duct-ligated Sprague Dawley rat livers. Chromatin immunoprecipitation assays also showed that FXR bound to the promoter region in MRP2 was less abundant in liver extracts from bile duct-ligated rats than sham-operated rats. Our findings indicate that IL-18 down-regulates MRP2 expression through the nuclear receptor FXR in HepG2 cells, and may be mediated by NF-κB and YY1.
Collapse
|
47
|
Ghonem NS, Assis DN, Boyer JL. Fibrates and cholestasis. Hepatology 2015; 62:635-43. [PMID: 25678132 PMCID: PMC4515188 DOI: 10.1002/hep.27744] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/30/2015] [Indexed: 12/26/2022]
Abstract
Cholestasis, including primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC), results from an impairment or disruption of bile production and causes intracellular retention of toxic bile constituents, including bile salts. If left untreated, cholestasis leads to liver fibrosis and cirrhosis, which eventually results in liver failure and the need for liver transplantation. Currently, the only therapeutic option available for these patients is ursodeoxycholic acid (UDCA), which slows the progression of PBC, particularly in stage I and II of the disease. However, some patients have an incomplete response to UDCA therapy, whereas other, more advanced cases often remain unresponsive. For PSC, UDCA therapy does not improve survival, and recommendations for its use remain controversial. These considerations emphasize the need for alternative therapies. Hepatic transporters, located along basolateral (sinusoidal) and apical (canalicular) membranes of hepatocytes, are integral determinants of bile formation and secretion. Nuclear receptors (NRs) are critically involved in the regulation of these hepatic transporters and are natural targets for therapy of cholestatic liver diseases. One of these NRs is peroxisome proliferator-activated receptor alpha (PPARα), which plays a central role in maintaining cholesterol, lipid, and bile acid homeostasis by regulating genes responsible for bile acid synthesis and transport in humans, including cytochrome P450 (CYP) isoform 7A1 (CYP7A1), CYP27A1, CYP8B1, uridine 5'-diphospho-glucuronosyltransferase 1A1, 1A3, 1A4, 1A6, hydroxysteroid sulfotransferase enzyme 2A1, multidrug resistance protein 3, and apical sodium-dependent bile salt transporter. Expression of many of these genes is altered in cholestatic liver diseases, but few have been extensively studied or had the mechanism of PPARα effect identified. In this review, we examine what is known about these mechanisms and consider the rationale for the use of PPARα ligand therapy, such as fenofibrate, in various cholestatic liver disorders.
Collapse
Affiliation(s)
- Nisanne S. Ghonem
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, Boston, MA
| | | | | |
Collapse
|
48
|
Swertianlarin, an Herbal Agent Derived from Swertia mussotii Franch, Attenuates Liver Injury, Inflammation, and Cholestasis in Common Bile Duct-Ligated Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:948376. [PMID: 26273316 PMCID: PMC4530240 DOI: 10.1155/2015/948376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 12/24/2022]
Abstract
Swertianlarin is an herbal agent abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb used for treatment of jaundice. To study the therapeutic effect of swertianlarin on cholestasis, liver injury, serum proinflammatory cytokines, and bile salt concentrations were measured by comparing rats treated with swertianlarin 100 mg/kg/d or saline for 3, 7, or 14 days after bile duct ligation (BDL). Serum alanine aminotransferase (ATL) and aspartate aminotransferase (AST) levels were significantly decreased in BDL rats treated with swertianlarin for 14 days (P < 0.05). The reduced liver injury in BDL rats by swertianlarin treatment for 14 days was further confirmed by liver histopathology. Levels of serum tumor necrosis factor alpha (TNFα) were decreased by swertianlarin in BDL rats for 3 and 7 days (P < 0.05). Moreover, reductions in serum interleukins IL-1β and IL-6 levels were also observed in BDL rats treated with swertianlarin (P < 0.05). In addition, most of serum toxic bile salt concentrations (e.g., chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA)) in cholestatic rats were decreased by swertianlarin (P < 0.05). In conclusion, the data suggest that swertianlarin derived from Swertia mussotii Franch attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats.
Collapse
|
49
|
Gupta V, Khan AA, Sasi BK, Mahapatra NR. Molecular mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: key roles of the transcription factors GATA2, Sp1 and TBP. J Neurochem 2015; 134:21-38. [PMID: 25810277 DOI: 10.1111/jnc.13099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Monoamine oxidase A (MAOA) plays important roles in the pathogenesis of several neurological and cardiovascular disorders. The mechanism of transcriptional regulation of MAOA under basal and pathological conditions, however, remains incompletely understood. Here, we report systematic identification and characterization of cis elements and transcription factors that govern the expression of MAOA gene. Extensive computational analysis of MAOA promoter, followed by 5'-promoter deletion/reporter assays, revealed that the -71/-40 bp domain was sufficient for its basal transcription. Gel-shift and chromatin immunoprecipitation assays provided evidence of interactions of the transcription factors GATA-binding protein 2 (GATA2), Sp1 and TATA-binding protein (TBP) with this proximal promoter region. Consistently, over-expression of GATA2, Sp1 and TBP augmented MAOA promoter activity in a coordinated manner. In corroboration, siRNA-mediated down-regulation of GATA2/Sp1/TBP repressed the endogenous MAOA expression as well as transfected MAOA promoter activity. Tumor necrosis factor-α and forskolin activated MAOA transcription that was reversed by Sp1 siRNA; in support, tumor necrosis factor-α- and forskolin-induced activities were enhanced by ectopic over-expression of Sp1. On the other hand, MAOA transcription was diminished upon exposure of neuroblasts or cardiac myoblasts to ischemia-like conditions because of reduced binding of GATA2/Sp1/TBP with MAOA promoter. In conclusion, this study revealed previously unknown roles of GATA2, Sp1 and TBP in modulating MAOA expression under basal as well as pathophysiological conditions such as inflammation and ischemia, thus providing new insights into the molecular basis of aberrant MAOA expression in neuronal/cardiovascular disease states. Dysregulation of monoamine oxidase A (MAOA) have been implicated in several behavioral and neuronal disease states. Here, we identified three crucial transcription factors (GATA2, Sp1 and TBP) that regulate MAOA gene expression in a coordinated manner. Aberrant MAOA expression under pathophysiological conditions including inflammation and ischemia is mediated by altered binding of GATA2/Sp1/TBP with MAOA proximal promoter. Thus, these findings provide new insights into pathogenesis of several common diseases. GATA2, GATA-binding protein 2; Sp1, specificity protein 1; TBP, TATA-binding protein.
Collapse
Affiliation(s)
- Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Binu K Sasi
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
50
|
Welch MA, Köck K, Urban TJ, Brouwer KLR, Swaan PW. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab Dispos 2015; 43:725-34. [PMID: 25735837 DOI: 10.1124/dmd.114.062539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability.
Collapse
Affiliation(s)
- Matthew A Welch
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Kathleen Köck
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Thomas J Urban
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Kim L R Brouwer
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland (M.A.W., P.W.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.K., T.J.U., K.L.R.B.); Center for Human Genome Variation, Duke University Medical Center, Durham, North Carolina (T.J.U.)
| |
Collapse
|