1
|
Busche S, John K, Wandrer F, Vondran FWR, Lehmann U, Wedemeyer H, Essmann F, Schulze-Osthoff K, Bantel H. BH3-only protein expression determines hepatocellular carcinoma response to sorafenib-based treatment. Cell Death Dis 2021; 12:736. [PMID: 34312366 PMCID: PMC8313681 DOI: 10.1038/s41419-021-04020-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents a global health challenge with limited therapeutic options. Anti-angiogenic immune checkpoint inhibitor-based combination therapy has been introduced for progressed HCC, but improves survival only in a subset of HCC patients. Tyrosine-kinase inhibitors (TKI) such as sorafenib represent an alternative treatment option but have only modest efficacy. Using different HCC cell lines and HCC tissues from various patients reflecting HCC heterogeneity, we investigated whether the sorafenib response could be enhanced by combination with pro-apoptotic agents, such as TNF-related apoptosis-inducing ligand (TRAIL) or the BH3-mimetic ABT-737, which target the death receptor and mitochondrial pathway of apoptosis, respectively. We found that both agents could enhance sorafenib-induced cell death which was, however, dependent on specific BH3-only proteins. TRAIL augmented sorafenib-induced cell death only in NOXA-expressing HCC cells, whereas ABT-737 enhanced the sorafenib response also in NOXA-deficient cells. ABT-737, however, failed to augment sorafenib cytotoxicity in the absence of BIM, even when NOXA was strongly expressed. In the presence of NOXA, BIM-deficient HCC cells could be in turn strongly sensitized for cell death induction by the combination of sorafenib with TRAIL. Accordingly, HCC tissues sensitive to apoptosis induction by sorafenib and TRAIL revealed enhanced NOXA expression compared to HCC tissues resistant to this treatment combination. Thus, our results suggest that BH3-only protein expression determines the treatment response of HCC to different sorafenib-based drug combinations. Individual profiling of BH3-only protein expression might therefore assist patient stratification to certain TKI-based HCC therapies.
Collapse
Affiliation(s)
- Stephanie Busche
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katharina John
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Franziska Wandrer
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W. R. Vondran
- grid.10423.340000 0000 9529 9877Department of Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Ulrich Lehmann
- grid.10423.340000 0000 9529 9877Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Frank Essmann
- grid.502798.10000 0004 0561 903XDr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Klaus Schulze-Osthoff
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Heike Bantel
- grid.10423.340000 0000 9529 9877Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Farzaneh Z, Vosough M, Agarwal T, Farzaneh M. Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int 2021; 21:208. [PMID: 33849569 PMCID: PMC8045321 DOI: 10.1186/s12935-021-01924-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of death due to cancer. Although there are different treatment options, these strategies are not efficient in terms of restricting the tumor cell's proliferation and metastasis. The liver tumor microenvironment contains the non-parenchymal cells with supportive or inhibitory effects on the cancerous phenotype of HCC. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of liver carcinoma cells. Recent studies have established new approaches for the prevention and treatment of HCC using small molecules. Small molecules are compounds with a low molecular weight that usually inhibit the specific targets in signal transduction pathways. These components can induce cell cycle arrest, apoptosis, block metastasis, and tumor growth. Devising strategies for simultaneously targeting HCC and the non-parenchymal population of the tumor could lead to more relevant research outcomes. These strategies may open new avenues for the treatment of HCC with minimal cytotoxic effects on healthy cells. This study provides the latest findings on critical signaling pathways governing HCC behavior and using small molecules in the control of HCC both in vitro and in vivo models.
Collapse
Affiliation(s)
- Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Li J, Xiong X, Wang Z, Zhao Y, Shi Z, Zhao M, Ren T. In vitro high-throughput drug sensitivity screening with patient-derived primary cells as a guide for clinical practice in hepatocellular carcinoma-A retrospective evaluation. Clin Res Hepatol Gastroenterol 2020; 44:699-710. [PMID: 32014387 DOI: 10.1016/j.clinre.2020.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/28/2019] [Accepted: 01/10/2020] [Indexed: 02/04/2023]
Abstract
AIM The aim of the study was to determine the clinical value of in vitro high-throughput drug sensitivity screening with primary hepatocellular carcinoma cells to select drugs for adjuvant chemotherapy. METHODS This study included 162 patients who underwent hepatectomy from September 2013 to December 2016. The patients were divided into a drug sensitivity screening group and an empirical treatment group. High-throughput drug sensitivity screening using primary HCC cells was carried out and, based on the test results, effective drugs were selected for treatment. Patients in the empirical group were treated with commonly used drugs, according to the clinicians' preferences. Clinical efficacy, i.e., disease-free survival (DFS) time, was compared between the two groups. RESULTS Most patients with HCC showed extensive resistance to known chemotherapeutic drugs. However, bortezomib, regorafenib, sorafenib, romidepsin, hydroxycamptothecin and adriamycin+oxaliplatin showed strong anti-HCC activity in the sensitivity assay. Comparing clinical efficacy, the overall median DFS of patients in the drug sensitivity screening group was significantly better than that of patients in the empirical treatment group (17.00±3.80 months vs. 9.00±1.18 months, P=0.001). Median DFS times in the TACE group were 9.00±4.07 months vs. 7.00±1.06 months (P=0.014) and median DFS times in the oral drugs group were 16.80±3.98 months vs. 10.00±0.81 months (P=0.024). Patients DFS was 69.4%, 62.5% at 1-, 2- years, respectively, for patients with drug sensitivity screening, and 48.5%, 37.8% at 1-, 2- years, respectively, for patients with empirical treatment. CONCLUSION High-throughput drug sensitivity screening can be successfully used to screen chemotherapeutic drugs for efficacy against HCC and the efficacious drugs can be used in postoperative adjuvant chemotherapy of HCC patients. This treatment paradigm is safe and reliable, and improves survival compared with empirical chemotherapy.
Collapse
Affiliation(s)
- Jinghe Li
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Xiu Xiong
- Digestive Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Zuo Wang
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Yufei Zhao
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Zhengrong Shi
- Department of Hepatobiliary surgery, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| | - Ming Zhao
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Tao Ren
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
4
|
Wandrer F, Liebig S, Marhenke S, Vogel A, John K, Manns MP, Teufel A, Itzel T, Longerich T, Maier O, Fischer R, Kontermann RE, Pfizenmaier K, Schulze-Osthoff K, Bantel H. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death Dis 2020; 11:212. [PMID: 32235829 PMCID: PMC7109108 DOI: 10.1038/s41419-020-2411-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) shows an increasing prevalence and is associated with the development of liver fibrosis and cirrhosis as the major risk factors of liver-related mortality in this disease. The therapeutic possibilities are limited and restricted to life style intervention, since specific drugs for NAFLD are unavailable so far. TNFα has been implicated as a major pathogenic driver of NAFLD. TNFα-mediated liver injury occurs mainly via TNF-receptor-1 (TNFR1) signaling, whereas TNFR2 mediates protective pathways. In this study, we analyzed the therapeutic effects of a novel antibody, which selectively inhibits TNFR1 while retaining protective TNFR2 signaling in a high-fat diet (HFD) mouse model of NAFLD. Mice were fed with HFD for 32 weeks and treated with anti-TNFR1-antibody or control-antibody for the last 8 weeks. We then investigated the mechanisms of TNFR1 inhibition on liver steatosis, inflammatory liver injury, insulin resistance and fibrosis. Compared to control-antibody treatment, TNFR1 inhibition significantly reduced liver steatosis and triglyceride content, which was accompanied by reduced expression and activation of the transcription factor SREBP1 and downstream target genes of lipogenesis. Furthermore, inhibition of TNFR1 resulted in reduced activation of the MAP kinase MKK7 and its downstream target JNK, which was associated with significant improvement of insulin resistance. Apoptotic liver injury, NAFLD activity and alanine aminotransferase (ALT) levels, as well as liver fibrosis significantly decreased by anti-TNFR1 compared to control-antibody treatment. Thus, our results suggest selective TNFR1 inhibition as a promising approach for NAFLD treatment.
Collapse
Affiliation(s)
- Franziska Wandrer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephanie Liebig
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katharina John
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andreas Teufel
- Department of Medicine II, Division of Hepatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Timo Itzel
- Department of Medicine II, Division of Hepatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Longerich
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Olaf Maier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Schulze-Osthoff
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Sung YC, Jin PR, Chu LA, Hsu FF, Wang MR, Chang CC, Chiou SJ, Qiu JT, Gao DY, Lin CC, Chen YS, Hsu YC, Wang J, Wang FN, Yu PL, Chiang AS, Wu AYT, Ko JJS, Lai CPK, Lu TT, Chen Y. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. NATURE NANOTECHNOLOGY 2019; 14:1160-1169. [PMID: 31740794 DOI: 10.1038/s41565-019-0570-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/03/2019] [Indexed: 05/28/2023]
Abstract
Abnormal tumour vasculature has a significant impact on tumour progression and response to therapy. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis and, thus, can be delivered to normalize tumour vasculature. However, a NO-delivery system with a prolonged half-life and a sustained release mechanism is currently lacking. Here we report the development of NanoNO, a nanoscale carrier that enables sustained NO release to efficiently deliver NO into hepatocellular carcinoma. Low-dose NanoNO normalizes tumour vessels and improves the delivery and effectiveness of chemotherapeutics and tumour necrosis factor-related, apoptosis-inducing, ligand-based therapy in both primary tumours and metastases. Furthermore, low-dose NanoNO reprogrammes the immunosuppressive tumour microenvironment toward an immunostimulatory phenotype, thereby improving the efficacy of cancer vaccine immunotherapy. Our findings demonstrate the ability of nanoscale NO delivery to efficiently reprogramme tumour vasculature and immune microenvironments to overcome resistance to cancer therapy, resulting in a therapeutic benefit.
Collapse
Affiliation(s)
- Yun-Chieh Sung
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Ru Jin
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-An Chu
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Fu-Fei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mei-Ren Wang
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chih-Chun Chang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi, Taiwan
| | - Jiantai Timothy Qiu
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dong-Yu Gao
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Chu-Chi Lin
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sing Chen
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Fu-Nien Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Lun Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Anthony Yan-Tang Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - John Jun-Sheng Ko
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
6
|
Seydi E, Rahimpour Z, Salimi A, Pourahmad J. Selective toxicity of chrysin on mitochondria isolated from liver of a HCC rat model. Bioorg Med Chem 2019; 27:115163. [PMID: 31708277 DOI: 10.1016/j.bmc.2019.115163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
Flavonoids are natural compounds that show various biological effects, such as the anti-cancer effect. Chrysin is a flavonoid compound found in honey and propolis. Studies have shown that chrysin has anti-cancer activity due to induction of apoptosis signaling. In the present study, we examined the cytotoxic effect of chrysin against liver mitochondria obtained from the hepatocellular carcinoma (HCC) rat model. Diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF) was used for induction of HCC. Mitochondria were isolated from liver hepatocytes using differential centrifugation. Then, hepatocytes and mitochondria markers related to apoptosis signaling were investigated. Our finding indicated an increase in mitochondrial reactive oxygen species (ROS) generation, collapse in the mitochondrial membrane potential (MMP), swelling in mitochondria, and cytochrome c release (about 1.6 fold) after exposure of mitochondria obtained from the HCC rats group with chrysin (10, 20, and 40 µM) compared to the normal rats group. Furthermore, Chrysin was able to increase caspase-3 activity in the HCC rats group (about 2.4 fold) compared to the normal rats group. According to the results, we proposed that chrysin could be considered as a promising complementary therapeutic candidate for the treatment of HCC, but it requires a further in vivo and clinical studies.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Rahimpour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yang Z, Li JJ, Huang ZS. Progress in basic and clinical research of targeted drugs for primary hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2019; 27:450-458. [DOI: 10.11569/wcjd.v27.i7.450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma is one of the most common malignancies of the digestive system. Traditional treatment is not effective for advanced hepatocellular carcinoma. Sorafenib is the first molecule-targeted drug for hepatocellular carcinoma treatment. The emergence of molecule-targeted drugs provided a new choice for patients with advanced hepatocellular carcinoma. In recent years, thanks to the development of immunotherapy, many new molecule-targeted drugs have been found to significantly improve the prognosis of patients with hepatocellular carcinoma. Therefore, targeted drugs have become a research hotspot. This article reviews the progress in basic and clinical research of molecule-targeted drugs for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhe Yang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Jian-Ji Li
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College for Nationalities, Guangxi Clinical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Importance of TRAIL Molecular Anatomy in Receptor Oligomerization and Signaling. Implications for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040444. [PMID: 30934872 PMCID: PMC6521207 DOI: 10.3390/cancers11040444] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
(TNF)-related apoptosis-inducing ligand (TRAIL) is able to activate the extrinsic apoptotic pathway upon binding to DR4/TRAIL-R1 and/or DR5/TRAIL-R2 receptors. Structural data indicate that TRAIL functions as a trimer that can engage three receptor molecules simultaneously, resulting in receptor trimerization and leading to conformational changes in TRAIL receptors. However, receptor conformational changes induced by the binding of TRAIL depend on the molecular form of this death ligand, and not always properly trigger the apoptotic cascade. In fact, TRAIL exhibits a much stronger pro-apoptotic activity when is found as a transmembrane protein than when it occurs as a soluble form and this enhanced biological activity is directly linked to its ability to cluster TRAIL receptors in supra-molecular structures. In this regard, cells involved in tumor immunosurveillance, such as activated human T cells, secrete endogenous TRAIL as a transmembrane protein associated with lipid microvesicles called exosomes upon T-cell reactivation. Consequently, it seems clear that a proper oligomerization of TRAIL receptors, which leads to a strong apoptotic signaling, is crucial for inducing apoptosis in cancer cells upon TRAIL treatment. In this review, the current knowledge of oligomerization status of TRAIL receptors is discussed as well as the implications for cancer treatment when using TRAIL-based therapies.
Collapse
|
9
|
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease condition. Acute liver failure is characterized by massive loss of parenchymal cells but is usually followed by restitution ad integrum. By contrast, cell death in chronic liver diseases often occurs at a lesser extent but leads to long-term alterations in organ architecture and function, contributing to chronic hepatocyte turnover, the recruitment of immune cells and activation of hepatic stellate cells. These chronic cell death responses contribute to the development of liver fibrosis, cirrhosis and cancer. It has become evident that, besides apoptosis, necroptosis is a highly relevant form of programmed cell death in the liver. Differential activation of specific forms of programmed cell death might not only affect outcomes in liver diseases but also offer novel opportunities for therapeutic intervention. Here, we summarize the underlying molecular mechanisms and open questions about disease-specific activation and roles of programmed cell death forms, their contribution to response signatures and their detection. We focus on the role of apoptosis and necroptosis in acute liver injury, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and liver cancer, and possible translations into clinical applications.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Institute of Human Nutrition, Columbia University, New York, NY, USA.
| | - Tom Luedde
- Department of Medicine III, Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| |
Collapse
|
10
|
Jiang C, Xu R, Li XX, Zhou YF, Xu XY, Yang Y, Wang HY, Zheng XFS. Sorafenib and Carfilzomib Synergistically Inhibit the Proliferation, Survival, and Metastasis of Hepatocellular Carcinoma. Mol Cancer Ther 2018; 17:2610-2621. [PMID: 30224431 PMCID: PMC9110113 DOI: 10.1158/1535-7163.mct-17-0541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/06/2017] [Accepted: 09/11/2018] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly human cancers. The 5-year survival rate is very low. Unfortunately, there are few efficacious therapeutic options. Until recently, Sorafenib has been the only available systemic drug for advanced HCC. However, it has very limited survival benefits, and new therapies are urgently needed. In this study, we investigated the anti-HCC activity of carfilzomib, a second-generation, irreversible proteasome inhibitor, as a single agent and in combination with sorafenib. In vitro, we found that carfilzomib has moderate anticancer activity toward liver cancer cells, but strongly enhances the ability of sorafenib to suppress HCC cell growth, proliferation, migration, invasion, and survival. Remarkably, the drug combination exhibits even more potent antitumor activity when tested in animal tumor models. Mechanistically, the combined treatment activates caspase-dependent and endoplasmic reticulum stress/CHOP-mediated apoptotic pathways, and suppresses epithelial-mesenchymal transition. In conclusion, our results demonstrate that the combination of carfilzomib and sorafenib has synergistic antitumor activities against HCC, providing a potential therapeutic strategy to improve the mortality and morbidity of HCC patients.
Collapse
Affiliation(s)
- Chao Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Rui Xu
- Department of Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiao-Yi Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
11
|
Huang IT, Dhungel B, Shrestha R, Bridle KR, Crawford DHG, Jayachandran A, Steel JC. Spotlight on Bortezomib: potential in the treatment of hepatocellular carcinoma. Expert Opin Investig Drugs 2018; 28:7-18. [PMID: 30474444 DOI: 10.1080/13543784.2019.1551359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION This study reviews the evidence for the use of Bortezomib (BZB), a first-in-class proteasome inhibitor in advanced Hepatocellular carcinoma (HCC). This review aims to delineate the role of BZB within the management of non-surgical and metastatic HCC, either as an alternative or as an adjunct to the current treatment paradigm. AREAS COVERED In addition to BZB pharmacology and mechanism of action, safety and tolerance profiles of the drug obtained from clinical trials are explored. The utility of BZB as a therapeutic agent either alone or in combination with other therapies against HCC, including its application in both preclinical and clinical settings has been reviewed. In particular, we highlight the importance of preclinical evaluation of BZB as a combinatorial agent in synergism with other therapies for the use in the management of HCC. EXPERT OPINION There has been much interest surrounding the use of BZB, a first-in-class proteasome inhibitor for HCC therapy. The discernment of outcomes of BZB clinical trials for HCC need to take into consideration the disease-specific factors that can affect survival outcomes including patient selection and aetiological differences. Further preclinical testing of BZB in combination with other therapeutic modalities can be important for eliciting enhanced anti-HCC effects.
Collapse
Affiliation(s)
- I-Tao Huang
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Bijay Dhungel
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Ritu Shrestha
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Kim R Bridle
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Darrell H G Crawford
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Aparna Jayachandran
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Jason C Steel
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,c School of Health, Medical and Applied Sciences , CQ University , Rockhampton , Australia
| |
Collapse
|
12
|
Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med 2018; 7:jcm7080213. [PMID: 30104473 PMCID: PMC6112027 DOI: 10.3390/jcm7080213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis comprises of multiple, complex steps that occur after liver injury and usually involve several pathways, including telomere dysfunction, cell cycle, WNT/β-catenin signaling, oxidative stress and mitochondria dysfunction, autophagy, apoptosis, and AKT/mTOR signaling. Following liver injury, gene mutations, accumulation of oxidative stress, and local inflammation lead to cell proliferation, differentiation, apoptosis, and necrosis. The persistence of this vicious cycle in turn leads to further gene mutation and dysregulation of pro- and anti-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-13, IL-18, and transforming growth factor (TGF)-β, resulting in immune escape by means of the NF-κB and inflammasome signaling pathways. In this review, we summarize studies focusing on the roles of hepatocarcinogenesis and the immune system in liver cancer. In addition, we furnish an overview of recent basic and clinical studies to provide a strong foundation to develop novel anti-carcinogenesis targets for further treatment interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giuo-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Wen Cheng
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 704, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
13
|
Moradi Marjaneh R, Hassanian SM, Ghobadi N, Ferns GA, Karimi A, Jazayeri MH, Nasiri M, Avan A, Khazaei M. Targeting the death receptor signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 2018; 233:6538-6549. [DOI: 10.1002/jcp.26640] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Reyhaneh Moradi Marjaneh
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biochemistry, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Microanatomy Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Niloofar Ghobadi
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School Division of Medical Education Falmer, Brighton, Sussex UK
| | - Afshin Karimi
- Quality Department of Nutricia Mashhad Mild Powder Industrial Mashhad Iran
| | - Mir Hadi Jazayeri
- Immunology Research Center and Department of Immunology, School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Mohammadreza Nasiri
- Recombinant Proteins Research Group The Research Institute of Biotechnology, Ferdowsi University of Mashhad Mashhad Iran
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
- Cancer Research Center Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Surgical Oncology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
14
|
Liu GM, Zhang YM. Targeting FBPase is an emerging novel approach for cancer therapy. Cancer Cell Int 2018; 18:36. [PMID: 29556139 PMCID: PMC5845355 DOI: 10.1186/s12935-018-0533-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death in both developed and developing countries. Metabolic reprogramming is an emerging hallmark of cancer. Glucose homeostasis is reciprocally controlled by the catabolic glycolysis and anabolic gluconeogenesis pathways. Previous studies have mainly focused on catabolic glycolysis, but recently, FBPase, a rate-limiting enzyme in gluconeogenesis, was found to play critical roles in tumour initiation and progression in several cancer types. Here, we review recent ideas and discoveries that illustrate the clinical significance of FBPase expression in various cancers, the mechanism through which FBPase influences cancer, and the mechanism of FBPase silencing. Furthermore, we summarize some of the drugs targeting FBPase and discuss their potential use in clinical applications and the problems that remain unsolved.
Collapse
Affiliation(s)
- Gao-Min Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| | - Yao-Ming Zhang
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| |
Collapse
|
15
|
Wang Z, Yu B, Wang B, Yan J, Feng X, Wang Z, Wang L, Zhang H, Wu H, Wu J, Kong W, Yu X. A novel capsid-modified oncolytic recombinant adenovirus type 5 for tumor-targeting gene therapy by intravenous route. Oncotarget 2018; 7:47287-47301. [PMID: 27323824 PMCID: PMC5216942 DOI: 10.18632/oncotarget.10075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/04/2016] [Indexed: 01/26/2023] Open
Abstract
Oncolytic adenovirus (Ad)-vectored gene therapy is a promising strategy for cancer treatment. However, the lack of cancer cell selectivity or tumor tissue specificity of Ads limits their clinical application by intravenous (IV) injection. In this paper, a novel recombinant Ad5 vector was constructed carrying the capsid protein IX modified by the tumor necrosis factor related apoptosis-inducing ligand (TRAIL), which targets tumor cells bearing high levels of its receptor far above those of normal cells. Specific association of the Ad virion with TRAIL was achieved using synthetic leucine zipper-like dimerization domains (zippers). Analysis of the chemical properties of the modified recombinant Ad (rAd5pz-zTRAIL-RFP) showed that the TRAIL protein was present on the surface of purified virus particles, and it could induce apoptosis of infected cancer cells prior to expression of foreign genes. We also constructed a novel modified recombinant oncolytic Ad (rAd5pz-zTRAIL-RFP-SΔ24E1a) which showed significantly enhanced anti-tumor effects both in vitro and in vivo by linkage of TRAIL to the viral capsid. Moreover, rAd5pz-zTRAIL-RFP-SΔ24E1a showed significantly improved tumor tissue targeting and reduced liver tropism when IV injected in vivo. Thus, we successfully obtained new oncolytic Ad5 gene therapy vectors with enhanced targeting and efficacy, providing a platform for further clinical application of Ad vectors for cancer treatment.
Collapse
Affiliation(s)
- Zhen Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Baoming Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jingyi Yan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xiao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Zixuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun, 130012, China
| |
Collapse
|
16
|
Hutt M, Fellermeier-Kopf S, Seifert O, Schmitt LC, Pfizenmaier K, Kontermann RE. Targeting scFv-Fc-scTRAIL fusion proteins to tumor cells. Oncotarget 2018; 9:11322-11335. [PMID: 29541416 PMCID: PMC5834252 DOI: 10.18632/oncotarget.24379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
Fusion proteins combining hexavalent TRAIL with antibody fragments allow for a targeted delivery and efficient apoptosis induction in tumor cells. Here, we analyzed scFv-Fc-scTRAIL molecules directed against EGFR, HER2, HER3, and EpCAM as well as an untargeted Fc-scTRAIL fusion protein for their potentials to induce cell death both in vitro and in a xenograft tumor model in vivo. The scFv-Fc-scTRAIL fusion protein directed against EGFR as well as the fusion protein directed against EpCAM showed targeting effects on the two tested colorectal carcinoma cell lines Colo205 and HCT116, while a fusion protein targeting HER3 was more effective than untargeted Fc-scTRAIL only on Colo205 cells. Interestingly, another anti-HER3 scFv-Fc-scTRAIL fusion protein exhibiting approximately 10-fold weaker antigen binding as well as the HER2-directed molecule were unable to increase cytotoxicity compared to Fc-scTRAIL. A comparison of EC50 values of cell death induction and antigen binding supports the assumption that high affinity antigen binding is one of the requirements for in vitro targeting effects. Furthermore, a minimal number of expressed target antigens might be required for increased cytotoxicity of targeted compared to non-targeted molecules. In a Colo205 s.c. xenograft tumor model, strongest antitumor activity was observed for the anti-HER3 scFv-Fc-scTRAIL fusion protein based on antibody 3-43, with complete tumor remissions after six twice-weekly injections. Surprisingly, a similar in vivo activity was also observed for untargeted Fc-scTRAIL in this tumor model, indicating that additional factors contribute to the potent efficacy of targeted as well as untargeted hexavalent Fc-scTRAIL fusion proteins in vivo.
Collapse
Affiliation(s)
- Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart 70569, Germany
| | - Sina Fellermeier-Kopf
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart 70569, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart 70569, Germany
| | - Lisa C. Schmitt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart 70569, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart 70569, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart 70569, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart 70569, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart 70569, Germany
| |
Collapse
|
17
|
Ethanol sensitizes hepatocytes for TGF-β-triggered apoptosis. Cell Death Dis 2018; 9:51. [PMID: 29352207 PMCID: PMC5833779 DOI: 10.1038/s41419-017-0071-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
Alcohol abuse is a global health problem causing a substantial fraction of chronic liver diseases. Abundant TGF-β—a potent pro-fibrogenic cytokine—leads to disease progression. Our aim was to elucidate the crosstalk of TGF-β and alcohol on hepatocytes. Primary murine hepatocytes were challenged with ethanol and TGF-β and cell fate was determined. Fluidigm RNA analyses revealed transcriptional effects that regulate survival and apoptosis. Mechanistic insights were derived from enzyme/pathway inhibition experiments and modulation of oxidative stress levels. To substantiate findings, animal model specimens and human liver tissue cultures were investigated. Results: On its own, ethanol had no effect on hepatocyte apoptosis, whereas TGF-β increased cell death. Combined treatment led to massive hepatocyte apoptosis, which could also be recapitulated in human HCC liver tissue treated ex vivo. Alcohol boosted the TGF-β pro-apoptotic gene signature. The underlying mechanism of pathway crosstalk involves SMAD and non-SMAD/AKT signaling. Blunting CYP2E1 and ADH activities did not prevent this effect, implying that it was not a consequence of alcohol metabolism. In line with this, the ethanol metabolite acetaldehyde did not mimic the effect and glutathione supplementation did not prevent the super-induction of cell death. In contrast, blocking GSK-3β activity, a downstream mediator of AKT signaling, rescued the strong apoptotic response triggered by ethanol and TGF-β. This study provides novel information on the crosstalk between ethanol and TGF-β. We give evidence that ethanol directly leads to a boost of TGF-β’s pro-apoptotic function in hepatocytes, which may have implications for patients with chronic alcoholic liver disease.
Collapse
|
18
|
Sun YP, Lu F, Han XY, Ji M, Zhou Y, Zhang AM, Wang HC, Ma DX, Ji CY. MiR-424 and miR-27a increase TRAIL sensitivity of acute myeloid leukemia by targeting PLAG1. Oncotarget 2018; 7:25276-90. [PMID: 27013583 PMCID: PMC5041903 DOI: 10.18632/oncotarget.8252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
Although microRNAs have been elaborated to participate in various physiological and pathological processes, their functions in TRAIL resistance of acute myeloid leukemia (AML) remain obscure. In this study, we detected relatively lower expression levels of miR-424&27a in TRAIL-resistant and semi-resistant AML cell lines as well as newly diagnosed patient samples. Overexpression of miR-424&27a, by targeting the 3′UTR of PLAG1, enhanced TRAIL sensitivity in AML cells. Correspondingly, knockdown of PLAG1 sensitized AML cells to TRAIL-induced apoptosis and proliferation inhibition. We further found that PLAG1 as a transcription factor could reinforce Bcl2 promoter activity, causing its upregulation at the mRNA level. Both downregulated PLAG1 and elevated expression of miR-424&27a led to Bcl2 downregulation and augmented cleavage of Caspase8, Caspase3 and PARP in the presence of TRAIL. Restoration of Bcl2 could eliminate their effects on AML TRAIL sensitization. Overall, we propose that miR-424&27a and/or PLAG1 might serve as novel therapeutic targets in AML TRAIL therapy.
Collapse
Affiliation(s)
- Yan-Ping Sun
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Xiao-Yu Han
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ying Zhou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - A-Min Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Hong-Chun Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Dao-Xin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Chun-Yan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
19
|
Kim JY, Kim YM, Park JM, Han YM, Lee KC, Hahm KB, Hong S. Cancer preventive effect of recombinant TRAIL by ablation of oncogenic inflammation in colitis-associated cancer rather than anticancer effect. Oncotarget 2017; 9:1705-1716. [PMID: 29416724 PMCID: PMC5788592 DOI: 10.18632/oncotarget.23083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
The potential of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in inducing apoptosis is a hallmark in cancer therapeutics, after which its selective ability to achieve cell death pathways against cancer cells led to hope for recombinant TRAIL in cancer therapeutics. The present data from azoxymethane-initiated, dextran sulfate sodium-promoted colitis associated cancer (CAC) model strongly indicate the potential of rTRAIL in cancer prevention rather than in cancer therapeutics. Early treatment of rTRAIL significantly reduced colitis and CAC by inhibiting the recruitment of macrophages into the damaged mucosa and activating the scavenger activity with efferocytosis and the production of several growth factors. In contrast, late administration of rTRAIL as for anti-cancer effect did not decrease the initiation and development of CAC at all. Significant cancer preventing mechanisms of rTRAIL were identified. In the CAC model, anti-inflammation, regeneration, and efferocytosis was induced by treatment of TRAIL for 6 days, significant inhibitory activity was evident at 4 weeks and anti-oxidative and anti-inflammatory induction were noted at 12 weeks. Most importantly, TRAIL promoted tissue regeneration by enhancing the resolution of pathological inflammation through the activation of the NLRP3 inflammasome pathway. The results indicate that TRAIL reduces the induction of colitis and the initiation of CAC by inhibiting pro-inflammatory signaling and promoting tissue repair to maintain intestinal homeostasis through activation of the NLRP3 inflammasome. Therefore, TRAIL can be used as a chemopreventive agent against CAC, rather than as a therapeutic drug endowing apoptosis.
Collapse
Affiliation(s)
- Joo-Young Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon, Korea
| | - Young-Mi Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon, Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea
| | - Young Min Han
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea
| | - Kang Choon Lee
- College of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seongnam, Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|
20
|
Helmy SA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Chloroquine upregulates TRAIL/TRAILR2 expression and potentiates doxorubicin anti-tumor activity in thioacetamide-induced hepatocellular carcinoma model. Chem Biol Interact 2017; 279:84-94. [PMID: 29133031 DOI: 10.1016/j.cbi.2017.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
Impaired apoptosis and systemic toxicity of chemotherapeutic drugs make cancer treatment suboptimal. Thus, there is urgency for drug repurposing which facilitates discovery of safe and effective combination therapy. This study aimed to evaluate chloroquine's (CQ) ability to trigger TRAIL/TRAILR2 apoptotic pathway in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) either alone or in combination with doxorubicin (DOX). Moreover, its ability to attenuate DOX-induced cardiotoxicity was investigated. TAA was injected in male Sprague Dawely rats (200 mg/kg; ip; 2 times/week) for 16 weeks. After the 16th week, rats were further divided into different groups (n = 10) and treated for 7 weeks. CQ group (received CQ 25 mg/kg/day; orally), DOX group (received DOX 1 mg/kg; ip; 2 times/week) and CQ/DOX group. Liver function biomarkers, AFP, hepatic levels of MDA and GSH, serum CK-MB and LDH enzymes activity were measured. Quantitative, Real-Time PCR was used to measure TRAIL, TRAILR2, caspase-8, caspase-9, caspase-3, BCL-2 and TGF-β1 genes expression levels. Necroinflammation and fibrosis were scored by histopathological examination. CQ improved liver functions, reduced AFP level and attenuated HCC progression. CQ induced apoptosis via upregulation of TRAIL/TRAILR2, caspase-8, caspase-3 and caspase-8 genes and downregulation of BCL-2 gene. Moreover, CQ/DOX showed marked decrease in hepatic MDA level, serum CK-MB, LDH enzymes activity, as well as marked increase in hepatic GSH level. In conclusion, this work assess the in vivo efficacy of CQ/DOX combination therapy in this HCC model that not only has enhanced anti-tumor activity but it also protects against DOX-induced cardiotoxicity. Nevertheless, more studies should be performed to illustrate the molecular mechanism of CQ's cardioprotective effect.
Collapse
Affiliation(s)
- Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
21
|
Jin X, Pan Y, Wang L, Zhang L, Ravichandran R, Potts PR, Jiang J, Wu H, Huang H. MAGE-TRIM28 complex promotes the Warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation. Oncogenesis 2017; 6:e312. [PMID: 28394358 PMCID: PMC5520498 DOI: 10.1038/oncsis.2017.21] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cause of cancer death in the world. Fructose-1,6-biphosphatase (FBP1), a rate-limiting enzyme in gluconeogenesis, has been identified recently as a tumor suppressor in HCC and other cancer types. In this study, we demonstrated that the tripartite motif-containing protein 28 (TRIM28) binds directly to and promotes FBP1 for ubiquitination and degradation. MAGE-A3 and MAGE-C2, which are known to be overexpressed in HCC, can enhance TRIM28-dependent degradation of FBP1 by forming ubiquitin ligase complexes with TRIM28. We further showed that expression of TRIM28 increased glucose consumption and lactate production by promoting FBP1 degradation in HCC cells and that FBP1 is a key mediator of TRIM28-induced HCC growth in culture and in mice. Moreover, we demonstrated that FBP1 and TRIM28 protein levels inversely correlated in HCC patient specimens. Finally, we showed that the proteasome inhibitor bortezomib mitigated the Warburg effect by inhibiting FBP1 degradation in HCC. Collectively, our findings not only identify oncogenic MAGE-TRIM28 complex-mediated proteasome degradation of FBP1 as a key mechanism underlying downregulation of FBP1 proteins in HCC, but also reveal that MAGE-TRIM28-regulated reprogramming of cancer cell metabolism and HCC tumorigenesis is mediated, at least in part, through FBP1 degradation.
Collapse
Affiliation(s)
- X Jin
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Y Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - L Wang
- Department of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - L Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - R Ravichandran
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - P R Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - H Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
22
|
Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their discovery, antibodies have been viewed as ideal candidates or "magic bullets" for use in targeted therapy in the fields of cancer, autoimmunity, and chronic inflammatory disorders. A wave of antibody-dedicated research followed, which resulted in the clinical approval of a first generation of monoclonal antibodies for cancer therapy such as rituximab (1997) and cetuximab (2004), and infliximab (2002) for the treatment of autoimmune diseases. More recently, the development of antibodies that prevent checkpoint-mediated inhibition of T cell responses invigorated the field of cancer immunotherapy. Such antibodies induced unprecedented long-term remissions in patients with advanced stage malignancies, most notably melanoma and lung cancer, that do not respond to conventional therapies. In this review, we will recapitulate the development of antibody-based therapy, and detail recent advances and new functions, particularly in the field of cancer immunotherapy. With the advent of recombinant DNA engineering, a number of rationally designed molecular formats of antibodies and antibody-derived agents have become available, and we will discuss various molecular formats including antibodies with improved effector functions, bispecific antibodies, antibody-drug conjugates, antibody-cytokine fusion proteins, and T cells genetically modified with chimeric antigen receptors. With these exciting advances, new antibody-based treatment options will likely enter clinical practice and pave the way toward more successful control of malignant diseases.
Collapse
Affiliation(s)
- D Hendriks
- Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - G Choi
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - M de Bruyn
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - V R Wiersma
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | - E Bremer
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
23
|
Bock B, Hasdemir D, Wandrer F, Rodt T, Manns MP, Schulze-Osthoff K, Bantel H. Serum cell death biomarker mirrors liver cancer regression after transarterial chemoembolisation. Aliment Pharmacol Ther 2016; 44:747-54. [PMID: 27485159 DOI: 10.1111/apt.13758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/27/2016] [Accepted: 07/18/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents an increasing health problem with limited therapeutic options. In patients with intermediate disease stage, transarterial chemoembolisation (TACE) is widely applied. Treatment response is routinely assessed by imaging techniques according to the international response evaluation criteria in solid tumours (RECIST), which consider tumour regression or additionally tumour necrosis (modified RECIST). Evaluation of treatment response, however, by these methods is time- and cost-intensive and usually performed at earliest several months following TACE. AIM To investigate the suitability of novel non-invasive cell death biomarkers for an earlier prediction of TACE response. METHODS We analysed activation of pro-apoptotic caspases and the proteolytic cleavage of the caspase substrate CK-18 in liver tissues and sera from HCC patients by immunohistochemistry, a luminometric substrate assay and ELISA. RESULTS Both caspase activity and caspase-cleaved CK-18 fragments were elevated in HCC patients compared to healthy controls. CK-18 serum levels significantly increased during the first 3 days and peaked at day two following TACE. Interestingly, we found significant differences in CK-18 levels between patients with and without tumour regression. Detection of CK-18 fragments revealed a promising performance for the early prediction of TACE response with an area under the curve value of 0.76. CONCLUSIONS Caspase-cleaved CK-18 levels mirror liver cancer regression and allow an earlier prediction of TACE response. The concordance with mRECIST suggests that the detection of CK-18 levels immediately after TACE might be used as a short-term decision guide to continue or change HCC therapy.
Collapse
Affiliation(s)
- B Bock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - D Hasdemir
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - F Wandrer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - T Rodt
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - M P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - K Schulze-Osthoff
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L. Onto better TRAILs for cancer treatment. Cell Death Differ 2016; 23:733-47. [PMID: 26943322 PMCID: PMC4832109 DOI: 10.1038/cdd.2015.174] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4 and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists.
Collapse
Affiliation(s)
- D de Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - J Lemke
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - A Anel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - H Walczak
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - L Martinez-Lostao
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
- Instituto de Nanociencia de Aragón, Zaragoza, Spain
| |
Collapse
|
25
|
Jia D, Yang H, Tao Z, Wan L, Cheng J, Lu X. Preparation and characterization of a novel variant of human tumor necrosis factor-related apoptosis-inducing ligand from the rhesus monkey, Macaca mulatta. Appl Microbiol Biotechnol 2015; 100:3035-47. [DOI: 10.1007/s00253-015-7143-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/27/2015] [Accepted: 11/01/2015] [Indexed: 01/10/2023]
|
26
|
Kumar R, Kumar Pate S, Rami Reddy B, Bhatt M, Karthik K, Gandham RK, Singh Mali Y, Dhama K. Apoptosis and Other Alternate Mechanisms of Cell Death. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajava.2015.646.668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Amarante-Mendes GP, Griffith TS. Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 2015; 155:117-31. [PMID: 26343199 DOI: 10.1016/j.pharmthera.2015.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, Brazil.
| | - Thomas S Griffith
- Department of Urology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
| |
Collapse
|
28
|
Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett 2015; 379:245-52. [PMID: 26193663 DOI: 10.1016/j.canlet.2015.06.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a complicated tightly controlled system in charge of degrading 80-90% of proteins, and is central to regulating cellular function and keeping protein homeostasis. Therefore, the components of UPS attract considerable attention as potential targets for hepatocellular carcinoma (HCC) therapy. The clinical success of bortezomib in multiple myeloma and mantle cell lymphoma patients has set the precedent for therapeutically targeting this pathway. This review will provide an overview of the UPS in HCC and the current status of therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Ehrlich SM, Liebl J, Ardelt MA, Lehr T, De Toni EN, Mayr D, Brandl L, Kirchner T, Zahler S, Gerbes AL, Vollmar AM. Targeting cyclin dependent kinase 5 in hepatocellular carcinoma--A novel therapeutic approach. J Hepatol 2015; 63:102-13. [PMID: 25660209 DOI: 10.1016/j.jhep.2015.01.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/17/2014] [Accepted: 01/27/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS For a long time cyclin dependent kinase 5 (Cdk5) was thought to be exclusively important in neuronal cells. However, increasing evidence recently suggests a function of Cdk5 in cancer progression. In this study, we examined the role of Cdk5 and its therapeutic accessibility in hepatocellular carcinoma (HCC), a highly chemoresistant cancer with poor prognosis and paramount clinical importance in order to develop novel targeted therapies for systemic treatment. METHODS Expression and activity of Cdk5 was analyzed in a human HCC tissue microarray, human patient samples and HCC cell lines. To characterize Cdk5 functions and signaling pathways in HCC, we applied genetic downregulation and pharmacologic inhibition in various approaches including cell based assays and mouse xenograft models. RESULTS Expression and activity of Cdk5 was increased in human HCC tissues as compared to normal liver tissues. Functional ablation of Cdk5 significantly decreased HCC cell proliferation and clonogenic survival. Moreover, genetic and pharmacological inhibition of Cdk5 showed in vivo efficacy in HCC xenograft mouse models. Investigating the mechanisms behind these functional effects revealed that Cdk5 is most active in the nucleus of cells in G2/M phase. Cdk5 regulates DNA damage response by phosphorylating ataxia telangiectasia mutated (ATM) kinase and thereby influencing its downstream cascade. Consequently, combination of Cdk5 inhibition with DNA-damage-inducing chemotherapeutics synergistically inhibited HCC tumor progression in vitro and in vivo. CONCLUSIONS In summary, we introduce Cdk5 as a novel drugable target for HCC treatment and suggest the combination of Cdk5 inhibition and DNA damaging agents as a novel therapeutic approach.
Collapse
Affiliation(s)
- Sandra M Ehrlich
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Johanna Liebl
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Maximilian A Ardelt
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | - Enrico N De Toni
- Department of Internal Medicine II, Liver Center Munich®, Hospital of the Ludwig Maximilians University of Munich, Campus Grosshadern, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Lydia Brandl
- Institute of Pathology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Stefan Zahler
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Alexander L Gerbes
- Department of Internal Medicine II, Liver Center Munich®, Hospital of the Ludwig Maximilians University of Munich, Campus Grosshadern, Munich, Germany
| | - Angelika M Vollmar
- Department of Pharmacy, Pharmaceutical Biology, Ludwig Maximilians University of Munich, Munich, Germany.
| |
Collapse
|
30
|
Huang P, Zhuang B, Zhang H, Yan H, Xiao Z, Li W, Zhang J, Tang Q, Hu K, Koeffler HP, Wang J, Yin D. Hepatitis B Virus X Protein (HBx) Is Responsible for Resistance to Targeted Therapies in Hepatocellular Carcinoma: Ex Vivo Culture Evidence. Clin Cancer Res 2015; 21:4420-30. [PMID: 26059188 DOI: 10.1158/1078-0432.ccr-14-2067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular targeted therapy is an important approach for advanced hepatocellular carcinoma (HCC). Hepatitis B virus-related HCC (HBV-HCC) accounts for approximately 50% of all HCC cases. Bortezomib, a proteasome inhibitor (PI), is used extensively for the treatment of hematologic malignancies, but its application in HCC, particularly in HBV-HCC, has not been fully explored. EXPERIMENTAL DESIGN The effects of bortezomib on HCC tissues were evaluated by TUNEL assays. The growth inhibitory activity was measured using cell viability assays, and apoptosis was measured using flow cytometry. The levels of HBx, P-Raf/Raf, and P-Erk/Erk expression were measured by Western blot analysis. The ability of the MEK inhibitor PD98059 to enhance the cell killing activity of bortezomib was evaluated using ex vivo and in vivo methods. RESULTS The potency of bortezomib varied among HCC samples and cell lines, and HBV/HBx expression was associated with resistance to bortezomib. Bortezomib increased the levels of P-Raf and P-Erk in HBV/HBx-positive cells but not in HBV/HBx-negative HCC cells or in breast cancer or glioblastoma multiform cells. HBx was also upregulated after exposure to bortezomib, which was associated with the inhibition of proteasome activity. P-Erk upregulation mediated by bortezomib was effectively suppressed by the addition of the MEK inhibitor PD98059. Moreover, bortezomib and PD98059 synergistically inhibited HCC cell proliferation, as measured using both ex vivo and in vivo models. CONCLUSIONS Our studies demonstrate for the first time that HBx causes resistance to bortezomib in HCC, and this resistance can be antagonized by a MEK signaling inhibitor, providing a novel therapeutic approach.
Collapse
Affiliation(s)
- Pinbo Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Baoxiong Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heyun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haiyan Yan
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenbin Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qibin Tang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California. National University of Singapore (CSI, NCIS), Singapore, Singapore
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Dong Yin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
31
|
Impairment of the Pin1/E2F1 axis in the anti-proliferative effect of bortezomib in hepatocellular carcinoma cells. Biochimie 2015; 112:85-95. [PMID: 25742740 DOI: 10.1016/j.biochi.2015.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The modest efficacy of available therapies for Hepatocellular carcinoma (HCC) indicates the need to develop novel therapeutic approaches. For the proteasome inhibitor Bortezomib (BZB), potentially attractive for HCC treatment, the mechanism of action is largely unknown. The BZB effect on E2Fs and the E2Fs control on the peptidylproline cis-trans isomerase (Pin1), prompted us to explore the BZB effect on the Pin1-E2F1 axis. METHODS The tumorigenic cell line HuH7 together with the non-tumorigenic cells IHH and the human pluripotent stem cell derived hepatocytes (hPSC-H), were used as cellular models of HCC and normal liver cells, respectively. RESULTS BZB reduces HuH7 growth as shown by cell counting, cell vitality test and cell cycle analysis; this is paralleled by the decrease of Pin1, E2F1, cyclin A2 and of the hyper-phosphorylated pRB. Pin1-E2F1 axis impairment justifies the anti-proliferative effect since Pin-E2F1 depletion decreases HuH7 growth while the over-expression rescues BZB-induced inhibition of proliferation. Moreover, Pin1-E2F1 promote HuH7 growth via the up-regulation of cyclin D1, cyclin E, cyclin A2, E2F2 and in part E2F3. Finally, in the control cells IHH and hPSC-H, BZB effect on cell vitality is not irrelevant, a fact correlated to the cellular proliferation rate. Thus, BZB effect on healthy liver tissue may not be entirely negligible hence caution should be exercised in its use in liver regeneration processes. CONCLUSION For the first time we prove the functional involvement of the Pin1-E2F1 axis in the anti-proliferative effect of BZB indicating Pin1-E2F as an attractive target to control HCC cell growth.
Collapse
|
32
|
Molecular mechanisms of liver injury: apoptosis or necrosis. ACTA ACUST UNITED AC 2014; 66:351-6. [PMID: 24867271 DOI: 10.1016/j.etp.2014.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022]
Abstract
Hepatic apoptosis is thought of as a prevalent mechanism in most forms of liver injury. However, the role of hepatic apoptosis is often intermixed with the cellular necrosis. It remains unknown how apoptosis is relevant to the progression of the liver injury. This review summarizes the characteristics of both hepatic apoptosis and necrosis in pathogenesis of liver diseases. Apoptosis and necrosis represent alternative outcomes of different etiology during liver injury. Apoptosis is a main mode of cell death in chronic viral hepatitis, but is intermingled with necrosis in cholestatic livers. Necrosis is the principal type of liver cell killing in acetaminophen-induced hepatotoxicity. Anti-apoptosis as a strategy is beneficial to liver repair response. Therapeutic options of liver disease depend on the understanding toward pathogenic mechanisms of different etiology.
Collapse
|
33
|
Seifert O, Pollak N, Nusser A, Steiniger F, Rüger R, Pfizenmaier K, Kontermann RE. Immuno-LipoTRAIL: Targeted delivery of TRAIL-functionalized liposomal nanoparticles. Bioconjug Chem 2014; 25:879-87. [PMID: 24766622 DOI: 10.1021/bc400517j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) is a powerful inducer of apoptosis in tumor cells; however, clinical studies with recombinant soluble TRAIL were rather disappointing. Here, we developed TRAIL-functionalized liposomes (LipoTRAIL, LT) to mimic membrane-displayed TRAIL for efficient activation of death receptors DR4 and DR5 and enhanced induction of apoptosis, which were combined with an anti-EGFR single-chain Fv fragment (scFv) for targeted delivery to EGFR-positive tumor cells. These immuno-LipoTRAILs (ILTs) bound specifically to EGFR-expressing cells (Colo205) and exhibited increased cytotoxicity compared with that of nontargeted LTs. Compared to that of the soluble TRAIL, the plasma half-life of the functionalized liposomes was strongly extended, and increased antitumor activity of LT and ILT was demonstrated in a xenograft tumor model. Thus, we established a multifunctional liposomal TRAIL formulation (ILT) with improved pharmacokinetic and pharmacodynamic behavior, characterized by targeted delivery and increased induction of apoptosis due to multivalent TRAIL presentation.
Collapse
Affiliation(s)
- Oliver Seifert
- Institut für Zellbiologie und Immunologie, Universität Stuttgart , Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Apoptotic effects of dipyrido [3,2-a:2',3'-c] phenazine (dppz) Au(III) complex against diethylnitrosamine/phenobarbital induced experimental hepatocarcinogenesis in rats. Mol Biol Rep 2014; 41:5109-21. [PMID: 24756331 DOI: 10.1007/s11033-014-3376-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 01/26/2023]
Abstract
We evaluated the effects of dipyrido [3,2-a:2',3'-c] phenazine (dppz) Au(III) complex ([Au(dppz)Cl2]Cl) on apoptosis during chemically induced hepatocellular carcinoma. 48 male Spraque-Dawley rats were divided into six groups; group I (control), group II [Dimethyl sulfoxide (DMSO)], group III ([Au(dppz)Cl2]Cl), group IV [diethylnitrosamine + Phenobabital (DEN + PB)], group V (DEN + PB + [Au(dppz)Cl2]Cl (2nd week)), and group VI (DEN + PB + [Au(dppz)Cl2]Cl (7th week). The rats in groups IV through VI were administrated with DEN in a single dose of intraperitoneal 175 mg/kg. After 2 weeks of DEN administration, these groups of rats were given daily PB in a dose of 500 ppm. In group V, after two weeks of DEN administration, [Au(dppz)Cl2]Cl complex (2 mg/kg) was given once a week by intraperitoneal injection. In the group VI, the rats were given a dose of 2 mg/kg [Au(dppz)Cl2]Cl complex once a week, 7 weeks after DEN administration. At the end of the study, blood and tissue samples were collected from the rats to determine levels of serum AST, ALT, and LDH, and caspase 3, p53, Bax, Bcl-2 and DNA fragmentation in liver. AST, ALT, LDH, and Bcl-2 levels were higher in group IV, compared to group I, but caspase 3 and p53 levels were lower. In group V, caspase 3, p53, Bax, and DNA fragmentation levels were higher than those of group IV. Caspase 3 and p53 levels increased in group VI compared with group IV. In conclusion, [Au(dppz)Cl2]Cl complex induced apoptosis by elevating levels of caspase 3, p53, Bax, and DNA fragmentation.
Collapse
|
35
|
TRAIL combinations: The new 'trail' for cancer therapy (Review). Oncol Lett 2014; 7:1327-1332. [PMID: 24765133 PMCID: PMC3997674 DOI: 10.3892/ol.2014.1922] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy is anticipated to be one of the most effective cancer treatments. However, resistance to TRAIL therapy remains a challenge facing the development of anticancer strategies. To circumvent this problem, TRAIL combinations have been experimented with for over ten years to induce synergism or sensitize resistant cancer cells. By analyzing the signaling pathways triggered by these combinations, this review has defined a set of core targets for novel combinatorial treatments. The review suggests specific pathways to be targeted together with TRAIL for more efficient treatment, including cellular FLICE inhibitory protein and its downstream survival factors, the Bcl-2 family and other prominent targets. The suggested pathways provide new avenues for more effective TRAIL-based cancer therapy.
Collapse
|
36
|
Breunig C, Mueller BJ, Umansky L, Wahl K, Hoffmann K, Lehner F, Manns MP, Bantel H, Falk CS. BRaf and MEK Inhibitors Differentially Regulate Cell Fate and Microenvironment in Human Hepatocellular Carcinoma. Clin Cancer Res 2014; 20:2410-23. [DOI: 10.1158/1078-0432.ccr-13-1635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Baiz D, Dapas B, Farra R, Scaggiante B, Pozzato G, Zanconati F, Fiotti N, Consoloni L, Chiaretti S, Grassi G. Bortezomib effect on E2F and cyclin family members in human hepatocellular carcinoma cell lines. World J Gastroenterol 2014; 20:795-803. [PMID: 24574752 PMCID: PMC3921488 DOI: 10.3748/wjg.v20.i3.795] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 12/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of the proteasome inhibitor bortezomib (BZB) on E2Fs and related genes in hepatocellular carcinoma (HCC) cells.
METHODS: The mRNA levels of the E2F family members (pro-proliferative: E2F1-3 and anti-proliferative: E2F4-8) and of their related genes cyclins and cyclin-dependent kinases (cdks) were evaluated in two HCC cell lines following a single BZB administration. mRNA levels of the epithelial-mesenchymal transition (EMT) genes were also measured in both cell lines after BZB treatment. The BZB concentration (40 nmol/L) used was chosen to stay well below the maximal amount/cm2 recommended for in vivo application, and 2 d incubation was chosen as this time point has been found optimal to detect BZB effects in our previous studies. The HCC cell lines, HepG2 and JHH6, were chosen as they display different phenotypes, hepatocyte-like for HepG2 and undifferentiated for JHH6, thus representing an in vitro model of low and high aggressive forms of HCC, respectively. The mRNA levels of the target genes were measured by two-color microarray-based gene expression analysis, performed according to Agilent Technologies protocol and using an Agilent Scan B. For the E2F family members, mRNA levels were quantified by real-time reverse transcription polymerase chain reaction (RT-PCR). Using small interfering RNA’s, the effects of E2F8 depletion on cell number was also evaluated.
RESULTS: After BZB treatment, microarray analysis of the undifferentiated JHH6 revealed a significant decrease in the expression of the pro-proliferative E2F member E2F2. Quantitative RT-PCR data were in keeping with the microarray analysis, and showed a significant increase and decrease in E2F8 and E2F2 mRNA levels, respectively. In contrast, BZB treatment of the hepatocyte-like HCC cell line HepG2 had a significant impact on mRNA levels of 5 of the 8 E2F members. In particular, mRNA levels of the pro-proliferative E2F members E2F1, E2F2, and of the anti-proliferative member E2F8, decreased over 80%. Notably, a reduction in E2F8 expression in HepG2 and JHH6 cells following siRNA treatment had no impact on cell proliferation. As observed with JHH6, BZB treatment of HepG2 cells induced a significant increase in mRNA levels of an anti-proliferative E2F member, E2F6 in this case. As was observed with E2F’s, more dramatic changes in mRNA levels of the E2F related genes cyclins and Cdks and EMT genes were observed after BZB treatment of HepG2 compared to JHH6.
CONCLUSION: The differential expression of E2Fs and related genes induced by BZB in diverse HCC cell phenotypes contribute to bortezomib’s mechanism of action in hepatocellular carcinoma.
Collapse
|
38
|
Aronin A, Amsili S, Prigozhina TB, Tzdaka K, Rachmilewitz J, Shani N, Tykocinski ML, Dranitzki Elhalel M. Fn14•TRAIL effectively inhibits hepatocellular carcinoma growth. PLoS One 2013; 8:e77050. [PMID: 24130833 PMCID: PMC3794952 DOI: 10.1371/journal.pone.0077050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Background New strategies for the treatment of hepatocellular carcinoma (HCC) are needed, given that currently available chemotherapeutics are inefficient. Since tumor growth reflects the net balance between pro-proliferative and death signaling, agents shifting the equilibrium toward the latter are of considerable interest. The TWEAK:Fn14 signaling axis promotes tumor cell proliferation and tumor angiogenesis, while TRAIL:TRAIL-receptor (TRAIL-R) interactions selectively induce apoptosis in malignant cells. Fn14•TRAIL, a fusion protein bridging these two pathways, has the potential to inhibit tumor growth, by interfering with TWEAK:Fn14 signaling, while at the same time enforcing TRAIL:TRAIL-R-mediated apoptosis. Consequently, Fn14•TRAIL's capacity to inhibit HCC growth was tested. Results Fn14•TRAIL induced robust apoptosis of multiple HCC cell lines, while sparing non-malignant hepatocyte cell lines. Differential susceptibility to this agent did not correlate with expression levels of TRAIL, TRAIL-R, TWEAK and Fn14 by these lines. Fn14•TRAIL was more potent than soluble TRAIL, soluble Fn14, or a combination of the two. The requirement of both of Fn14•TRAIL's molecular domains for function was established using blocking antibodies directed against each of them. Subcutaneous injection of Fn14•TRAIL abrogated HCC growth in a xenograft model, and was well tolerated by the mice. Conclusions In this study, Fn14•TRAIL, a multifunctional fusion protein originally designed to treat autoimmunity, was shown to inhibit the growth of HCC, both invitro and invivo. The demonstration of this fusion protein’s potent anti-tumor activity suggests that simultaneous targeting of two signaling axes by a single fusion can serve as a basis for highly effective anti-cancer therapies.
Collapse
Affiliation(s)
- Alexandra Aronin
- Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Tatyana B. Prigozhina
- Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kobi Tzdaka
- Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jacob Rachmilewitz
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Mark L. Tykocinski
- Office of the Dean, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Michal Dranitzki Elhalel
- Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
39
|
Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN ONCOLOGY 2013; 2013:371854. [PMID: 23840967 PMCID: PMC3693168 DOI: 10.1155/2013/371854] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective induction of cell death in potentially dangerous and superfluous cells to providing costimulatory signals that help mount an effective immune response. This diverse and important regulatory role in immunity has sparked great interest in the development of TNFL/TNFR-targeted cancer immunotherapeutics. In this review, I will discuss the biology of the most prominent proapoptotic and co-stimulatory TNF ligands and review their current status in cancer immunotherapy.
Collapse
|