1
|
Wang P, Kang Q, Wu WS, Rui L. Hepatic Snai1 and Snai2 promote liver regeneration and suppress liver fibrosis in mice. Cell Rep 2024; 43:113875. [PMID: 38451818 PMCID: PMC11025633 DOI: 10.1016/j.celrep.2024.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Liver injury stimulates hepatocyte replication and hepatic stellate cell (HSC) activation, thereby driving liver regeneration. Aberrant HSC activation induces liver fibrosis. However, mechanisms underlying liver regeneration and fibrosis remain poorly understood. Here, we identify hepatic Snai1 and Snai2 as important transcriptional regulators for liver regeneration and fibrosis. Partial hepatectomy or CCl4 treatment increases occupancies of Snai1 and Snai2 on cyclin A2 and D1 promoters in the liver. Snai1 and Snai2 in turn increase promoter H3K27 acetylation and cyclin A2/D1 expressions. Hepatocyte-specific deletion of both Snai1 and Snai2, but not one alone, suppresses liver cyclin A2/D1 expression and regenerative hepatocyte proliferation after hepatectomy or CCl4 treatments but augments CCl4-stimulated HSC activation and liver fibrosis. Conversely, Snai2 overexpression in the liver enhances hepatocyte replication and suppresses liver fibrosis after CCl4 treatment. These results suggest that hepatic Snai1 and Snai2 directly promote, via histone modifications, reparative hepatocyte replication and indirectly inhibit liver fibrosis.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; School of Chemical Engineering and Light Insulation, Guangdong University of Technology, Guangzhou 510006, China
| | - Qianqian Kang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine, UI Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Elizabeth Weiser Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Teeple K, Rajput P, Scinto S, Schoonmaker J, Davis C, Dinn M, McIntosh M, Krishnamurthy S, Plaut K, Casey T. Impact of high-fat diet and exposure to constant light on reproductive competence of female ICR mice. Biol Open 2023; 12:bio060088. [PMID: 37843404 PMCID: PMC10602010 DOI: 10.1242/bio.060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/19/2023] [Indexed: 10/17/2023] Open
Abstract
Obesity and exposure to light at night are prevalent in modern society and associated with changes in physiology and behavior that can affect a female's ability to support offspring growth during pregnancy and lactation. A 2X3 factor study of ICR mice was conducted to determine the effect of diet [control (CON; 10% fat) or high fat (HF; 60% fat)] and exposure to regular 12 h light:dark cycles (LD) or continuous low (L5) or high (L100) lux of light on gestation length, birth litter size, milk composition and litter growth to lactation day 12. HF diet reduced birth litter size, but increased postnatal d 12 litter weight (P<0.05), whereas constant light tended to increase litter weight (P=0.07). Continuous light increased gestation length, altered dam feed intake, increased serum prolactin and increased final dam and mammary gland weight (P<0.05), while decreasing mammary ATP content and milk lactose (P<0.05). Correlation analysis indicated a positive relationship between final litter weight and mammary size, metabolic stores (e.g. maternal fat pad weight), kcal of feed intake, and gestation length (P<0.05). Although CON mice spent more time eating than HF dams, the calorically dense HF diet was related to greater rates of litter growth to peak lactation. Constant light circadian disrupting effects appear to be confounded by a potential long day photoperiod response exemplified by higher circulating levels of prolactin and increased body and mammary weight of females exposed to these conditions. Other model systems may be better to study the interacting effects of obesity and circadian disruption on reproductive competence.
Collapse
Affiliation(s)
- Kelsey Teeple
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Prabha Rajput
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Sara Scinto
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Jenna Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Corrin Davis
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Michayla Dinn
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Mackenzie McIntosh
- Histology Core, College of Veterinary Medicine, Purdue University West Lafayette, IN 47907, USA
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP 221005, India
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Chouari T, Merali N, La Costa F, Santol J, Chapman S, Horton A, Aroori S, Connell J, Rockall TA, Mole D, Starlinger P, Welsh F, Rees M, Frampton AE. The Role of the Multiparametric MRI LiverMultiScan TM in the Quantitative Assessment of the Liver and Its Predicted Clinical Applications in Patients Undergoing Major Hepatic Resection for Colorectal Liver Metastasis. Cancers (Basel) 2023; 15:4863. [PMID: 37835557 PMCID: PMC10571783 DOI: 10.3390/cancers15194863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/05/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Liver biopsy remains the gold standard for the histological assessment of the liver. With clear disadvantages and the rise in the incidences of liver disease, the role of neoadjuvant chemotherapy in colorectal liver metastasis (CRLM) and an explosion of surgical management options available, non-invasive serological and imaging markers of liver histopathology have never been more pertinent in order to assess liver health and stratify patients considered for surgical intervention. Liver MRI is a leading modality in the assessment of hepatic malignancy. Recent technological advancements in multiparametric MRI software such as the LiverMultiScanTM offers an attractive non-invasive assay of anatomy and histopathology in the pre-operative setting, especially in the context of CRLM. This narrative review examines the evidence for the LiverMultiScanTM in the assessment of hepatic fibrosis, steatosis/steatohepatitis, and potential applications for chemotherapy-associated hepatic changes. We postulate its future role and the hurdles it must surpass in order to be implemented in the pre-operative management of patients undergoing hepatic resection for colorectal liver metastasis. Such a role likely extends to other hepatic malignancies planned for resection.
Collapse
Affiliation(s)
- Tarak Chouari
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Nabeel Merali
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Francesca La Costa
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Jonas Santol
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, 1090 Vienna, Austria
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Shelley Chapman
- Department of Radiology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Alex Horton
- Department of Radiology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Somaiah Aroori
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery and Transplant Surgery, Derriford Hospital, Plymouth PL6 8DH, UK
| | | | - Timothy A. Rockall
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Damian Mole
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh EH10 5HF, UK
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH105HF, UK
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Surgery, Medical University of Vienna, General Hospital, 1090 Vienna, Austria
| | - Fenella Welsh
- Hepato-Biliary Unit, Hampshire Hospitals Foundation Trust, Basingstoke, Hampshire RG24 9NA, UK
| | - Myrddin Rees
- Hepato-Biliary Unit, Hampshire Hospitals Foundation Trust, Basingstoke, Hampshire RG24 9NA, UK
| | - Adam E. Frampton
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
4
|
Chen Y, Chen L, Wu X, Zhao Y, Wang Y, Jiang D, Liu X, Zhou T, Li S, Wei Y, Liu Y, Hu C, Zhou B, Qin J, Ying H, Ding Q. Acute liver steatosis translationally controls the epigenetic regulator MIER1 to promote liver regeneration in a study with male mice. Nat Commun 2023; 14:1521. [PMID: 36934083 PMCID: PMC10024732 DOI: 10.1038/s41467-023-37247-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The early phase lipid accumulation is essential for liver regeneration. However, whether this acute lipid accumulation can serve as signals to direct liver regeneration rather than simply providing building blocks for cell proliferation remains unclear. Through in vivo CRISPR screening, we identify MIER1 (mesoderm induction early response 1) as a key epigenetic regulator that bridges the acute lipid accumulation and cell cycle gene expression during liver regeneration in male animals. Physiologically, liver acute lipid accumulation induces the phosphorylation of EIF2S1(eukaryotic translation initiation factor 2), which consequently attenuated Mier1 translation. MIER1 downregulation in turn promotes cell cycle gene expression and regeneration through chromatin remodeling. Importantly, the lipids-EIF2S1-MIER1 pathway is impaired in animals with chronic liver steatosis; whereas MIER1 depletion significantly improves regeneration in these animals. Taken together, our studies identify an epigenetic mechanism by which the early phase lipid redistribution from adipose tissue to liver during regeneration impacts hepatocyte proliferation, and suggest a potential strategy to boost liver regeneration.
Collapse
Affiliation(s)
- Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaoshan Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Dacheng Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuda Wei
- Department of Clinical Laboratory, Linyi People's Hospital, Xuzhou Medical University, Xuzhou, Shandong, 276000, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Cheng Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, P. R. China.
| |
Collapse
|
5
|
Inaba Y, Hashiuchi E, Watanabe H, Kimura K, Oshima Y, Tsuchiya K, Murai S, Takahashi C, Matsumoto M, Kitajima S, Yamamoto Y, Honda M, Asahara SI, Ravnskjaer K, Horike SI, Kaneko S, Kasuga M, Nakano H, Harada K, Inoue H. The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice. Nat Commun 2023; 14:167. [PMID: 36690638 PMCID: PMC9871012 DOI: 10.1038/s41467-023-35804-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular death increases with hepatic steatosis aggravation, although its regulation remains unclear. Here we show that hepatic steatosis aggravation shifts the hepatocellular death mode from apoptosis to necroptosis, causing increased hepatocellular death. Our results reveal that the transcription factor ATF3 acts as a master regulator in this shift by inducing expression of RIPK3, a regulator of necroptosis. In severe hepatic steatosis, after partial hepatectomy, hepatic ATF3-deficient or -overexpressing mice display decreased or increased RIPK3 expression and necroptosis, respectively. In cultured hepatocytes, ATF3 changes TNFα-dependent cell death mode from apoptosis to necroptosis, as revealed by live-cell imaging. In non-alcoholic steatohepatitis (NASH) mice, hepatic ATF3 deficiency suppresses RIPK3 expression and hepatocellular death. In human NASH, hepatocellular damage is correlated with the frequency of hepatocytes expressing ATF3 or RIPK3, which overlap frequently. ATF3-dependent RIPK3 induction, causing a modal shift of hepatocellular death, can be a therapeutic target for steatosis-induced liver damage, including NASH.
Collapse
Affiliation(s)
- Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Kumi Kimura
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shin Murai
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigetaka Kitajima
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Shin-Ichi Horike
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | - Masato Kasuga
- The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Kenichi Harada
- Departments of Human Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
6
|
Niles J, Singh G, Storey KB. Role of unfolded protein response and ER-associated degradation under freezing, anoxia, and dehydration stresses in the freeze-tolerant wood frogs. Cell Stress Chaperones 2023; 28:61-77. [PMID: 36346580 PMCID: PMC9877271 DOI: 10.1007/s12192-022-01307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
The North American amphibian, wood frogs, Rana sylvatica are the most studied anuran to comprehend vertebrate freeze tolerance. Multiple adaptations support their survival in frigid temperatures during winters, particularly their ability to produce glucose as natural cryoprotectant. Freezing and its component consequences (anoxia and dehydration) induce multiple stresses on cells. Among these is endoplasmic reticulum (ER) stress, a condition spawned by buildup of unfolded or misfolded proteins in the ER. The ER stress causes the unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway that potentially could lead to apoptosis. Immunoblotting was used to assess the responses of major proteins of the UPR and ERAD under freezing, anoxia, and dehydration stresses in the liver and skeletal muscle of the wood frogs. Targets analyzed included activating transcription factors (ATF3, ATF4, ATF6), the growth arrest and DNA damage proteins (GADD34, GADD153), and EDEM (ERAD enhancing α-mannosidase-like proteins) and XBP1 (X-box binding protein 1) proteins. UPR signaling was triggered under all three stresses (freezing, anoxia, dehydration) in liver and skeletal muscle of wood frogs with most tissue/stress responses consistent with an upregulation of the primary targets of all three UPR pathways (ATF4, ATF6, and XBP-1) to enhance the protein folding/refolding capacity under these stress conditions. Only frozen muscle showed preference for proteasomal degradation of misfolded proteins via upregulation of EDEM (ERAD). The ERAD response of liver was downregulated across three stresses suggesting preference for more refolding of misfolded/unfolded proteins. Overall, we conclude that wood frog organs activate the UPR as a means of stabilizing and repairing cellular proteins to best survive freezing exposures.
Collapse
Affiliation(s)
- Jacques Niles
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Gurjit Singh
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
7
|
Zhou S, Rao Z, Xia Y, Wang Q, Liu Z, Wang P, Cheng F, Zhou H. CCAAT/Enhancer-binding Protein Homologous Protein Promotes ROS-mediated Liver Ischemia and Reperfusion Injury by Inhibiting Mitophagy in Hepatocytes. Transplantation 2023; 107:129-139. [PMID: 35821597 PMCID: PMC9746334 DOI: 10.1097/tp.0000000000004244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver ischemia and reperfusion (IR) injury represent a major risk factor in both partial hepatectomy and liver transplantation. CCAAT/enhancer-binding protein homologous protein (CHOP) is a key regulator of cell death, its precise molecular basis in regulating hepatocyte death during liver IR has not been delineated. METHODS Hepatocellular CHOP deficient mice were generated by bone marrow chimera models using global CHOP knockout mice. Liver partial warm ischemia model and hypoxia/reoxygenation model of primary hepatocytes were applied. Liver injury and mitophagy-related signaling pathways were investigated. IR-stressed patient liver tissues and serum samples were analyzed as well. RESULTS Mice with hepatocellular CHOP deficiency exhibited alleviated cell death, decreased reactive oxygen species (ROS) expression, and enhanced mitophagy in hepatocytes after IR, confirmed by in vitro studies of hepatocytes after hypoxia/reoxygenation. Mitochondria ROS scavenge by Mito TEMPO effectively attenuated hepatocyte death and liver IR injury of wild-type mice, whereas no significant effects were observed in hepatocellular CHOP -deficient mice. CHOP depletion upregulated dynamin-related protein 1 and Beclin-1 activation in the mitochondria of hepatocytes leading to enhanced mitophagy. Following IR, increased CHOP expression and impaired mitophagy activation were observed in the livers of patients undergoing hepatectomy. N-acetyl cysteine pretreatment significantly improved the liver function of patients after surgery. CONCLUSIONS IR-induced CHOP activation exacerbates ROS-mediated hepatocyte death by inhibiting dynamin-related protein 1-Beclin-1-dependent mitophagy.
Collapse
Affiliation(s)
- Shun Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Zhuqing Rao
- Department of Anesthesiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- School of Medical, Southeast University, Nanjing, China
| | - Zheng Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ping Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
8
|
Miyazaki K, Saito Y, Ichimura-Shimizu M, Imura S, Ikemoto T, Yamada S, Tokuda K, Morine Y, Tsuneyama K, Shimada M. Defective endoplasmic reticulum stress response via X box-binding protein 1 is a major cause of poor liver regeneration after partial hepatectomy in mice with non-alcoholic steatohepatitis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2022; 29:1241-1252. [PMID: 35325502 DOI: 10.1002/jhbp.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Poor regeneration after hepatectomy in NAFLD is well recognized, but the mechanism is unclear. Endoplasmic reticulum (ER) stress plays an important role in the development of NAFLD. Here, we show that an impaired ER stress response contributes to poor liver regeneration in partially hepatectomized mice. METHODS Non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH) was induced in mice using our patented feed and 70% partial hepatectomy (PH) was performed. Mice were sacrificed 0, 4, 8, 24, or 48 hours, or 7 days after PH, and liver regeneration and the mRNA expression of ER stress markers were assessed. RESULTS Non-alcoholic fatty liver disease activity score was calculated as 4-6 points for NAFL and 7 points for NASH. NASH was characterized by inflammation and high ER stress marker expression before PH. After PH, NASH mice showed poorer liver regeneration than controls. High expression of proinflammatory cytokine genes was present in NASH mice 4 hours after PH. Xbp1-s mRNA expression was high in control and NAFL mice after PH, but no higher in NASH mice. CONCLUSIONS Dysfunction of the ER stress response might be a cause of poor liver regeneration in NASH.
Collapse
Affiliation(s)
| | - Yu Saito
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Satoru Imura
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Kazunori Tokuda
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
9
|
Carracedo S, Lirussi L, Alsøe L, Segers F, Wang C, Bartosova Z, Bohov P, Tekin NB, Kong XY, Esbensen QY, Chen L, Wennerström A, Kroustallaki P, Ceolotto D, Tönjes A, Berge RK, Bruheim P, Wong G, Böttcher Y, Halvorsen B, Nilsen H. SMUG1 regulates fat homeostasis leading to a fatty liver phenotype in mice. DNA Repair (Amst) 2022; 120:103410. [PMID: 36244177 DOI: 10.1016/j.dnarep.2022.103410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/08/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
10
|
Shi Y, Long H, Zhong X, Peng J, Su L, Duan Y, Ke W, Xie X, Lin M. The Value of Liver Stiffness Measured by Two-Dimensional Shear Wave Elastography for Predicting Symptomatic Posthepatectomy Liver Failure in Patients with Hepatocellular Carcinoma. Eur J Radiol 2022; 150:110248. [DOI: 10.1016/j.ejrad.2022.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
|
11
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
12
|
Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021; 10:cells10081906. [PMID: 34440675 PMCID: PMC8394846 DOI: 10.3390/cells10081906] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF-κB can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of either protein involved in the NF-κB signaling pathway that have provided relevant information about the intricate processes or molecular mechanisms that control ageing. We have reviewed the relationship of NF-κB and premature ageing; the development of cancer associated with ageing and the implication of NF-κB activation in the development of age-related diseases, some of which greatly increase the risk of developing cancer.
Collapse
|
13
|
Thomas RC, Kheder R, Alaridhee H, Martin N, Stover CM. Complement Properdin Regulates the Metabolo-Inflammatory Response to a High Fat Diet. ACTA ACUST UNITED AC 2020; 56:medicina56090484. [PMID: 32971872 PMCID: PMC7558790 DOI: 10.3390/medicina56090484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/03/2023]
Abstract
Background and objectives: Overnutrition leads to a metabolic and inflammatory response that includes the activation of Complement. Properdin is the only amplifier of complement activation and increases the provision of complement activation products. Its absence has previously been shown to lead to increased obesity in mice on a high fat diet. The aim of this study was to determine ways in which properdin contributes to a less pronounced obese phenotype. Materials and Methods: Wild type (WT) and properdin deficient mice (KO) were fed a high-fat diet (HFD) for up to 12 weeks. Results: There was a significant increase in liver triglyceride content in the KO HFD group compared to WT on HFD. WT developed steatosis. KO had an additional inflammatory component (steatohepatitis). Analysis of AKT signalling by phosphorylation array supported a decrease in insulin sensitivity which was greater for KO than WT in liver and kidney. There was a significant decrease of C5L2 in the fat membranes of the KO HFD group compared to the WT HFD group. Circulating microparticles in KO HFD group showed lower presence of C5L2. Expression of the fatty acid transporter CD36 in adipose tissue was increased in KO on HFD and was also significantly increased in plasma of KO HFD mice compared to WT on HFD. CD36 was elevated on microparticles from KO on HFD. Ultrastructural changes consistent with obesity-associated glomerulopathy were observed for both HFD fed genotypes, but tubular strain was greater in KO. Conclusion: Our work demonstrates that complement properdin is a dominant factor in limiting the severity of obesity-associated conditions that impact on liver and kidney. The two receptors, C5L2 and CD36, are downstream of the activity exerted by properdin.
Collapse
Affiliation(s)
- Rόisín C. Thomas
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Ramiar Kheder
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Hasanain Alaridhee
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
| | - Naomi Martin
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
- Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Cordula M. Stover
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK; (R.C.T.); (R.K.); (H.A.); (N.M.)
- Correspondence: ; Tel.: +44-116-2525032
| |
Collapse
|
14
|
Yang S, Yang R, Wang H, Huang Y, Jia Y. CDK5RAP3 Deficiency Restrains Liver Regeneration after Partial Hepatectomy Triggering Endoplasmic Reticulum Stress. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2403-2416. [PMID: 32926856 DOI: 10.1016/j.ajpath.2020.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) plays a crucial role in mammalian liver development and hepatic function by controlling hepatocyte proliferation and differentiation, glucose and lipid metabolism, UFMylation, and endoplasmic reticulum homeostasis. However, the role of CDK5RAP3 in liver regeneration remains unknown. A liver-specific Cdk5rap3 knockout (CKO) mouse model was used to study the function of CDK5RAP3 during liver regeneration induced by standard two-thirds partial hepatectomy (PHx). Twenty-four hours after PHx, the liver-to-body weight ratio was markedly higher in CKO mice than in wild-type mice. However, this ratio did not increase significantly and gradually over time after PHx in CKO mice. Hepatocyte proliferation was significantly delayed in CKO mice compared with wild-type mice. Meanwhile, CDK5RAP3 deficiency increased lipid accumulation, impaired glycogen synthesis, and lowered blood glucose levels after PHx. Critically, the absence of CDK5RAP3 seemed to promote an inflammatory response and induce apoptosis at a late stage of liver regeneration. In addition, CDK5RAP3 deficiency disrupted UFMylation homeostasis and aggravated endoplasmic reticulum stress in hepatocytes after PHx. Taken together, these data suggest that CDK5RAP3 enhances liver regeneration, at least partially via controlling cell cycle and glucose and lipid metabolism.
Collapse
Affiliation(s)
- Shuchun Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanmin Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuyan Jia
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Hashiuchi E, Watanabe H, Kimura K, Matsumoto M, Inoue H, Inaba Y. Diet intake control is indispensable for the gluconeogenic response to sodium-glucose cotransporter 2 inhibition in male mice. J Diabetes Investig 2020; 12:35-47. [PMID: 32515547 PMCID: PMC7779272 DOI: 10.1111/jdi.13319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Aims/Introduction Sodium–glucose cotransporter 2 inhibitor (SGLT2i) lowers blood glucose and causes a whole‐body energy deficit by boosting renal glucose excretion, thus affecting glucose and energy metabolism. This energy deficit not only decreases bodyweight, but also increases food intake. This food intake increase offsets the SGLT2i‐induced bodyweight decrease, but the effect of the food intake increase on the SGLT2i regulation of glucose metabolism remains unclear. Materials and Methods We administered SGLT2i (luseogliflozin) for 4 weeks to hepatic gluconeogenic enzyme gene G6pc reporter mice with/without obesity, which were either fed freely or under a 3‐hourly dietary regimen. The effect of feeding condition on the gluconeogenic response to SGLT2i was evaluated by plasma Gaussia luciferase activity, an index of the hepatic gluconeogenic response, in G6pc reporter mice. Energy expenditure was measured by indirect calorimetry. Results In the lean mice under controlled feeding, SGLT2i decreased bodyweight and plasma glucose, and increased the hepatic gluconeogenic response while decreasing blood insulin. SGLT2i also increased oxygen consumption under controlled feeding. However, free feeding negated all of these effects of SGLT2i. In the obese mice, SGLT2i decreased bodyweight, blood glucose and plasma insulin, ameliorated the upregulated hepatic gluconeogenic response, and increased oxygen consumption under controlled feeding. Under free feeding, although blood glucose was decreased and plasma insulin tended to decrease, the effects of SGLT2i – decreased bodyweight, alleviation of the hepatic gluconeogenic response and increased oxygen consumption – were absent. Conclusions Food intake management is crucial for SGLT2i to affect glucose and energy metabolism during type 2 diabetes treatment.
Collapse
Affiliation(s)
- Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kumi Kimura
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Inoue
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
16
|
The Inhibition of Aldose Reductase Accelerates Liver Regeneration through Regulating Energy Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3076131. [PMID: 32190170 PMCID: PMC7064854 DOI: 10.1155/2020/3076131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
Objectives Our previous study showed that aldose reductase (AR) played key roles in fatty liver ischemia-reperfusion (IR) injury by regulating inflammatory response and energy metabolism. Here, we aim to investigate the role and mechanism of AR in the regeneration of normal and fatty livers after liver surgery. Methods The association of AR expression with liver regeneration was studied in the rat small-for-size liver transplantation model and the mice major hepatectomy and hepatic IR injury model with or without fatty change. The direct role and mechanism of AR in liver regeneration was explored in the AR knockout mouse model. Results Delayed regeneration was detected in fatty liver after liver surgery in both rat and mouse models. Furthermore, the expression of AR was increased in liver after liver surgery, especially in fatty liver. In a functional study, the knockout of AR promoted liver regeneration at day 2 after major hepatectomy and IR injury. Compared to wild-type groups, the expressions of cyclins were increased in normal and fatty livers of AR knockout mice. AR inhibition increased the expressions of PPAR-α and PPAR-γ in both normal liver and fatty liver groups after major hepatectomy and IR injury. In addition, the knockout of AR promoted the expressions of SDHB, AMPK, SIRT1, and PGC1-α and PPAR- Conclusions The knockout of AR promoted the regeneration of normal and fatty livers through regulating energy metabolism. AR may be a new potential therapeutic target to accelerate liver regeneration after surgery.
Collapse
|
17
|
Bangru S, Kalsotra A. Cellular and molecular basis of liver regeneration. Semin Cell Dev Biol 2020; 100:74-87. [PMID: 31980376 DOI: 10.1016/j.semcdb.2019.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Recent advances in genetics and genomics have reinvigorated the field of liver regeneration. It is now possible to combine lineage-tracing with genome-wide studies to genetically mark individual liver cells and their progenies and detect precise changes in their genome, transcriptome, and proteome under normal versus regenerative settings. The recent use of single-cell RNA sequencing methodologies in model organisms has, in some ways, transformed our understanding of the cellular and molecular biology of liver regeneration. Here, we review the latest strides in our knowledge of general principles that coordinate regeneration of the liver and reflect on some conflicting evidence and controversies surrounding this topic. We consider the prominent mechanisms that stimulate homeostasis-related vis-à-vis injury-driven regenerative responses, highlight the likely cellular sources/depots that reconstitute the liver following various injuries and discuss the extrinsic and intrinsic signals that direct liver cells to proliferate, de-differentiate, or trans-differentiate while the tissue recovers from acute or chronic damage.
Collapse
Affiliation(s)
- Sushant Bangru
- Departments of Biochemistry and Pathology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@ Illinois, University of Illinois, Urbana-Champaign, IL, USA
| | - Auinash Kalsotra
- Departments of Biochemistry and Pathology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@ Illinois, University of Illinois, Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
18
|
Inaba Y, Hashiuchi E, Watanabe H, Kimura K, Sato M, Kobayashi M, Matsumoto M, Kitamura T, Kasuga M, Inoue H. Hepatic Gluconeogenic Response to Single and Long-Term SGLT2 Inhibition in Lean/Obese Male Hepatic G6pc-Reporter Mice. Endocrinology 2019; 160:2811-2824. [PMID: 31517956 DOI: 10.1210/en.2019-00422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/05/2019] [Indexed: 02/04/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2i) consistently reduces blood glucose levels in type 2 diabetes mellitus but increases hepatic gluconeogenic gene expression and glucose production, offsetting its glucose-lowering effect. This study aimed to elucidate the effect of SGLT2i on hepatic gluconeogenic response and its mechanism in both insulin-sensitive and insulin-resistant states. A hepatic mouse model was generated to show liver-specific expression of Gaussia luciferase (GLuc) driven by the gluconeogenic enzyme gene G6pc promoter. Hepatic gluconeogenic response was evaluated by measuring plasma GLuc activity. SGLT2i was given to lean and obese mice in single gavage administration or 4-week dietary administration with controlled feeding every 3 hours. In lean mice, single-dose SGLT2i increased plasma GLuc activity from 2 hours after administration, decreasing blood glucose and plasma insulin from 1 to 2 hours after administration. In obese mice, which had higher plasma GLuc activity than lean ones, SGLT2i did not further increase GLuc activity despite decreased blood glucose and plasma insulin. Hepatic Akt and GSK3β phosphorylation was attenuated by single-dose SGLT2i in lean mice in accordance with the plasma insulin decrease, but not in obese mice. Long-term SGLT2i administration, which increased plasma GLuc activity in lean mice, decreased it in obese mice from 3 weeks after initiation, with increased hepatic Akt and GSK3β phosphorylation. In conclusion, single SGLT2i administration increases hepatic gluconeogenic response in lean insulin-sensitive mice, but not in obese insulin-resistant mice. Long-term SGLT2i administration relieves obesity-induced upregulation of the hepatic gluconeogenic response by restoring impeded hepatic insulin signaling in obese insulin-resistant mice.
Collapse
Affiliation(s)
- Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kumi Kimura
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaki Kobayashi
- Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tadahiro Kitamura
- Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Masato Kasuga
- The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
19
|
Duvigneau JC, Luís A, Gorman AM, Samali A, Kaltenecker D, Moriggl R, Kozlov AV. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 2019; 124:154577. [DOI: 10.1016/j.cyto.2018.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
20
|
Kimura K, Inaba Y, Watanabe H, Matsukawa T, Matsumoto M, Inoue H. Nicotinic alpha-7 acetylcholine receptor deficiency exacerbates hepatic inflammation and fibrosis in a mouse model of non-alcoholic steatohepatitis. J Diabetes Investig 2019; 10:659-666. [PMID: 30369082 PMCID: PMC6497582 DOI: 10.1111/jdi.12964] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022] Open
Abstract
AIMS/INTRODUCTION Non-alcoholic steatohepatitis (NASH), which occurs in association with insulin resistance and hepatic fat accumulation, is characterized by chronic liver injury and fibrosis. NASH onset and progression is closely related to hepatic inflammation, which is partly regulated by the vagus nerve through the α7 nicotinic acetylcholine receptor (α7nAchR). Hepatic α7nAchR action is impeded in obesity and insulin resistance. In the present study, using α7nAchR knockout (α7KO) mice, we elucidated the effect of α7nAchR deficiency on NASH-related inflammation and fibrosis. MATERIALS AND METHODS α7KO mice were fed an atherogenic high-fat diet (AD) for 32 weeks or methionine/choline-deficient diet (MCD) for 6 weeks, both of which induce NASH. Mice were then examined for the degree of NASH-related inflammation and fibrosis by hepatic gene expression analysis and Sirius red histological staining. RESULTS Hepatic triglyceride accumulation and elevated plasma transaminase levels were observed in both AD and MCD mice, but the plasma transaminase level increase was higher in α7KO mice than in control mice. α7KO mice fed an AD showed significant upregulation of the Col1a1 gene encoding alpha-1 type I collagen, which is involved in liver fibrosis, and the Ccl2 gene encoding C-C motif chemokine ligand 2, a pro-inflammatory chemokine; α7KO mice fed an MCD had significant upregulation of the Col1a1 gene and the Tnf gene, an inflammatory cytokine. Histological analysis showed that AD and MCD exacerbated liver fibrosis in α7KO mice. CONCLUSIONS The results of this study suggest that α7nAchR deficiency exacerbates hepatic inflammation and fibrosis in a diet-induced mouse model of NASH.
Collapse
Affiliation(s)
- Kumi Kimura
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Yuka Inaba
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Toshiya Matsukawa
- Department of Molecular Metabolic RegulationDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic RegulationDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| |
Collapse
|
21
|
Allaire M, Gilgenkrantz H. The impact of steatosis on liver regeneration. Horm Mol Biol Clin Investig 2018; 41:/j/hmbci.ahead-of-print/hmbci-2018-0050/hmbci-2018-0050.xml. [PMID: 30462610 DOI: 10.1515/hmbci-2018-0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Alcoholic and non-alcoholic fatty liver diseases are the leading causes of cirrhosis in Western countries. These chronic liver diseases share common pathological features ranging from steatosis to steatohepatitis. Fatty liver is associated with primary liver graft dysfunction, a higher incidence of complications/mortality after surgery, in correlation with impaired liver regeneration. Liver regeneration is a multistep process including a priming phase under the control of cytokines followed by a growth factor receptor activation phase leading to hepatocyte proliferation. This process ends when the initial liver mass is restored. Deficiency in epidermal growth factor receptor (EGFR) liver expression, reduced expression of Wee1 and Myt1 kinases, oxidative stress and alteration in hepatocyte macroautophagy have been identified as mechanisms involved in the defective regeneration of fatty livers. Besides the mechanisms, we will also discuss in this review various treatments that have been investigated in the reversal of the regeneration defect, for example, omega-3 fatty acids, pioglitazone, fibroblast growth factor (FGF)19-based chimeric molecule or growth hormone (GH). Since dysbiosis impedes liver regeneration, targeting microbiota could also be an interesting therapeutic approach.
Collapse
Affiliation(s)
- Manon Allaire
- Inserm U1149, Center for Research on Inflammation, Faculté de Médecine Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Service d'Hépato-gastroentérologie et Nutrition, CHU Côte de Nacre, Caen, France
| | - Hélène Gilgenkrantz
- Centre de Recherche sur l'Inflammation, Faculté de Médecine Xavier Bichat, Inserm U1149, Université Paris Diderot, Sorbonne Paris Cité, 16 Rue Huchard, 75018 Paris, France, Phone: (+33) 1 57277530
| |
Collapse
|
22
|
Li CX, Chen LL, Li XC, Ng KTP, Yang XX, Lo CM, Guan XY, Man K. ApoA-1 accelerates regeneration of small-for-size fatty liver graft after transplantation. Life Sci 2018; 215:128-135. [PMID: 30473024 DOI: 10.1016/j.lfs.2018.10.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Apolipoprotein A-1 (ApoA-1) is involved in regulating both lipid and energy metabolism, which may play important roles in liver regeneration, especially for the liver with steatosis. We here intended to investigate the role of ApoA-1 in regeneration of small-for-size fatty liver graft and to explore the underlying mechanism. METHODS The association of ApoA-1 expression with liver regeneration was studied in rat liver transplantation models using small-for-size normal graft or small-for-size fatty graft. The direct role of ApoA-1 in liver regeneration was studied in mouse hepatectomy model in vivo and hepatocytes in vitro. RESULTS Compared to small-for-size normal graft, decreased expression of ApoA-1 associated with delayed regeneration were detected in small-for-size fatty liver graft after transplantation. In functional study, the expression of ApoA-1 was decreased in hepatocytes with steatosis and was inversely associated with the concentration of oleic acid. The ApoA-1 administration effectively attenuated hepatocytes steatosis and accelerated hepatocytes proliferation. In mouse model, ApoA-1 treatment promoted liver regeneration at day 2 after major hepatectomy. In addition, the treatment of ApoA-1 increased the expressions of PGC-1α and its target genes Tfam, Ucp2 and SDHB. CONCLUSIONS ApoA-1 may accelerate regeneration of small-for-size fatty liver graft at day 2 after transplantation through regulating mitochondrial function. ApoA-1 may be the potential new therapy of promoting liver regeneration.
Collapse
Affiliation(s)
- Chang Xian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Lei Lei Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xiang Cheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, China
| | - Kevin Tak-Pan Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Xin Xiang Yang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Xin Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Xiong Y, Torsoni AS, Wu F, Shen H, Liu Y, Zhong X, Canet MJ, Shah YM, Omary MB, Liu Y, Rui L. Hepatic NF-kB-inducing kinase (NIK) suppresses mouse liver regeneration in acute and chronic liver diseases. eLife 2018; 7:e34152. [PMID: 30070632 PMCID: PMC6078493 DOI: 10.7554/elife.34152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/28/2018] [Indexed: 12/24/2022] Open
Abstract
Reparative hepatocyte replication is impaired in chronic liver disease, contributing to disease progression; however, the underlying mechanism remains elusive. Here, we identify Map3k14 (also known as NIK) and its substrate Chuk (also called IKKα) as unrecognized suppressors of hepatocyte replication. Chronic liver disease is associated with aberrant activation of hepatic NIK pathways. We found that hepatocyte-specific deletion of Map3k14 or Chuk substantially accelerated mouse hepatocyte proliferation and liver regeneration following partial-hepatectomy. Hepatotoxin treatment or high fat diet feeding inhibited the ability of partial-hepatectomy to stimulate hepatocyte replication; remarkably, inactivation of hepatic NIK markedly increased reparative hepatocyte proliferation under these liver disease conditions. Mechanistically, NIK and IKKα suppressed the mitogenic JAK2/STAT3 pathway, thereby inhibiting cell cycle progression. Our data suggest that hepatic NIK and IKKα act as rheostats for liver regeneration by restraining overgrowth. Pathological activation of hepatic NIK or IKKα likely blocks hepatocyte replication, contributing to liver disease progression.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Adriana Souza Torsoni
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
- Laboratory of Metabolic Disorders, School of Applied SciencesUniversity of CampinasLimeiraBrazil
| | - Feihua Wu
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese MedicineChina Pharmaceutical UniversityNanjingChina
| | - Hong Shen
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Yan Liu
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Xiao Zhong
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Mark J Canet
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Yatrik M Shah
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - M Bishr Omary
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
| | - Yong Liu
- College of Life Sciences, Institute for Advanced StudiesWuhan UniversityWuhanChina
| | - Liangyou Rui
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborUnited States
- Department of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
24
|
Shen YN, Zheng ML, Guo CX, Bai XL, Pan Y, Yao WY, Liang TB. The role of imaging in prediction of post-hepatectomy liver failure. Clin Imaging 2018; 52:137-145. [PMID: 30059953 DOI: 10.1016/j.clinimag.2018.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Post-hepatectomy liver failure (PHLF) is not only a leading cause of mortality but also a leading cause of life-threatening complications in patients undergoing liver resection. The ability to accurately detect the emergence of PHLF represents a crucially important step. Currently, PHLF can be predicted by a comprehensive evaluation of biological, clinical, and anatomical parameters. With the development of new technologies, imaging methods including elastography, diffusion-weighted magnetic resonance imaging, and gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid-enhanced MRI play a more significant role in the pre-operative prediction and assessment of PHLF. In this review, we summarize the mainstream studies, with the aim of evaluating the role of imaging and improving the clinical value of existing scoring systems for predicting PHLF.
Collapse
Affiliation(s)
- Yi-Nan Shen
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Meng-Lin Zheng
- Department of Ultrasound, Huashan Hospital of Fudan University, Shanghai, China
| | - Cheng-Xiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yao Pan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Yun Yao
- Department of General Surgery, The People's Hospital of Changxing County, Huzhou, China
| | - Ting-Bo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
| |
Collapse
|
25
|
Abstract
The liver has a unique ability of regenerating after injuries or partial loss of its mass. The mechanisms responsible for liver regeneration - mostly occurring when the hepatic tissue is damaged or functionally compromised by metabolic stress - have been studied in considerable detail over the last few decades, because this phenomenon has both basic-biology and clinical relevance. More specifically, recent interest has been focusing on the widespread occurrence of abnormal nutritional habits in the Western world that result in an increased prevalence of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely associated with insulin resistance and dyslipidemia, and it represents a major clinical challenge. The disease may progress to steatohepatitis with persistent inflammation and progressive liver damage, both of which will compromise regeneration under conditions of partial hepatectomy in surgical oncology or in liver transplantation procedures. Here, we analyze the impact of ER stress and SIRT1 in lipid metabolism and in fatty liver pathology, and their consequences on liver regeneration. Moreover, we discuss the fine interplay between ER stress and SIRT1 functioning when contextualized to liver regeneration. An improved understanding of the cellular and molecular intricacies contributing to liver regeneration could be of great clinical relevance in areas as diverse as obesity, metabolic syndrome and type 2 diabetes, as well as oncology and transplantation.
Collapse
Affiliation(s)
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
Shan Z, Alvarez-Sola G, Uriarte I, Arechederra M, Fernández-Barrena MG, Berasain C, Ju C, Avila MA. Fibroblast growth factors 19 and 21 in acute liver damage. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:257. [PMID: 30069459 DOI: 10.21037/atm.2018.05.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently there are very few pharmacological options available to treat acute liver injury. Because its natural exposure to noxious stimuli the liver has developed a strong endogenous hepatoprotective capacity. Indeed, experimental evidence exposed a variety of endogenous hepatic and systemic responses naturally activated to protect the hepatic parenchyma and to foster liver regeneration, therefore preserving individual's survival. The fibroblast growth factor (FGF) family encompasses a range of polypeptides with important effects on cellular differentiation, growth survival and metabolic regulation in adult organisms. Among these FGFs, FGF19 and FGF21 are endocrine hormones that profoundly influence systemic metabolism but also exert important hepatoprotective activities. In this review, we revisit the biology of these factors and highlight their potential application for the clinical management of acute liver injury.
Collapse
Affiliation(s)
- Zhao Shan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Gloria Alvarez-Sola
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERehd, Carlos III Institute of Health, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERehd, Carlos III Institute of Health, Pamplona, Spain
| | - María Arechederra
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERehd, Carlos III Institute of Health, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERehd, Carlos III Institute of Health, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERehd, Carlos III Institute of Health, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Spain
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, USA
| | - Matías A Avila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,CIBERehd, Carlos III Institute of Health, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
27
|
Ozawa Y, Tamura T, Owada Y, Shimizu Y, Kemmochi A, Hisakura K, Matsuzaka T, Shimano H, Isoda H, Ohkohchi N. Evaluation of safety for hepatectomy in a novel mouse model with nonalcoholic-steatohepatitis. World J Gastroenterol 2018; 24:1622-1631. [PMID: 29686469 PMCID: PMC5910545 DOI: 10.3748/wjg.v24.i15.1622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether the liver resection volume in a newly developed nonalcoholic steatohepatitis (NASH) model influences surgical outcome.
METHODS For establishment of a NASH model, mice were fed a high-fat diet for 4 wk, administered CCl4 for the last 2 wk, and administered T0901317 for the last 5 d. We divided these mice into two groups: A 30% partial hepatectomy (PH) of NASH liver group and a 70% PH of NASH liver group. In addition, a 70% PH of normal liver group served as the control. Each group was evaluated for survival rate, regeneration, apoptosis, necrosis and DNA expression after PH.
RESULTS In the 70% PH of NASH group, the survival rate was significantly decreased compared with that in the control and 30% PH of NASH groups (P < 0.01). 10 of 32 mice in the NASH 70% PH group died within 48 h after PH. Serum aspartate aminotransferase (AST) levels and total bilirubin (T-Bil) in the NASH 70% PH group were significantly higher than the levels in the other two groups (AST: P < 0.05, T-Bil: P < 0.01). In both PH of NASH groups, signaling proteins involved in regeneration were expressed at lower levels than those in the control group (P < 0.01). The 70% PH of NASH group also exhibited a lower number of Ki-67-positive cells and higher rates of apoptosis and necrosis than the NASH 30% PH group (P < 0.01). In addition, DNA microarray assays showed differences in gene expression associated with cell cycle arrest and apoptosis.
CONCLUSION The function of the residual liver is impaired in fatty liver compared to normal liver. A larger residual volume is required to maintain liver functions in mice with NASH.
Collapse
Affiliation(s)
- Yusuke Ozawa
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takafumi Tamura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yohei Owada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshio Shimizu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Akira Kemmochi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Katsuji Hisakura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
28
|
Gilgenkrantz H, Collin de l'Hortet A. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1316-1327. [PMID: 29673755 DOI: 10.1016/j.ajpath.2018.03.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Liver regeneration is a complex and unique process. When two-thirds of a mouse liver is removed, the remaining liver recovers its initial weight in approximately 10 days. The understanding of the mechanisms responsible for liver regeneration may help patients needing large liver resections or transplantation and may be applied to the field of regenerative medicine. All differentiated hepatocytes are capable of self-renewal, but different subpopulations of hepatocytes seem to have distinct proliferative abilities. In the setting of chronic liver diseases, a ductular reaction ensues in which liver progenitor cells (LPCs) proliferate in the periportal region. Although these LPCs have the capacity to differentiate into hepatocytes and biliary cells in vitro, their ability to participate in liver regeneration is far from clear. Their expansion has even been associated with increased fibrosis and poorer prognosis in chronic liver diseases. Controversies also remain on their origin: lineage studies in experimental mouse models of chronic injury have recently suggested that these LPCs originate from hepatocyte dedifferentiation, whereas in other situations, they seem to come from cholangiocytes. This review summarizes data published in the past 5 years in the liver regeneration field, discusses the mechanisms leading to regeneration disruption in chronic liver disorders, and addresses the potential use of novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- INSERM U1149, Center for Research on Inflammation, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
29
|
Rutkowski DT. Liver function and dysfunction - a unique window into the physiological reach of ER stress and the unfolded protein response. FEBS J 2018; 286:356-378. [PMID: 29360258 DOI: 10.1111/febs.14389] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) improves endoplasmic reticulum (ER) protein folding in order to alleviate stress. Yet it is becoming increasingly clear that the UPR regulates processes well beyond those directly involved in protein folding, in some cases by mechanisms that fall outside the realm of canonical UPR signaling. These pathways are highly specific from one cell type to another, implying that ER stress signaling affects each tissue in a unique way. Perhaps nowhere is this more evident than in the liver, which-beyond being a highly secretory tissue-is a key regulator of peripheral metabolism and a uniquely proliferative organ upon damage. The liver provides a powerful model system for exploring how and why the UPR extends its reach into physiological processes that occur outside the ER, and how ER stress contributes to the many systemic diseases that involve liver dysfunction. This review will highlight the ways in which the study of ER stress in the liver has expanded the view of the UPR to a response that is a key guardian of cellular homeostasis outside of just the narrow realm of ER protein folding.
Collapse
Affiliation(s)
- D Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, IA, USA.,Department of Internal Medicine, University of Iowa Carver College of Medicine, IA, USA
| |
Collapse
|
30
|
Khamphaya T, Chukijrungroat N, Saengsirisuwan V, Mitchell-Richards KA, Robert ME, Mennone A, Nathanson MH, Weerachayaphorn J, Weerachayaphorn J. Nonalcoholic fatty liver disease impairs expression of the type II inositol 1,4,5-trisphosphate receptor. Hepatology 2018; 67:560-574. [PMID: 29023819 PMCID: PMC5893412 DOI: 10.1002/hep.29588] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/07/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. It may result in several types of liver problems, including impaired liver regeneration (LR), but the mechanism for this is unknown. Because LR depends on calcium signaling, we examined the effects of NAFLD on expression of the type II inositol 1,4,5-trisphosphate receptor (ITPR2), the principle calcium release channel in hepatocytes. ITPR2 promoter activity was measured in Huh7 and HepG2 cells. ITPR2 and c-Jun protein levels were evaluated in Huh7 cells, in liver tissue from a rat model of NAFLD, and in liver biopsy specimens of patients with simple steatosis and nonalcoholic steatohepatitis (NASH). LR was assessed in wild-type and Itpr2 knockout (Itpr2-/- ) mice following 67% hepatectomy. Cell proliferation was examined in ITPR2-knockout HepG2 cells generated by the CRISPR/Cas9 system. c-Jun dose dependently decreased activity of the human ITPR2 promoter. c-Jun expression was increased and ITPR2 was decreased in fat-loaded Huh7 cells and in livers of rats fed a high-fat, high-fructose diet. Overexpression of c-Jun reduced protein and mRNA expression of ITPR2 in Huh7 cells, whereas knockdown of c-Jun prevented the decrease of ITPR2 in fat-loaded Huh7 cells. ITPR2 expression was decreased and c-Jun was increased in liver biopsies of patients with steatosis and NASH compared to controls. ITPR2-knockout cells exhibited less nuclear calcium signaling and cell proliferation than control cells. LR assessed by Ki-67 and proliferating cell nuclear antigen was markedly decreased in Itpr2-/- mice. Conclusion: Fatty liver induces a c-Jun-mediated decrease in ITPR2 in hepatocytes. This may account for the impaired LR that occurs in NAFLD. (Hepatology 2018;67:560-574).
Collapse
Affiliation(s)
- Tanaporn Khamphaya
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natsasi Chukijrungroat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Vitoon Saengsirisuwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Marie E. Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Albert Mennone
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA
| | - Michael H. Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA,Corresponding Authors: Michael H. Nathanson, M.D., Ph.D., Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA. Phone: (+1) 203-785-7312; Fax: (+1) 203-785-7273, ; Jittima Weerachayaphorn, Ph.D., Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand. Phone: (+66) 2201-5514; Fax: (+66) 2354-7154, ,
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand,Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven 06519, Connecticut, USA,Corresponding Authors: Michael H. Nathanson, M.D., Ph.D., Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA. Phone: (+1) 203-785-7312; Fax: (+1) 203-785-7273, ; Jittima Weerachayaphorn, Ph.D., Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand. Phone: (+66) 2201-5514; Fax: (+66) 2354-7154, ,
| | - Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
31
|
Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nat Commun 2018; 9:30. [PMID: 29296001 PMCID: PMC5750207 DOI: 10.1038/s41467-017-02537-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/07/2017] [Indexed: 12/26/2022] Open
Abstract
Impaired hepatic glucose uptake (HGU) causes postprandial hyperglycemia in type 2 diabetes. Here, we show that diminished hepatic Sirt2 activity impairs HGU in obese diabetic mice. Hepatic Sirt2 overexpression increases HGU in high-fat diet (HFD)-fed obese diabetic mice and mitigates their impaired glucose tolerance. Hepatic Sirt2 knockdown in non-diabetic mice reduces HGU and causes impaired glucose tolerance. Sirt2 promotes glucose-dependent HGU by deacetylating K126 of glucokinase regulatory protein (GKRP). Glucokinase and GKRP glucose-dependent dissociation is necessary for HGU but is inhibited in hepatocytes derived from obese diabetic mice, depleted of Sirt2 or transfected with GKRP acetylation-mimicking mutants. GKRP deacetylation-mimicking mutants dissociate from glucokinase in a glucose concentration-dependent manner in obese diabetic mouse-derived hepatocytes and increase HGU and glucose tolerance in HFD-induced or db/db obese diabetic mice. We demonstrate that Sirt2-dependent GKRP deacetylation improves impaired HGU and suggest that it may be a therapeutic target for type 2 diabetes. During diabetes, postprandial hyperglycemia is caused by impaired glucose uptake. Here, Watanabe and colleagues show that impaired hepatic glucose uptake during obesity is caused by a reduction in Sirt2 activity, which promotes glucokinase regulatory protein acetylation and its dissociation from glucokinase.
Collapse
|
32
|
Perego J, Bourbon C, Chasson L, Laprie C, Spinelli L, Camosseto V, Gatti E, Pierre P. Guanabenz Prevents d-Galactosamine/Lipopolysaccharide-Induced Liver Damage and Mortality. Front Immunol 2017; 8:679. [PMID: 28659918 PMCID: PMC5468566 DOI: 10.3389/fimmu.2017.00679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
Multi-organ failure in response to uncontrolled microbial infection is characterized by low blood pressure accompanied by a systemic over-inflammation state, caused by massive pro-inflammatory cytokines release and liver damage. Recently, the integrated stress response (ISR), characterized by eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, was involved with controlling apoptosis in stressed hepatocytes and associated with poor survival to endotoxin challenge. Lipopolysaccharide (LPS) alone is able to induce the ISR in hepatocytes and can trigger massive liver damage along with tumor necrosis factor-alpha (TNF-α) expression. Consequently, drugs interfering with eIF2α phosphorylation may represent potential candidates for the treatment of such pathologies. We, therefore, used Guanabenz (GBZ), a small compound with enhancing eIF2α phosphorylation activity to evaluate its effect on bacterial LPS sensing and endotoxemia. GBZ is confirmed here to have an anti-inflammatory activity by increasing in vitro interleukin-10 (IL-10) production by LPS-stimulated dendritic cells. We further show that in the d-galactosamine (d-galN)/LPS-dependent lethality model, intraperitoneal injection of GBZ promoted mice survival, prevented liver damage, increased IL-10 levels, and inhibited TNF-α production. GBZ and its derivatives could therefore represent an interesting pharmacological solution to control systemic inflammation and associated acute liver failure.
Collapse
Affiliation(s)
- Jessica Perego
- CIML, Aix-Marseille University, CNRS, INSERM, Marseille, France
| | | | - Lionel Chasson
- CIML, Aix-Marseille University, CNRS, INSERM, Marseille, France
| | - Caroline Laprie
- CIML, Aix-Marseille University, CNRS, INSERM, Marseille, France
| | - Lionel Spinelli
- CIML, Aix-Marseille University, CNRS, INSERM, Marseille, France
| | | | - Evelina Gatti
- CIML, Aix-Marseille University, CNRS, INSERM, Marseille, France.,Aveiro Health Sciences Program, Institute for Research in Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA), CNRS "Mistra", Marseille, France
| | - Philippe Pierre
- CIML, Aix-Marseille University, CNRS, INSERM, Marseille, France.,Aveiro Health Sciences Program, Institute for Research in Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,International Associated Laboratory (LIA), CNRS "Mistra", Marseille, France
| |
Collapse
|
33
|
Watanabe H, Inaba Y, Kimura K, Asahara SI, Kido Y, Matsumoto M, Motoyama T, Tachibana N, Kaneko S, Kohno M, Inoue H. Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. J Nutr 2017; 147:52-60. [PMID: 27903831 DOI: 10.3945/jn.116.231662] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/28/2016] [Accepted: 11/01/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND As the prevalence of nonalcoholic fatty liver disease (NAFLD), including steatosis and nonalcoholic steatohepatitis, is increasing, novel dietary approaches are required for the prevention and treatment of NAFLD. OBJECTIVE We evaluated the potential of mung bean protein isolate (MuPI) to prevent NAFLD progression. METHODS In Expts. 1 and 2, the hepatic triglyceride (TG) concentration was compared between 8-wk-old male mice fed a high-fat diet (61% of energy from fat) containing casein, MuPI, and soy protein isolate and an MuPI-constituent amino acid mixture as a source of amino acids (18% of energy) for 4 wk. In Expt. 3, hepatic fatty acid synthase (Fasn) expression was evaluated in 8-wk-old male Fasn-promoter-reporter mice fed a casein- or MuPI-containing high-fat diet for 20 wk. In Expt. 4, hepatic fibrosis was examined in 8-wk-old male mice fed an atherogenic diet (61% of energy from fat, containing 1.3 g cholesterol/100 g diet) containing casein or MuPI (18% of energy) as a protein source for 20 wk. RESULTS In the high fat-diet mice, the hepatic TG concentration in the MuPI group decreased by 66% and 47% in Expt. 1 compared with the casein group (P < 0.001) and the soy protein isolate group (P = 0.001), respectively, and decreased by 56% in Expt. 2 compared with the casein group (P = 0.011). However, there was no difference between the MuPI-constituent amino acid mixture and casein groups in Expt. 2. In Expt. 3, Fasn-promoter-reporter activity and hepatic TG concentration were lower in the MuPI group than in those fed casein (P < 0.05). In Expt. 4, in mice fed an atherogenic diet, hepatic fibrosis was not induced in the MuPI group, whereas it developed overtly in the casein group. CONCLUSION MuPI potently reduced hepatic lipid accumulation in mice and may be a potential foodstuff to prevent NAFLD onset and progression.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative.,Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, and
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative.,Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, and
| | - Kumi Kimura
- Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, and
| | - Shun-Ichiro Asahara
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; and
| | - Takayasu Motoyama
- Health and Nutrition Research Department, Research and Development Division for Future Creation, Fuji Oil Co., Ltd., Tsukuba-mirai, Ibaraki, Japan
| | - Nobuhiko Tachibana
- Health and Nutrition Research Department, Research and Development Division for Future Creation, Fuji Oil Co., Ltd., Tsukuba-mirai, Ibaraki, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsutaka Kohno
- Health and Nutrition Research Department, Research and Development Division for Future Creation, Fuji Oil Co., Ltd., Tsukuba-mirai, Ibaraki, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, .,Department of Physiology and Metabolism, Brain/Liver Interface Medicine Research Center, and
| |
Collapse
|
34
|
Abstract
Liver regeneration has been studied for many decades and the mechanisms underlying regeneration of the normal liver following resection or moderate damage are well described. A large number of factors extrinsic (such as bile acids and circulating growth factors) and intrinsic to the liver interact to initiate and regulate liver regeneration. Less well understood, and more clinically relevant, are the factors at play when the abnormal liver is required to regenerate. Fatty liver disease, chronic scarring, prior chemotherapy and massive liver injury can all inhibit the normal programme of regeneration and can lead to liver failure. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or directly stimulate liver regeneration. Although animal models of liver regeneration have been highly instructive, the clinical relevance of some models could be improved to bridge the gap between our in vivo model systems and the clinical situation. Likewise, modern imaging techniques such as spectroscopy will probably improve our understanding of whole-organ metabolism and how this predicts the liver's regenerative capacity. This Review describes briefly the mechanisms underpinning liver regeneration, the models used to study this process, and discusses areas in which failed or compromised liver regeneration is clinically relevant.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Philip N Newsome
- Birmingham National Institute for Health Research (NIHR) Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Vincent Drive Birmingham, B15 2TT, UK
| |
Collapse
|
35
|
Tran DDH, Koch A, Saran S, Armbrecht M, Ewald F, Koch M, Wahlicht T, Wirth D, Braun A, Nashan B, Gaestel M, Tamura T. Extracellular-signal regulated kinase (Erk1/2), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and tristetraprolin (TTP) comprehensively regulate injury-induced immediate early gene (IEG) response in in vitro liver organ culture. Cell Signal 2016; 28:438-447. [PMID: 26876787 DOI: 10.1016/j.cellsig.2016.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Abstract
Differentiated hepatocytes are long-lived and normally do not undergo cell division, however they have the unique capacity to autonomously decide their replication fate after liver injury. In this context, the key players of liver regeneration immediately after injury have not been adequately studied. Using an in vitro liver culture system, we show that after liver injury, p38 mitogen-activated protein kinase (p38MAPK), mitogen-activated protein kinase-activated protein kinase 2 (MK2) and extracellular-signal regulated kinase (Erk)1/2 were activated within 15 min and continued to be phosphorylated for more than 2h. Both p38MAPK and Erk1/2 were activated at the edge of the cut as well as on the liver surface where the mesothelial cell sheet expresses several cytokines. Notably, in human liver Erk1/2 was also activated under the mesothelial cell sheet shortly after liver resections. Furthermore, in in vitro liver slice culture immediate early genes (IEGs) were upregulated within 1-2 h and the S phase marker proliferation-cell-nuclear-antigen (PCNA) appeared 24 h after injury. Although Erk1/2 was activated after injury, in MK2 depleted liver a set of IEGs, such as Dusp1, Cox2, or c-Myc and proliferation marker gene Ki67 were not induced. In addition, in immortalized hepatocyte cells, THLE-2, the same subset of genes was upregulated upon stimulation with lipopolysaccharide (LPS), but not in the presence of MK2 inhibitor. The protein level of tristetraprolin (TTP), a substrate for MK2 that plays a role in mRNA degradation, was increased in the presence of MK2 inhibitor. In this context, the depletion of TTP gene rescued Dusp1, Cox2, or c-Myc upregulation in the presence of MK2 inhibitor. These data imply that MK2 pathway is positively involved in Erk1/2 induced IEG response after liver injury. These data also suggest that in vitro liver culture may be a useful tool for measuring the proliferation potential of hepatocytes in individual liver.
Collapse
Affiliation(s)
- Doan Duy Hai Tran
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | - Alexandra Koch
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | - Shashank Saran
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | - Marcel Armbrecht
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | - Florian Ewald
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Eppendorf, Martinistrasse 52, 20256, Hamburg, Germany
| | - Martina Koch
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Eppendorf, Martinistrasse 52, 20256, Hamburg, Germany
| | - Tom Wahlicht
- Model Systems for Infection and Immunity (MSYS), Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity (MSYS), Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Armin Braun
- Fraunhofer Institut für Toxikologie und Experimentelle Medizin Atemwegspharmakologie, Nikolai-Fuchs-Str.1, D-30625 Hannover, Germany
| | - Björn Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Eppendorf, Martinistrasse 52, 20256, Hamburg, Germany
| | - Matthias Gaestel
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany
| | - Teruko Tamura
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30623 Hannover, Germany.
| |
Collapse
|
36
|
Defining Post Hepatectomy Liver Insufficiency: Where do We stand? J Gastrointest Surg 2015; 19:2079-92. [PMID: 26063080 DOI: 10.1007/s11605-015-2872-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Post-hepatectomy liver failure (PHLF) is a major source of morbidity and mortality in patients undergoing liver resection. The aim of this review is to summarize the recent literature available on PHLF including its definition, predictive factors, preoperative risk assessment, severity grading, preventative measures, and management strategies. METHODS A systematic literature search was carried out with the search engines PubMed, Medline, and Cochrane Database using the keywords related to "liver failure", "posthepatectomy", and "hepatic resection". RESULTS Liver resection is a curative treatment of liver tumors. However, it leads to concurrent death and regeneration of the remaining hepatocytes. Factors related to the patient, liver parenchyma and the extent of surgery can inhibit regeneration leading to PHLF. CONCLUSION Given its resistance to treatment and the high postoperative mortality associated with PHLF, great effort has been put in to both accurately identify patients at high risk and to develop strategies that can help prevent its occurrence.
Collapse
|