1
|
Li X, Guo X, Liu Y, Ren F, Li S, Yang X, Liu J, Zhang Z. Antibiotics affect the pharmacokinetics of n-butylphthalide in vivo by altering the intestinal microbiota. PLoS One 2024; 19:e0297713. [PMID: 38917098 PMCID: PMC11198832 DOI: 10.1371/journal.pone.0297713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE N-butylphthalide (NBP) is a monomeric compound extracted from natural plant celery seeds, whether intestinal microbiota alteration can modify its pharmacokinetics is still unclear. The purpose of this study is to investigate the effect of intestinal microbiota alteration on the pharmacokinetics of NBP and its related mechanisms. METHODS After treatment with antibiotics and probiotics, plasma NBP concentrations in SD rats were determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The effect of intestinal microbiota changes on NBP pharmacokinetics was compared. Intestinal microbiota changes after NBP treatment were analyzed by 16S rRNA sequencing. Expressions of CYP3A1 mRNA and protein in the liver and small intestine tissues under different intestinal flora conditions were determined by qRT-PCR and Western Blot. KEGG analysis was used to analyze the effect of intestinal microbiota changes on metabolic pathways. RESULTS Compared to the control group, the values of Cmax, AUC0-8, AUC0-∞, t1/2 in the antibiotic group increased by 56.1% (P<0.001), 56.4% (P<0.001), 53.2% (P<0.001), and 24.4% (P<0.05), respectively. In contrast, the CL and Tmax values decreased by 57.1% (P<0.001) and 28.6% (P<0.05), respectively. Treatment with antibiotics could reduce the richness and diversity of the intestinal microbiota. CYP3A1 mRNA and protein expressions in the small intestine of the antibiotic group were 61.2% and 66.1% of those of the control group, respectively. CYP3A1 mRNA and protein expressions in the liver were 44.6% and 63.9% of those in the control group, respectively. There was no significant change in the probiotic group. KEGG analysis showed that multiple metabolic pathways were significantly down-regulated in the antibiotic group. Among them, the pathways of drug metabolism, bile acid biosynthesis and decomposition, and fatty acid synthesis and decomposition were related to NBP biological metabolism. CONCLUSION Antibiotic treatment could affect the intestinal microbiota, decrease CYP3A1 mRNA and protein expressions and increase NBP exposure in vivo by inhibiting pathways related to NBP metabolism.
Collapse
Affiliation(s)
- Xiangchen Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiaoli Guo
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yixin Liu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Feifei Ren
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shan Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiuling Yang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jian Liu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhiqing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
2
|
Kim JH, Mun SJ, Kim JH, Son MJ, Kim SY. Integrative analysis of single-cell RNA-seq and ATAC-seq reveals heterogeneity of induced pluripotent stem cell-derived hepatic organoids. iScience 2023; 26:107675. [PMID: 37680467 PMCID: PMC10481365 DOI: 10.1016/j.isci.2023.107675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
To gain deeper insights into transcriptomes and epigenomes of organoids, liver organoids from two states (expandable and more differentiated) were subjected to single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) analyses. Mitochondrial gene expression was higher in differentiated than in non-differentiated hepatocytes, with ATAC-seq peaks increasing near the mitochondrial control region. Differentiation of liver organoids resulted in the expression of transcription factors that act as enhancers and repressors. In addition, epigenetic mechanisms regulating the expression of alpha-fetoprotein (AFP) and albumin (ALB) differed in liver organoids and adult liver. Knockdown of PDX1, an essential transcription factor for pancreas development, led to the hepatic maturation of liver organoids through regulation of AFP and ALB expression. This integrative analysis of the transcriptomes and epigenomes of liver organoids at the single-cell level may contribute to a better understanding of the regulatory networks during liver development and the further development of mature in vitro human liver models.
Collapse
Affiliation(s)
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Young Kim
- Korean Bioinformation Center, Daejeon, Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
3
|
Lo EKW, Velazquez JJ, Peng D, Kwon C, Ebrahimkhani MR, Cahan P. Platform-agnostic CellNet enables cross-study analysis of cell fate engineering protocols. Stem Cell Reports 2023; 18:1721-1742. [PMID: 37478860 PMCID: PMC10444577 DOI: 10.1016/j.stemcr.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
Optimization of cell engineering protocols requires standard, comprehensive quality metrics. We previously developed CellNet, a computational tool to quantitatively assess the transcriptional fidelity of engineered cells compared with their natural counterparts, based on bulk-derived expression profiles. However, this platform and others were limited in their ability to compare data from different sources, and no current tool makes it easy to compare new protocols with existing state-of-the-art protocols in a standardized manner. Here, we utilized our prior application of the top-scoring pair transformation to build a computational platform, platform-agnostic CellNet (PACNet), to address both shortcomings. To demonstrate the utility of PACNet, we applied it to thousands of samples from over 100 studies that describe dozens of protocols designed to produce seven distinct cell types. We performed an in-depth examination of hepatocyte and cardiomyocyte protocols to identify the best-performing methods, characterize the extent of intra-protocol and inter-lab variation, and identify common off-target signatures, including a surprising neural/neuroendocrine signature in primary liver-derived organoids. We have made PACNet available as an easy-to-use web application, allowing users to assess their protocols relative to our database of reference engineered samples, and as open-source, extensible code.
Collapse
Affiliation(s)
- Emily K W Lo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J Velazquez
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Dvořák Z, Li H, Mani S. Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future. Drug Metab Dispos 2023; 51:219-227. [PMID: 36184080 PMCID: PMC9900867 DOI: 10.1124/dmd.122.000860] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023] Open
Abstract
Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Li
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
A comprehensive transcriptomic comparison of hepatocyte model systems improves selection of models for experimental use. Commun Biol 2022; 5:1094. [PMID: 36241695 PMCID: PMC9568534 DOI: 10.1038/s42003-022-04046-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The myriad of available hepatocyte in vitro models provides researchers the possibility to select hepatocyte-like cells (HLCs) for specific research goals. However, direct comparison of hepatocyte models is currently challenging. We systematically searched the literature and compared different HLCs, but reported functions were limited to a small subset of hepatic functions. To enable a more comprehensive comparison, we developed an algorithm to compare transcriptomic data across studies that tested HLCs derived from hepatocytes, biliary cells, fibroblasts, and pluripotent stem cells, alongside primary human hepatocytes (PHHs). This revealed that no HLC covered the complete hepatic transcriptome, highlighting the importance of HLC selection. HLCs derived from hepatocytes had the highest transcriptional resemblance to PHHs regardless of the protocol, whereas the quality of fibroblasts and PSC derived HLCs varied depending on the protocol used. Finally, we developed and validated a web application (HLCompR) enabling comparison for specific pathways and addition of new HLCs. In conclusion, our comprehensive transcriptomic comparison of HLCs allows selection of HLCs for specific research questions and can guide improvements in culturing conditions.
Collapse
|
6
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
7
|
Lee J, Mun SJ, Shin Y, Lee S, Son MJ. Advances in liver organoids: model systems for liver disease. Arch Pharm Res 2022; 45:390-400. [DOI: 10.1007/s12272-022-01390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
|
8
|
Weber S, Gerbes AL. Challenges and Future of Drug-Induced Liver Injury Research-Laboratory Tests. Int J Mol Sci 2022; 23:ijms23116049. [PMID: 35682731 PMCID: PMC9181520 DOI: 10.3390/ijms23116049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Drug-induced liver injury (DILI) is a rare but potentially severe adverse drug event, which is also a major cause of study cessation and market withdrawal during drug development. Since no acknowledged diagnostic tests are available, DILI diagnosis poses a major challenge both in clinical practice as well as in pharmacovigilance. Differentiation from other liver diseases and the identification of the causative agent in the case of polymedication are the main issues that clinicians and drug developers face in this regard. Thus, efforts have been made to establish diagnostic testing methods and biomarkers in order to safely diagnose DILI and ensure a distinguishment from alternative liver pathologies. This review provides an overview of the diagnostic methods used in differential diagnosis, especially with regards to autoimmune hepatitis (AIH) and drug-induced autoimmune hepatitis (DI-AIH), in vitro causality methods using individual blood samples, biomarkers for diagnosis and severity prediction, as well as experimental predictive models utilized in pre-clinical settings during drug development regimes.
Collapse
|
9
|
Yan H, Chen Y, Zhu H, Huang WH, Cai XH, Li D, Lv YJ, Si-Zhao, Zhou HH, Luo FY, Zhang W, Li X. The Relationship Among Intestinal Bacteria, Vitamin K and Response of Vitamin K Antagonist: A Review of Evidence and Potential Mechanism. Front Med (Lausanne) 2022; 9:829304. [PMID: 35510250 PMCID: PMC9058076 DOI: 10.3389/fmed.2022.829304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
The vitamin K antagonist is a commonly prescribed effective oral anticoagulant with a narrow therapeutic range, and the dose requirements for different patients varied greatly. In recent years, studies on human intestinal microbiome have provided many valuable insights into disease development and drug reactions. A lot of studies indicated the potential relationship between microbiome and the vitamin K antagonist. Vitamin K is absorbed by the gut, and the intestinal bacteria are a major source of vitamin K in human body. A combined use of the vitamin K antagonist and antibiotics may result in an increase in INR, thus elevating the risk of bleeding, while vitamin K supplementation can improve stability of anticoagulation for oral vitamin K antagonist treatment. Recently, how intestinal bacteria affect the response of the vitamin K antagonist remains unclear. In this review, we reviewed the research, focusing on the physiology of vitamin K in the anticoagulation treatment, and investigated the potential pathways of intestinal bacteria affecting the reaction of the vitamin K antagonist.
Collapse
|
10
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM. Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 2022; 76:694-725. [PMID: 34715263 DOI: 10.1016/j.jhep.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.
Collapse
Affiliation(s)
- Joana I Almeida
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel F Tenreiro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucía Martinez-Santamaria
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Guerrero-Aspizua
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Department. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
12
|
Messina A, Luce E, Benzoubir N, Pasqua M, Pereira U, Humbert L, Eguether T, Rainteau D, Duclos-Vallée JC, Legallais C, Dubart-Kupperschmitt A. Evidence of Adult Features and Functions of Hepatocytes Differentiated from Human Induced Pluripotent Stem Cells and Self-Organized as Organoids. Cells 2022; 11:cells11030537. [PMID: 35159346 PMCID: PMC8834365 DOI: 10.3390/cells11030537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Human-induced pluripotent stem cell-derived hepatocytes (iHeps) have been shown to have considerable potential in liver diseases, toxicity, and pharmacological studies. However, there is a growing need to obtain iHeps that are truly similar to primary adult hepatocytes in terms of morphological features and functions. We generated such human iHeps, self-assembled as organoids (iHep-Orgs). Methods: iPSC-derived hepatoblasts were self-assembled into spheroids and differentiated into mature hepatocytes modulating final step of differentiation. Results: In about four weeks of culture, the albumin secretion levels and the complete disappearance of α-fetoprotein from iHep-Orgs suggested the acquisition of a greater degree of maturation than those previously reported. The expression of apical transporters and bile acid secretion evidenced the acquisition of complex hepatocyte polarity as well as the development of a functional and well-defined bile canalicular network confirmed by computational analysis. Activities recorded for CYP450, UGT1A1, and alcohol dehydrogenase, response to hormonal stimulation, and glucose metabolism were also remarkable. Finally, iHep-Orgs displayed a considerable ability to detoxify pathological concentrations of lactate and ammonia. Conclusions: With features similar to those of primary adult hepatocytes, the iHep-Orgs thus produced could be considered as a valuable tool for the development and optimization of preclinical and clinical applications.
Collapse
Affiliation(s)
- Antonietta Messina
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- Correspondence: (A.M.); (A.D.-K.)
| | - Eléanor Luce
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Nassima Benzoubir
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Mattia Pasqua
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Ulysse Pereira
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Lydie Humbert
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Thibaut Eguether
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Dominique Rainteau
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Jean-Charles Duclos-Vallée
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Cécile Legallais
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Anne Dubart-Kupperschmitt
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- Correspondence: (A.M.); (A.D.-K.)
| |
Collapse
|
13
|
Alvarez-Dominguez JR, Melton DA. Cell maturation: Hallmarks, triggers, and manipulation. Cell 2022; 185:235-249. [PMID: 34995481 PMCID: PMC8792364 DOI: 10.1016/j.cell.2021.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
How cells become specialized, or "mature," is important for cell and developmental biology. While maturity is usually deemed a terminal fate, it may be more helpful to consider maturation not as a switch but as a dynamic continuum of adaptive phenotypic states set by genetic and environment programing. The hallmarks of maturity comprise changes in anatomy (form, gene circuitry, and interconnectivity) and physiology (function, rhythms, and proliferation) that confer adaptive behavior. We discuss efforts to harness their chemical (nutrients, oxygen, and growth factors) and physical (mechanical, spatial, and electrical) triggers in vitro and in vivo and how maturation strategies may support disease research and regenerative medicine.
Collapse
Affiliation(s)
- Juan R. Alvarez-Dominguez
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas A. Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|
15
|
Sultana H, Komai M, Shirakawa H. The Role of Vitamin K in Cholestatic Liver Disease. Nutrients 2021; 13:nu13082515. [PMID: 34444675 PMCID: PMC8400302 DOI: 10.3390/nu13082515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Vitamin K (VK) is a ligand of the pregnane X receptor (PXR), which plays a critical role in the detoxification of xenobiotics and metabolism of bile acids. VK1 may reduce the risk of death in patients with chronic liver failure. VK deficiency is associated with intrahepatic cholestasis, and is already being used as a drug for cholestasis-induced liver fibrosis in China. In Japan, to treat osteoporosis in patients with primary biliary cholangitis, VK2 formulations are prescribed, along with vitamin D3. Animal studies have revealed that after bile duct ligation-induced cholestasis, PXR knockout mice manifested more hepatic damage than wild-type mice. Ligand-mediated activation of PXR improves biochemical parameters. Rifampicin is a well-known human PXR ligand that has been used to treat intractable pruritus in severe cholestasis. In addition to its anti-cholestatic properties, PXR has anti-fibrotic and anti-inflammatory effects. However, because of the scarcity of animal studies, the mechanism of the effect of VK on cholestasis-related liver disease has not yet been revealed. Moreover, the application of VK in cholestasis-related diseases is controversial. Considering this background, the present review focuses on the effect of VK in cholestasis-related diseases, emphasizing its function as a modulator of PXR.
Collapse
Affiliation(s)
- Halima Sultana
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan; (H.S.); (M.K.)
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
- Correspondence: ; Tel.: +81-22-757-4402
| |
Collapse
|
16
|
Yuan F, Wang N, Chen Y, Huang X, Yang Z, Xu Y, You K, Zhang J, Wang G, Zhuang Y, Pan T, Xiong Y, Yu X, Yang F, Li Y. Calcitriol promotes the maturation of hepatocyte-like cells derived from human pluripotent stem cells. J Steroid Biochem Mol Biol 2021; 211:105881. [PMID: 33766737 DOI: 10.1016/j.jsbmb.2021.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) represent a promising cell source for the assessment of hepatotoxicity and pharmaceutical safety testing. However, the hepatic functionality of HLCs remains significantly inferior to primary human hepatocytes. The bioactive vitamin D (VD), calcitriol, promotes the differentiation of many types of cells, and its deficiency is correlated to the severity of liver diseases. Whether calcitriol contributes to the differentiation of HLCs needs to be explored. Here, we found that the supplementation of calcitriol improved the functionalities of hPSCs-derived HLCs in P450 activities, urea production, and albumin secretion. Moreover, calcitriol also enhanced mitochondrial respiratory function with increased protein expression levels of the subunit of respiratory enzyme complexes in HLCs. Further analyses showed that the mitochondrial biogenesis regulators and mitophagy were increased by calcitriol, thus improving the mitochondrial quality. These improvements in functionality and mitochondrial condition were dependent on vitamin D receptor (VDR) because the improvements were abolished under VDR-deficient conditions. Our finding provides a cost-effective chemical process for HLC maturation to meet the demand for basic research and potential clinic applications.
Collapse
Affiliation(s)
- Fang Yuan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Ning Wang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Zhen Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yingying Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Guodong Wang
- The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yue Xiong
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Xiaorui Yu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; School of Life Sciences, University of Science and Technology of China, 230027, Hefei, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese, Academy of Sciences, 510530, Guangzhou, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
17
|
Effect of Vitamin K-Mediated PXR Activation on Drug-Metabolizing Gene Expression in Human Intestinal Carcinoma LS180 Cell Line. Nutrients 2021; 13:nu13051709. [PMID: 34069974 PMCID: PMC8157877 DOI: 10.3390/nu13051709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
The pregnane X receptor (PXR) is the key regulator of our defense mechanism against foreign substances such as drugs, dietary nutrients, or environmental pollutants. Because of increased health consciousness, the use of dietary supplements has gradually increased, and most of them can activate PXR. Therefore, an analysis of the interaction between drugs and nutrients is important because altered levels of drug-metabolizing enzymes or transporters can remarkably affect the efficiency of a co-administered drug. In the present study, we analyzed the effect of vitamin K-mediated PXR activation on drug metabolism-related gene expression in intestine-derived LS180 cells via gene expression studies and western blotting analyses. We demonstrated that menaquinone 4 (MK-4), along with other vitamin Ks, including vitamin K1, has the potential to induce MDR1 and CYP3A4 gene expression. We showed that PXR knockdown reversed MK-4-mediated stimulation of these genes, indicating the involvement of PXR in this effect. In addition, we showed that the expression of MDR1 and CYP3A4 genes increased synergistically after 24 h of rifampicin and MK-4 co-treatment. Our study thus elucidates the importance of drug–nutrient interaction mediated via PXR.
Collapse
|
18
|
Lee-Montiel FT, Laemmle A, Charwat V, Dumont L, Lee CS, Huebsch N, Okochi H, Hancock MJ, Siemons B, Boggess SC, Goswami I, Miller EW, Willenbring H, Healy KE. Integrated Isogenic Human Induced Pluripotent Stem Cell-Based Liver and Heart Microphysiological Systems Predict Unsafe Drug-Drug Interaction. Front Pharmacol 2021; 12:667010. [PMID: 34025426 PMCID: PMC8138446 DOI: 10.3389/fphar.2021.667010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) microphysiological systems (MPSs) mimicking human organ function in vitro are an emerging alternative to conventional monolayer cell culture and animal models for drug development. Human induced pluripotent stem cells (hiPSCs) have the potential to capture the diversity of human genetics and provide an unlimited supply of cells. Combining hiPSCs with microfluidics technology in MPSs offers new perspectives for drug development. Here, the integration of a newly developed liver MPS with a cardiac MPS—both created with the same hiPSC line—to study drug–drug interaction (DDI) is reported. As a prominent example of clinically relevant DDI, the interaction of the arrhythmogenic gastroprokinetic cisapride with the fungicide ketoconazole was investigated. As seen in patients, metabolic conversion of cisapride to non-arrhythmogenic norcisapride in the liver MPS by the cytochrome P450 enzyme CYP3A4 was inhibited by ketoconazole, leading to arrhythmia in the cardiac MPS. These results establish integration of hiPSC-based liver and cardiac MPSs to facilitate screening for DDI, and thus drug efficacy and toxicity, isogenic in the same genetic background.
Collapse
Affiliation(s)
- Felipe T Lee-Montiel
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Alexander Laemmle
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.,Institute of Clinical Chemistry and Department of Pediatrics, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Verena Charwat
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Laure Dumont
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States
| | - Caleb S Lee
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Nathaniel Huebsch
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Hideaki Okochi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, United States
| | | | - Brian Siemons
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Steven C Boggess
- Department of Chemistry, University of California Berkeley, Berkeley, CA, United States
| | - Ishan Goswami
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States
| | - Holger Willenbring
- Department of Surgery, Division of Transplant Surgery, Liver Center and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States
| | - Kevin E Healy
- Departments of Bioengineering, and Materials Science & Engineering, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
19
|
Harrison SP, Baumgarten SF, Verma R, Lunov O, Dejneka A, Sullivan GJ. Liver Organoids: Recent Developments, Limitations and Potential. Front Med (Lausanne) 2021; 8:574047. [PMID: 34026769 PMCID: PMC8131532 DOI: 10.3389/fmed.2021.574047] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Liver cell types derived from induced pluripotent stem cells (iPSCs) share the potential to investigate development, toxicity, as well as genetic and infectious disease in ways currently limited by the availability of primary tissue. With the added advantage of patient specificity, which can play a role in all of these areas. Many iPSC differentiation protocols focus on 3 dimensional (3D) or organotypic differentiation, as these offer the advantage of more closely mimicking in vivo systems including; the formation of tissue like architecture and interactions/crosstalk between different cell types. Ultimately such models have the potential to be used clinically and either with or more aptly, in place of animal models. Along with the development of organotypic and micro-tissue models, there will be a need to co-develop imaging technologies to enable their visualization. A variety of liver models termed "organoids" have been reported in the literature ranging from simple spheres or cysts of a single cell type, usually hepatocytes, to those containing multiple cell types combined during the differentiation process such as hepatic stellate cells, endothelial cells, and mesenchymal cells, often leading to an improved hepatic phenotype. These allow specific functions or readouts to be examined such as drug metabolism, protein secretion or an improved phenotype, but because of their relative simplicity they lack the flexibility and general applicability of ex vivo tissue culture. In the liver field these are more often constructed rather than developed together organotypically as seen in other organoid models such as brain, kidney, lung and intestine. Having access to organotypic liver like surrogates containing multiple cell types with in vivo like interactions/architecture, would provide vastly improved models for disease, toxicity and drug development, combining disciplines such as microfluidic chip technology with organoids and ultimately paving the way to new therapies.
Collapse
Affiliation(s)
- Sean Philip Harrison
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira Felicitas Baumgarten
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Rajneesh Verma
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Gareth John Sullivan
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Takeishi K, Collin de l'Hortet A, Wang Y, Handa K, Guzman-Lepe J, Matsubara K, Morita K, Jang S, Haep N, Florentino RM, Yuan F, Fukumitsu K, Tobita K, Sun W, Franks J, Delgado ER, Shapiro EM, Fraunhoffer NA, Duncan AW, Yagi H, Mashimo T, Fox IJ, Soto-Gutierrez A. Assembly and Function of a Bioengineered Human Liver for Transplantation Generated Solely from Induced Pluripotent Stem Cells. Cell Rep 2021; 31:107711. [PMID: 32492423 DOI: 10.1016/j.celrep.2020.107711] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
The availability of an autologous transplantable auxiliary liver would dramatically affect the treatment of liver disease. Assembly and function in vivo of a bioengineered human liver derived from induced pluripotent stem cells (iPSCs) has not been previously described. By improving methods for liver decellularization, recellularization, and differentiation of different liver cellular lineages of human iPSCs in an organ-like environment, we generated functional engineered human mini livers and performed transplantation in a rat model. Whereas previous studies recellularized liver scaffolds largely with rodent hepatocytes, we repopulated not only the parenchyma with human iPSC-hepatocytes but also the vascular system with human iPS-endothelial cells, and the bile duct network with human iPSC-biliary epithelial cells. The regenerated human iPSC-derived mini liver containing multiple cell types was tested in vivo and remained functional for 4 days after auxiliary liver transplantation in immunocompromised, engineered (IL2rg-/-) rats.
Collapse
Affiliation(s)
- Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | - Yang Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kentaro Matsubara
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sae Jang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nils Haep
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rodrigo M Florentino
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Fangchao Yuan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ken Fukumitsu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimimasa Tobita
- Department of Bioengineering and Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | - Wendell Sun
- LifeCell Corporation, Branchburg, NJ 08876, USA
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA
| | - Evan R Delgado
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicolas A Fraunhoffer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Maimónides, Ciudad Autónoma de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires 1001, Argentina
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hiroshi Yagi
- Department of Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Tokyo 158-8557, Japan
| | - Ira J Fox
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3110, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Wu D, Chen X, Sheng Q, Chen W, Zhang Y, Wu F. Production of Functional Hepatobiliary Organoids from Human Pluripotent Stem Cells. Int J Stem Cells 2021; 14:119-126. [PMID: 33377458 PMCID: PMC7904529 DOI: 10.15283/ijsc20152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The research on human hepatobiliary development and disorders has been constrained by minimal access to human fetal tissue, and low accuracy of animal models. To overcome this problem, we have established a system for the differentiation of human pluripotent stem cells (hPSCs) into functional hepatobiliary organoids (HBOs). We have previously reported that our 45-d approach closely mimics key stages of hepatobiliary development, starting with the differentiation of hiPSC into endoderm and a small part of mesoderm, and subsequently into hepatoblast-like cells, followed by the parallel generation of hepatocyte-like cells and cholangiocyte-like cells, formation of immature HBO expressing early hepatic and biliary markers, and mature HBO displaying hepatobiliary functionality. In this study, we present an updated version of our previous protocol, which only needs 35 days to achieve maturation in vitro. Furthermore, a hepatobiliary culture medium is developed to functionally maintain the HBOs for more than 1.5 months. The capacity of this approach for producing large amounts of functional HBOs and enabling long-term culture in vitro holds promise for applications on developmental research, disease modeling, as well as screening of therapeutic agents.
Collapse
Affiliation(s)
- Di Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Xiaoni Chen
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Qingshou Sheng
- Department of Hepatology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Wenlin Chen
- Department of Hepatology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Yuncheng Zhang
- Department of Hepatology, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
22
|
Jin M, Yi X, Liao W, Chen Q, Yang W, Li Y, Li S, Gao Y, Peng Q, Zhou S. Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res Ther 2021; 12:84. [PMID: 33494782 PMCID: PMC7836452 DOI: 10.1186/s13287-021-02152-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of clinical trial failures and high drug attrition rates. Currently, the commonly used hepatocyte models include primary human hepatocytes (PHHs), animal models, and hepatic cell lines. However, these models have disadvantages that include species-specific differences or inconvenient cell extraction methods. Therefore, a novel, inexpensive, efficient, and accurate model that can be applied to drug screening is urgently needed. Owing to their self-renewable ability, source abundance, and multipotent competence, stem cells are stable sources of drug hepatotoxicity screening models. Because 3D culture can mimic the in vivo microenvironment more accurately than can 2D culture, the former is commonly used for hepatocyte culture and drug screening. In this review, we introduce the different sources of stem cells used to generate hepatocyte-like cells and the models for hepatotoxicity testing that use stem cell-derived hepatocyte-like cells.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Liao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
23
|
Mun SJ, Lee J, Chung KS, Son MY, Son MJ. Effect of Microbial Short-Chain Fatty Acids on CYP3A4-Mediated Metabolic Activation of Human Pluripotent Stem Cell-Derived Liver Organoids. Cells 2021; 10:cells10010126. [PMID: 33440728 PMCID: PMC7827634 DOI: 10.3390/cells10010126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The early and accurate prediction of the hepatotoxicity of new drug targets during nonclinical drug development is important to avoid postmarketing drug withdrawals and late-stage failures. We previously established long-term expandable and functional human-induced pluripotent stem cell (iPSC)-derived liver organoids as an alternative source for primary human hepatocytes. However, PSC-derived organoids are known to present immature fetal characteristics. Here, we treated these liver organoids with microbial short-chain fatty acids (SCFAs) to improve metabolic maturation based on microenvironmental changes in the liver during postnatal development. The effects of the three main SCFA components (acetate, propionate, and butyrate) and their mixture on liver organoids were determined. Propionate (1 µM) significantly promoted the CYP3A4/CYP3A7 expression ratio, and acetate (1 µM), propionate (1 µM), and butyrate (1 µM) combination treatment, compared to no treatment (control), substantially increased CYP3A4 activity and albumin secretion, as well as gene expression. More importantly, mixed SCFA treatment accurately revealed troglitazone-induced hepatotoxicity, which was redeemed on a potent CYP3A4 inhibitor ketoconazole treatment. Overall, we determined, for the first time, that SCFA mixture treatment might contribute to the accurate evaluation of the CYP3A4-dependent drug toxicity by improving metabolic activation, including CYP3A4 expression, of liver organoids.
Collapse
Affiliation(s)
- Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaeseo Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Biomedical Translational Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-Y.S.); (M.J.S.); Tel.: +82-42-860-4426 (M.-Y.S.); +82-42-860-4477 (M.J.S.)
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-Y.S.); (M.J.S.); Tel.: +82-42-860-4426 (M.-Y.S.); +82-42-860-4477 (M.J.S.)
| |
Collapse
|
24
|
Lee G, Kim H, Park JY, Kim G, Han J, Chung S, Yang JH, Jeon JS, Woo DH, Han C, Kim SK, Park HJ, Kim JH. Generation of uniform liver spheroids from human pluripotent stem cells for imaging-based drug toxicity analysis. Biomaterials 2020; 269:120529. [PMID: 33257114 DOI: 10.1016/j.biomaterials.2020.120529] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Recent advances in pluripotent stem cell technology provide an alternative source of human hepatocytes to overcome the limitations of current toxicity tests. However, this approach requires optimization and standardization before it can be used as a fast and reliable toxicity screening system. Here, we designed and tested microwell culture platforms with various diameters. We found that large quantities of uniformly-sized hepatocyte-like cell (HLC) spheroids (3D-uniHLC-Ss) could be efficiently and reproducibly generated in a short period time from a small number of differentiating human pluripotent stem cells (hPSCs). The hPSC-3D-uniHLC-Ss that were produced in 500-μm diameter microwells consistently exhibited high expressions of hepatic marker genes and had no significant signs of cell death. Importantly, a hepatic master gene hepatocyte nuclear factor 4α (HNF4α) was maintained at high levels, and the epithelial-mesenchymal transition was significantly attenuated in hPSC-3D-uniHLC-Ss. Additionally, when compared with 3D-HLC-Ss that were produced in other 3D platforms, hPSC-3D-uniHLC-Ss showed significantly higher hepatic gene expressions and drug-metabolizing activity of the enzyme, CYP3A4. Imaging-based drug toxicity studies demonstrated that hPSC-3D-uniHLC-Ss exhibited enhanced sensitivity to various hepatotoxicants, compared to HLCs, which were differentiated under 2D conditions. Precise prediction of drug-induced hepatotoxicity is a crucial step in the early phases of drug discovery. Thus, the hPSC-3D-uniHLC-Ss produced using our microwell platform could be used as an imaging-based toxicity screening system to predict drug hepatotoxicity.
Collapse
Affiliation(s)
- Gyunggyu Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Ji Young Park
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jiyou Han
- Department of Biological Sciences, Hyupsung University, Hwasung-si, 18330, South Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 20841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Ji Hun Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Jang Su Jeon
- Chungnam National University, Daejeon, 34134, South Korea
| | - Dong-Hun Woo
- Laboratory of Stem Cells, NEXEL Co., Ltd., Seoul, 02580, South Korea
| | - Choongseong Han
- Laboratory of Stem Cells, NEXEL Co., Ltd., Seoul, 02580, South Korea
| | - Sang Kyum Kim
- Chungnam National University, Daejeon, 34134, South Korea.
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
25
|
Illés P, Krasulová K, Vyhlídalová B, Poulíková K, Marcalíková A, Pečinková P, Sirotová N, Vrzal R, Mani S, Dvořák Z. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol Lett 2020; 334:87-93. [DOI: 10.1016/j.toxlet.2020.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
|
26
|
Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 2020; 179:157-168. [PMID: 33011201 DOI: 10.1016/j.biochi.2020.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Important key players in the regulatory machinery within the cells are nuclear retinoid X receptors (RXRs), which compose heterodimers in company with several diverse nuclear receptors, playing a role as ligand inducible transcription factors. In general, nuclear receptors are ligand-activated, transcription-modulating proteins affecting transcriptional responses in target genes. RXR molecules forming permissive heterodimers with disparate nuclear receptors comprise peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor (FXR), pregnane X receptor (PXR) and constitutive androstan receptor (CAR). Retinoid receptors (RARs) and thyroid hormone receptors (TRs) may form conditional heterodimers, and dihydroxyvitamin D3 receptor (VDR) is believed to form nonpermissive heterodimer. Thus, RXRs are the important molecules that are involved in control of many cellular functions in biological processes and diseases, including cancer or diabetes. This article summarizes both naturally occurring and synthetic ligands for nuclear retinoid X receptors and describes, predominantly in mammals, their role in molecular mechanisms within the cells. A focus is also on triorganotin compounds, which are high affinity RXR ligands, and finally, we present an outlook on human microbiota as a potential source of RXR activators. Nevertheless, new synthetic rexinoids with better retinoid X receptor activity and lesser side effects are highly required.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|
27
|
Pek NMQ, Liu KJ, Nichane M, Ang LT. Controversies Surrounding the Origin of Hepatocytes in Adult Livers and the in Vitro Generation or Propagation of Hepatocytes. Cell Mol Gastroenterol Hepatol 2020; 11:273-290. [PMID: 32992051 PMCID: PMC7695885 DOI: 10.1016/j.jcmgh.2020.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
Epithelial cells in the liver (known as hepatocytes) are high-performance engines of myriad metabolic functions and versatile responders to liver injury. As hepatocytes metabolize amino acids, alcohol, drugs, and other substrates, they produce and are exposed to a milieu of toxins and harmful byproducts that can damage themselves. In the healthy liver, hepatocytes generally divide slowly. However, after liver injury, hepatocytes can ramp up proliferation to regenerate the liver. Yet, on extensive injury, regeneration falters, and liver failure ensues. It is therefore critical to understand the mechanisms underlying liver regeneration and, in particular, which liver cells are mobilized during liver maintenance and repair. Controversies continue to surround the very existence of hepatic stem cells and, if they exist, their spatial location, multipotency, degree of contribution to regeneration, ploidy, and susceptibility to tumorigenesis. This review discusses these controversies. Finally, we highlight how insights into hepatocyte regeneration and biology in vivo can inform in vitro studies to propagate primary hepatocytes with liver regeneration-associated signals and to generate hepatocytes de novo from pluripotent stem cells.
Collapse
Affiliation(s)
| | | | | | - Lay Teng Ang
- Correspondence Address correspondence to: Lay Teng Ang, PhD, Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
28
|
Ehrlich A, Duche D, Ouedraogo G, Nahmias Y. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices. Annu Rev Biomed Eng 2020; 21:219-239. [PMID: 31167098 DOI: 10.1146/annurev-bioeng-060418-052305] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Duche
- L'Oréal Research and Innovation, Aulnay-sous-Bois 93600, France
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.,Tissue Dynamics Ltd., Jerusalem 91904, Israel
| |
Collapse
|
29
|
Zabulica M, Srinivasan RC, Vosough M, Hammarstedt C, Wu T, Gramignoli R, Ellis E, Kannisto K, Collin de l'Hortet A, Takeishi K, Soto-Gutierrez A, Strom SC. Guide to the Assessment of Mature Liver Gene Expression in Stem Cell-Derived Hepatocytes. Stem Cells Dev 2020; 28:907-919. [PMID: 31122128 PMCID: PMC6648222 DOI: 10.1089/scd.2019.0064] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentiation of stem cells to hepatocyte-like cells (HLCs) holds great promise for basic research, drug and toxicological investigations, and clinical applications. There are currently no protocols for the production of HLCs from stem cells, such as embryonic stem cells or induced pluripotent stem cells, that produce fully mature hepatocytes with a wide range of mature hepatic functions. This report describes a standard method to assess the maturation of stem cell-derived HLCs with a moderately high-throughput format, by analysing liver gene expression by quantitative RT-qPCR. This method also provides a robust data set of the expression of 62 genes expressed in normal liver, generated from 17 fetal and 25 mature human livers, so that investigators can quickly and easily compare the expression of these genes in their stem cell-derived HLCs with the values obtained in authentic fetal and mature human liver. The simple methods described in this study will provide a quick and accurate assessment of the efficacy of a differentiation protocol and will help guide the optimization of differentiation conditions.
Collapse
Affiliation(s)
- Mihaela Zabulica
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Raghuraman C Srinivasan
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Christina Hammarstedt
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Wu
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ewa Ellis
- 3Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Kristina Kannisto
- 4Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institutet, Stockholm, Sweden
| | | | - Kazuki Takeishi
- 5Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Stephen C Strom
- 1Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Differential activation of human pregnane X receptor PXR by isomeric mono-methylated indoles in intestinal and hepatic in vitro models. Toxicol Lett 2020; 324:104-110. [DOI: 10.1016/j.toxlet.2020.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
31
|
Maepa SW, Ndlovu H. Advances in generating liver cells from pluripotent stem cells as a tool for modeling liver diseases. Stem Cells 2020; 38:606-612. [PMID: 32012379 PMCID: PMC7216946 DOI: 10.1002/stem.3154] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
Developing robust in vitro models of the liver is essential for studying the pathogenesis of liver diseases, hepatotoxicity testing, and regenerative medicine. Earlier studies were conducted using cell lines derived from hepatomas. Due to the inherent limitations of cell lines, researchers used primary human hepatocytes (PHHs), which are considered a gold standard for in vitro modeling of the liver. However, due to the high cost of PHHs and lack of donors, researchers have sought an alternative source for functional liver cells. Pluripotent stem cells (PSCs) emerged as a viable alternative due to their plasticity and high proliferative capacity. This review gives an overview of the major advances that have been achieved to develop protocols to generate liver cells such as hepatocytes, cholangiocytes, and Küpffer cells from PSCs. We also discuss their application in modeling the pathogenesis of liver diseases such as drug‐induced liver injury, acute liver failure, and hepatic steatosis.
Collapse
Affiliation(s)
- Setjie W Maepa
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Science, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hlumani Ndlovu
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Science, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
32
|
Horton C, Davies TJ, Lahiri P, Sachamitr P, Fairchild PJ. Induced pluripotent stem cells reprogrammed from primary dendritic cells provide an abundant source of immunostimulatory dendritic cells for use in immunotherapy. Stem Cells 2019; 38:67-79. [PMID: 31621975 PMCID: PMC7003857 DOI: 10.1002/stem.3095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/10/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022]
Abstract
Cell types differentiated from induced pluripotent stem cells (iPSCs) are frequently arrested in their development program, more closely resembling a fetal rather than an adult phenotype, potentially limiting their utility for downstream clinical applications. The fetal phenotype of iPSC‐derived dendritic cells (ipDCs) is evidenced by their low expression of MHC class II and costimulatory molecules, impaired secretion of IL‐12, and poor responsiveness to conventional maturation stimuli, undermining their use for applications such as immune‐oncology. Given that iPSCs display an epigenetic memory of the cell type from which they were originally derived, we investigated the feasibility of reprogramming adult DCs to pluripotency to determine the impact on the phenotype and function of ipDCs differentiated from them. Using murine bone marrow‐derived DCs (bmDCs) as proof of principle, we show here that immature DCs are tractable candidates for reprogramming using non‐integrating Sendai virus for the delivery of Oct4, Sox2, Klf4, and c‐Myc transcription factors. Reprogramming efficiency of DCs was lower than mouse embryonic fibroblasts (MEFs) and highly dependent on their maturation status. Although control iPSCs derived from conventional MEFs yielded DCs that displayed a predictable fetal phenotype and impaired immunostimulatory capacity in vitro and in vivo, DCs differentiated from DC‐derived iPSCs exhibited a surface phenotype, immunostimulatory capacity, and responsiveness to maturation stimuli indistinguishable from the source DCs, a phenotype that was retained for 15 passages of the parent iPSCs. Our results suggest that the epigenetic memory of iPSCs may be productively exploited for the generation of potently immunogenic DCs for immunotherapeutic applications.
Collapse
Affiliation(s)
- Christopher Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Priyoshi Lahiri
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Wang S, Wang X, Tan Z, Su Y, Liu J, Chang M, Yan F, Chen J, Chen T, Li C, Hu J, Wang Y. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res 2019; 29:1009-1026. [PMID: 31628434 DOI: 10.1038/s41422-019-0242-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
We report the generation of human ESC-derived, expandable hepatic organoids (hEHOs) using our newly established method with wholly defined (serum-free, feeder free) media. The hEHOs stably maintain phenotypic features of bipotential liver stem/progenitor cells that can differentiate into functional hepatocytes or cholangiocytes. The hEHOs can expand for 20 passages enabling large scale expansion to cell numbers requisite for industry or clinical programs. The cells from hEHOs display remarkable repopulation capacity in injured livers of FRG mice following transplantation, and they differentiate in vivo into mature hepatocytes. If implanted into the epididymal fat pads of immune-deficient mice, they do not generate non-hepatic lineages and have no tendency to form teratomas. We further develop a derivative model by incorporating human fetal liver mesenchymal cells (hFLMCs) into the hEHOs, referred to as hFLMC/hEHO, which can model alcoholic liver disease-associated pathophysiologic changes, including oxidative stress generation, steatosis, inflammatory mediators release and fibrosis, under ethanol treatment. Our work demonstrates that the hEHOs have considerable potential to be a novel, ex vivo pathophysiological model for studying alcoholic liver disease as well as a promising cellular source for treating human liver diseases.
Collapse
Affiliation(s)
- Shuyong Wang
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China.,Army Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, The 8th Medical Center of Chinese PLA General Hospital, 100091, Beijing, China
| | - Xuan Wang
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China.,Department of Nursing, Hebei Medical University, 050017, Shijiazhuang, China
| | - Zuolong Tan
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Yuxin Su
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Juan Liu
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China.,Hepatal-Biliary-Pancreatic Center, Translational Research Center, Beijing Tsinghua Chang Gung Hospital, 102218, Beijing, China
| | - Mingyang Chang
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Fang Yan
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510289, Guangzhou, China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510289, Guangzhou, China
| | - Chuanjiang Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Jie Hu
- Department of Nursing, Hebei Medical University, 050017, Shijiazhuang, China
| | - Yunfang Wang
- Tissue Engineering and Regenerative Medicine Lab, Beijing Institute of Health Service and Transfusion Medicine, 100850, Beijing, China. .,Hepatal-Biliary-Pancreatic Center, Translational Research Center, Beijing Tsinghua Chang Gung Hospital, 102218, Beijing, China.
| |
Collapse
|
34
|
Wang Z, Li W, Jing H, Ding M, Fu G, Yuan T, Huang W, Dai M, Tang D, Zeng M, Chen Y, Zhang H, Zhu X, Peng Y, Li Q, Yu WF, Yan HX, Zhai B. Generation of hepatic spheroids using human hepatocyte-derived liver progenitor-like cells for hepatotoxicity screening. Theranostics 2019; 9:6690-6705. [PMID: 31588244 PMCID: PMC6771233 DOI: 10.7150/thno.34520] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: The idiosyncratic drug-induced liver injury (iDILI) is a major cause of acute liver injury and a key challenge in late-stage drug development. Individual heterogeneity is considered to be an essential factor of iDILI. However, few in vitro model can predict heterogeneity in iDILI. We have previously shown that mouse and human hepatocytes can be converted to expandable liver progenitor-like cells in vitro (HepLPCs). However, the limited proliferation potential of human HepLPCs confines its industrial application. Here, we reported the generation of a novel hepatocyte model not only to provide unlimited cell sources for human hepatocytes but also to establish a tool for studying iDILI in vitro. Methods: Human primary hepatocytes were isolated by modified two-step perfusion technique. The chemical reprogramming culture condition together with gene-transfer were then used to generate the immortalized HepLPC cell lines (iHepLPCs). Growth curve, doubling time, and karyotype were analyzed to evaluate the proliferation characteristics of iHepLPCs. Modified Hepatocyte Maturation Medium and 3D spheroid culture were applied to re-differentiate iHepLPCs. Results: iHepLPCs exhibited efficient expansion for at least 40 population doublings, with a stable proliferative ability. They could easily differentiate back into metabolically functional hepatocytes in vitro within 10 days. Furthermore, under three-dimensional culture conditions, the formed hepatic spheroids showed multiple liver functions and toxicity profiles close to those of primary human hepatocytes. Importantly, we established a hepatocyte bank by generating a specific number of such cell lines. Screening for population heterogeneity allowed us to analyze the in vitro heterogeneous responses to hepatotoxicity induced by molecular targeted drugs. Conclusions: In light of the proliferative capacity and the heterogeneity they represented, these iHepLPCs cell lines may offer assistance in studying xenobiotic metabolism as well as liver diseases in vitro.
Collapse
|
35
|
Distinct Imprinting Signatures and Biased Differentiation of Human Androgenetic and Parthenogenetic Embryonic Stem Cells. Cell Stem Cell 2019; 25:419-432.e9. [DOI: 10.1016/j.stem.2019.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
|
36
|
Heslop JA, Kia R, Pridgeon CS, Sison-Young RL, Liloglou T, Elmasry M, Fenwick SW, Mills JS, Kitteringham NR, Goldring CE, Park BK. Donor-Dependent and Other Nondefined Factors Have Greater Influence on the Hepatic Phenotype Than the Starting Cell Type in Induced Pluripotent Stem Cell Derived Hepatocyte-Like Cells. Stem Cells Transl Med 2019; 6:1321-1331. [PMID: 28456008 PMCID: PMC5442714 DOI: 10.1002/sctm.16-0029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
Drug‐induced liver injury is the greatest cause of post‐marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)‐derived hepatocyte‐like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this “resetting” is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte‐ and dermal fibroblast‐derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC‐derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast‐derived iPSCs. We conclude that the donor and inter‐clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC‐derived HLCs. Stem Cells Translational Medicine2017;6:1321–1331
Collapse
Affiliation(s)
- James A Heslop
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Richard Kia
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Christopher S Pridgeon
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Rowena L Sison-Young
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Mohamed Elmasry
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom.,University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL, United Kingdom
| | - Stephen W Fenwick
- University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL, United Kingdom
| | - John S Mills
- AstraZeneca, Personalised Healthcare and Biomarkers, Alderley Park, Cheshire, SK10 4TG, United Kingdom
| | - Neil R Kitteringham
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Chris E Goldring
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Bong K Park
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
37
|
Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, Tan J, Pan B, Lee JJH, Lum JJ, Lim CYY, Yeo IKX, Wong CJY, Liu M, Oh JLL, Chia CPL, Loh CH, Chen A, Chen Q, Weissman IL, Loh KM, Lim B. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Rep 2019; 22:2190-2205. [PMID: 29466743 PMCID: PMC5854481 DOI: 10.1016/j.celrep.2018.01.087] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs). Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g., pancreas and intestines) are restricted during liver commitment. Human liver fate was encoded by combinations of inductive and repressive extracellular signals at different doses. However, these signaling combinations were temporally re-interpreted: cellular competence to respond to retinoid, WNT, TGF-β, and other signals sharply changed within 24 hr. Consequently, temporally dynamic manipulation of extracellular signals was imperative to suppress the production of unwanted cell fates across six consecutive developmental junctures. This efficiently generated 94.1% ± 7.35% TBX3+HNF4A+ human liver bud progenitors and 81.5% ± 3.2% FAH+ hepatocyte-like cells by days 6 and 18 of hPSC differentiation, respectively; the latter improved short-term survival in the Fah-/-Rag2-/-Il2rg-/- mouse model of liver failure.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| | - Antson Kiat Yee Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Matias I Autio
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Su Hua Goh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Siew Hua Choo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Kian Leong Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianmin Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Bangfen Pan
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Jane Jia Hui Lee
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jen Jen Lum
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Christina Ying Yan Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Isabelle Kai Xin Yeo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chloe Jin Yee Wong
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Min Liu
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jueween Ling Li Oh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Cheryl Pei Lynn Chia
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chet Hong Loh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Microbiology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| |
Collapse
|
38
|
Wang ZY, Li WJ, Li QG, Jing HS, Yuan TJ, Fu GB, Tang D, Zhang HD, Yan HX, Zhai B. A DMSO-free hepatocyte maturation medium accelerates hepatic differentiation of HepaRG cells in vitro. Biomed Pharmacother 2019; 116:109010. [PMID: 31136950 DOI: 10.1016/j.biopha.2019.109010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/16/2023] Open
Abstract
The most essential tools for studying drug hepatotoxicity, liver diseases, and bioartificial livers have always been models that can recapitulate liver physiology in vitro. The liver progenitor cell line HepaRG represents an effective surrogate of the primary hepatocyte. However, the differentiation of HepaRG relies on long-term induction using a high concentration of dimethyl sulfoxide (DMSO), which may compromise the research of drug metabolism and restrict the applicability of this hepatic model. Here, we present a novel hepatic maturation medium (HMM) for the differentiation of HepaRG, which is based on a cocktail of soluble molecules that mimick the in vivo environment. We showed that HMM could rapidly (about nine days) induce HepaRG differentiation into polarized hepatocytes with maturely metabolic functions. In addition, under three-dimensional culture conditions, the hepatic spheroids showed multiple liver functions and toxicity profiles close to those of primary human hepatocytes (PHH). Our work demonstrates the utility of HMM as an alternative to the DMSO-dependent differentiation protocol for HepaRG; moreover, these results facilitate the application of HepaRG.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Jian Li
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Qi-Gen Li
- Organ Transplantation Center, Changhai Hosipital, Second Military Medical University, Shanghai, China
| | - Hong-Shu Jing
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Tian-Jie Yuan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai, China
| | - He-Xin Yan
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China; Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China.
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Grindheim JM, Nicetto D, Donahue G, Zaret KS. Polycomb Repressive Complex 2 Proteins EZH1 and EZH2 Regulate Timing of Postnatal Hepatocyte Maturation and Fibrosis by Repressing Genes With Euchromatic Promoters in Mice. Gastroenterology 2019; 156:1834-1848. [PMID: 30689973 PMCID: PMC6599454 DOI: 10.1053/j.gastro.2019.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Little is known about mechanisms that underlie postnatal hepatocyte maturation and fibrosis at the chromatin level. We investigated the transcription of genes involved in maturation and fibrosis in postnatal hepatocytes of mice, focusing on the chromatin compaction the roles of the Polycomb repressive complex 2 histone methyltransferases EZH1 and EZH2. METHODS Hepatocytes were isolated from mixed background C57BL/6J-C3H mice, as well as mice with liver-specific disruption of Ezh1 and/or Ezh2, at postnatal day 14 and 2 months after birth. Liver tissues were collected and analyzed by RNA sequencing, H3K27me3 chromatin immunoprecipitation sequencing, and sonication-resistant heterochromatin sequencing (a method to map heterochromatin and euchromatin). Liver damage was characterized by histologic analysis. RESULTS We found more than 3000 genes differentially expressed in hepatocytes during liver maturation from postnatal day 14 to month 2 after birth. Disruption of Ezh1 and Ezh2 in livers caused perinatal hepatocytes to differentiate prematurely and to express genes at postnatal day 14 that would normally be induced by month 2 and differentiate prematurely. Loss of Ezh1 and Ezh2 also resulted in liver fibrosis. Genes with H3K27me3-postive and H3K4me3-positive euchromatic promoters were prematurely induced in hepatocytes with loss of Ezh1 and Ezh2-these genes included those that regulate hepatocyte maturation, fibrosis, and genes not specifically associated with the liver lineage. CONCLUSIONS The Polycomb repressive complex 2 proteins EZH1 and EZH2 regulate genes that control hepatocyte maturation and fibrogenesis and genes not specifically associated with the liver lineage by acting at euchromatic promoter regions. EZH1 and EZH2 thereby promote liver homeostasis and prevent liver damage. Strategies to manipulate Polycomb proteins might be used to improve hepatocyte derivation protocols or developed for treatment of patients with liver fibrosis.
Collapse
Affiliation(s)
- Jessica Mae Grindheim
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. of Cancer Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Dario Nicetto
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Greg Donahue
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Dept. Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA.,Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA 19104-5157, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Penn Epigenetics Institute, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, Pennsylvania.
| |
Collapse
|
40
|
Donato MT, Tolosa L. Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury. Differentiation 2019; 106:15-22. [PMID: 30844688 DOI: 10.1016/j.diff.2019.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Drug-induced liver injury is a major cause of drug discovery failure in clinical trials and a leading cause of liver disease. Current preclinical drug testing does not predict hepatotoxicity which highlights the importance of developing highly predictive cell-based models. The use of stem cell technology and differentiation into hepatocyte-like cells (HLCs) could provide a stable source of hepatocytes for multiple applications, including drug screening. HLCs derived from both embryonic and induced pluripotent stem cells have been used to accurately predict hepatotoxicity as well as to test individual-specific toxicity. Although there are still many limitations, mainly related to the lack of fully maturity of the HLCs derived from pluripotent stem cells, they could provide a relative unlimited and consistent supply of cells with stable phenotype, that could be obtained from different donors, enabling the generation of a library of HLCs representative of the variability of human population.
Collapse
Affiliation(s)
- M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, 46010, Spain.
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| |
Collapse
|
41
|
Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, Maresz K, Kramann R, Schurgers L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int J Mol Sci 2019; 20:E896. [PMID: 30791399 PMCID: PMC6413124 DOI: 10.3390/ijms20040896] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
Vitamin K is an essential bioactive compound required for optimal body function. Vitamin K can be present in various isoforms, distinguishable by two main structures, namely, phylloquinone (K1) and menaquinones (K2). The difference in structure between K1 and K2 is seen in different absorption rates, tissue distribution, and bioavailability. Although differing in structure, both act as cofactor for the enzyme gamma-glutamylcarboxylase, encompassing both hepatic and extrahepatic activity. Only carboxylated proteins are active and promote a health profile like hemostasis. Furthermore, vitamin K2 in the form of MK-7 has been shown to be a bioactive compound in regulating osteoporosis, atherosclerosis, cancer and inflammatory diseases without risk of negative side effects or overdosing. This review is the first to highlight differences between isoforms vitamin K1 and K2 by means of source, function, and extrahepatic activity.
Collapse
Affiliation(s)
- Maurice Halder
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Ploingarm Petsophonsakul
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | - Asim Cengiz Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | - Angelina Pavlic
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| | | | | | - Katarzyna Maresz
- International Science & Health Foundation, 30-134 Krakow, Poland.
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Leon Schurgers
- Division of Nephrology, RWTH Aachen University, 52074 Aachen, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, 6200MD Maastricht, The Netherlands.
| |
Collapse
|
42
|
Mayati A, Moreau A, Le Vée M, Bruyère A, Jouan E, Denizot C, Parmentier Y, Fardel O. Functional polarization of human hepatoma HepaRG cells in response to forskolin. Sci Rep 2018; 8:16115. [PMID: 30382126 PMCID: PMC6208432 DOI: 10.1038/s41598-018-34421-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 02/04/2023] Open
Abstract
HepaRG is an original human hepatoma cell line, acquiring highly differentiated hepatic features when exposed to dimethylsulfoxide (DMSO). To search alternatives to DMSO, which may exert some toxicity, we have analyzed the effects of forskolin (FSK), a cAMP-generating agent known to favor differentiation of various cell types. FSK used at 50 µM for 3 days was found to promote polarization of high density-plated HepaRG cells, i.e., it markedly enhanced the formation of functional biliary canaliculi structures. It also increased expressions of various hepatic markers, including those of cytochrome P-450 (CYP) 3A4, of drug transporters like NTCP, OATP2B1 and BSEP, and of metabolism enzymes like glucose 6-phosphatase. In addition, FSK-treated HepaRG cells displayed enhanced activities of CYP3A4, NTCP and OATPs when compared to untreated cells. These polarizing/differentiating effects of FSK were next shown to reflect not only the generation of cAMP, but also the activation of the xenobiotic sensing receptors PXR and FXR by FSK. Co-treatment of HepaRG cells by the cAMP analog Sp-5,6-DCl-cBIMPS and the reference PXR agonist rifampicin reproduced the polarizing effects of FSK. Therefore, FSK may be considered as a relevant alternative to DMSO for getting polarized and differentiated HepaRG cells, notably for pharmacological and toxicological studies.
Collapse
Affiliation(s)
- Abdullah Mayati
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Amélie Moreau
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Claire Denizot
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Yannick Parmentier
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France. .,Pôle Biologie, Centre Hospitalier Universitaire, F-35033, Rennes, France.
| |
Collapse
|
43
|
Ozeki M, Aini W, Miyagawa-Hayashino A, Tamaki K. Prevention of Cell Growth by Suppression of Villin Expression in Lithocholic Acid-Stimulated HepG2 Cells. J Histochem Cytochem 2018; 67:129-141. [PMID: 30303767 DOI: 10.1369/0022155418804507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cholestasis is a condition wherein bile flow is interrupted and lithocholic acid is known to play a key role in causing severe liver injury. In this study, we performed in-depth analysis of the morphological changes in bile canaliculi and the biological role of villin in cholestasis using lithocholic acid-stimulated HepG2 human hepatocarcinoma cells. We confirmed disruption of the bile canaliculi in liver sections from a liver allograft patient with cholestasis. Lithocholic acid caused strong cytotoxicity in HepG2 cells, which was associated with abnormal morphology. Lithocholic acid reduced villin expression, which recovered in the presence of nuclear receptor agonists. Furthermore, villin mRNA expression increased following small interfering RNA (siRNA)-mediated knockdown of the nuclear farnesoid X receptor and pregnane X receptor. Villin knockdown using siRNA caused cell growth arrest in HepG2 cells. The effect of villin-knockdown on whole-genome expression in HepG2 cells was analyzed by DNA microarray. Our data suggest that lithocholic acid caused cell growth arrest by suppressing villin expression via farnesoid X receptor and pregnane X receptor in HepG2 cells.
Collapse
Affiliation(s)
- Munetaka Ozeki
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wulamujiang Aini
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.,Experimental and Clinical Research Center, Diabetes and Obesity Research Laboratory, Kocaeli University, Izmit, Turkey
| | - Aya Miyagawa-Hayashino
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.,Pathology and diagnostics, Kansai Medical University Hospital, Osaka, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Han W, Wu Q, Zhang X, Duan Z. Innovation for hepatotoxicity in vitro research models: A review. J Appl Toxicol 2018; 39:146-162. [PMID: 30182494 DOI: 10.1002/jat.3711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Many categories of drugs can induce hepatotoxicity, so improving the prediction of toxic drugs is important. In vitro models using human hepatocytes are more accurate than in vivo animal models. Good in vitro models require an abundance of metabolic enzyme activities and normal cellular polarity. However, none of the in vitro models can completely simulate hepatocytes in the human body. There are two ways to overcome this limitation: enhancing the metabolic function of hepatocytes and changing the cultural environment. In this review, we summarize the current state of research, including the main characteristics of in vitro models and their limitations, as well as improved technology and developmental prospects. We hope that this review provides some new ideas for hepatotoxicity research.
Collapse
Affiliation(s)
- Weijia Han
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| |
Collapse
|
45
|
Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells. Gastroenterology 2018; 154:1258-1272. [PMID: 29428334 PMCID: PMC6237283 DOI: 10.1053/j.gastro.2018.01.066] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/16/2022]
Abstract
The incidence of liver disease is increasing globally. The only curative therapy for severe end-stage liver disease, liver transplantation, is limited by the shortage of organ donors. In vitro models of liver physiology have been developed and new technologies and approaches are progressing rapidly. Stem cells might be used as a source of liver tissue for development of models, therapies, and tissue-engineering applications. However, we have been unable to generate and maintain stable and mature adult liver cells ex vivo. We review factors that promote hepatocyte differentiation and maturation, including growth factors, transcription factors, microRNAs, small molecules, and the microenvironment. We discuss how the hepatic circulation, microbiome, and nutrition affect liver function, and the criteria for considering cells derived from stem cells to be fully mature hepatocytes. We explain the challenges to cell transplantation and consider future technologies for use in hepatic stem cell maturation, including 3-dimensional biofabrication and genome modification.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; The Royal Netherlands Academy of Arts and Sciences, Hubrecht Institute and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Pedro M Baptista
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas, Madrid, Spain; Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
46
|
Sachamitr P, Leishman AJ, Davies TJ, Fairchild PJ. Directed Differentiation of Human Induced Pluripotent Stem Cells into Dendritic Cells Displaying Tolerogenic Properties and Resembling the CD141 + Subset. Front Immunol 2018; 8:1935. [PMID: 29358940 PMCID: PMC5766641 DOI: 10.3389/fimmu.2017.01935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has begun to revolutionize cell therapy by providing a convenient source of rare cell types not normally available from patients in sufficient numbers for therapeutic purposes. In particular, the development of protocols for the differentiation of populations of leukocytes as diverse as naïve T cells, macrophages, and natural killer cells provides opportunities for their scale-up and quality control prior to administration. One population of leukocytes whose therapeutic potential has yet to be explored is the subset of conventional dendritic cells (DCs) defined by their surface expression of CD141. While these cells stimulate cytotoxic T cells in response to inflammation through the cross-presentation of viral and tumor-associated antigens in an MHC class I-restricted manner, under steady-state conditions CD141+ DCs resident in interstitial tissues are focused on the maintenance of homeostasis through the induction of tolerance to local antigens. Here, we describe protocols for the directed differentiation of human iPSCs into a mixed population of CD11c+ DCs through the spontaneous formation of embryoid bodies and exposure to a cocktail of growth factors, the scheduled withdrawal of which serves to guide the process of differentiation. Furthermore, we describe the enrichment of DCs expressing CD141 through depletion of CD1c+ cells, thereby obtaining a population of “untouched” DCs unaffected by cross-linking of surface CD141. The resulting cells display characteristic phagocytic and endocytic capacity and acquire an immunostimulatory phenotype following exposure to inflammatory cytokines and toll-like receptor agonists. Nevertheless, under steady-state conditions, these cells share some of the tolerogenic properties of tissue-resident CD141+ DCs, which may be further reinforced by exposure to a range of pharmacological agents including interleukin-10, rapamycin, dexamethasone, and 1α,25-dihydoxyvitamin D3. Our protocols therefore provide access to a novel source of DCs analogous to the CD141+ subset under steady-state conditions in vivo and may, therefore, find utility in the treatment of a range of disease states requiring the establishment of immunological tolerance.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alison J Leishman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng 2017; 11:46. [PMID: 29204185 PMCID: PMC5702480 DOI: 10.1186/s13036-017-0081-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Background Liver disease contributes significantly to global disease burden and is associated with rising incidence and escalating costs. It is likely that innovative approaches, arising from the emerging field of liver regenerative medicine, will counter these trends. Main body Liver regenerative medicine is a rapidly expanding field based on a rich history of basic investigations into the nature of liver structure, physiology, development, regeneration, and function. With a bioengineering perspective, we discuss all major subfields within liver regenerative medicine, focusing on the history, seminal publications, recent progress within these fields, and commercialization efforts. The areas reviewed include fundamental aspects of liver transplantation, liver regeneration, primary hepatocyte cell culture, bioartificial liver, hepatocyte transplantation and liver cell therapies, mouse liver repopulation, adult liver stem cell/progenitor cells, pluripotent stem cells, hepatic microdevices, and decellularized liver grafts. Conclusion These studies highlight the creative directions of liver regenerative medicine, the collective efforts of scientists, engineers, and doctors, and the bright outlook for a wide range of approaches and applications which will impact patients with liver disease.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA
| | - Janet Oluwole
- Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, 907 Furnas Hall, Buffalo, NY 14260 USA
| |
Collapse
|
48
|
McCann J, McCann T. 2016 Lush Science Prize. Altern Lab Anim 2017; 45:231-240. [PMID: 29112451 DOI: 10.1177/026119291704500508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Lush Prize supports animal-free testing by awarding monetary prizes totalling £250,000 to the most effective projects and individuals who have been working toward the goal of replacing animals in product or ingredient safety testing. Prizes are awarded for developments in five strategic areas: Science; Lobbying; Training; Public Awareness; and Young Researchers. In the event of a major breakthrough leading to the replacement of animal tests in the area of 21st Century Toxicology, a Black Box Prize (equivalent to the entire annual fund of £250,000) is awarded. The Science Prize is awarded to the researchers whose work the judging panel believe has made the most significant contribution to the replacement of animal testing in the preceding year. This Background Paper outlines the research projects that were shortlisted and presented to the judging panel as potential candidates for the 2016 Lush Science Prize. This process involved reviewing recent work of the relevant scientific institutions and projects in this area, such as the OECD, CAAT, The Hamner Institutes, ECVAM, UK NC3Rs, and the US Tox21 Programme. Recent developments in toxicity testing research were also identified by searching for relevant published papers in the literature, and analysing abstracts from conferences focusing on animal replacement in toxicity testing that had been held in the preceding 12 months - for example the EUSAAT-Linz, Society of Toxicology, and SEURAT-1 conferences.
Collapse
|
49
|
Lou YR, Leung AW. Next generation organoids for biomedical research and applications. Biotechnol Adv 2017; 36:132-149. [PMID: 29056474 DOI: 10.1016/j.biotechadv.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022]
Abstract
Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures. To tackle these challenges, we advocate the principle of reverse engineering that replicates the inner workings of in vivo systems with the goal of achieving functionality and maturation of the resulting organoid structures with the input of minimal intrinsic (cellular) and environmental (matrix and niche) constituents. Here, we present an overview of organoid technology development in several systems that employ cell materials derived from fetal and adult tissues and pluripotent stem cell cultures. We focus on key studies that exploit the self-organizing property of embryonic progenitors and the role of designer matrices and cell-free scaffolds in assisting organoid formation. We further explore the relationship between adult stem cells, niche factors, and other current developments that aim to enhance robust organoid maturation. From these works, we propose a standardized pipeline for the development of future protocols that would help generate more physiologically relevant human organoids for various biomedical applications.
Collapse
Affiliation(s)
- Yan-Ru Lou
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Alan W Leung
- Yale Stem Cell Center, Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
50
|
Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|