1
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li S, Hao L, Deng J, Zhang J, Yu F, Ye F, Li N, Hu X. The Culprit Behind HBV-Infected Hepatocytes: NTCP. Drug Des Devel Ther 2024; 18:4839-4858. [PMID: 39494152 PMCID: PMC11529284 DOI: 10.2147/dddt.s480151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for over 250 million cases of chronic liver infections, leading to conditions such as liver inflammation, cirrhosis and hepatocellular carcinoma (HCC). Sodium taurocholate co-transporting polypeptide (NTCP) is a transmembrane protein highly expressed in human hepatocytes and functions as a bile acid (BA) transporter. NTCP has been identified as the receptor that HBV and its satellite virus, hepatitis delta virus (HDV), use to enter hepatocytes. HBV entry into hepatocytes is tightly regulated by various signaling pathways, and NTCP plays an important role as the initial stage of HBV infection. NTCP acts as an initiation signal, causing metabolic changes in hepatocytes and facilitating the entry of HBV into hepatocytes. Thus, a comprehensive understanding of NTCP's role is crucial. In this review, we will examine the regulatory mechanisms governing HBV pre-S1 binding to liver membrane NTCP, the role of NTCP in HBV internalization, and the transcriptional and translational regulation of NTCP expression. Additionally, we will discuss clinical drugs targeting NTCP, including combination therapies involving NTCP inhibitors, and consider the safety of NTCP as a therapeutic target.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, People’s Republic of China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
3
|
Tan X, Xiang Y, Shi J, Chen L, Yu D. Targeting NTCP for liver disease treatment: A promising strategy. J Pharm Anal 2024; 14:100979. [PMID: 39310850 PMCID: PMC11415714 DOI: 10.1016/j.jpha.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
Collapse
Affiliation(s)
- Xin Tan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Guanghan People's Hospital, Guanghan, Sichuan, 618300, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
4
|
Wang J, Xu H, Liu Z, Cao Y, Chen S, Hou R, Zhou Y, Wang Y. Bile acid-microbiota crosstalk in hepatitis B virus infection. J Gastroenterol Hepatol 2024; 39:1509-1516. [PMID: 38721685 DOI: 10.1111/jgh.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus (HBV) is a hepatotropic non-cytopathic virus characterized by liver-specific gene expression. HBV infection highjacks bile acid metabolism, notably impairing bile acid uptake via sodium taurocholate cotransporting polypeptide (NTCP), which is a functional receptor for HBV entry. Concurrently, HBV infection induces changes in bile acid synthesis and the size of the bile acid pool. Conversely, bile acid facilitates HBV replication and expression through the signaling molecule farnesoid X receptor (FXR), a nuclear receptor activated by bile acid. However, in HepaRG cells and primary hepatocytes, FXR agonists suppress HBV RNA expression and the synthesis and secretion of DNA. In the gut, the size and composition of the bile acid pool significantly influence the gut microbiota. In turn, the gut microbiota impacts bile acid metabolism and innate immunity, potentially promoting HBV clearance. Thus, the bile acid-gut microbiota axis represents a complex and evolving relationship in the context of HBV infection. This review explores the interplay between bile acid and gut microbiota in HBV infection and discusses the development of HBV entry inhibitors targeting NTCP.
Collapse
Affiliation(s)
- Jiaxin Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huimin Xu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zixin Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yutong Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Siyu Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ruifang Hou
- Hebi Key Laboratory of Liver Disease, Department of Infectious Diseases, People's Hospital of Hebi, Henan University, Hebi, China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yandong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
Zhang J, Ma J, Dai H, Zhang H. The application and functional mechanism of Chinese herbal medicines in the treatment of chronic hepatitis B. Future Virol 2024; 19:325-338. [DOI: 10.1080/17460794.2024.2388479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/01/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Jiao Zhang
- Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, China
| | - Junrui Ma
- School of Nursing, Yunnan University of Traditional Chinese Medicines, Kunming, Yunnan, 650022, P.R. China
| | - Hongyang Dai
- Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, China
| | - Hushan Zhang
- Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, China
| |
Collapse
|
6
|
Ignat MD, Balta AAS, Barbu RE, Draganescu ML, Nechita L, Voinescu DC, Nechita A, Stefanopol IA, Busila C, Baroiu L. Antiviral Therapy of Chronic Hepatitis B Virus between Present and Future. J Clin Med 2024; 13:2055. [PMID: 38610820 PMCID: PMC11012273 DOI: 10.3390/jcm13072055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Background/Objectives: The objective of this study was to analyze the results of clinical trials regarding long-term antiviral therapies in chronic hepatitis with HBV to compare current therapeutic protocols and to analyze the results of preliminary studies with new antiviral therapies for HBV. Methods: Clinical studies and meta-analyses from PubMed, Google Scholar, and Research Gate from 2011 to 2024 were analyzed on patients undergoing chronic antiviral therapy for HBV, and a retrospective observational study performed in our clinic on a group of 76 patients undergoing chronic therapy with entecavir was presented. Also, a summary of the results of preliminary studies with various innovative antiviral molecules for HBV was performed. Results: The results of extensive clinical trials reveal that current therapies for chronic HBV are well tolerated and maintain good viral suppression if the patient is adherent to therapy. Innovative therapies aim to eliminate HBsAg and, thus, significantly shorten the duration of treatment, and the preliminary results of the studies are promising. Conclusions: Being an asymptomatic condition that requires life-long therapy, adherence to therapy is a real problem. Also, the risk of decompensation of liver cirrhosis and adenocarcinoma remains important in these patients. Future research is needed to perfect some antiviral therapy schemes that shorten the treatment period but also decrease the rate of progression towards decompensated cirrhosis and liver adenocarcinoma.
Collapse
Affiliation(s)
- Mariana Daniela Ignat
- Doctoral School of Biomedical Sciences, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.D.I.); (R.E.B.)
| | | | - Raisa Eloise Barbu
- Doctoral School of Biomedical Sciences, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.D.I.); (R.E.B.)
| | - Miruna Luminita Draganescu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| | - Luiza Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania
| | - Doina Carina Voinescu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania
| | - Aurel Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
| | - Ioana Anca Stefanopol
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania
| | - Camelia Busila
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
| | - Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| |
Collapse
|
7
|
Naderi M, Salavatiha Z, Gogoi U, Mohebbi A. An overview of anti-Hepatitis B virus flavonoids and their mechanisms of action. Front Cell Infect Microbiol 2024; 14:1356003. [PMID: 38487354 PMCID: PMC10937540 DOI: 10.3389/fcimb.2024.1356003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids, a diverse group of polyphenolic compounds found in various plant-based foods, have garnered attention for their potential in combating Hepatitis B Virus (HBV) infection. Flavonoids have demonstrated promising anti-HBV activities by interfering with multiple stages of the HBV life cycle, making them promising candidates for novel antiviral agents. Certain plant families, such as Theaceae, Asteraceae, Lamiaceae, and Gentianaceae, are of particular interest for their flavonoid-rich members with anti-HBV activities. Evidences, both in vitro and in vivo, supports the anti-HBV potential of flavonoids. These subsets of compound exert their anti-HBV effects through various mechanisms, including inhibiting viral entry, disrupting viral replication, modulating transcription factors, enhancing the immune response, and inducing autophagy. The antioxidant properties of flavonoids play a crucial role in modulating oxidative stress associated with HBV infection. Several flavonoids like epigallocatechin gallate (EGCG), proanthocyanidin (PAC), hexamethoxyflavone, wogonin, and baicalin have shown significant anti-HBV potential, holding promise as therapeutic agents. Synergistic effects between flavonoids and existing antiviral therapies offer a promising approach to enhance antiviral efficacy and reduce drug resistance. Challenges, including limited bioavailability, translation from preclinical studies to clinical practice, and understanding precise targets, need to be addressed. Future research should focus on clinical trials, combination therapies, and the development of flavonoid derivatives with improved bioavailability, and optimizing their effectiveness in managing chronic HBV infections.
Collapse
Affiliation(s)
- Malihe Naderi
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Salavatiha
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Alireza Mohebbi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene Inc., Gorgan, Golestan, Iran
| |
Collapse
|
8
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Ge F, Yang Y, Bai Z, Si L, Wang X, Yu J, Xiao X, Liu Y, Ren Z. The role of Traditional Chinese medicine in anti-HBV: background, progress, and challenges. Chin Med 2023; 18:159. [PMID: 38042824 PMCID: PMC10693092 DOI: 10.1186/s13020-023-00861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023] Open
Abstract
Chronic hepatitis B (CHB) remains a major world's most serious public health issues. Despite the remarkable effect of nucleos(t)ide analogues (NAs) in inhibiting hepatitis B virus (HBV) deoxyribonucleic acid (DNA) as the first-line drug, there are several limitations still, such as poor antigen inhibition, drug resistance, low-level viremia, restricting patients' functional cure. Due to the constraints of NAs, traditional medicines, such as traditional Chinese medicine (TCM), have become more prevalently used and researched in the clinical treatment of CHB as complementary alternative therapies. As a consequence, the review focuses on the background based on HBV's life cycle as well as the NAs' limitations, progress based on direct and indirect pathway of targeting HBV of TCM, and challenges of TCM. We found TCMs play an increasingly important role in anti-HBV. In a direct antiviral way, they regulate HBV infection, replication, assembly, and other aspects of the HBV life cycle. As for indirect way, TCMs can exert anti-HBV effects through targeting the host, including immune regulation, apoptosis, autophagy, oxidative stress, etc. Especially, TCMs have the advantages of strong antigenic inhibition compared to NAs. Specifically, we can combine the benefits of TCMs in strong HBV antigen inhibition with the benefits of NAs in targeted antiviral effects, in order to find a suitable combination of "TCM + NAs" to contribute to Chinese knowledge of the realisation of the "global elimination of HBV by 2030" goal of the World Health Organization.
Collapse
Affiliation(s)
- Feilin Ge
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Zhaofang Bai
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Lanlan Si
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xuemei Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaohe Xiao
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yan Liu
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Deng W, Chen F, Zhao Y, Zhou M, Guo M. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med 2023; 21:803-811. [PMID: 38035936 DOI: 10.1016/s1875-5364(23)60505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 12/02/2023]
Abstract
Chronic hepatitis B (CHB) infections caused by the hepatitis B virus (HBV) continue to pose a significant global public health challenge. Currently, the approved treatments for CHB are limited to interferon and nucleos(t)ide analogs, both of which have their limitations, and achieving a complete cure remains an elusive goal. Therefore, the identification of new therapeutic targets and the development of novel antiviral strategies are of utmost importance. Natural products (NPs) constitute a class of substances known for their diverse chemical structures, wide-ranging biological activities, and low toxicity profiles. They have shown promise as potential candidates for combating various diseases, with a substantial number demonstrating anti-HBV properties. This comprehensive review focuses on the current applications of NPs in the fight against HBV and provides a summary of their antiviral mechanisms, considering their impact on the viral life cycle and host hepatocytes. By offering insights into the world of anti-HBV NPs, this review aims to furnish valuable information to support the future development of antiviral drugs.
Collapse
Affiliation(s)
- Wanyu Deng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Fu Chen
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ming Zhou
- BGI-Shenzhen, Shenzhen 518000, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518110, China; Liver-biotechnology (Shenzhen) Co., Ltd., Shenzhen 518110, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science&Technology, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
11
|
Subhadra B, Agrawal R, Pal VK, Chenine AL, Mattathil JG, Singh A. Significant Broad-Spectrum Antiviral Activity of Bi121 against Different Variants of SARS-CoV-2. Viruses 2023; 15:1299. [PMID: 37376598 DOI: 10.3390/v15061299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has so far infected 762 million people with over 6.9 million deaths worldwide. Broad-spectrum viral inhibitors that block the initial stages of infection by reducing virus binding and proliferation, thereby reducing disease severities, are still an unmet global medical need. We studied Bi121, which is a standardized polyphenolic-rich compound isolated from Pelargonium sidoides, against recombinant vesicular stomatitis virus (rVSV)-pseudotyped SARS-CoV-2S (mutations in the spike protein) of six different variants of SARS-CoV-2. Bi121 was effective at neutralizing all six rVSV-ΔG-SARS-CoV-2S variants. The antiviral activity of Bi121 was also assessed against SARS-CoV-2 variants (USA WA1/2020, Hongkong/VM20001061/2020, B.1.167.2 (Delta), and Omicron) in Vero cells and HEK-ACE2 cell lines using RT-qPCR and plaque assays. Bi121 showed significant antiviral activity against all the four SARS-CoV-2 variants tested, suggesting a broad-spectrum activity. Bi121 fractions generated using HPLC showed antiviral activity in three fractions out of eight against SARS-CoV-2. The dominant compound identified in all three fractions using LC/MS/MS analysis was Neoilludin B. In silico structural modeling studies with Neoilludin B showed that it has a novel RNA-intercalating activity toward RNA viruses. In silico findings and the antiviral activity of this compound against several SARS-CoV-2 variants support further evaluation as a potential treatment of COVID-19.
Collapse
Affiliation(s)
- Bobban Subhadra
- Biom Pharmaceutical Corporation, 2203 Industrial Blvd, Sarasota, FL 34234, USA
| | - Ragini Agrawal
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science (IISc), CV Raman Ave., Bengaluru 560012, India
| | - Virender Kumar Pal
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science (IISc), CV Raman Ave., Bengaluru 560012, India
| | | | | | - Amit Singh
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science (IISc), CV Raman Ave., Bengaluru 560012, India
| |
Collapse
|
12
|
Paschoalino M, Marinho MDS, Santos IA, Grosche VR, Martins DOS, Rosa RB, Jardim ACG. An update on the development of antiviral against Mayaro virus: from molecules to potential viral targets. Arch Microbiol 2023; 205:106. [PMID: 36881172 PMCID: PMC9990066 DOI: 10.1007/s00203-023-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Mayaro virus (MAYV), first isolated in 1954 in Trinidad and Tobago islands, is the causative agent of Mayaro fever, a disease characterized by fever, rashes, headaches, myalgia, and arthralgia. The infection can progress to a chronic condition in over 50% of cases, with persistent arthralgia, which can lead to the disability of the infected individuals. MAYV is mainly transmitted through the bite of the female Haemagogus spp. mosquito genus. However, studies demonstrate that Aedes aegypti is also a vector, contributing to the spread of MAYV beyond endemic areas, given the vast geographical distribution of the mosquito. Besides, the similarity of antigenic sites with other Alphavirus complicates the diagnoses of MAYV, contributing to underreporting of the disease. Nowadays, there are no antiviral drugs available to treat infected patients, being the clinical management based on analgesics and non-steroidal anti-inflammatory drugs. In this context, this review aims to summarize compounds that have demonstrated antiviral activity against MAYV in vitro, as well as discuss the potentiality of viral proteins as targets for the development of antiviral drugs against MAYV. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential anti-MAYV drug candidates.
Collapse
Affiliation(s)
- Marina Paschoalino
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Igor Andrade Santos
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Daniel Oliveira Silva Martins
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Rafael Borges Rosa
- Institute Aggeu Magalhães, Fiocruz Pernambuco, Recife, Pernambuco, Brazil.,Rodents Animal Facilities Complex, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil. .,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
13
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
14
|
Liu Q, Kwan KY, Cao T, Yan B, Ganesan K, Jia L, Zhang F, Lim C, Wu Y, Feng Y, Chen Z, Liu L, Chen J. Broad-spectrum antiviral activity of Spatholobus suberectus Dunn against SARS-CoV-2, SARS-CoV-1, H5N1, and other enveloped viruses. Phytother Res 2022; 36:3232-3247. [PMID: 35943221 PMCID: PMC9537938 DOI: 10.1002/ptr.7452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The current COVID-19 pandemic caused by SARS-Cov-2 is responsible for more than 6 million deaths globally. The development of broad-spectrum and cost-effective antivirals is urgently needed. Medicinal plants are renowned as a complementary approach in which antiviral natural products have been established as safe and effective drugs. Here, we report that the percolation extract of Spatholobus suberectus Dunn (SSP) is a broad-spectrum viral entry inhibitor against SARS-CoV-1/2 and other enveloped viruses. The viral inhibitory activities of the SSP were evaluated by using pseudotyped SARS-CoV-1 and 2, HIV-1ADA and HXB2 , and H5N1. SSP effectively inhibited viral entry and with EC50 values ranging from 3.6 to 5.1 μg/ml. Pre-treatment of pseudovirus or target cells with SSP showed consistent inhibitory activities with the respective EC50 value of 2.3 or 2.1 μg/ml. SSP blocked both SARS-CoV-2 spike glycoprotein and the host ACE2 receptor. In vivo studies indicated that there was no abnormal toxicity and behavior in long-term SSP treatment. Based on these findings, we concluded that SSP has the potential to be developed as a drug candidate for preventing and treating COVID-19 and other emerging enveloped viruses.
Collapse
Affiliation(s)
- Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Ka-Yi Kwan
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianyu Cao
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Immunology and Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bingpeng Yan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Jia
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Feng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Chunyu Lim
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Liu
- AIDS Institute, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Li Y, Zhou J, Li T. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment. Front Mol Biosci 2022; 9:879817. [PMID: 35495620 PMCID: PMC9039015 DOI: 10.3389/fmolb.2022.879817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for more than 250 million cases of chronic liver infection, a condition that can lead to liver inflammation, cirrhosis, and hepatocellular carcinoma. Sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes and a mediator of bile acid transport, has been identified as the receptor responsible for the cellular entry of both HBV and its satellite, hepatitis delta virus (HDV). This has led to significant advances in our understanding of the HBV life cycle, especially the early steps of infection. HepG2-NTCP cells and human NTCP-expressing transgenic mice have been employed as the primary cell culture and animal models, respectively, for the study of HBV, and represent valuable approaches for investigating its basic biology and developing treatments for infection. However, the mechanisms involved in the regulation of NTCP transcription, translation, post-translational modification, and transport are still largely elusive. Improvements in our understanding of NTCP biology would likely facilitate the design of new therapeutic drugs for the prevention of the de novo infection of naïve hepatocytes. In this review, we provide critical findings regarding NTCP biology and discuss important questions that remain unanswered.
Collapse
Affiliation(s)
- Yan Li
- *Correspondence: Yan Li, ; Tianliang Li,
| | | | | |
Collapse
|
16
|
Kobayashi C, Watanabe Y, Oshima M, Hirose T, Yamasaki M, Iwamoto M, Iwatsuki M, Asami Y, Kuramochi K, Wakae K, Aizaki H, Muramatsu M, Sureau C, Sunazuka T, Watashi K. Fungal Secondary Metabolite Exophillic Acid Selectively Inhibits the Entry of Hepatitis B and D Viruses. Viruses 2022; 14:v14040764. [PMID: 35458494 PMCID: PMC9026752 DOI: 10.3390/v14040764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Current anti-hepatitis B virus (HBV) drugs are suppressive but not curative for HBV infection, so there is considerable demand for the development of new anti-HBV agents. In this study, we found that fungus-derived exophillic acid inhibits HBV infection with a 50% maximal inhibitory concentration (IC50) of 1.1 µM and a 50% cytotoxic concentration (CC50) of >30 µM in primary human hepatocytes. Exophillic acid inhibited preS1-mediated viral attachment to cells but did not affect intracellular HBV replication. Exophillic acid appears to target the host cells to reduce their susceptibility to viral attachment rather than acting on the viral particles. We found that exophillic acid interacted with the HBV receptor, sodium taurocholate cotransporting polypeptide (NTCP). Exophillic acid impaired the uptake of bile acid, the original function of NTCP. Consistent with our hypothesis that it affects NTCP, exophillic acid inhibited infection with HBV and hepatitis D virus (HDV), but not that of hepatitis C virus. Moreover, exophillic acid showed a pan-genotypic anti-HBV effect. We thus identified the anti-HBV/HDV activity of exophillic acid and revealed its mode of action. Exophillic acid is expected to be a potential new lead compound for the development of antiviral agents.
Collapse
Affiliation(s)
- Chisa Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
| | - Yoshihiro Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Mizuki Oshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
| | - Tomoyasu Hirose
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Masako Yamasaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
| | - Masashi Iwamoto
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, 75739 Paris, France;
| | - Toshiaki Sunazuka
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan; (Y.W.); (T.H.); (M.I.); (Y.A.); (T.S.)
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (C.K.); (M.O.); (M.Y.); (M.I.); (K.W.); (H.A.); (M.M.)
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan;
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- MIRAI, JST, Saitama 332-0012, Japan
- Correspondence:
| |
Collapse
|
17
|
Morimoto H, Hatanaka T, Narusaka M, Narusaka Y. Molecular investigation of proanthocyanidin from Alpinia zerumbet against the influenza A virus. Fitoterapia 2022; 158:105141. [DOI: 10.1016/j.fitote.2022.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
18
|
NTCP Oligomerization Occurs Downstream of the NTCP-EGFR Interaction during Hepatitis B Virus Internalization. J Virol 2021; 95:e0093821. [PMID: 34613794 DOI: 10.1128/jvi.00938-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is a receptor that is essential for hepatitis B virus (HBV) entry into the host cell. A number of HBV entry inhibitors targeting NTCP have been reported to date; these inhibitors have facilitated a mechanistic analysis of the viral entry process. However, the mechanism of HBV internalization into host cells after interaction of virus with NTCP remains largely unknown. Recently, we reported that troglitazone, a thiazolidinedione derivative, specifically inhibits both HBV internalization and NTCP oligomerization, resulting in inhibition of HBV infection. Here, using troglitazone as a chemical probe to investigate entry process, the contribution of NTCP oligomerization to HBV internalization was evaluated. Using surface plasmon resonance and transporter kinetics, we found that troglitazone directly interacts with NTCP and noncompetitively interferes with NTCP-mediated bile acid uptake, suggesting that troglitazone allosterically binds to NTCP, rather than to the bile acid-binding pocket. Additionally, alanine scanning mutagenesis showed that a mutation at phenylalanine 274 of NTCP (F274A) caused a loss of HBV susceptibility and disrupted both the oligomerization of NTCP and HBV internalization without affecting viral attachment to the cell surface. An inhibitor of the interaction between NTCP and epidermal growth factor receptor (EGFR), another host cofactor essential for HBV internalization, impeded NTCP oligomerization. Meanwhile, coimmunoprecipitation analysis revealed that neither troglitazone nor the F274A mutation in NTCP affects the NTCP-EGFR interaction. These findings suggest that NTCP oligomerization is initiated downstream of the NTCP-EGFR interaction and then triggers HBV internalization. This study provides significant insight into the HBV entry mechanisms. IMPORTANCE Hepatitis B virus (HBV) infection is mediated by a specific interaction with sodium taurocholate cotransporting polypeptide (NTCP), a viral entry receptor. Although the virus-receptor interactions are believed to trigger viral internalization into host cells, the exact molecular mechanisms of HBV internalization are not understood. In this study, we revealed the mode of action whereby troglitazone, a specific inhibitor of HBV internalization, impedes NTCP oligomerization and identified NTCP phenylalanine 274 as a residue essential for this oligomerization. We further analyzed the association between NTCP oligomerization and HBV internalization, a process that is mediated by epidermal growth factor receptor (EGFR), another essential host cofactor for HBV internalization. Our study provides critical information on the mechanism of HBV entry and suggests that oligomerization of the viral receptor serves as an attractive target for drug discovery.
Collapse
|
19
|
Na+-Taurocholate Co-Transporting Polypeptide (NTCP) in Livers, Function, Expression Regulation, and Potential in Hepatitis B Treatment. LIVERS 2021. [DOI: 10.3390/livers1040019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection has become one of the leading causes of liver cirrhosis and hepatocellular carcinoma globally. The discovery of sodium taurocholate co-transporting polypeptide (NTCP), a solute carrier, as a key receptor for HBV and hepatitis D virus (HDV) has opened new avenues for HBV treatment. Additionally, it has led researchers to generate hepatoma cell lines (including HepG2-NTCP and Huh-7-NTCP) susceptible to HBV infection in vitro, hence, paving the way to develop and efficiently screen new and novel anti-HBV drugs. This review summarizes the history, function and critical findings regarding NTCP as a viral receptor for HBV/HDV, and it also discusses recently developed drugs targeting NTCP.
Collapse
|
20
|
Papies J, Emanuel J, Heinemann N, Kulić Ž, Schroeder S, Tenner B, Lehner MD, Seifert G, Müller MA. Antiviral and Immunomodulatory Effects of Pelargonium sidoides DC. Root Extract EPs® 7630 in SARS-CoV-2-Infected Human Lung Cells. Front Pharmacol 2021; 12:757666. [PMID: 34759825 PMCID: PMC8573200 DOI: 10.3389/fphar.2021.757666] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Treatment options for COVID-19 are currently limited. Drugs reducing both viral loads and SARS-CoV-2-induced inflammatory responses would be ideal candidates for COVID-19 therapeutics. Previous in vitro and clinical studies suggest that the proprietary Pelargonium sidoides DC. root extract EPs 7630 has antiviral and immunomodulatory properties, limiting symptom severity and disease duration of infections with several upper respiratory viruses. Here we assessed if EPs 7630 affects SARS-CoV-2 propagation and the innate immune response in the human lung cell line Calu-3. In direct comparison to other highly pathogenic CoV (SARS-CoV, MERS-CoV), SARS-CoV-2 growth was most efficiently inhibited at a non-toxic concentration with an IC50 of 1.61 μg/ml. Particularly, the cellular entry step of SARS-CoV-2 was significantly reduced by EPs 7630 pretreatment (10-100 μg/ml) as shown by spike protein-carrying pseudovirus particles and infectious SARS-CoV-2. Using sequential ultrafiltration, EPs 7630 was separated into fractions containing either prodelphinidins of different oligomerization degrees or small molecule constituents like benzopyranones and purine derivatives. Prodelphinidins with a low oligomerization degree and small molecule constituents were most efficient in inhibiting SARS-CoV-2 entry already at 10 μg/ml and had comparable effects on immune gene regulation as EPs 7630. Downregulation of multiple pro-inflammatory genes (CCL5, IL6, IL1B) was accompanied by upregulation of anti-inflammatory TNFAIP3 at 48 h post-infection. At high concentrations (100 μg/ml) moderately oligomerized prodelphinidins reduced SARS-CoV-2 propagation most efficiently and exhibited pronounced immune gene modulation. Assessment of cytokine secretion in EPs 7630-treated and SARS-CoV-2-coinfected Calu-3 cells showed that pro-inflammatory cytokines IL-1β and IL-6 were elevated whereas multiple other COVID-19-associated cytokines (IL-8, IL-13, TNF-α), chemokines (CXCL9, CXCL10), and growth factors (PDGF, VEGF-A, CD40L) were significantly reduced by EPs 7630. SARS-CoV-2 entry inhibition and the differential immunomodulatory functions of EPs 7630 against SARS-CoV-2 encourage further in vivo studies.
Collapse
Affiliation(s)
- Jan Papies
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Žarko Kulić
- Preclinical R & D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Simon Schroeder
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Beate Tenner
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin D. Lehner
- Preclinical R & D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Georg Seifert
- Department of Paediatric Oncology/Haematology, Otto-Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Paediatrics, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marcel A. Müller
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The current aim in the HBV landscape is to develop therapeutic strategies to achieve a functional cure of infection, characterized by a sustained loss of HBsAg off-treatment. Current treatment options, that is, nucleos(t)ide analogues and IFN are effective at viral suppression but very poor at achieving HBsAg loss. This article is designed to summarize the HBV life cycle in order to review the current treatment strategies and compounds targeting different points of the virus life cycle, which are either in preclinical or clinical phases. RECENT FINDINGS Recently our developed understanding of the HBV life cycle has enabled the development of multiple novel treatment options, all aiming for functional cure. SUMMARY It is likely that combinations of novel treatments will be needed to achieve a functional cure, including those that target the virus itself as well as those that target the immune system.
Collapse
|
22
|
Nawrot-Hadzik I, Zmudzinski M, Matkowski A, Preissner R, Kęsik-Brodacka M, Hadzik J, Drag M, Abel R. Reynoutria Rhizomes as a Natural Source of SARS-CoV-2 Mpro Inhibitors-Molecular Docking and In Vitro Study. Pharmaceuticals (Basel) 2021; 14:742. [PMID: 34451839 PMCID: PMC8399519 DOI: 10.3390/ph14080742] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
More than a year has passed since the world began to fight the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the Coronavirus disease 2019 (COVID-19) pandemic, and still it spreads around the world, mutating at the same time. One of the sources of compounds with potential antiviral activity is Traditional Chinese Medicinal (TCM) plants used in China in the supportive treatment of COVID-19. Reynoutria japonica is important part of the Shu Feng Jie Du Granule/Capsule-TCM herbal formula, recommended by China Food and Drug Administration (CFDA) for treatment of patients with H1N1- and H5N9-induced acute lung injury and is also used in China to treat COVID-19, mainly combined with other remedies. In our study, 25 compounds from rhizomes of R. japonica and Reynoutria sachalinensis (related species), were docked into the binding site of SARS-CoV-2 main protease. Next, 11 of them (vanicoside A, vanicoside B, resveratrol, piceid, emodin, epicatechin, epicatechin gallate, epigallocatechin gallate, procyanidin B2, procyanidin C1, procyanidin B2 3,3'-di-O-gallate) as well as extracts and fractions from rhizomes of R. japonica and R. sachalinensis were tested in vitro using a fluorescent peptide substrate. Among the tested phytochemicals the best results were achieved for vanicoside A and vanicoside B with moderate inhibition of SARS-CoV-2 Mpro, IC50 = 23.10 µM and 43.59 µM, respectively. The butanol fractions of plants showed the strongest inhibition of SARS-CoV-2 Mpro (IC50 = 4.031 µg/mL for R. sachalinensis and IC50 = 7.877 µg/mL for R. japonica). As the main constituents of butanol fractions, besides the phenylpropanoid disaccharide esters (e.g., vanicosides), are highly polymerized procyanidins, we suppose that they could be responsible for their strong inhibitory properties. As inhibition of SARS-CoV-2 main protease could prevent the replication of the virus our research provides data that may explain the beneficial effects of R. japonica on COVID-19 and identify the most active compounds worthy of more extensive research.
Collapse
Affiliation(s)
- Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.M.); (R.A.)
| | - Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (M.Z.); (M.D.)
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.M.); (R.A.)
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité–University Medicine Berlin, 10115 Berlin, Germany;
| | - Małgorzata Kęsik-Brodacka
- Research Network Łukasiewicz—Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland;
- National Medicines Institute, ul. Chełmska 30/34, 00-725 Warszawa, Poland
| | - Jakub Hadzik
- Department of Dental Surgery, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (M.Z.); (M.D.)
| | - Renata Abel
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.M.); (R.A.)
- Structural Bioinformatics Group, Institute for Physiology, Charité–University Medicine Berlin, 10115 Berlin, Germany;
| |
Collapse
|
23
|
Ito K, Okumura A, Takeuchi JS, Watashi K, Inoue R, Yamauchi T, Sakamoto K, Yamashita Y, Iguchi Y, Une M, Wakita T, Umezawa K, Yoneda M. Dual Agonist of Farnesoid X Receptor and Takeda G Protein-Coupled Receptor 5 Inhibits Hepatitis B Virus Infection In Vitro and In Vivo. Hepatology 2021; 74:83-98. [PMID: 33434356 DOI: 10.1002/hep.31712] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Chronic HBV infection is a major health problem worldwide. Currently, the first-line treatment for HBV is nucleos(t)ide analogs or interferons; however, efficient therapeutic approaches that enable cure are lacking. Therefore, anti-HBV agents with mechanisms distinct from those of current drugs are needed. Sodium taurocholate cotransporting polypeptide (NTCP) was previously identified as an HBV receptor that is inhibited by several compounds. Farnesoid X receptor (FXR) activation also inhibits NTCP function. APPROACH AND RESULTS In this study, we investigated the inhibitory effect of bile acid (BA) derivatives-namely obeticholic acid (OCA), 6α-ethyl-24-nor-5β-cholane-3α,7α,23-triol-23 sulfate sodium salt (INT-767; a dual agonist of FXR and Takeda G protein-coupled receptor [TGR5]), and 6α-ethyl-23(S)-methyl-cholic acid (INT-777; a TGR5 agonist)-3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064; a FXR agonist), cyclosporin A, and irbesartan. OCA and INT-777 suppressed HBV infection in HepG2-human NTCP-C4 cells. Interestingly, INT-767 showed potent inhibition by attaching to HBV particles rather than binding to NTCP. As an entry inhibitor, INT-767 was stronger than various natural BAs. Furthermore, in chimeric mice with humanized liver, INT-767 markedly delayed the initial rise of HBsAg, HBeAg, and HBV DNA and reduced covalently closed circular DNA. The strong inhibitory effect of INT-767 may be due to the cumulative effect of its ability to inhibit the entry of HBV and to stimulate FXR downstream signaling, which affects the postentry step. CONCLUSIONS Our results suggest that BA derivatives, particularly INT-767, are prospective candidate anti-HBV agents. Clarifying the underlying mechanisms of BA derivatives would facilitate the development of anti-HBV agents.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Akinori Okumura
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Junko S Takeuchi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rieko Inoue
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Taeko Yamauchi
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Kazumasa Sakamoto
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Mizuho Une
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masashi Yoneda
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
24
|
Tsounis EP, Tourkochristou E, Mouzaki A, Triantos C. Toward a new era of hepatitis B virus therapeutics: The pursuit of a functional cure. World J Gastroenterol 2021; 27:2727-2757. [PMID: 34135551 PMCID: PMC8173382 DOI: 10.3748/wjg.v27.i21.2727] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection, although preventable by vaccination, remains a global health problem and a major cause of chronic liver disease. Although current treatment strategies suppress viral replication very efficiently, the optimal endpoint of hepatitis B surface antigen (HBsAg) clearance is rarely achieved. Moreover, the thorny problems of persistent chromatin-like covalently closed circular DNA and the presence of integrated HBV DNA in the host genome are ignored. Therefore, the scientific community has focused on developing innovative therapeutic approaches to achieve a functional cure of HBV, defined as undetectable HBV DNA and HBsAg loss over a limited treatment period. A deeper understanding of the HBV life cycle has led to the introduction of novel direct-acting antivirals that exert their function through multiple mechanisms, including inhibition of viral entry, transcriptional silencing, epigenetic manipulation, interference with capsid assembly, and disruption of HBsAg release. In parallel, another category of new drugs aims to restore dysregulated immune function in chronic hepatitis B accompanied by lethargic cellular and humoral responses. Stimulation of innate immunity by pattern-recognition receptor agonists leads to upregulation of antiviral cytokine expression and appears to contribute to HBV containment. Immune checkpoint inhibitors and adoptive transfer of genetically engineered T cells are breakthrough technologies currently being explored that may elicit potent HBV-specific T-cell responses. In addition, several clinical trials are attempting to clarify the role of therapeutic vaccination in this setting. Ultimately, it is increasingly recognized that elimination of HBV requires a treatment regimen based on a combination of multiple drugs. This review describes the rationale for progressive therapeutic interventions and discusses the latest findings in the field of HBV therapeutics.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| |
Collapse
|
25
|
Prifti GM, Moianos D, Giannakopoulou E, Pardali V, Tavis JE, Zoidis G. Recent Advances in Hepatitis B Treatment. Pharmaceuticals (Basel) 2021; 14:417. [PMID: 34062711 PMCID: PMC8147224 DOI: 10.3390/ph14050417] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatitis B virus infection affects over 250 million chronic carriers, causing more than 800,000 deaths annually, although a safe and effective vaccine is available. Currently used antiviral agents, pegylated interferon and nucleos(t)ide analogues, have major drawbacks and fail to completely eradicate the virus from infected cells. Thus, achieving a "functional cure" of the infection remains a real challenge. Recent findings concerning the viral replication cycle have led to development of novel therapeutic approaches including viral entry inhibitors, epigenetic control of cccDNA, immune modulators, RNA interference techniques, ribonuclease H inhibitors, and capsid assembly modulators. Promising preclinical results have been obtained, and the leading molecules under development have entered clinical evaluation. This review summarizes the key steps of the HBV life cycle, examines the currently approved anti-HBV drugs, and analyzes novel HBV treatment regimens.
Collapse
Affiliation(s)
- Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Erofili Giannakopoulou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Vasiliki Pardali
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - John E. Tavis
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| |
Collapse
|
26
|
Keck T, Strobl A, Weinhaeusel A, Funk P, Michaelis M. Pelargonium Extract EPs 7630 in the Treatment of Human Corona Virus-Associated Acute Respiratory Tract Infections - A Secondary Subgroup-Analysis of an Open-Label, Uncontrolled Clinical Trial. Front Pharmacol 2021; 12:666546. [PMID: 33995094 PMCID: PMC8120433 DOI: 10.3389/fphar.2021.666546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Experience in treating human coronavirus (HCoV) infections might help to identify effective compounds against novel coronaviruses. We therefore performed a secondary subgroup-analysis of data from an open-label, uncontrolled clinical trial published in 2015 investigating the proanthocyanidin-rich Pelargonium sidoides extract EPs 7630 in patients with the common cold. Methods: 120 patients with common cold and at least 2 out of 10 common cold symptoms received one film-coated 20 mg tablet EPs 7630 thrice daily for 10 days in an uncontrolled, interventional multicentre trial (ISRCTN65790556). At baseline, viral nucleic acids were detected by polymerase chain reaction. Common cold-associated symptoms and treatment satisfaction were evaluated after 5 days and at treatment end. Based on the data of patients with proof of viral nucleic acids, we compared the course of the disease in patients with or without HCoV infection. Results: In 61 patients, viral nucleic acids were detected. Of these, 23 (37.7%) were tested positive for at least one HCoV (HCoV subset) and 38 (62.3%) for other viruses only (non-HCoV subset). Patients of both subsets showed a significant improvement of common cold symptoms already after 5 days of treatment, although the observed change tended to be more pronounced in the HCoV subset. At treatment end, more than 80% of patients of both groups were completely recovered or majorly improved. In both subsets, less than 22% of patients took concomitant paracetamol for antipyresis. The mean number of patients’ days off work or school/college was similar (0.9 ± 2.6 days in HCoV subset vs 1.3 ± 2.8 days in non-HCoV subset). In both groups, most patients were satisfied or very satisfied with EPs 7630 treatment. Conclusion: EPs 7630 treatment outcomes of common cold patients with confirmed HCoV infection were as favourable as in patients with other viral infections. As this trial was conducted before the pandemic, there is currently no evidence from clinical trials for the efficacy of EPs 7630 in patients with SARS-CoV-2 infection. Dedicated non-clinical studies and clinical trials are required to elucidate the potential of EPs 7630 in the early treatment of HCoV infections.
Collapse
Affiliation(s)
- Tilman Keck
- Department of ENT Medicine, Head and Neck Surgery, Hansa Private Hospital, Graz, Austria
| | - Andreas Strobl
- Department of ENT Medicine, Head and Neck Surgery, Ordensklinikum Linz, Krankenhaus Barmherzige Schwestern, Linz, Austria
| | - Andreas Weinhaeusel
- Health and Environment Department, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Wien, Austria
| | - Petra Funk
- Medical Scientific Services, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
27
|
Kirstgen M, Lowjaga KAAT, Müller SF, Goldmann N, Lehmann F, Glebe D, Baringhaus KH, Geyer J. Hepatitis D Virus Entry Inhibitors Based on Repurposing Intestinal Bile Acid Reabsorption Inhibitors. Viruses 2021; 13:v13040666. [PMID: 33921515 PMCID: PMC8068820 DOI: 10.3390/v13040666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of Na+/taurocholate co-transporting polypeptide (NTCP) as high-affinity hepatic entry receptor for the Hepatitis B and D viruses (HBV/HDV) opened the field for target-based development of cell-entry inhibitors. However, most of the HBV/HDV entry inhibitors identified so far also interfere with the physiological bile acid transporter function of NTCP. The present study aimed to identify more virus-selective inhibitors of NTCP by screening of 87 propanolamine derivatives from the former development of intestinal bile acid reabsorption inhibitors (BARIs), which interact with the NTCP-homologous intestinal apical sodium-dependent bile acid transporter (ASBT). In NTCP-HEK293 cells, the ability of these compounds to block the HBV/HDV-derived preS1-peptide binding to NTCP (virus receptor function) as well as the taurocholic acid transport via NTCP (bile acid transporter function) were analyzed in parallel. Hits were subsequently validated by performing in vitro HDV infection experiments in NTCP-HepG2 cells. The most potent compounds S985852, A000295231, and S973509 showed in vitro anti-HDV activities with IC50 values of 15, 40, and 70 µM, respectively, while the taurocholic acid uptake inhibition occurred at much higher IC50 values of 24, 780, and 490 µM, respectively. In conclusion, repurposing of compounds from the BARI class as novel HBV/HDV entry inhibitors seems possible and even enables certain virus selectivity based on structure-activity relationships.
Collapse
Affiliation(s)
- Michael Kirstgen
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany; (M.K.); (K.A.A.T.L.); (S.F.M.)
| | - Kira Alessandra Alicia Theresa Lowjaga
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany; (M.K.); (K.A.A.T.L.); (S.F.M.)
| | - Simon Franz Müller
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany; (M.K.); (K.A.A.T.L.); (S.F.M.)
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, 35392 Giessen, Germany; (N.G.); (F.L.); (D.G.)
- German Center for Infection Research (DZIF), Giessen-Marburg-Langen Partner Site, 35392 Giessen, Germany
| | | | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany; (M.K.); (K.A.A.T.L.); (S.F.M.)
- Correspondence: ; Tel.: +49-641-99-38404; Fax: +49-641-99-38409
| |
Collapse
|
28
|
Hirai M, Kobori R, Doge R, Tsuji I, Saito A. Efficient Concentration of Functional Polyphenols Using Their Interaction with Gelatin. Foods 2021; 10:698. [PMID: 33805993 PMCID: PMC8064473 DOI: 10.3390/foods10040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Among polyphenol compounds, the flavan-3-ol structure, which is the basic unit of green tea catechins and the galloyl groups contained in green tea catechins are known to exhibit various functions. In this paper, we discuss how to concentrate highly functional polyphenol compounds by exploiting the interaction between gelatin and the catechol structures. First, we confirmed the interaction between heat-stabilized gelatin and flavan-3-ol derivatives, including synthesized compounds. When green tea leaf extract containing a large amount of flavan-3-ol derivatives was incubated with gelatin, most of the polyphenol compounds it contained were adsorbed. Because the compounds adsorbed on gelatin could not be eluted, DPPH radical and ABTS radical scavenging activity tests were conducted using the as-prepared gelatin-polyphenol complex. Radical scavenging activity was observed when the compounds were adsorbed on gelatin and heating at 90 °C for 5 min did not have a significant effect on their activity. These results suggest that functional polyphenols can be efficiently concentrated using heat-stabilized gelatin and retain their functionality while adsorbed.
Collapse
Affiliation(s)
| | | | | | | | - Akiko Saito
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan; (M.H.); (R.K.); (R.D.); (I.T.)
| |
Collapse
|
29
|
Yang JY, Li M, Zhang CL, Liu D. Pharmacological properties of baicalin on liver diseases: a narrative review. Pharmacol Rep 2021; 73:1230-1239. [PMID: 33595821 PMCID: PMC8460515 DOI: 10.1007/s43440-021-00227-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Baicalin is the main active component of Scutellaria baicalensis, widely used in traditional Chinese medicine thanks to its various pharmacological effects, such as anti-tumor, anti-inflammatory, and antibacterial properties, as well as cardiovascular, hepatic, and renal protective effect. Recently, the protective effects of baicalin on liver disease have received much more attention. Several studies showed that baicalin protects against several types of liver diseases including viral hepatitis, fatty liver disease, xenobiotic induced liver injury, cholestatic liver injury, and hepatocellular carcinoma, with a variety of pharmacological mechanisms. A comprehensive understanding of the mechanism of baicalin can provide a valuable reference for its clinical use, but up to now, no narrative review is available that summarizes the pharmacological effects of baicalin to clarify its potential use in the treatment of liver diseases. Therefore, this review summarizes the progress of baicalin research and the underlying mechanism in the treatment of various liver diseases, to promote further research and its clinical application.
Collapse
Affiliation(s)
- Jin-Yu Yang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
30
|
Lowjaga KAAT, Kirstgen M, Müller SF, Goldmann N, Lehmann F, Glebe D, Geyer J. Long-term trans-inhibition of the hepatitis B and D virus receptor NTCP by taurolithocholic acid. Am J Physiol Gastrointest Liver Physiol 2021; 320:G66-G80. [PMID: 33174454 DOI: 10.1152/ajpgi.00263.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human hepatic bile acid transporter Na+/taurocholate cotransporting polypeptide (NTCP) represents the liver-specific entry receptor for the hepatitis B and D viruses (HBV/HDV). Chronic hepatitis B and D affect several million people worldwide, but treatment options are limited. Recently, HBV/HDV entry inhibitors targeting NTCP have emerged as promising novel drug candidates. Nevertheless, the exact molecular mechanism that NTCP uses to mediate virus binding and entry into hepatocytes is still not completely understood. It is already known that human NTCP mRNA expression is downregulated under cholestasis. Furthermore, incubation of rat hepatocytes with the secondary bile acid taurolithocholic acid (TLC) triggers internalization of the rat Ntcp protein from the plasma membrane. In the present study, the long-term inhibitory effect of TLC on transport function, HBV/HDV receptor function, and membrane expression of human NTCP were analyzed in HepG2 and human embryonic kidney (HEK293) cells stably overexpressing NTCP. Even after short-pulse preincubation, TLC had a significant long-lasting inhibitory effect on the transport function of NTCP, but the NTCP protein was still present at the plasma membrane. Furthermore, binding of the HBV/HDV myr-preS1 peptide and susceptibility for in vitro HDV infection were significantly reduced by TLC preincubation. We hypothesize that TLC rapidly accumulates in hepatocytes and mediates long-lasting trans-inhibition of the transport and receptor function of NTCP via a particular TLC-binding site at an intracellularly accessible domain of NTCP. Physiologically, this trans-inhibition might protect hepatocytes from toxic overload of bile acids. Pharmacologically, it provides an interesting novel NTCP target site for potential long-acting HBV/HDV entry inhibitors.NEW & NOTEWORTHY The hepatic bile acid transporter NTCP is a high-affinity receptor for hepatitis B and D viruses. This study shows that TLC rapidly accumulates in NTCP-expressing hepatoma cells and mediates long-lasting trans-inhibition of NTCP's transporter and receptor function via an intracellularly accessible domain, without substantially affecting its membrane expression. This domain is a promising novel NTCP target site for pharmacological long-acting HBV/HDV entry inhibitors.
Collapse
Affiliation(s)
- Kira A A T Lowjaga
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Michael Kirstgen
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Simon F Müller
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
31
|
Fauzyah Y, Ono C, Torii S, Anzai I, Suzuki R, Izumi T, Morioka Y, Maeda Y, Okamoto T, Fukuhara T, Matsuura Y. Ponesimod suppresses hepatitis B virus infection by inhibiting endosome maturation. Antiviral Res 2020; 186:104999. [PMID: 33346055 DOI: 10.1016/j.antiviral.2020.104999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The discovery of novel antivirals to treat hepatitis B virus (HBV) infection is urgently needed, as the currently available drugs mainly target viral proteins at replication step, whereas host factors also play significant roles in HBV infection. Although numerous studies have reported candidate drugs for HBV treatment, there remains a need to find a new drug that may target other steps of the HBV life cycle. In this study, by drug screening of a 533 G-protein-coupled receptors (GPCRs)-associated compound library, we identified ponesimod, a selective agonist of sphingosine-1-phosphate receptor 1 (S1P1), as a drug candidate for the suppression of HBV infection. However, the anti-HBV effect of ponesimod is independent of S1P1 and other sphingosine-1-phosphate receptors (S1PRs). Treatment with ponesimod at an early step of infection but not at a post-entry step significantly reduced the HBV relaxed circular DNA (rcDNA) level in a dose-dependent manner. Ponesimod treatment did not inhibit attachment, binding, or internalization of HBV particles via endocytosis through an interaction with sodium taurocholate cotransporting polypeptide (NTCP) or epidermal growth factor receptor (EGFR). Importantly, during the transportation of HBV particles to the nucleus, co-localization of HBV with early endosomes but not with late endosomes and lysosomes was induced by the treatment with ponesimod, suggesting that ponesimod interferes with the conversion of early endosomes to late endosomes without significant damage to cellular growth. Conclusion: Ponesimod is a promising anti-HBV drug targeting the endosome maturation of HBV. This finding can be applied to the development of novel antivirals that target the trafficking pathway of HBV particles.
Collapse
Affiliation(s)
- Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Shiho Torii
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Rigel Suzuki
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Takuma Izumi
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yuhei Morioka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yusuke Maeda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
32
|
Kirstgen M, Lowjaga KAAT, Müller SF, Goldmann N, Lehmann F, Alakurtti S, Yli-Kauhaluoma J, Glebe D, Geyer J. Selective hepatitis B and D virus entry inhibitors from the group of pentacyclic lupane-type betulin-derived triterpenoids. Sci Rep 2020; 10:21772. [PMID: 33303817 PMCID: PMC7729925 DOI: 10.1038/s41598-020-78618-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Current treatment options against hepatitis B and D virus (HBV/HDV) infections have only limited curative effects. Identification of Na+/taurocholate co-transporting polypeptide (NTCP) as the high-affinity hepatic receptor for both viruses in 2012 enables target-based development of HBV/HDV cell-entry inhibitors. Many studies already identified appropriate NTCP inhibitors. However, most of them interfere with NTCP’s physiological function as a hepatic bile acid transporter. To overcome this drawback, the present study aimed to find compounds that specifically block HBV/HDV binding to NTCP without affecting its transporter function. A novel assay was conceptualized to screen for both in parallel; virus binding to NTCP (measured via binding of a preS1-derived peptide of the large HBV/HDV envelope protein) and bile acid transport via NTCP. Hits were subsequently validated by in vitro HDV infection studies using NTCP-HepG2 cells. Derivatives of the birch-derived pentacyclic lupane-type triterpenoid betulin revealed clear NTCP inhibitory potency and selectivity for the virus receptor function of NTCP. Best performing compounds in both aspects were 2, 6, 19, and 25. In conclusion, betulin derivatives show clear structure–activity relationships for potent and selective inhibition of the HBV/HDV virus receptor function of NTCP without tackling its physiological bile acid transport function and therefore are promising drug candidates.
Collapse
Affiliation(s)
- Michael Kirstgen
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Kira Alessandra Alicia Theresa Lowjaga
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Simon Franz Müller
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Nora Goldmann
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Felix Lehmann
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sami Alakurtti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, 00014, Helsinki, Finland.,VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, 02044, Espoo, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, 00014, Helsinki, Finland
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Joachim Geyer
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
33
|
Akahori Y, Kato H, Fujita T, Moriishi K, Tanaka Y, Watashi K, Imamura M, Chayama K, Wakita T, Hijikata M. Establishment of a novel hepatitis B virus culture system using immortalized human hepatocytes. Sci Rep 2020; 10:21718. [PMID: 33303813 PMCID: PMC7729873 DOI: 10.1038/s41598-020-78655-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Recent development of hepatitis B virus (HBV) culture systems has made it possible to analyze the almost all steps of the viral life cycle. However, the reproducibility of interaction between HBV and host cells seemed inaccurate in those systems because of utilization of cancer cell lines with a difference from hepatocytes in the majority of cases. In this study, in order to resolve this point, a novel HBV culture system using non-cancer-derived immortalized human hepatocytes derived cell lines, producing exogenous human sodium taurocholate cotransporting polypeptide, was developed. One of the cell clones, E/NtG8 cells, was permissive to both blood-borne HBV (HBVbb) and culture-derived recombinant HBV when cultured in the three-dimensional condition. Furthermore, the production of infectious HBV particles, which showed the similar physicochemical properties to HBVbb, was observed for about a month after HBVbb infection in this system, suggesting that it may reproduce whole steps of the HBV lifecycle under the condition analogous to human liver cells infected with HBV. This system seemed to contribute not only to find novel interactions between HBV and host cells but also to understand mechanism of HBV pathogenesis.
Collapse
Affiliation(s)
- Yuichi Akahori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroki Kato
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Fujita
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kohji Moriishi
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | - Yasuhito Tanaka
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Hijikata
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
34
|
Akanbi OA, Harms D, Wang B, Osundare FA, Adesina O, Oluremi AS, Omoruyi EC, Kappert K, Opaleye OO, Bock CT. High frequency of drug resistance mutations in the HBV genome in ART-experienced HIV-coinfected patients in southwestern Nigeria. Antivir Ther 2020; 24:521-528. [PMID: 31566576 DOI: 10.3851/imp3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND HBV and HIV infections are highly endemic in sub-Saharan Africa and Nigeria while HBV-HIV coinfection is not uncommon. Antiretroviral (ART)-treatment for HIV can affect HBV whereby antiviral resistance mutations in the HBV genome can be selected. Here, we determined the prevalence of resistance mutations among ART-experienced and ART-naive HIV-HBV-coinfected patients in southwestern Nigeria. METHODS A total of 81 serum samples from HBV-HIV-coinfected patients who were either ART-naive or received lamivudine (3TC)-containing ART-therapy and HBV-monoinfected patients were analysed. Hepatitis B surface antigen (HBsAg) was detected using ELISA. HBV-positive samples were confirmed by PCR amplification of the surface and polymerase regions. Mutations conferring drug resistance to HBV were analysed by direct sequencing. Phylogenetic analysis was performed to identify the HBV genotype. RESULTS Of the 81 HBsAg-positive samples, 27 had detectable HBV DNA by real-time PCR with mean viral loads of 6.77 log IU/ml. Phylogenetic analyses showed a predominance of HBV genotype E. A high prevalence (22.2%; 6/27) of HBV resistance mutations among ART-experienced HBV-HIV-coinfected patients was detected. However, a relatively high selection rate of resistance mutations in drug-naive HIV-HBV-coinfected (3.7%; 1/27) and in HBV-monoinfected patients, potential drug resistance mutations (7.4%; 2/27) were also observed. HBV polymerase amino acid substitutions found included rtV173L, rtL180M, rtM204V, rtK212R, rtS213T, rtV214A, rtL229V and rtP237A/S. CONCLUSIONS Drug resistant mutations were detected frequently in ART-experienced HIV-HBV patients. Well-coordinated antiviral therapy for HIV patients coinfected with HBV should include proper HBV diagnosis and resistance testing to minimize the emergence and spread of antiviral drug resistance.
Collapse
Affiliation(s)
- Olusola Anuoluwapo Akanbi
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - Dominik Harms
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Bo Wang
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Folakemi Abiodun Osundare
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - Olufisayo Adesina
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adeolu Sunday Oluremi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - Ewean Chukwuma Omoruyi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - Kai Kappert
- Chariteì - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Berlin, Germany
| | - Oluyinka Oladele Opaleye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Oshogbo, Nigeria
| | - C-Thomas Bock
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.,Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
35
|
Herrscher C, Roingeard P, Blanchard E. Hepatitis B Virus Entry into Cells. Cells 2020; 9:cells9061486. [PMID: 32570893 PMCID: PMC7349259 DOI: 10.3390/cells9061486] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV), an enveloped partially double-stranded DNA virus, is a widespread human pathogen responsible for more than 250 million chronic infections worldwide. Current therapeutic strategies cannot eradicate HBV due to the persistence of the viral genome in a special DNA structure (covalently closed circular DNA, cccDNA). The identification of sodium taurocholate co-transporting polypeptide (NTCP) as an entry receptor for both HBV and its satellite virus hepatitis delta virus (HDV) has led to great advances in our understanding of the life cycle of HBV, including the early steps of infection in particular. However, the mechanisms of HBV internalization and the host factors involved in this uptake remain unclear. Improvements in our understanding of HBV entry would facilitate the design of new therapeutic approaches targeting this stage and preventing the de novo infection of naïve hepatocytes. In this review, we provide an overview of current knowledge about the process of HBV internalization into cells.
Collapse
Affiliation(s)
- Charline Herrscher
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| | - Emmanuelle Blanchard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| |
Collapse
|
36
|
Unusan N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103861] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
Akahori Y, Hijikata M. [Development of hepatitis B virus culture systems]. Uirusu 2020; 70:135-146. [PMID: 34544928 DOI: 10.2222/jsv.70.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent development of hepatitis B virus (HBV) culture systems has proceeded the molecular virological studies of the life cycle of HBV including infection step. However, the reproduction of HBV life cycle under the more physiological condition may be required to know the nature of HBV more precisely. The HBV culture system, we recently developed using immortalized human hepatocytes cultured in the three dimensional condition, seemed to be one of good tools for that purpose.
Collapse
Affiliation(s)
- Yuichi Akahori
- Laboratory of Tumor Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University
| | - Makoto Hijikata
- Laboratory of Tumor Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
38
|
Dos Santos M, Teixeira TR, Santos FRDS, Lima WG, Ferraz AC, Silva NL, Leite FJ, Siqueira JM, Luyten W, de Castro AHF, de Magalhães JC, Ferreira JMS. Bauhinia holophylla (Bong.) Steud. leaves-derived extracts as potent anti-dengue serotype 2. Nat Prod Res 2019; 35:2804-2809. [PMID: 31554433 DOI: 10.1080/14786419.2019.1669030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen and made the disease a major health concern worldwide. However, specific antiviral drugs against this arbovirose or vaccines are not yet available for treatment or prevention. Thus, here we aimed to study the antiviral activity of hydroethanolic extract, fraction ethyl acetate and subfractions of the leaves of Bauhinia holophylla (Fabaceae:Cercideae), a native plant of the Brazilian Cerrado, against DENV-2 by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method in mammalian cells culture. As results, the hydroethanolic extract showed the most potent effect, with an inhibitory concentration (IC50) of 3.2 μg mL-1 and selectivity index (SI) of 27.6, approximately 16-times higher anti-DENV-2 activity than of the ribavirin (IC50 52.8 μg mL-1). Our results showed in this study appointed that B. holophylla has a promising anti-dengue activity, which was associated mainly with the presence of flavonoids.
Collapse
Affiliation(s)
- Michelli Dos Santos
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Thaiz Rodrigues Teixeira
- Laboratório de Química Orgânica do Ambiente Marinho. Departamento de Física e Química da Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - William Gustavo Lima
- Laboratório de Radioisótopos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ariane Coelho Ferraz
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei, Divinópolis, Brazil.,Laboratório de Biologia Molecular e Celular, Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | - Nathália Lucca Silva
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Flávio José Leite
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - João Máximo Siqueira
- Laboratório de Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | | | | | - José Carlos de Magalhães
- Laboratório de Biologia Molecular e Celular, Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del-Rei, Ouro Branco, Brazil
| | | |
Collapse
|
39
|
Ferraz AC, Moraes TDFS, Nizer WSDC, Santos MD, Tótola AH, Ferreira JMS, Vieira-Filho SA, Rodrigues VG, Duarte LP, de Brito Magalhães CL, de Magalhães JC. Virucidal activity of proanthocyanidin against Mayaro virus. Antiviral Res 2019; 168:76-81. [PMID: 31125633 DOI: 10.1016/j.antiviral.2019.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Mayaro virus (MAYV) is a sublethal arbovirus transmitted by mosquitoes with possible installation of an urban cycle in the Americas. Its infection causes disabling arthralgia, and still, there is no vaccine or treatment to it. We recently investigated nearly 600 compounds by molecular docking and identified epicatechin as a potent antiviral against MAYV. The root extract of Maytenus imbricata showed anti-MAYV activity and two isolated compounds from this plant were also evaluated in vitro. Proanthocyanidin (PAC), a dimer containing epicatechin, showed an effective concentration for 50% of the cells infected by MAYV (EC50) of 37.9 ± 2.4 μM and a selectivity index (SI) above 40. PAC showed significant virucidal activity, inhibiting 100% of the virus proliferation (7 log units), and caused moderate effect during adsorption and virus internalization stage. However, PAC was unable to block the infection when only the cells were pretreated. It was observed a reduction in virus yields when adding PAC at different moments after infection. The set of results indicates that PAC binds to viral and non-cellular elements and may inactivate the MAYV. The inactivation occurs before infection or when the virus reaches the extracellular environment from the 2nd cycle of infection that could block its progression cell-to-cell or to tissues not yet infected.
Collapse
Affiliation(s)
- Ariane Coelho Ferraz
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil; Federal University of São João del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Thaís de Fátima Silva Moraes
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil
| | - Waleska Stephanie da Cruz Nizer
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil; Federal University of São João del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Michelli Dos Santos
- Federal University of São João del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Antônio Helvécio Tótola
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil
| | | | - Sidney Augusto Vieira-Filho
- Department of Pharmacy, Pharmacy's School, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | | | - Lucienir Pains Duarte
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Department of Biological Sciences, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - José Carlos de Magalhães
- Department of Chemistry, Biotechnology and Bioprocess Engineering, Federal University of São João del-Rei, Campus Alto Paraopeba, Ouro Branco, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Fukano K, Watashi K. [From the Establishment of Hepatitis B Virus Cell Culture Systems to Drug Discovery]. YAKUGAKU ZASSHI 2019; 139:81-87. [PMID: 30606935 DOI: 10.1248/yakushi.18-00164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of antiviral agents enables the control of chronic infectious diseases caused by infection with herpesviruses, human immunodeficiency virus, and hepatitis C virus. In contrast, antiviral treatment against hepatitis B virus (HBV) infection remains a significant area for improvement. One of the main barriers hampering the progress of HBV research has been a lack of cell culture systems efficiently reproducing the viral proliferation process. Recently, cell line-based HBV infection systems have been developed which are useful to analyze the mechanisms of HBV replication and to screen for new anti-HBV agents. In this article, we summarize the establishment of such cell models and the identification of small molecules that inhibit the HBV entry process and discuss their future potential as a novel class of anti-HBV agents.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases.,Department of Analytical Biochemistry, Meiji Pharmaceutical University
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases
| |
Collapse
|
41
|
Kobori R, Hashimoto S, Koshimizu H, Yakami S, Hirai M, Noro K, Kawasaki T, Saito A. Flavan-3-ols Content in Red Raspberry Leaves Increases under Blue Led-Light Irradiation. Metabolites 2019; 9:E56. [PMID: 30901937 PMCID: PMC6468916 DOI: 10.3390/metabo9030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/15/2023] Open
Abstract
Berry fruits are well known to contain large amounts of polyphenol compounds. Among them, flavan-3-ol derivatives are a group of secondary metabolism compounds currently attracting a great deal of attention owing to their health benefits. Not only the fruits, but also the leaves of raspberry plants, are highly esteemed for tea making around the world and are largely used for food. In this report, we discuss the results of our study on the effect of light and temperature on polyphenol accumulation in raspberry leaves. When raspberry was cultivated in a plant factory unit and light intensity, wavelength, and temperature were varied, the amount of total polyphenol increased under blue light. Quantitative determination of (+)-catechin, (⁻)-epicatechin, procyanidin B4, flavan-3-ol trimer, which are flavan-3-ol derivatives, was carried out using HPLC, whereby we confirmed their increase under blue light. Semi-quantitative RT-PCR showed correlation between chalcone synthase (CHS) gene expression and the amounts of the compounds measured in the leaves.
Collapse
Affiliation(s)
- Ryo Kobori
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Seiya Hashimoto
- Faculty of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Hayato Koshimizu
- Faculty of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Shuich Yakami
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Mizuki Hirai
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Kenta Noro
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| | - Takashi Kawasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Akiko Saito
- Graduate School of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
- Faculty of Engineering, Osaka Electro-Communication University (OECU), 18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan.
| |
Collapse
|
42
|
A Single Adaptive Mutation in Sodium Taurocholate Cotransporting Polypeptide Induced by Hepadnaviruses Determines Virus Species Specificity. J Virol 2019; 93:JVI.01432-18. [PMID: 30541857 DOI: 10.1128/jvi.01432-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) and its hepadnavirus relatives infect a wide range of vertebrates, from fish to human. Hepadnaviruses and their hosts have a long history of acquiring adaptive mutations. However, there are no reports providing direct molecular evidence for such a coevolutionary "arms race" between hepadnaviruses and their hosts. Here, we present evidence suggesting that the adaptive evolution of the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, has been influenced by virus infection. Evolutionary analysis of the NTCP-encoding genes from 20 mammals showed that most NTCP residues are highly conserved among species, exhibiting evolution under negative selection (dN/dS ratio [ratio of nonsynonymous to synonymous evolutionary changes] of <1); this observation implies that the evolution of NTCP is restricted by maintaining its original protein function. However, 0.7% of NTCP amino acid residues exhibit rapid evolution under positive selection (dN/dS ratio of >1). Notably, a substitution at amino acid (aa) 158, a positively selected residue, converting the human NTCP to a monkey-type sequence abrogated the capacity to support HBV infection; conversely, a substitution at this residue converting the monkey Ntcp to the human sequence was sufficient to confer HBV susceptibility. Together, these observations suggested a close association of the aa 158 positive selection with the pressure by virus infection. Moreover, the aa 158 sequence determined attachment of the HBV envelope protein to the host cell, demonstrating the mechanism whereby HBV infection would create positive selection at this NTCP residue. In summary, we provide the first evidence in agreement with the function of hepadnavirus as a driver for inducing adaptive mutation in host receptor.IMPORTANCE HBV and its hepadnavirus relatives infect a wide range of vertebrates, with a long infectious history (hundreds of millions of years). Such a long history generally allows adaptive mutations in hosts to escape from infection while simultaneously allowing adaptive mutations in viruses to overcome host barriers. However, there is no published molecular evidence for such a coevolutionary arms race between hepadnaviruses and hosts. In the present study, we performed coevolutionary phylogenetic analysis between hepadnaviruses and the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, combined with virological experimental assays for investigating the biological significance of NTCP sequence variation. Our data provide the first molecular evidence supporting that HBV-related hepadnaviruses drive adaptive evolution in the NTCP sequence, including a mechanistic explanation of how NTCP mutations determine host viral susceptibility. Our novel insights enhance our understanding of how hepadnaviruses evolved with their hosts, permitting the acquisition of strong species specificity.
Collapse
|
43
|
Fukano K, Tsukuda S, Oshima M, Suzuki R, Aizaki H, Ohki M, Park SY, Muramatsu M, Wakita T, Sureau C, Ogasawara Y, Watashi K. Troglitazone Impedes the Oligomerization of Sodium Taurocholate Cotransporting Polypeptide and Entry of Hepatitis B Virus Into Hepatocytes. Front Microbiol 2019; 9:3257. [PMID: 30671048 PMCID: PMC6331526 DOI: 10.3389/fmicb.2018.03257] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
Current anti-hepatitis B virus (HBV) agents, which include nucleos(t)ide analogs and interferons, can significantly suppress HBV infection. However, there are limitations in the therapeutic efficacy of these agents, indicating the need to develop anti-HBV agents with different modes of action. In this study, through a functional cell-based chemical screening, we found that a thiazolidinedione, troglitazone, inhibits HBV infection independently of the compound's ligand activity for peroxisome proliferator-activated receptor γ (PPARγ). Analog analysis suggested chemical moiety required for the anti-HBV activity and identified ciglitazone as an analog having higher anti-HBV potency. Whereas, most of the reported HBV entry inhibitors target viral attachment to the cell surface, troglitazone blocked a process subsequent to viral attachment, i.e., internalization of HBV preS1 and its receptor, sodium taurocholate cotransporting polypeptide (NTCP). We also found that NTCP was markedly oligomerized in the presence of HBV preS1, but such NTCP oligomerization was abrogated by treatment with troglitazone, but not with pioglitazone, correlating with inhibition activity to viral internalization. Also, competitive peptides that blocked NTCP oligomerization impeded viral internalization and infection. This work represents the first report identifying small molecules and peptides that specifically inhibit the internalization of HBV. This study is also significant in proposing a possible role for NTCP oligomerization in viral entry, which will shed a light on a new aspect of the cellular mechanisms regulating HBV infection.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Liver Cancer Prevention Research Unit, Center for Integrative Medical Sciences, RIKEN, Wako, Japan
| | - Mizuki Oshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, CNRS, INSERM U1134, Paris, France
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.,JST CREST, Saitama, Japan
| |
Collapse
|
44
|
Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019; 156:338-354. [PMID: 30243619 PMCID: PMC6649672 DOI: 10.1053/j.gastro.2018.06.093] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Many cell culture and animal models have been used to study hepatitis B virus (HBV) replication and its effects in the liver; these have facilitated development of strategies to control and clear chronic HBV infection. We discuss the advantages and limitations of systems for studying HBV and developing antiviral agents, along with recent advances. New and improved model systems are needed. Cell culture systems should be convenient, support efficient HBV infection, and reproduce responses of hepatocytes in the human body. We also need animals that are fully permissive to HBV infection, convenient for study, and recapitulate human immune responses to HBV and effects in the liver. High-throughput screening technologies could facilitate drug development based on findings from cell and animal models.
Collapse
Affiliation(s)
- Jianming Hu
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University.
| | | | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
45
|
Ueno M, Nogawa M, Siddiqui R, Watashi K, Wakita T, Kato N, Ikeda M, Okimura T, Isaka S, Oda T, Ariumi Y. Acidic polysaccharides isolated from marine algae inhibit the early step of viral infection. Int J Biol Macromol 2018; 124:282-290. [PMID: 30452989 DOI: 10.1016/j.ijbiomac.2018.11.152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/08/2023]
Abstract
We examined the effects of various acidic polysaccharides isolated from marine algae on the infection and replication of human immunodeficiency virus type-1 (HIV-1), hepatitis B virus (HBV), hepatitis C virus (HCV), and human T-cell leukemia virus type-1 (HTLV-1). It was found that sulfated fucan polysaccharides, ascophyllan, and two fucoidans derived from different sources significantly inhibited the early step of HIV-1 (R9 and JR-FL) infection, while they did not affect the late step. The alginate oligomer consisted of uronic acids and sulfated-galactan porphyran showed no significant inhibitory effects. In addition, ascophyllan and two fucoidans inhibited the early step of HBV infection in a dose-dependent manner. Furthermore, these polysaccharides inhibited the early step of HCV infection but had no inhibitory effects on HTLV-1 replication. To further examine the specificity of these polysaccharides in viral infections, we used vesicular stomatitis virus (VSV)-G-pseudotyped HIV-1 infection. Ascophyllan, the two fucoidans, and alginate oligomer also potently inhibited VSV-G-pseudotyped HIV-1 infection in HeLa cells. Taken together, these results suggest that the acidic polysaccharides used in this study are capable of inhibiting the early step of viral infections depending on the polysaccharides but not in a strict species-specific manner.
Collapse
Affiliation(s)
- Mikinori Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan.
| | - Masato Nogawa
- School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Rokeya Siddiqui
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nobuyuki Kato
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masanori Ikeda
- Department of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Kagoshima University, Kagoshima, Japan
| | - Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi, Japan
| | - Shogo Isaka
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, Japan
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, Japan
| | - Yasuo Ariumi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
46
|
Eller C, Heydmann L, Colpitts CC, Verrier ER, Schuster C, Baumert TF. The functional role of sodium taurocholate cotransporting polypeptide NTCP in the life cycle of hepatitis B, C and D viruses. Cell Mol Life Sci 2018; 75:3895-3905. [PMID: 30097692 PMCID: PMC7613421 DOI: 10.1007/s00018-018-2892-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis B, C and D virus (HBV, HCV and HDV) infections are a major cause of liver disease and cancer worldwide. Despite employing distinct replication strategies, the three viruses are exclusively hepatotropic, and therefore depend on hepatocyte-specific host factors. The sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes that mediates the transport of bile acids, plays a key role in HBV and HDV entry into hepatocytes. Recently, NTCP has been shown to modulate HCV infection of hepatocytes by regulating innate antiviral immune responses in the liver. Here, we review the current knowledge of the functional role and the molecular and cellular biology of NTCP in the life cycle of the three major hepatotropic viruses, highlight the impact of NTCP as an antiviral target and discuss future avenues of research.
Collapse
Affiliation(s)
- Carla Eller
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Che C Colpitts
- Division of Infection and Immunity, University College London, London, UK
| | - Eloi R Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France.
| |
Collapse
|
47
|
Yu Y, Li S, Liang W. Bona fide receptor for hepatitis B and D viral infections: Mechanism, research models and molecular drug targets. Emerg Microbes Infect 2018; 7:134. [PMID: 30050063 PMCID: PMC6062556 DOI: 10.1038/s41426-018-0137-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B infections have become a serious public health issue globally, and the current first-line antiviral treatment for this disease is not a true cure. Recently, sodium taurocholate cotransporting polypeptide (NTCP), a liver-specific bile acid transporter, was identified as a bona fide receptor for hepatitis B virus (HBV) and its satellite virus, hepatitis delta virus (HDV). Identification of the HBV receptor has led to the development of robust cell cultures and provides a potential target for new treatments. This review summarizes the process by which NTCP was discovered and describes its clinical significance as the receptor for HBV and HDV entry.
Collapse
Affiliation(s)
- Yueran Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, 312400, China
| | - Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Weifeng Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Shengzhou People's Hospital, Shengzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, 312400, China.
| |
Collapse
|
48
|
Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr Opin Virol 2018; 30:68-79. [DOI: 10.1016/j.coviro.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
|
49
|
Passioura T, Watashi K, Fukano K, Shimura S, Saso W, Morishita R, Ogasawara Y, Tanaka Y, Mizokami M, Sureau C, Suga H, Wakita T. De Novo Macrocyclic Peptide Inhibitors of Hepatitis B Virus Cellular Entry. Cell Chem Biol 2018; 25:906-915.e5. [PMID: 29779957 DOI: 10.1016/j.chembiol.2018.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) constitutes a significant public health burden, and currently available treatment options are not generally curative, necessitating the development of new therapeutics. Here we have applied random non-standard peptide integrated discovery (RaPID) screening to identify small macrocyclic peptide inhibitors of HBV entry that target the cell-surface receptor for HBV, sodium taurocholate cotransporting polypeptide (NTCP). In addition to their anti-HBV activity, these molecules also inhibit cellular entry by the related hepatitis D virus (HDV), and are active against diverse strains of HBV (including clinically relevant nucleos(t)ide analog-resistant and vaccine escaping strains). Importantly, these macrocyclic peptides, in contrast to other NTCP-binding HBV entry inhibitors, exhibited no inhibition of NTCP-mediated bile acid uptake, making them appealing candidates for therapeutic development.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda 278-8510, Japan; JST CREST, Saitama 332-0012, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Satomi Shimura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama 790-8577, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University, Graduate School of Medicinal Sciences, Nagoya 467-8601, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, INSERM U1134, Paris 75015, France
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; JST CREST, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|
50
|
Saso W, Tsukuda S, Ohashi H, Fukano K, Morishita R, Matsunaga S, Ohki M, Ryo A, Park SY, Suzuki R, Aizaki H, Muramatsu M, Sureau C, Wakita T, Matano T, Watashi K. A new strategy to identify hepatitis B virus entry inhibitors by AlphaScreen technology targeting the envelope-receptor interaction. Biochem Biophys Res Commun 2018; 501:374-379. [PMID: 29730285 DOI: 10.1016/j.bbrc.2018.04.187] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
Abstract
Current anti-hepatitis B virus (HBV) agents have limited effect in curing HBV infection, and thus novel anti-HBV agents with different modes of action are in demand. In this study, we applied AlphaScreen assay to high-throughput screening of small molecules inhibiting the interaction between HBV large surface antigen (LHBs) and the HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP). From the chemical screening, we identified that rapamycin, an immunosuppressant, strongly inhibited the LHBs-NTCP interaction. Rapamycin inhibited hepatocyte infection with HBV without significant cytotoxicity. This activity was due to impaired attachment of the LHBs preS1 domain to cell surface. Pretreatment of target cells with rapamycin remarkably reduced their susceptibility to preS1 attachment, while rapamycin pretreatment to preS1 did not affect its attachment activity, suggesting that rapamycin targets the host side. In support of this, a surface plasmon resonance analysis showed a direct interaction of rapamycin with NTCP. Consistently, rapamycin also prevented hepatitis D virus infection, whose entry into cells is also mediated by NTCP. We also identified two rapamycin derivatives, everolimus and temsirolimus, which possessed higher anti-HBV potencies than rapamycin. Thus, this is the first report for application of AlphaScreen technology that monitors a viral envelope-receptor interaction to identify viral entry inhibitors.
Collapse
Affiliation(s)
- Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences (IMS), Wako, Japan
| | - Hirofumi Ohashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | | | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, INSERM U1134, Paris, France
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan; CREST, JST, Saitama, Japan.
| |
Collapse
|