1
|
Qian S, Zhang C, Li W, Song S, Lin G, Cheng Z, Zhou W, Yin H, Li H, Shen HY, Sun Z. Enzyme-independent functions of HDAC3 in the adult heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630635. [PMID: 39803453 PMCID: PMC11722435 DOI: 10.1101/2024.12.29.630635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction. Genetically abolishing HDAC3 enzymatic activity without affecting its protein level does not cause cardiac dysfunction on HFD. HDAC3 depletion causes robust downregulation of lipid oxidation/bioenergetic genes and upregulation of antioxidant/anti-apoptotic genes. In contrast, HDAC3 enzyme activity abolishment causes much milder changes in far fewer genes. The abnormal gene expression is cardiomyocyte-autonomous and can be rescued by an enzyme-dead HDAC3 mutant but not by an HDAC3 mutant (Δ33-70) that lacks interaction with the nuclear-envelope protein lamina-associated polypeptide 2β (LAP2β). Tethering LAP2β to the HDAC3 Δ33-70 mutant restored its ability to rescue gene expression. Finally, HDAC3 depletion, not loss of HDAC3 enzymatic activity, exacerbates cardiac contractile functions upon aortic constriction. These results suggest that the cardiac function of HDAC3 in adults is not attributable to its enzyme activity, which has implications for understanding the cardioprotective effects of HDIs.
Collapse
Affiliation(s)
- Sichong Qian
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Wenbo Li
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Shiyang Song
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China
| | - Guanqiao Lin
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Zixiu Cheng
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Wenjun Zhou
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Huiqi Yin
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Haiyang Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hu-Ying Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Sun
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Upadhyay KK, Du X, Chen Y, Buscher B, Chen VL, Oliveri A, Zhao R, Speliotes EK, Brady GF. A common variant that alters SUN1 degradation associates with hepatic steatosis and metabolic traits in multiple cohorts. J Hepatol 2023; 79:1226-1235. [PMID: 37567366 PMCID: PMC10618955 DOI: 10.1016/j.jhep.2023.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD), and its progressive form steatohepatitis (NASH), represent a genetically and phenotypically diverse entity for which there is no approved therapy, making it imperative to define the spectrum of pathways contributing to its pathogenesis. Rare variants in genes encoding nuclear envelope proteins cause lipodystrophy with early-onset NAFLD/NASH; we hypothesized that common variants in nuclear envelope-related genes might also contribute to hepatic steatosis and NAFLD. METHODS Using hepatic steatosis as the outcome of interest, we performed an association meta-analysis of nuclear envelope-related coding variants in three large discovery cohorts (N >120,000 participants), followed by phenotype association studies in large validation cohorts (N >600,000) and functional testing of the top steatosis-associated variant in cell culture. RESULTS A common protein-coding variant, rs6461378 (SUN1 H118Y), was the top steatosis-associated variant in our association meta-analysis (p <0.001). In ancestrally distinct validation cohorts, rs6461378 associated with histologic NAFLD and with NAFLD-related metabolic traits including increased serum fatty acids, type 2 diabetes, hypertension, cardiovascular disease, and decreased HDL. SUN1 H118Y was subject to increased proteasomal degradation relative to wild-type SUN1 in cells, and SUN1 H118Y-expressing cells exhibited insulin resistance and increased lipid accumulation. CONCLUSIONS Collectively, these data support a potential causal role for the common SUN1 variant rs6461378 in NAFLD and metabolic disease. IMPACT AND IMPLICATIONS Non-alcoholic fatty liver disease (NAFLD), with an estimated global prevalence of nearly 30%, is a growing cause of morbidity and mortality for which there is no approved pharmacologic therapy. Our data provide a rationale for broadening current concepts of NAFLD genetics and pathophysiology to include the nuclear envelope, and particularly Sad1 and UNC84 domain containing 1 (SUN1), as novel contributors to this common liver disease. Furthermore, if future studies confirm causality of the common SUN1 H118Y variant, it has the potential to become a broadly relevant therapeutic target in NAFLD and metabolic disease.
Collapse
Affiliation(s)
- Kapil K Upadhyay
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Brandon Buscher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Antonino Oliveri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Raymond Zhao
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Graham F Brady
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Upadhyay KK, Choi EYK, Foisner R, Omary MB, Brady GF. Hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, steatohepatitis, and fibrosis in male mice. Am J Physiol Gastrointest Liver Physiol 2023; 325:G184-G195. [PMID: 37366543 PMCID: PMC10396226 DOI: 10.1152/ajpgi.00214.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/24/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
There is increasing evidence for the importance of the nuclear envelope in lipid metabolism, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Human mutations in LMNA, encoding A-type nuclear lamins, cause early-onset insulin resistance and NASH, while hepatocyte-specific deletion of Lmna predisposes to NASH with fibrosis in male mice. Given that variants in the gene encoding LAP2α, a nuclear protein that regulates lamin A/C, were previously identified in patients with NAFLD, we sought to determine the role of LAP2α in NAFLD using a mouse genetic model. Hepatocyte-specific Lap2α-knockout (Lap2α(ΔHep)) mice and littermate controls were fed normal chow or high-fat diet (HFD) for 8 wk or 6 mo. Unexpectedly, male Lap2α(ΔHep) mice showed no increase in hepatic steatosis or NASH compared with controls. Rather, Lap2α(ΔHep) mice demonstrated reduced hepatic steatosis, with decreased NASH and fibrosis after long-term HFD. Accordingly, pro-steatotic genes including Cidea, Mogat1, and Cd36 were downregulated in Lap2α(ΔHep) mice, along with concomitant decreases in expression of pro-inflammatory and pro-fibrotic genes. These data indicate that hepatocyte-specific Lap2α deletion protects against hepatic steatosis and NASH in mice and raise the possibility that LAP2α could become a potential therapeutic target in human NASH.NEW & NOTEWORTHY The nuclear envelope and lamina regulate lipid metabolism and susceptibility to nonalcoholic steatohepatitis (NASH), but the role of the nuclear lamin-binding protein LAP2α in NASH has not been explored. Our data demonstrate that hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, NASH, and fibrosis in male mice, with downregulation of pro-steatotic, pro-inflammatory, and pro-fibrotic lamin-regulated genes. These findings suggest that targeting LAP2α could have future potential as a novel therapeutic avenue in NASH.
Collapse
Affiliation(s)
- Kapil K Upadhyay
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Eun-Young K Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Roland Foisner
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter Campus, Vienna, Austria
| | - M Bishr Omary
- Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States
| | - Graham F Brady
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
5
|
Vadrot N, Ader F, Moulin M, Merlant M, Chapon F, Gandjbakhch E, Labombarda F, Maragnes P, Réant P, Rooryck C, Probst V, Donal E, Richard P, Ferreiro A, Buendia B. Abnormal Cellular Phenotypes Induced by Three TMPO/LAP2 Variants Identified in Men with Cardiomyopathies. Cells 2023; 12:337. [PMID: 36672271 PMCID: PMC9857342 DOI: 10.3390/cells12020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
A single missense variant of the TMPO/LAP2α gene, encoding LAP2 proteins, has been associated with cardiomyopathy in two brothers. To further evaluate its role in cardiac muscle, we included TMPO in our cardiomyopathy diagnostic gene panel. A screening of ~5000 patients revealed three novel rare TMPO heterozygous variants in six males diagnosed with hypertrophic or dilated cardiomypathy. We identified in different cellular models that (1) the frameshift variant LAP2α p.(Gly395Glufs*11) induced haploinsufficiency, impeding cell proliferation and/or producing a truncated protein mislocalized in the cytoplasm; (2) the C-ter missense variant LAP2α p.(Ala240Thr) led to a reduced proximity events between LAP2α and the nucleosome binding protein HMGN5; and (3) the LEM-domain missense variant p.(Leu124Phe) decreased both associations of LAP2α/β with the chromatin-associated protein BAF and inhibition of the E2F1 transcription factor activity which is known to be dependent on Rb, partner of LAP2α. Additionally, the LAP2α expression was lower in the left ventricles of male mice compared to females. In conclusion, our study reveals distinct altered properties of LAP2 induced by these TMPO/LAP2 variants, leading to altered cell proliferation, chromatin structure or gene expression-regulation pathways, and suggests a potential sex-dependent role of LAP2 in myocardial function and disease.
Collapse
Affiliation(s)
- Nathalie Vadrot
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Flavie Ader
- APHP—Sorbonne Université, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Service de Biochimie Métabolique, HU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
- Faculté de Pharmacie Paris Descartes, Département 3, Université Paris Cité, F-75006 Paris, France
| | - Maryline Moulin
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Marie Merlant
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | - Estelle Gandjbakhch
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
- Département de cardiologie, APHP—Sorbonne Université, HU Pitié Salpêtrière- Charles Foix, F-75610 Paris, France
| | - Fabien Labombarda
- Service de Cardiologie, CHU de Caen, Université de Caen Normandie, F-14000 Caen, France
| | - Pascale Maragnes
- Cardiologie pédiatrique, Service de pédiatrie, CHU de Caen, F-14000 Caen, France
| | - Patricia Réant
- Service de Cardiologie, Hôpital Haut Lévêque, CHU de Bordeaux, INSERM 1045, Université de Bordeaux, F-33000 Bordeaux, France
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU Bordeaux, F-33000 Bordeaux, France
| | - Vincent Probst
- Centre de référence des maladies rythmiques cardiaques, CHU de Nantes, F-44000 Nantes, France
| | - Erwan Donal
- Centre Cardio-Pneumologique, CHU de Rennes Hôpital de Pontchaillou, F-35000 Rennes, France
| | - Pascale Richard
- APHP—Sorbonne Université, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire, Service de Biochimie Métabolique, HU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
- INSERM, UMR_S 1166, Sorbonne Université, F-75005 Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
- APHP, Centre de référence des Maladies Neuromusculaires, Institut de Myologie, Neuromyology Department, CHU Pitié Salpêtrière—Charles Foix, F-75013 Paris, France
| | - Brigitte Buendia
- Basic and Translational Myology Laboratory, Université Paris Cité, BFA, UMR 8251, CNRS, F-75013 Paris, France
| |
Collapse
|
6
|
Wei X, Murphy MA, Reddy NA, Hao Y, Eggertsen TG, Saucerman JJ, Bochkis IM. Redistribution of lamina-associated domains reshapes binding of pioneer factor FOXA2 in development of nonalcoholic fatty liver disease. Genome Res 2022; 32:1981-1992. [PMID: 36522168 PMCID: PMC9808618 DOI: 10.1101/gr.277149.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in type 2 diabetes mellitus and the elderly, impacting 40% of individuals over 70. Regulation of heterochromatin at the nuclear lamina has been associated with aging and age-dependent metabolic changes. We previously showed that changes at the lamina in aged hepatocytes and laminopathy models lead to redistribution of lamina-associated domains (LADs), opening of repressed chromatin, and up-regulation of genes regulating lipid synthesis and storage, culminating in fatty liver. Here, we test the hypothesis that change in the expression of lamina-associated proteins and nuclear shape leads to redistribution of LADs, followed by altered binding of pioneer factor FOXA2 and by up-regulation of lipid synthesis and storage, culminating in steatosis in younger NAFLD patients (aged 21-51). Changes in nuclear morphology alter LAD partitioning and reduced lamin B1 signal correlate with increased FOXA2 binding before severe steatosis in young mice placed on a western diet. Nuclear shape is also changed in younger NAFLD patients. LADs are redistrubted and lamin B1 signal decreases similarly in mild and severe steatosis. In contrast, FOXA2 binding is similar in normal and NAFLD patients with moderate steatosis and is repositioned only in NAFLD patients with more severe lipid accumulation. Hence, changes at the nuclear lamina reshape FOXA2 binding with progression of the disease. Our results suggest a role for nuclear lamina in etiology of NAFLD, irrespective of aging, with potential for improved stratification of patients and novel treatments aimed at restoring nuclear lamina function.
Collapse
Affiliation(s)
- Xiaolong Wei
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Megan A Murphy
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Nihal A Reddy
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Yi Hao
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Taylor G Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Irina M Bochkis
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
7
|
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184:2537-2564. [PMID: 33989548 DOI: 10.1016/j.cell.2021.04.015] [Citation(s) in RCA: 967] [Impact Index Per Article: 241.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.
Collapse
Affiliation(s)
- Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Mitochondrial Mutations and Genetic Factors Determining NAFLD Risk. Int J Mol Sci 2021; 22:ijms22094459. [PMID: 33923295 PMCID: PMC8123173 DOI: 10.3390/ijms22094459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
NAFLD (non-alcoholic fatty liver disease) is a widespread liver disease that is often linked with other life-threatening ailments (metabolic syndrome, insulin resistance, diabetes, cardiovascular disease, atherosclerosis, obesity, and others) and canprogress to more severe forms, such as NASH (non-alcoholic steatohepatitis), cirrhosis, and HCC (hepatocellular carcinoma). In this review, we summarized and analyzed data about single nucleotide polymorphism sites, identified in genes related to NAFLD development and progression. Additionally, the causative role of mitochondrial mutations and mitophagy malfunctions in NAFLD is discussed. The role of mitochondria-related metabolites of the urea cycle as a new non-invasive NAFLD biomarker is discussed. While mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) canbe used as effective diagnostic markers and target for treatments, age and ethnic specificity should be taken into account.
Collapse
|
9
|
Luo X, Bai Y, He S, Sun S, Jiang X, Yang Z, Lu D, Wei P, Liang Y, Peng C, Wang Y, Sheng R, Han S, Li X, Zhang B. Sirtuin 1 ameliorates defenestration in hepatic sinusoidal endothelial cells during liver fibrosis via inhibiting stress-induced premature senescence. Cell Prolif 2021; 54:e12991. [PMID: 33522656 PMCID: PMC7941223 DOI: 10.1111/cpr.12991] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Premature senescence is related to progerin and involves in endothelial dysfunction and liver diseases. Activating sirtuin 1 (SIRT1) ameliorates liver fibrosis. However, the mechanisms of premature senescence in defenestration of hepatic sinusoidal endothelial cells (HSECs) and how SIRT1 affects HSECs fenestrae remain elusive. METHODS We employed the CCl4 -induced liver fibrogenesis rat models and cultured primary HSECs in vitro, administered with the SIRT1-adenovirus vector, the activator of SIRT1 and knockdown NOX2. We measured the activity of senescence-associated β-galactosidase (SA-β-gal) in HSECs. Meanwhile, the protein expression of SIRT1, NOX2, progerin, Lamin A/C, Ac p53 K381 and total p53 was detected by Western blot, co-immunoprecipitation and immunofluorescence. RESULTS In vivo, premature senescence was triggered by oxidative stress during CCl4 -induced HSECs defenestration and liver fibrogenesis, whereas overexpressing SIRT1 with adenovirus vector lessened premature senescence to relieve CCl4 -induced HSECs defenestration and liver fibrosis. In vitro, HSECs fenestrae disappeared, with emerging progerin-associated premature senescence; these effects were aggravated by H2 O2 . Nevertheless, knockdown of NOX2, activation of SIRT1 with resveratrol and SIRT1-adenovirus vector inhibited progerin-associated premature senescence to maintain fenestrae through deacetylating p53. Furthermore, more Ac p53 K381 and progerin co-localized with the abnormal accumulation of actin filament (F-actin) in the nuclear envelope of H2 O2 -treated HSECs; in contrast, these effects were rescued by overexpressing SIRT1. CONCLUSION SIRT1-mediated deacetylation maintains HSECs fenestrae and attenuates liver fibrogenesis through inhibiting oxidative stress-induced premature senescence.
Collapse
Affiliation(s)
- Xiaoying Luo
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
- Microbiome LaboratoryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yangqiu Bai
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Shuli He
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Suofeng Sun
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
- Microbiome LaboratoryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaoke Jiang
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Zhiyu Yang
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
- Microbiome LaboratoryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Di Lu
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
- Microbiome LaboratoryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Peiru Wei
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Yuan Liang
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Cong Peng
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Yaru Wang
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Ruli Sheng
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Shuangyin Han
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Xiuling Li
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| | - Bingyong Zhang
- Department of GastroenterologyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhouChina
| |
Collapse
|
10
|
Östlund C, Hernandez-Ono A, Shin JY. The Nuclear Envelope in Lipid Metabolism and Pathogenesis of NAFLD. BIOLOGY 2020; 9:biology9100338. [PMID: 33076344 PMCID: PMC7602593 DOI: 10.3390/biology9100338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Simple Summary The liver is a major organ regulating lipid metabolism and a proper liver function is essential to health. Nonalcoholic fatty liver disease (NAFLD) is a condition with abnormal fat accumulation in the liver without heavy alcohol use. NAFLD is becoming one of the most common liver diseases with the increase in obesity in many parts of the world. There is no approved cure for the disease and a better understanding of disease mechanism is needed for effective prevention and treatment. The nuclear envelope, a membranous structure that surrounds the cell nucleus, is connected to the endoplasmic reticulum where the vast majority of cellular lipids are synthesized. Growing evidence indicates that components in the nuclear envelope are involved in cellular lipid metabolism. We review published studies with various cell and animal models, indicating the essential roles of nuclear envelope proteins in lipid metabolism. We also discuss how defects in these proteins affect cellular lipid metabolism and possibly contribute to the pathogenesis of NAFLD. Abstract Nonalcoholic fatty liver disease (NAFLD) is a burgeoning public health problem worldwide. Despite its tremendous significance for public health, we lack a comprehensive understanding of the pathogenic mechanisms of NAFLD and its more advanced stage, nonalcoholic steatohepatitis (NASH). Identification of novel pathways or cellular mechanisms that regulate liver lipid metabolism has profound implications for the understanding of the pathology of NAFLD and NASH. The nuclear envelope is topologically connected to the ER, where protein synthesis and lipid synthesis occurs. Emerging evidence points toward that the nuclear lamins and nuclear membrane-associated proteins are involved in lipid metabolism and homeostasis. We review published reports that link these nuclear envelope proteins to lipid metabolism. In particular, we focus on the recent work demonstrating the essential roles for the nuclear envelope-localized torsinA/lamina-associated polypeptide (LAP1) complex in hepatic steatosis, lipid secretion, and NASH development. We also discuss plausible pathogenic mechanisms by which the loss of either protein in hepatocytes leads to hepatic dyslipidemia and NASH development.
Collapse
Affiliation(s)
- Cecilia Östlund
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (C.Ö.); (A.H.-O.)
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Antonio Hernandez-Ono
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (C.Ö.); (A.H.-O.)
| | - Ji-Yeon Shin
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (C.Ö.); (A.H.-O.)
- Correspondence: ; Tel.: +1-212-305-4088
| |
Collapse
|
11
|
Lin EW, Brady GF, Kwan R, Nesvizhskii AI, Omary MB. Genotype-phenotype analysis of LMNA-related diseases predicts phenotype-selective alterations in lamin phosphorylation. FASEB J 2020; 34:9051-9073. [PMID: 32413188 PMCID: PMC8059629 DOI: 10.1096/fj.202000500r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Laminopathies are rare diseases associated with mutations in LMNA, which encodes nuclear lamin A/C. LMNA variants lead to diverse tissue-specific phenotypes including cardiomyopathy, lipodystrophy, myopathy, neuropathy, progeria, bone/skin disorders, and overlap syndromes. The mechanisms underlying these heterogeneous phenotypes remain poorly understood, although post-translational modifications, including phosphorylation, are postulated as regulators of lamin function. We catalogued all known lamin A/C human mutations and their associated phenotypes, and systematically examined the putative role of phosphorylation in laminopathies. In silico prediction of specific LMNA mutant-driven changes to lamin A phosphorylation and protein structure was performed using machine learning methods. Some of the predictions we generated were validated via assessment of ectopically expressed wild-type and mutant LMNA. Our findings indicate phenotype- and mutant-specific alterations in lamin phosphorylation, and that some changes in phosphorylation may occur independently of predicted changes in lamin protein structure. Therefore, therapeutic targeting of phosphorylation in the context of laminopathies will likely require mutant- and kinase-specific approaches.
Collapse
Affiliation(s)
- Eric W Lin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Graham F Brady
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
12
|
Capitanchik C, Dixon CR, Swanson SK, Florens L, Kerr ARW, Schirmer EC. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins. Nucleus 2019; 9:410-430. [PMID: 29912636 PMCID: PMC7000147 DOI: 10.1080/19491034.2018.1469351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. A little investigated hypothesis to explain this is that the mutated proteins or their partners have tissue-specific splice variants. To test this, we analyzed RNA-Seq datasets, finding novel isoforms or isoform tissue-specificity for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, that regulates the Emery-Dreifuss muscular dystrophy linked emerin gene. Interestingly, the muscle-specific Lmo7 exon is rich in serine phosphorylation motifs, suggesting regulatory function. Muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies were also found. Nucleoporins tissue-specific variants were found for Nup54, Nup133, Nup153 and Nup358/RanBP2. RT-PCR confirmed novel Lmo7 and RanBP2 variants and specific knockdown of the Lmo7 variantreduced myogenic index. Nuclear envelope proteins were enriched for tissue-specific splice variants compared to the rest of the genome, suggesting that splice variants contribute to its tissue-specific functions.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Charles R Dixon
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Selene K Swanson
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Laurence Florens
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| | - Alastair R W Kerr
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| | - Eric C Schirmer
- a The Wellcome Centre for Cell Biology and Institute of Cell Biology , University of Edinburgh , Edinburgh , UK
| |
Collapse
|
13
|
Shin JY, Hernandez-Ono A, Fedotova T, Östlund C, Lee MJ, Gibeley SB, Liang CC, Dauer WT, Ginsberg HN, Worman HJ. Nuclear envelope-localized torsinA-LAP1 complex regulates hepatic VLDL secretion and steatosis. J Clin Invest 2019; 129:4885-4900. [PMID: 31408437 PMCID: PMC6819140 DOI: 10.1172/jci129769] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Deciphering novel pathways regulating liver lipid content has profound implications for understanding the pathophysiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Recent evidence suggests that the nuclear envelope is a site of regulation of lipid metabolism but there is limited appreciation of the responsible mechanisms and molecular components within this organelle. We showed that conditional hepatocyte deletion of the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1) caused defective VLDL secretion and steatosis, including intranuclear lipid accumulation. LAP1 binds to and activates torsinA, an AAA+ ATPase that resides in the perinuclear space and continuous main ER. Deletion of torsinA from mouse hepatocytes caused even greater reductions in VLDL secretion and profound steatosis. Both of these mutant mouse lines developed hepatic steatosis and subsequent steatohepatitis on a regular chow diet in the absence of whole-body insulin resistance or obesity. Our results establish an essential role for the nuclear envelope-localized torsinA-LAP1 complex in hepatic VLDL secretion and suggest that the torsinA pathway participates in the pathophysiology of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - Cecilia Östlund
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michael J. Lee
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | - William T. Dauer
- Department of Neurology, and
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Howard J. Worman
- Department of Medicine, and
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
14
|
Mann JP, Vreugdenhil A, Socha P, Jańczyk W, Baumann U, Rajwal S, Casswall T, Marcus C, van Mourik I, O'Rahilly S, Savage DB, Noble-Jamieson G, Lacaille F, Dabbas M, Dubern B, Kelly DA, Nobili V, Anstee QM. European paediatric non-alcoholic fatty liver disease registry (EU-PNAFLD): Design and rationale. Contemp Clin Trials 2018; 75:67-71. [DOI: 10.1016/j.cct.2018.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/17/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
|
15
|
Spear ED, Hsu ET, Nie L, Carpenter EP, Hrycyna CA, Michaelis S. ZMPSTE24 missense mutations that cause progeroid diseases decrease prelamin A cleavage activity and/or protein stability. Dis Model Mech 2018; 11:dmm.033670. [PMID: 29794150 PMCID: PMC6078402 DOI: 10.1242/dmm.033670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
The human zinc metalloprotease ZMPSTE24 is an integral membrane protein crucial for the final step in the biogenesis of the nuclear scaffold protein lamin A, encoded by LMNA. After farnesylation and carboxyl methylation of its C-terminal CAAX motif, the lamin A precursor (prelamin A) undergoes proteolytic removal of its modified C-terminal 15 amino acids by ZMPSTE24. Mutations in LMNA or ZMPSTE24 that impede this prelamin A cleavage step cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS), and the related progeroid disorders mandibuloacral dysplasia type B (MAD-B) and restrictive dermopathy (RD). Here, we report the development of a ‘humanized yeast system’ to assay ZMPSTE24-dependent cleavage of prelamin A and examine the eight known disease-associated ZMPSTE24 missense mutations. All mutations show diminished prelamin A processing and fall into three classes, with defects in activity, protein stability or both. Notably, some ZMPSTE24 mutants can be rescued by deleting the E3 ubiquitin ligase Doa10, involved in endoplasmic reticulum (ER)-associated degradation of misfolded membrane proteins, or by treatment with the proteasome inhibitor bortezomib. This finding may have important therapeutic implications for some patients. We also show that ZMPSTE24-mediated prelamin A cleavage can be uncoupled from the recently discovered role of ZMPSTE24 in clearance of ER membrane translocon-clogged substrates. Together with the crystal structure of ZMPSTE24, this humanized yeast system can guide structure-function studies to uncover mechanisms of prelamin A cleavage, translocon unclogging, and membrane protein folding and stability. Summary: The zinc metalloprotease ZMPSTE24 performs the final step of prelamin A processing. Here, a yeast-based system shows differences in protein stability and activity for alleles of ZMPSTE24 that cause progeria disease.
Collapse
Affiliation(s)
- Eric D Spear
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Erh-Ting Hsu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laiyin Nie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Brady GF, Kwan R, Cunha JB, Elenbaas JS, Omary MB. Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology 2018; 154:1602-1619.e1. [PMID: 29549040 PMCID: PMC6038707 DOI: 10.1053/j.gastro.2018.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
The nuclear lamina is a multi-protein lattice composed of A- and B-type lamins and their associated proteins. This protein lattice associates with heterochromatin and integral inner nuclear membrane proteins, providing links among the genome, nucleoskeleton, and cytoskeleton. In the 1990s, mutations in EMD and LMNA were linked to Emery-Dreifuss muscular dystrophy. Since then, the number of diseases attributed to nuclear lamina defects, including laminopathies and other disorders, has increased to include more than 20 distinct genetic syndromes. Studies of patients and mouse genetic models have pointed to important roles for lamins and their associated proteins in the function of gastrointestinal organs, including liver and pancreas. We review the interactions and functions of the lamina in relation to the nuclear envelope and genome, the ways in which its dysfunction is thought to contribute to human disease, and possible avenues for targeted therapies.
Collapse
Affiliation(s)
- Graham F. Brady
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,To whom correspondence should be addressed: University of Michigan Medical School, Division of Gastroenterology, Department of Internal Medicine, 1137 Catherine St., Ann Arbor, MI 48109-5622.
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S. Elenbaas
- Medical Scientist Training Program, Washington University, St Louis, Missouri
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Ǻbo Akademi University, Turku, Finland
| |
Collapse
|
17
|
Zatloukal K. Bringing the cell nucleus in the focus of NAFLD. Hepatology 2018; 67:1654-1656. [PMID: 29194679 DOI: 10.1002/hep.29696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|