1
|
Feng Y, Tang X, Fu H, Fan X, Wei J, Liu J, Wang H, Bi H, Chen Z, Wei X, Zheng Y. Mechanistic insights into carbon black-activated AKT/TMEM175 cascade impairing macrophage-epithelial cross-talk and airway epithelial proliferation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126076. [PMID: 40107486 DOI: 10.1016/j.envpol.2025.126076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Carbon black nanoparticles (CB) has been linked to respiratory epithelial damage, a precursor to various respiratory diseases. Although the mechanisms by which CB induce cellular damage are well understood, the initial molecular events driving this process remain poorly characterized. In this study, we aim to elucidate the cellular responses triggered by CB exposure, focusing on the molecular conformational changes, organelle damage, and the disruption of crosstalk between macrophages and airway epithelial cells. Specifically, upon the phagocytosis of CB by macrophages, a reduction in the acidic environment of intracellular lysosomes, accompanied by decreased extracellular levels of arginine and glutamate. This change triggers the inhibition of airway epithelial proliferation. Additional, we identified TMEM175 as the key molecular target through which CB diminishes lysosomal acidity. Molecular dynamics simulations revealed that the π-π interactions between CB and AKT serve as the initiating event, leading to the inhibition of TMEM175 activation. These findings represent a critical mechanism in the health assessment of carbon-based pollutants, providing valuable insights into the atomic-level processes underlying airway epithelial injury, a primary cause of respiratory diseases associated with NPs exposure. Furthermore, the AKT/TMEM175 could serve as a promising tool for assessing airway epithelial damage induced by other carbon-contained pollutants.
Collapse
Affiliation(s)
- Yawen Feng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaowen Tang
- Department of Medical Chemistry, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Hongying Fu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaobo Fan
- Department of Radiology, People's Hospital Affiliated to Shandong First Medical University (People's Hospital of Jinan City), Jinan, 271199, Shandong Province, China
| | - Juntong Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Jianying Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Hongmei Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Huanhuan Bi
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Ziyan Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China.
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Huang X, Yang H, Ren X, Li Q, Wang J, Cheng J, Sun Z. Copper(II) enhances the antibacterial activity of nitroxoline against MRSA by promoting aerobic glycolysis. Biophys Chem 2025; 320-321:107419. [PMID: 39987707 DOI: 10.1016/j.bpc.2025.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Nitroxoline (NIT) is an FDA-approved antibiotic with numerous pharmacological properties. However, the intricate connections between its metal-chelating ability and antimicrobial efficacy remain incompletely understood. The specific interactions of NIT with different metal ions were measured via UV-vis absorption spectroscopy. Here, we found that NIT can bind to various metal ions, including Cu2+, Fe2+, Zn2+ and Mn2+. However, the antimicrobial activity of NIT against methicillin-resistant Staphylococcus aureus (MRSA) was significantly enhanced by the inclusion of Cu2+ as determined by a minimal inhibitory concentration (MIC) assay in Mueller-Hinton broth. The enhanced antibacterial effect was not influenced by the availability of oxygen. Mechanistically, Cu2+ promoted bacterial proliferation, increased the bacterial transmembrane electrical potential, and increased intracellular acidification. In addition, Cu2+ rewired bacterial metabolism, promoting the uptake of glucose with a lower level of ATP production. Pharmacological upregulation of glycolysis by VLX600 could potentiate the susceptibility of MRSA to NIT. Moreover, Cu2+ also significantly increased the survival rate of acutely infected larvae. These collective results underscore that the enhanced antibacterial efficacy of NIT by Cu2+ intricately involves aerobic glycolysis in MRSA.
Collapse
Affiliation(s)
- Xiaoyong Huang
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China.
| | - Huiting Yang
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Xiaomin Ren
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Qianqian Li
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Jia Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China; Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, 030801 Taigu, Shanxi, China.
| |
Collapse
|
3
|
Feng J, MengHuan L, TingTing Y, XueJie Y, HaiNing G. Research progress on AMPK in the pathogenesis and treatment of MASLD. Front Immunol 2025; 16:1558041. [PMID: 40134423 PMCID: PMC11932893 DOI: 10.3389/fimmu.2025.1558041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; formerly known as non-alcoholic fatty liver disease, NAFLD) has become one of the most prevalent chronic liver diseases worldwide, with its incidence continuously rising alongside the epidemic of metabolic disorders. AMP-activated protein kinase (AMPK), as a key regulator of cellular energy metabolism, influences multiple pathological processes associated with MASLD. This review systematically summarizes the regulatory roles of AMPK in lipid metabolism, inflammatory response, cell apoptosis, and fibrosis. Additionally, it discusses the latest developments of AMPK activators from preclinical to clinical studies, while analyzing the major challenges currently faced and potential strategies for resolution. A deeper understanding of AMPK regulatory mechanisms will contribute to the development of more effective therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Jiang Feng
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Yao TingTing
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Gao HaiNing
- School of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
4
|
Cremin K, Meloni GN, Soyer OS, Unwin PR. Single-Cell Analysis with Spatiotemporal Control of Local pH. ACS MEASUREMENT SCIENCE AU 2025; 5:120-129. [PMID: 39991028 PMCID: PMC11843512 DOI: 10.1021/acsmeasuresciau.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 02/25/2025]
Abstract
This work presents an experimental platform combining scanning ion conductance microscopy (SICM) with confocal laser scanning microscopy (CLSM), using intra- and extracellular pH indicator dyes to study the impact of acid delivery on individual HeLa cells within a population. The proton gradient generated by the SICM delivery is highly confined by the action of the media buffer, making the challenge local. Temporal and spatial aspects of the delivery are modeled by simulations, allowing for pH gradients across individual cells, even within a group, to be calculated. We find a strong dependency between the intracellular pH and the extracellular pH gradient imposed by local acid delivery. Postdelivery intracellular pH recovery depends on the extent of the acid challenge, with cells exposed to lower pH not returning to basal intracellular pH values after the extracellular pH recovers. This is a unique method for concentration-gradient challenge studies of cell populations that will have broad applications in cell biology. SICM can be used to deliver different chemicals and enables a wide range of local conditions to be applied across a cell population, for which the effects can be investigated at the single-cell level.
Collapse
Affiliation(s)
- Kelsey Cremin
- Bio-Electrical
Engineering Innovation Hub, University of
Warwick, Coventry CV4 7AL, United
Kingdom
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Molecular
Analytical Science Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United
Kingdom
- School of
Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N. Meloni
- Bio-Electrical
Engineering Innovation Hub, University of
Warwick, Coventry CV4 7AL, United
Kingdom
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute
of Chemistry, Department of Chemistry, University
of São Paulo, São
Paulo, São Paulo 05508-000, Brazil
| | - Orkun S. Soyer
- Bio-Electrical
Engineering Innovation Hub, University of
Warwick, Coventry CV4 7AL, United
Kingdom
- School of
Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Bio-Electrical
Engineering Innovation Hub, University of
Warwick, Coventry CV4 7AL, United
Kingdom
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Li J, Yao S, Zimny S, Koob D, Jin H, Wimmer R, Denk G, Tuo B, Hohenester S. The acidic microenvironment in the perisinusoidal space critically determines bile salt-induced activation of hepatic stellate cells. Commun Biol 2024; 7:1591. [PMID: 39609606 PMCID: PMC11605060 DOI: 10.1038/s42003-024-07192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Cholestatic liver diseases, accompanied by the hepatic accumulation of bile salts, frequently lead to liver fibrosis, while underlying profibrogenic mechanisms remain incompletely understood. Here, we evaluated the role of extracellular pH (pHe) on bile salt entry and hepatic stellate cell (HSC) activation and proliferation. As modulators of intracellular pH (pHi), various proton pump inhibitors (PPI) were tested for their ability to prevent bile salt entry and HSC activation. Lastly, the PPI pantoprazole was employed in the 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine (DDC)-diet model of cholestatic liver fibrosis. We found in vitro, that slightly acidic pHe (7.2-7.3) enhanced bile salt accumulation in HSC and was a prerequisite to bile salt-induced HSC activation. Pantoprazole in the DDC model exhibited antifibrotic effects. We conclude that bile salt-induced activation of HSC may depend on the slightly acidic microenvironment present in the perisinusoidal space and modulation of pHi in HSC may offer a novel pharmacological target in cholestatic disease.
Collapse
Affiliation(s)
- Jingguo Li
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sebastian Zimny
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Dennis Koob
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ralf Wimmer
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gerald Denk
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Simon Hohenester
- Department of Medicine II, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
6
|
Liu Y, Guo Y, Zeng Q, Hu Y, He R, Ma W, Qian C, Hua T, Song F, Cai Y, Zhu L, Ren X, Xu J, Zheng C, Ding L, Ge J, Wang W, Xu H, Ge M, Zheng G. Prosapogenin A induces GSDME-dependent pyroptosis of anaplastic thyroid cancer through vacuolar ATPase activation-mediated lysosomal over-acidification. Cell Death Dis 2024; 15:586. [PMID: 39138191 PMCID: PMC11322489 DOI: 10.1038/s41419-024-06985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Anaplastic thyroid cancer (ATC) is among the most aggressive and metastatic malignancies, often resulting in fatal outcomes due to the lack of effective treatments. Prosapogenin A (PA), a bioactive compound prevalent in traditional Chinese herbs, has shown potential as an antineoplastic agent against various human tumors. However, its effects on ATC and the underlying mechanism remain unclear. Here, we demonstrate that PA exhibits significant anti-ATC activity both in vitro and in vivo by inducing GSDME-dependent pyroptosis in ATC cells. Mechanistically, PA promotes lysosomal membrane permeabilization (LMP), leading to the release of cathepsins that activate caspase 8/3 to cleave GSDME. Remarkably, PA significantly upregulates three key functional subunits of V-ATPase-ATP6V1A, ATP6V1B2, and ATP6V0C-resulting in lysosomal over-acidification. This over-acidification exacerbates LMP and subsequent lysosomal damage. Neutralization of lysosomal lumen acidification or inhibition/knockdown of these V-ATPase subunits attenuates PA-induced lysosomal damage, pyroptosis and growth inhibition of ATC cells, highlighting the critical role for lysosomal acidification and LMP in PA's anticancer effects. In summary, our findings uncover a novel link between PA and lysosomal damage-dependent pyroptosis in cancer cells. PA may act as a V-ATPase agonist targeting lysosomal acidification, presenting a new potential therapeutic option for ATC treatment.
Collapse
Affiliation(s)
- Yunye Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yawen Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Qian Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yiqun Hu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Ru He
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenli Ma
- Bengbu Medical College, Bengbu, Anhui, China
| | - Chenhong Qian
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Tebo Hua
- Department of Thyroid Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Fahuan Song
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Yefeng Cai
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Zhu
- Department of Thyroid Surgery, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Xinxin Ren
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Chuanming Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China
| | - Lingling Ding
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wenzhen Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Haifeng Xu
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China.
| | - Guowan Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Thanapirom K, Caon E, Papatheodoridi M, Frenguelli L, Al-Akkad W, Zhenzhen Z, Vilia MG, Pinzani M, Mazza G, Rombouts K. Optimization and Validation of a Novel Three-Dimensional Co-Culture System in Decellularized Human Liver Scaffold for the Study of Liver Fibrosis and Cancer. Cancers (Basel) 2021; 13:cancers13194936. [PMID: 34638417 PMCID: PMC8508071 DOI: 10.3390/cancers13194936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This study aims to overcome the current methodological limitations in discovering new therapeutic targets. Therefore, we optimized and validated a co-culture system using decellularized human liver three-dimensional (3D) scaffolds obtained from healthy and cirrhotic human livers for anti-fibrotic and anti-cancer dual drug screening. Both platforms mimic the naturally healthy and physio-pathological microenvironment and are able to recapitulate the key cellular and molecular events leading to liver fibrogenesis and cancer. This study demonstrates the differences between single versus co-cultures and the usage of human-derived liver 3D ECM scaffolds from healthy and cirrhotic livers. As lead compounds, we used Sorafenib and Regorafenib, first- and second-line drugs, and identified two different drug-induced mechanisms depending on the 3D ECM microenvironment. The 3D ECM scaffolds may represent innovative platforms for disease modeling, biomarker discovery, and drug testing in fibrosis and primary cancer. Abstract The introduction of new preclinical models for in vitro drug discovery and testing based on 3D tissue-specific extracellular matrix (ECM) is very much awaited. This study was aimed at developing and validating a co-culture model using decellularized human liver 3D ECM scaffolds as a platform for anti-fibrotic and anti-cancer drug testing. Decellularized 3D scaffolds obtained from healthy and cirrhotic human livers were bioengineered with LX2 and HEPG2 as single and co-cultures for up to 13 days and validated as a new drug-testing platform. Pro-fibrogenic markers and cancer phenotypic gene/protein expression and secretion were differently affected when single and co-cultures were exposed to TGF-β1 with specific ECM-dependent effects. The anti-fibrotic efficacy of Sorafenib significantly reduced TGF-β1-induced pro-fibrogenic effects, which coincided with a downregulation of STAT3 phosphorylation. The anti-cancer efficacy of Regorafenib was significantly reduced in 3D bioengineered cells when compared to 2D cultures and dose-dependently associated with cell apoptosis by cleaved PARP-1 activation and P-STAT3 inhibition. Regorafenib reversed TGF-β1-induced P-STAT3 and SHP-1 through induction of epithelial mesenchymal marker E-cadherin and downregulation of vimentin protein expression in both co-cultures engrafting healthy and cirrhotic 3D scaffolds. In their complex, the results of the study suggest that this newly proposed 3D co-culture platform is able to reproduce the natural physio-pathological microenvironment and could be employed for anti-fibrotic and anti-HCC drug screening.
Collapse
Affiliation(s)
- Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Division of Gastroenterology, Department of Medicine, Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Elisabetta Caon
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Margarita Papatheodoridi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Luca Frenguelli
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Walid Al-Akkad
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Zhang Zhenzhen
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Maria Giovanna Vilia
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Sheila Sherlock Liver Centre, Royal Free Hospital, London NW3 2QG, UK
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Correspondence:
| |
Collapse
|
8
|
Dong XC, Chowdhury K, Huang M, Kim HG. Signal Transduction and Molecular Regulation in Fatty Liver Disease. Antioxid Redox Signal 2021; 35:689-717. [PMID: 33906425 PMCID: PMC8558079 DOI: 10.1089/ars.2021.0076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Fatty liver disease is a major liver disorder in the modern societies. Comprehensive understanding of the pathophysiology and molecular mechanisms is essential for the prevention and treatment of the disease. Recent Advances: Remarkable progress has been made in the recent years in basic and translational research in the field of fatty liver disease. Multiple signaling pathways have been implicated in the development of fatty liver disease, including AMP-activated protein kinase, mechanistic target of rapamycin kinase, endoplasmic reticulum stress, oxidative stress, inflammation, transforming growth factor β, and yes1-associated transcriptional regulator/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). In addition, critical molecular regulations at the transcriptional and epigenetic levels have been linked to the pathogenesis of fatty liver disease. Critical Issues: Some critical issues remain to be solved so that research findings can be translated into clinical applications. Robust and reliable biomarkers are needed for diagnosis of different stages of the fatty liver disease. Effective and safe molecular targets remain to be identified and validated. Prevention strategies require solid scientific evidence and population-wide feasibility. Future Directions: As more data are generated with time, integrative approaches are needed to comprehensively understand the disease pathophysiology and mechanisms at multiple levels from population, organismal system, organ/tissue, to cell. The interactions between genes and environmental factors require deeper investigation for the purposes of prevention and personalized treatment of fatty liver disease. Antioxid. Redox Signal. 35, 689-717.
Collapse
Affiliation(s)
- Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Kushan Chowdhury
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hyeong Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Böttcher K, Longato L, Marrone G, Mazza G, Ghemtio L, Hall A, Luong TV, Caruso S, Viollet B, Zucman-Rossi J, Pinzani M, Rombouts K. AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro. Am J Physiol Gastrointest Liver Physiol 2021; 320:G543-G556. [PMID: 33406006 DOI: 10.1152/ajpgi.00262.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation, and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hepatic stellate cell (hHSC) proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Data mining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumor grading, and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumor-promoting interactions between hHSC and HCC.NEW & NOTEWORTHY HCC is marked by genetic heterogeneity and activated hepatic stellate cells (HSC) are considered key players during HCC development. The paracrine effect of different HCC cell lines on the activation of primary hHSC was accompanied by differential AMPK activation depending on the HCC line used. Pharmacological treatment inhibited the HCC-induced hHSC activation through AMPK-dependent and AMPK-independent mechanisms. This heterogenic effect on HCC-induced AMPK activation was confirmed by data mining TCGA and LICA-FR databases.
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Lisa Longato
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giusi Marrone
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Leo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
10
|
Laskaratos FM, Levi A, Schwach G, Pfragner R, Hall A, Xia D, von Stempel C, Bretherton J, Thanapirom K, Alexander S, Ogunbiyi O, Watkins J, Luong TV, Toumpanakis C, Mandair D, Caplin M, Rombouts K. Transcriptomic Profiling of In Vitro Tumor-Stromal Cell Paracrine Crosstalk Identifies Involvement of the Integrin Signaling Pathway in the Pathogenesis of Mesenteric Fibrosis in Human Small Intestinal Neuroendocrine Neoplasms. Front Oncol 2021; 11:629665. [PMID: 33718208 PMCID: PMC7943728 DOI: 10.3389/fonc.2021.629665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Aim Analysis of the pathophysiology of mesenteric fibrosis (MF) in small intestinal neuroendocrine tumors (SI-NETs) in an in vitro paracrine model and in human SI-NET tissue samples. Methods An indirect co-culture model of SI-NET cells KRJ-I and P-STS with stromal cells HEK293 was designed to evaluate the paracrine effects on cell metabolic activity, gene expression by RT2 PCR Profilers to analyse cancer and fibrosis related genes, and RNA sequencing. The integrin signaling pathway, a specific Ingenuity enriched pathway, was further explored in a cohort of human SI-NET tissues by performing protein analysis and immunohistochemistry. Results RT Profiler array analysis demonstrated several genes to be significantly up- or down-regulated in a cell specific manner as a result of the paracrine effect. This was further confirmed by employing RNA sequencing revealing multiple signaling pathways involved in carcinogenesis and fibrogenesis that were significantly affected in these cell lines. A significant upregulation in the expression of various integrin pathway – related genes was identified in the mesenteric mass of fibrotic SI-NET as confirmed by RT-qPCR and immunohistochemistry. Protein analysis demonstrated downstream activation of the MAPK and mTOR pathways in some patients with fibrotic SI-NETs. Conclusion This study has provided the first comprehensive analysis of the crosstalk of SI-NET cells with stromal cells. A novel pathway – the integrin pathway – was identified and further validated and confirmed in a cohort of human SI-NET tissue featured by a dual role in fibrogenesis/carcinogenesis within the neoplastic fibrotic microenvironment.
Collapse
Affiliation(s)
- Faidon-Marios Laskaratos
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom.,Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Ana Levi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Gert Schwach
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Roswitha Pfragner
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Andrew Hall
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Dong Xia
- Royal Veterinary College, University of London, London, United Kingdom
| | - Conrad von Stempel
- Radiology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Josephine Bretherton
- Radiology Department, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| | - Sarah Alexander
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Olagunju Ogunbiyi
- Department of Colorectal Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jennifer Watkins
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Tu Vinh Luong
- Academic Centre for Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Dalvinder Mandair
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Martyn Caplin
- Neuroendocrine Tumour Unit, ENETS Centre of Excellence, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
11
|
Exogenous Liposomal Ceramide-C6 Ameliorates Lipidomic Profile, Energy Homeostasis, and Anti-Oxidant Systems in NASH. Cells 2020; 9:cells9051237. [PMID: 32429478 PMCID: PMC7290333 DOI: 10.3390/cells9051237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of NASH have been associated with elevated levels of long chain ceramides and pro-apoptotic sphingolipid metabolites, implicated in regulating fatty acid oxidation and inflammation. Importantly, inhibition of de novo ceramide biosynthesis or knock-down of ceramide synthases reverse some of the pathology of NASH. In contrast, cell permeable, short chain ceramides have shown anti-inflammatory actions in multiple models of inflammatory disease. Here, we investigated non-apoptotic doses of a liposome containing short chain C6-Ceramide (Lip-C6) administered to human hepatic stellate cells (hHSC), a key effector of hepatic fibrogenesis, and an animal model characterized by inflammation and elevated liver fat content. On the basis of the results from unbiased liver transcriptomic studies from non-alcoholic fatty liver disease patients, we chose to focus on adenosine monophosphate activated kinase (AMPK) and nuclear factor-erythroid 2-related factor (Nrf2) signaling pathways, which showed an abnormal profile. Lip-C6 administration inhibited hHSC proliferation while improving anti-oxidant protection and energy homeostasis, as indicated by upregulation of Nrf2, activation of AMPK and an increase in ATP. To confirm these in vitro data, we investigated the effect of a single tail-vein injection of Lip-C6 in the methionine-choline deficient (MCD) diet mouse model. Lip-C6, but not control liposomes, upregulated phospho-AMPK, without inducing liver toxicity, apoptosis, or exacerbating inflammatory signaling pathways. Alluding to mechanism, mass spectrometry lipidomics showed that Lip-C6-treatment reversed the imbalance in hepatic phosphatidylcholines and diacylglycerides species induced by the MCD-fed diet. These results reveal that short-term Lip-C6 administration reverses energy/metabolic depletion and increases protective anti-oxidant signaling pathways, possibly by restoring homeostatic lipid function in a model of liver inflammation with fat accumulation.
Collapse
|
12
|
Cirrhotic Human Liver Extracellular Matrix 3D Scaffolds Promote Smad-Dependent TGF-β1 Epithelial Mesenchymal Transition. Cells 2019; 9:cells9010083. [PMID: 31905709 PMCID: PMC7017194 DOI: 10.3390/cells9010083] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
An altered liver microenvironment characterized by a dysregulated extracellular matrix (ECM) supports the development and progression of hepatocellular carcinoma (HCC). The development of experimental platforms able to reproduce these physio-pathological conditions is essential in order to identify and validate new therapeutic targets for HCC. The aim of this work was to validate a new in vitro model based on engineering three-dimensional (3D) healthy and cirrhotic human liver scaffolds with HCC cells recreating the micro-environmental features favoring HCC. Healthy and cirrhotic human livers ECM scaffolds were developed using a high shear stress oscillation-decellularization procedure. The scaffolds bio-physical/bio-chemical properties were analyzed by qualitative and quantitative approaches. Cirrhotic 3D scaffolds were characterized by biomechanical properties and microarchitecture typical of the native cirrhotic tissue. Proteomic analysis was employed on decellularized 3D scaffolds and showed specific enriched proteins in cirrhotic ECM in comparison to healthy ECM proteins. Cell repopulation of cirrhotic scaffolds highlighted a unique up-regulation in genes related to epithelial to mesenchymal transition (EMT) and TGFβ signaling. This was also supported by the presence and release of higher concentration of endogenous TGFβ1 in cirrhotic scaffolds in comparison to healthy scaffolds. Fibronectin secretion was significantly upregulated in cells grown in cirrhotic scaffolds in comparison to cells engrafted in healthy scaffolds. TGFβ1 induced the phosphorylation of canonical proteins Smad2/3, which was ECM scaffold-dependent. Important, TGFβ1-induced phosphorylation of Smad2/3 was significantly reduced and ECM scaffold-independent when pre/simultaneously treated with the TGFβ-R1 kinase inhibitor Galunisertib. In conclusion, the inherent features of cirrhotic human liver ECM micro-environment were dissected and characterized for the first time as key pro-carcinogenic components in HCC development.
Collapse
|
13
|
Kostrzewski T, Maraver P, Ouro-Gnao L, Levi A, Snow S, Miedzik A, Rombouts K, Hughes D. A Microphysiological System for Studying Nonalcoholic Steatohepatitis. Hepatol Commun 2019; 4:77-91. [PMID: 31909357 PMCID: PMC6939502 DOI: 10.1002/hep4.1450] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease (NAFLD), which to date has no approved drug treatments. There is an urgent need for better understanding of the genetic and molecular pathways that underlie NAFLD/NASH, and currently available preclinical models, be they in vivo or in vitro, do not fully represent key aspects of the human disease state. We have developed a human in vitro co‐culture NASH model using primary human hepatocytes, Kupffer cells and hepatic stellate cells, which are cultured together as microtissues in a perfused three‐dimensional microphysiological system (MPS). The microtissues were cultured in medium containing free fatty acids for at least 2 weeks, to induce a NASH‐like phenotype. The co‐culture microtissues within the MPS display a NASH‐like phenotype, showing key features of the disease including hepatic fat accumulation, the production of an inflammatory milieu, and the expression of profibrotic markers. Addition of lipopolysaccharide resulted in a more pro‐inflammatory milieu. In the model, obeticholic acid ameliorated the NASH phenotype. Microtissues were formed from both wild‐type and patatin‐like phospholipase domain containing 3 (PNPLA3) I148M mutant hepatic stellate cells. Stellate cells carrying the mutation enhanced the overall disease state of the model and in particular produced a more pro‐inflammatory milieu. Conclusion: The MPS model displays a phenotype akin to advanced NAFLD or NASH and has utility as a tool for exploring mechanisms underlying the disease. Furthermore, we demonstrate that in co‐culture the PNPLA3 I148M mutation alone can cause hepatic stellate cells to enhance the overall NASH disease phenotype.
Collapse
Affiliation(s)
| | - Paloma Maraver
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| | - Larissa Ouro-Gnao
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| | - Ana Levi
- Institute for Liver and Digestive Health, Regenerative Medicine and Fibrosis Group, Royal Free University College London United Kingdom
| | - Sophie Snow
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| | - Alina Miedzik
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| | - Krista Rombouts
- Institute for Liver and Digestive Health, Regenerative Medicine and Fibrosis Group, Royal Free University College London United Kingdom
| | - David Hughes
- CN Bio Innovations Ltd. Welwyn Garden City Hertfordshire United Kingdom
| |
Collapse
|
14
|
Stamenkovic M, Janjetovic K, Paunovic V, Ciric D, Kravic-Stevovic T, Trajkovic V. Comparative analysis of cell death mechanisms induced by lysosomal autophagy inhibitors. Eur J Pharmacol 2019; 859:172540. [DOI: 10.1016/j.ejphar.2019.172540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/18/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
|
15
|
Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B, Yu Y, Liang Z, Yang Y. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev 2019; 52:17-31. [PMID: 30954650 DOI: 10.1016/j.arr.2019.04.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is universally observed in multiple aging-related diseases and progressions and is characterized by excess accumulation of the extracellular matrix. Fibrosis occurs in various human organs and eventually results in organ failure. Noncoding RNAs (ncRNAs) have emerged as essential regulators of cellular signaling and relevant human diseases. In particular, the enigmatic class of long noncoding RNAs (lncRNAs) is a kind of noncoding RNA that is longer than 200 nucleotides and does not possess protein coding ability. LncRNAs have been identified to exert both promotive and inhibitory effects on the multifaceted processes of fibrosis. A growing body of studies has revealed that lncRNAs are involved in fibrosis in various organs, including the liver, heart, lung, and kidney. As lncRNAs have been increasingly identified, they have become promising targets for anti-fibrosis therapies. This review systematically highlights the recent advances regarding the roles of lncRNAs in fibrosis and sheds light on the use of lncRNAs as a potential treatment for fibrosis.
Collapse
|
16
|
Banerjee S, Clapp K, Tarsio M, Kane PM. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance. J Biol Chem 2019; 294:9161-9171. [PMID: 31023825 DOI: 10.1074/jbc.ra119.008552] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/22/2019] [Indexed: 12/30/2022] Open
Abstract
The low-level endo-lysosomal signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), is required for full assembly and activity of vacuolar H+-ATPases (V-ATPases) containing the vacuolar a-subunit isoform Vph1 in yeast. The cytosolic N-terminal domain of Vph1 is also recruited to membranes in vivo in a PI(3,5)P2-dependent manner, but it is not known if its interaction with PI(3,5)P2 is direct. Here, using biochemical characterization of isolated yeast vacuolar vesicles, we demonstrate that addition of exogenous short-chain PI(3,5)P2 to Vph1-containing vacuolar vesicles activates V-ATPase activity and proton pumping. Modeling of the cytosolic N-terminal domain of Vph1 identified two membrane-oriented sequences that contain clustered basic amino acids. Substitutions in one of these sequences (231KTREYKHK) abolished the PI(3,5)P2-dependent activation of V-ATPase without affecting basal V-ATPase activity. We also observed that vph1 mutants lacking PI(3,5)P2 activation have enlarged vacuoles relative to those in WT cells. These mutants exhibit a significant synthetic growth defect when combined with deletion of Hog1, a kinase important for signaling the transcriptional response to osmotic stress. The results suggest that PI(3,5)P2 interacts directly with Vph1, and that this interaction both activates V-ATPase activity and protects cells from stress.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Kaitlyn Clapp
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Maureen Tarsio
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Patricia M Kane
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
17
|
Jing F, Geng Y, Xu XY, Xu HY, Shi JS, Xu ZH. MicroRNA29a Reverts the Activated Hepatic Stellate Cells in the Regression of Hepatic Fibrosis through Regulation of ATPase H⁺ Transporting V1 Subunit C1. Int J Mol Sci 2019; 20:ijms20040796. [PMID: 30781750 PMCID: PMC6412626 DOI: 10.3390/ijms20040796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Activated hepatic stellate cells (aHSCs) play a key role in liver fibrosis. During the regression of fibrosis, aHSCs are transformed into inactivated cells (iHSCs), which are quiescent lipid-containing cells and express higher levels of lipid-related genes, such as peroxisome proliferators-activated receptors gamma (PPARγ). Here, we investigated the role of MicroRNA29a (Mir29a) in the resolution of liver fibrosis. Mir29a and lipid-related genes were up-regulated after the recovery of CCl4-induced liver fibrosis in mice. PPARγ agonist rosiglitazone (RSG) promoted de-differentiation of aHSCs to iHSCs and up-regulated MIR29a expression in a human HSC cell line LX-2. MIR29a mimics in vitro promoted the expression of lipid-related genes, while decreased the expression of fibrosis-related genes. MIR29a inhibitor showed the reverse effects. ATPase H+ transporting V1 subunit C1 (Atp6v1c1) was increased in liver fibrosis, while down-regulated after the recovery in mice, and negatively regulated by MIR29a in LX-2 cells. Knockdown of ATP6V1C1 by siRNA decreased alpha-smooth muscle actin (α-SMA) and increased lipid-related genes expression. Simultaneous addition of MIR29a mimics and ATP6V1C1 siRNA further increased RSG promoted expression of lipid-related proteins in vitro. Collectively, MIR29a plays an important role during the trans-differentiation of aHSCs in the resolution of liver fibrosis, in part, through regulation of ATP6V1C1.
Collapse
Affiliation(s)
- Fei Jing
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| | - Yan Geng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| | - Xin-Yi Xu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| | - Hong-Yu Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Tan XY, Wang X, Liu QS, Xie XQ, Li Y, Li BQ, Li ZQ, Xia QY, Zhao P. Inhibition of silkworm vacuolar-type ATPase activity by its inhibitor Bafilomycin A1 induces caspase-dependent apoptosis in an embryonic cell line of silkworm. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21507. [PMID: 30246413 DOI: 10.1002/arch.21507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vacuolar-type ATPase (V-ATPase) is a type of hydrogen ion transporter located in the vesicular membrane-like system, which mediates active transport and intracellular acidification in various compartments. In mammals, V-ATPase has been reported to play a key role in cell proliferation and apoptosis. The studies of V-ATPase in silkworm mainly focus on the acidification regulation of midgut and silk gland and immune resistance. However, there are few reports about the function of silkworm V-ATPase on cell proliferation, autophagy, and apoptosis. Thus, the function of V-ATPase in a cell line of Bombyx mori (BmE) was investigated by treating the cell line with bafilomycin A1, a specific inhibitor of V-ATPase. Cell counting kit 8 (CCK8) and flow cytometry analysis showed that bafilomycin A1 treatment decreased the cell proliferation activity, affected the cell cycle progression and induced cell apoptosis. LysoTracker Red staining showed that the target of bafilomycin A1 is lysosome. The expression of all autophagy-related genes ( BmATG5, BmATG6, and BmATG8) decreased, indicating that cell autophagy was inhibited. The analysis of the apoptosis pathway demonstrated that inhibiting the activity of V-ATPase of BmE cells could promote mitochondria to release cytochrome C, inhibit the expression of BmIAP, and activate the caspase cascade to induce apoptosis. All these findings systematically illustrate the effects of V-ATPase on the proliferation, autophagy, and apoptosis in BmE cells, and provide new ideas and a theoretical basis for further study on the function of V-ATPase in BmE.
Collapse
Affiliation(s)
- Xiao-Yin Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qing-Song Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Qian Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bing-Qian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhi-Qing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|