1
|
Zhang M, Liu T, Luo L, Zhang Y, Chen Q, Wang F, Xie Y. Common diagnostic biomarkers and molecular mechanisms of Helicobacter pylori infection and inflammatory bowel disease. Front Immunol 2024; 15:1492810. [PMID: 39712025 PMCID: PMC11659760 DOI: 10.3389/fimmu.2024.1492810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) may be present in the intestinal mucosa of patients with inflammatory bowel disease (IBD), which is a chronic inflammation of the gastrointestinal tract. The role of H. pylori in the pathogenesis of IBD remains unclear. In this study, bioinformatics techniques were used to investigate the correlation and co-pathogenic pathways between H. pylori and IBD. Methods The following matrix data were downloaded from the GEO database: H. pylori-associated gastritis, GSE233973 and GSE27411; and IBD, GSE3365 and GSE179285. Differential gene analysis was performed via the limma software package in the R environment. A protein-protein interaction (PPI) network of DEGs was constructed via the STRING database. Cytoscape software, through the CytoHubba plugin, filters the PPI subnetwork and identifies Hub genes. Validation of the Hub genes was performed in the validation set. Immune analysis was conducted via the CIBERSORT algorithm. Transcription factor interaction and small molecule drug analyses of the Hub genes were also performed. Results Using the GSE233973 and GSE3365 datasets, 151 differentially expressed genes (DEGs) were identified. GO enrichment analysis revealed involvement in leukocyte migration and chemotaxis, response to lipopolysaccharides, response to biostimulatory stimuli, and regulation of interleukin-8 (IL-8) production. Ten Hub genes (TLR4, IL10, CXCL8, IL1B, TLR2, CXCR2, CCL2, IL6, CCR1 and MMP-9) were identified via the PPI network and Cytoscape software. Enrichment analysis of the Hub genes focused on the lipopolysaccharide response, bacterial molecular response, biostimulatory response and leukocyte movement. Validation using the GSE27411 and GSE179285 datasets revealed that MMP-9 was significantly upregulated in both the H. pylori and IBD groups. The CIBERSORT algorithm revealed immune infiltration differences between the control and disease groups of IBD patients. Additionally, the CMap database identified the top 11 small molecule compounds across 10 cell types, including TPCA-1, AS-703026 and memantine, etc. Conclusion Our study revealed the co-pathogenic mechanism between H. pylori and IBD and identified 10 Hub genes related to cellular immune regulation and signal transduction. The expression of MMP-9 is significantly upregulated in both H. pylori infection and IBD. This study provides a new perspective for exploring the prevention and treatment of H. pylori infection and IBD.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Lijun Luo
- School of Medical Laboratory Science, Hebei North University, Zhangjiakou, Hebei, China
| | - Yi Zhang
- Department of General Surgery, The First People's Hospital of Qingzhen City, Guiyang, Guizhou, China
| | - Qijiao Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuxin Xie
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Hu C, Long L, Lou J, Leng M, Yang Q, Xu X, Zhou X. CTC-neutrophil interaction: A key driver and therapeutic target of cancer metastasis. Biomed Pharmacother 2024; 180:117474. [PMID: 39316968 DOI: 10.1016/j.biopha.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream, where they can seed new metastatic lesions in distant organs. CTCs are often associated with white blood cells (WBCs), especially neutrophils, the most abundant and versatile immune cells in the blood. Neutrophils can interact with CTCs through various mechanisms, such as cell-cell adhesion, cytokine secretion, protease release, and neutrophil extracellular traps (NETs) formation. These interactions can promote the survival, proliferation, invasion, and extravasation of CTCs, as well as modulate the pre-metastatic niche and the tumor microenvironment. Therefore, inhibiting CTC-neutrophils interaction could be a potential strategy to reduce tumor metastasis and improve the prognosis of cancer patients. In this review, we summarize the current literature on CTC-neutrophils interaction' role in tumor metastasis and discuss the possible therapeutic approaches to target this interaction.
Collapse
Affiliation(s)
- Chengyi Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China
| | - Ling Long
- School of Pharmacy, Kunming Medical University, Kunming 650500, PR China; Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400054, PR China
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Mingjing Leng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Qingqing Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xiang Xu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China; Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine & School of Rehabilitation, Kunming Medical University, Kunming 650500, PR China.
| |
Collapse
|
3
|
Gao J, Lan T, Kostallari E, Guo Y, Lai E, Guillot A, Ding B, Tacke F, Tang C, Shah VH. Angiocrine signaling in sinusoidal homeostasis and liver diseases. J Hepatol 2024; 81:543-561. [PMID: 38763358 DOI: 10.1016/j.jhep.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSECs), which are surrounded by hepatic stellate cells (HSCs) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarise the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.
Collapse
Affiliation(s)
- Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Enjiang Lai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bisen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Hu Y, Li J, Hu L, Liu F, Chen R, Xu L, Tang Z, Lu B, Yu J. BACH1 impairs hepatocyte regeneration after hepatectomy with repeated ischemia/reperfusion by reprogramming energy metabolism and exacerbating oxidative stress. Biochem Pharmacol 2024; 226:116377. [PMID: 38906228 DOI: 10.1016/j.bcp.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BTB and CNC homology 1 (BACH1) regulates biological processes, including energy metabolism and oxidative stress. Insufficient liver regeneration after hepatectomy remains an issue for surgeons. The Pringle maneuver is widely used during hepatectomy and induces ischemia/reperfusion (I/R) injury in hepatocytes. A rat model of two-thirds partial hepatectomy with repeated I/R treatment was used to simulate clinical hepatectomy with Pringle maneuver. Delayed recovery of liver function after hepatectomy with the repeated Pringle maneuver in clinic and impaired liver regeneration in rat model were observed. Highly elevated lactate levels, along with reduced mitochondrial complex III and IV activities in liver tissues, indicated that the glycolytic phenotype was promoted after hepatectomy with repeated I/R. mRNA expression profile analysis of glycolysis-related genes in clinical samples and further verification experiments in rat models showed that high BACH1 expression levels correlated with the glycolytic phenotype after hepatectomy with repeated I/R. BACH1 overexpression restricted the proliferative potential of hepatocytes stimulated with HGF. High PDK1 expression and high lactate levels, together with low mitochondrial complex III and IV activities and reduced ATP concentrations, were detected in BACH1-overexpressing hepatocytes with HGF stimulation. Moreover, HO-1 expression was downregulated, and oxidative stress was exacerbated in the BACH1-overexpressing hepatocytes with HGF stimulation. Cell experiments involving repeated hypoxia/reoxygenation revealed that reactive oxygen species accumulation triggered the TGF-β1/BACH1 axis in hepatocytes. Finally, inhibiting BACH1 with the inhibitor hemin effectively restored the liver regenerative ability after hepatectomy with repeated I/R. These results provide a potential therapeutic strategy for impaired liver regeneration after repeated I/R injury.
Collapse
Affiliation(s)
- Yanxin Hu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Jiandong Li
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Liangfeng Hu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Fang Liu
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Ruanchang Chen
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Luohang Xu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Zekai Tang
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Baochun Lu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Jianhua Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
5
|
Raith J, Bachmann M, Gonther S, Stülb H, Aghdassi AA, Pham CTN, Mühl H. Targeting cathepsin C ameliorates murine acetaminophen-induced liver injury. Theranostics 2024; 14:3029-3042. [PMID: 38855187 PMCID: PMC11155399 DOI: 10.7150/thno.96092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024] Open
Abstract
Acetaminophen (APAP) overdosing is a major cause of acute liver failure worldwide and an established model for drug-induced acute liver injury (ALI). While studying gene expression during murine APAP-induced ALI by 3'mRNA sequencing (massive analysis of cDNA ends, MACE), we observed splenic mRNA accumulation encoding for the neutrophil serine proteases cathepsin G, neutrophil elastase, and proteinase-3 - all are hierarchically activated by cathepsin C (CtsC). This, along with increased serum levels of these proteases in diseased mice, concurs with the established phenomenon of myeloid cell mobilization during APAP intoxication. Objective: In order to functionally characterize CtsC in murine APAP-induced ALI, effects of its genetic or pharmacological inhibition were investigated. Methods and Results: We report on substantially reduced APAP toxicity in CtsC deficient mice. Alleviation of disease was likewise observed by treating mice with the CtsC inhibitor AZD7986, both in short-term prophylactic and therapeutic protocols. This latter observation indicates a mode of action beyond inhibition of granule-associated serine proteases. Protection in CtsC knockout or AZD7986-treated wildtype mice was unrelated to APAP metabolization but, as revealed by MACE, realtime PCR, or ELISA, associated with impaired expression of inflammatory genes with proven pathogenic roles in ALI. Genes consistently downregulated in protocols tested herein included cxcl2, mmp9, and angpt2. Moreover, ptpn22, a positive regulator of the toll-like receptor/interferon-axis, was reduced by targeting CtsC. Conclusions: This work suggests CtsC as promising therapeutic target for the treatment of ALI, among others paradigmatic APAP-induced ALI. Being also currently evaluated in phase III clinical trials for bronchiectasis, successful application of AZD7986 in experimental APAP intoxication emphasizes the translational potential of this latter therapeutic approach.
Collapse
Affiliation(s)
- Jessica Raith
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sina Gonther
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hendrik Stülb
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ali A. Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Christine T. N. Pham
- John Cochran VA Medical Center, Saint Louis, MO, USA; Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Fernández-Iglesias A, Gracia-Sancho J. Role of liver sinusoidal endothelial cells in the diagnosis and treatment of liver diseases. SINUSOIDAL CELLS IN LIVER DISEASES 2024:467-481. [DOI: 10.1016/b978-0-323-95262-0.00023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Zhang Q, Xu R, Xue R, Mei X, Qin Y, Shen K, Xu J, Su L, Mao C, Xie H, Lu T. Ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry combined with network pharmacology for analysis of potential quality markers of three processed products of Qingpi. J Sep Sci 2024; 47:e2300281. [PMID: 37994479 DOI: 10.1002/jssc.202300281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Qingpi, a well-known traditional Chinese medicine for qi-regulating and commonly processed into three types of pieces, has been widely used in the clinical application of liver disease for thousands of years. In this study, an ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry approach along with multivariate statistical analysis was developed to assess and characterize the differentiations of three processed products and confirm the potential quality markers of Qingpi. In addition, a systematic analysis combined with network pharmacology and molecular docking was performed to clarify the potential mechanism of Qingpi for the treatment of liver disease. As a result, 18 components were identified and an integrated network of Qingpi-Components-Target-Pathway-Liver Disease was constructed. Eight compounds were finally screened out as the potential quality markers acting on ten main targets and pathways of liver disease. Molecular docking analysis results indicated that the quality markers had a good binding activity with the targets. Overall, this work preliminarily identified the potential quality markers of three processed products of Qingpi, and predicted its targets in the prevention and treatment of liver disease, which can provide supporting information for further study of the pharmacodynamic substances and mechanisms of Qingpi.
Collapse
Affiliation(s)
- Qian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Ruijie Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yuwen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Ke Shen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jinguo Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Xie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
8
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Yang H, Huang Z, Luo Y, Lei D, Yan P, Shen A, Liu W, Li D, Wu Z. TRIM37 exacerbates hepatic ischemia/reperfusion injury by facilitating IKKγ translocation. Mol Med 2023; 29:62. [PMID: 37158850 PMCID: PMC10165779 DOI: 10.1186/s10020-023-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Hepatic ischemia/reperfusion (I/R) injury is one of the major pathological processes associated with various liver surgeries. However, there is still a lack of strategies to protect against hepatic I/R injury because of the unknown underlying mechanism. The present study aimed to identify a potential strategy and provide a fundamental experimental basis for treating hepatic I/R injury. METHOD A classic 70% ischemia/reperfusion injury was established. Immunoprecipitation was used to identify direct interactions between proteins. The expression of proteins from different subcellular localizations was detected by Western blotting. Cell translocation was directly observed by immunofluorescence. HE, TUNEL and ELISA were performed for function tests. RESULT We report that tripartite motif containing 37 (TRIM37) aggravates hepatic I/R injury through the reinforcement of IKK-induced inflammation following dual patterns. Mechanistically, TRIM37 directly interacts with tumor necrosis factor receptor-associated factor 6 (TRAF6), inducing K63 ubiquitination and eventually leading to the phosphorylation of IKKβ. TRIM37 enhances the translocation of IKKγ, a regulatory subunit of the IKK complex, from the nucleus to the cytoplasm, thereby stabilizing the cytoplasmic IKK complex and prolonging the duration of inflammation. Inhibition of IKK rescued the function of TRIM37 in vivo and in vitro. CONCLUSION Collectively, the present study discloses some potential function of TRIM37 in hepatic I/R injury. Targeting TRIM37 might be potential for treatment against hepatic I/R injury.Targeting TRIM37 might be a potential treatment strategy against hepatic I/R injury.
Collapse
Affiliation(s)
- Hang Yang
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yunhai Luo
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Dengliang Lei
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Ping Yan
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ai Shen
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenbin Liu
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Dewei Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing, China.
| | - Zhongjun Wu
- The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
10
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
11
|
Geng Y, Arroyave-Ospina JC, Buist-Homan M, Plantinga J, Olinga P, Reijngoud DJ, Van Vilsteren FGI, Blokzijl H, Kamps JAAM, Moshage H. Differential effects of oleate on vascular endothelial and liver sinusoidal endothelial cells reveal its toxic features in vitro. J Nutr Biochem 2023; 114:109255. [PMID: 36623779 DOI: 10.1016/j.jnutbio.2022.109255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g. oleic acid) protect against lipotoxicity in hepatocytes. However, the effect of oleic acid on other liver cell types, in particular liver sinusoidal endothelial cells (LSECs), is unknown. Human umbilical vein endothelial cells (HUVECs) are often used as a substitute for LSECs, however, because of the unique phenotype of LSECs, HUVECs cannot represent the same biological features as LSECs. In this study, we investigate the effects of oleate and palmitate (the sodium salts of oleic acid and palmitic acid) on primary rat LSECs in comparison to their effects on HUVECs. Oleate induces necrotic cell death in LSECs, but not in HUVECs. Necrotic cell death of LSECs can be prevented by supplementation of 2-stearoylglycerol, which promotes cellular triglyceride (TG) synthesis. Repressing TG synthesis, by knocking down DGAT1 renders HUVECs sensitive to oleate-induced necrotic death. Mechanistically, oleate causes a sharp drop of intracellular ATP level and impairs mitochondrial respiration in LSECs. The combination of oleate and palmitate reverses the toxic effect of oleate in both LSECs and HUVECs. These results indicate that oleate is toxic and its toxicity can be attenuated by stimulating TG synthesis. The toxicity of oleate is characterized by mitochondrial dysfunction and necrotic cell death. Moreover, HUVECs are not suitable as a substitute model for LSECs.
Collapse
Affiliation(s)
- Yana Geng
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Johanna C Arroyave-Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Josée Plantinga
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederike G I Van Vilsteren
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
He Y, Li F, Jiang P, Cai F, Lin Q, Zhou M, Liu H, Yan F. Remote control of the recruitment and capture of endogenous stem cells by ultrasound for in situ repair of bone defects. Bioact Mater 2023; 21:223-238. [PMID: 36157244 PMCID: PMC9465026 DOI: 10.1016/j.bioactmat.2022.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cell-based tissue engineering has provided a promising platform for repairing of bone defects. However, the use of exogenous bone marrow mesenchymal stem cells (BMSCs) still faces many challenges such as limited sources and potential risks. It is important to develop new approach to effectively recruit endogenous BMSCs and capture them for in situ bone regeneration. Here, we designed an acoustically responsive scaffold (ARS) and embedded it into SDF-1/BMP-2 loaded hydrogel to obtain biomimetic hydrogel scaffold complexes (BSC). The SDF-1/BMP-2 cytokines can be released on demand from the BSC implanted into the defected bone via pulsed ultrasound (p-US) irradiation at optimized acoustic parameters, recruiting the endogenous BMSCs to the bone defected or BSC site. Accompanied by the daily p-US irradiation for 14 days, the alginate hydrogel was degraded, resulting in the exposure of ARS to these recruited host stem cells. Then another set of sinusoidal continuous wave ultrasound (s-US) irradiation was applied to excite the ARS intrinsic resonance, forming highly localized acoustic field around its surface and generating enhanced acoustic trapping force, by which these recruited endogenous stem cells would be captured on the scaffold, greatly promoting them to adhesively grow for in situ bone tissue regeneration. Our study provides a novel and effective strategy for in situ bone defect repairing through acoustically manipulating endogenous BMSCs. We designed ARS and embedded it into SDF-1/BMP-2 loaded hydrogel to form BSC. The BSC can release SDF-1/BMP-2 by p-US irradiation for recruitment of endogenous BMSCs and capture them by s-US irradiation. The in situ repair of bone defects were successfully realized by US-mediated control of the recruitment and capture of BMSCs.
Collapse
Affiliation(s)
- Yanni He
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Peng Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qin Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Meijun Zhou
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Corresponding author. Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, PR China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Corresponding author. Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
13
|
Yu B, Zhang Y, Wang T, Guo J, Kong C, Chen Z, Ma X, Qiu T. MAPK Signaling Pathways in Hepatic Ischemia/Reperfusion Injury. J Inflamm Res 2023; 16:1405-1418. [PMID: 37012971 PMCID: PMC10065871 DOI: 10.2147/jir.s396604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The mitogen-activated protein kinase signaling pathway can be activated by a variety of growth factors, cytokines, and hormones, and mediates numerous intracellular signals related to cellular activities, including cell proliferation, motility, and differentiation. It has been widely studied in the occurrence and development of inflammation and tumor. Hepatic ischemia-reperfusion injury (HIRI) is a common pathophysiological phenomenon that occurs in surgical procedures such as lobectomy and liver transplantation, which is characterized by severe inflammatory reaction after ischemia and reperfusion. In this review, we mainly discuss the role of p38, ERK1/2, JNK in MAPK family and TAK1 and ASK1 in MAPKKK family in HIRI, and try to find an effective treatment for HIRI.
Collapse
Affiliation(s)
- Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Yalong Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Chenyang Kong
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Correspondence: Tao Qiu, Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China, Tel +86-13995632367, Email
| |
Collapse
|
14
|
Filipović A, Mašulović D, Gopčević K, Galun D, Igić A, Bulatović D, Zakošek M, Filipović T. Effect of Percutaneous Biliary Drainage on Enzyme Activity of Serum Matrix Metalloproteinase-9 in Patients with Malignant Hilar Obstructive Hyperbilirubinemia. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020336. [PMID: 36837539 PMCID: PMC9958900 DOI: 10.3390/medicina59020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 02/05/2023] [Indexed: 02/15/2023]
Abstract
Background and Objectives. Cholestasis activates complex mechanisms of liver injury and as a result has an increased production of matrix metalloproteinases (MMP). Depending on the stage of liver disease, different matrix metalloproteinases expressions have been detected and could serve as indirect biomarkers as well as therapeutic targets. MMP-9 proteolytic activity has a proven role in both liver regeneration and neoplastic cell invasion in various malignancies. The purpose of this prospective cohort study was to evaluate the effect of external biliary drainage on enzyme activity of MMP-9 in the serum of patients with malignant hilar biliary obstruction. Materials and Methods. Between November 2020 and April 2021, 45 patients with malignant hilar biliary obstruction underwent percutaneous biliary drainage following determination of serum MMP-9 enzyme activity (before treatment and 4 weeks after the treatment) by gelatin zymography. Results. MMP-9 values decreased statistically significantly 4 weeks after percutaneous biliary drainage (p = 0.028) as well as the value of total bilirubin (p < 0.001), values of direct bilirubin (p < 0.001), aspartate aminotransferase (AST) (p < 0.001), alanine transaminase (ALT) (p < 0.001), and gamma-glutamyl transferase (GGT) (p < 0.001). Conclusions. In patients with malignant hilar biliary obstruction treated by external percutaneous biliary drainage for cholestasis resolution, a significant reduction in MMP-9 serum values was noted 4 weeks after the treatment.
Collapse
Affiliation(s)
- Aleksandar Filipović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Center for Radiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragan Mašulović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Center for Radiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Kristina Gopčević
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Chemistry in Medicine, 11000 Belgrade, Serbia
| | - Danijel Galun
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- HPB Unit, Clinic for Digestive Surgery, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Aleksa Igić
- Center for Radiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dušan Bulatović
- Center for Radiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Miloš Zakošek
- Center for Radiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Tamara Filipović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Institute for Rehabilitation, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
15
|
Li ZW, Wang L. The role of liver sinusoidal endothelial cells in liver remodeling after injury. Hepatobiliary Pancreat Dis Int 2023; 22:22-27. [PMID: 36182636 DOI: 10.1016/j.hbpd.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/15/2022] [Indexed: 02/07/2023]
Abstract
Liver transplantation is the optimal treatment for patients with end-stage liver disease, metabolic liver diseases, and hepatic malignancies that are not amenable to resection. Hepatic ischemia-reperfusion injury (IRI) is the main problem in liver transplantation and liver resection, leading to parenchymal cell injury and organ dysfunction. The damage of liver sinusoidal endothelial cells (LSECs) is a critical event in IRI. LSECs work as an important regulating factor of liver regeneration after partial hepatectomy. This review primarily describes the mechanisms of LSECs injury in IRI and explores the roles of LSECs in liver regeneration, and briefly introduces the protective strategies targeting LSECs damaged in IRI.
Collapse
Affiliation(s)
- Zhi-Wen Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
16
|
Wang Q, Feng J, Tang L. Non-Coding RNA Related to MAPK Signaling Pathway in Liver Cancer. Int J Mol Sci 2022; 23:11908. [PMID: 36233210 PMCID: PMC9570382 DOI: 10.3390/ijms231911908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The advancement in high-throughput sequencing analysis and the evaluation of chromatin state maps have revealed that eukaryotic cells produce many non-coding transcripts/RNAs. Further, a strong association was observed between some non-coding RNAs and cancer development. The mitogen-activated protein kinases (MAPK) belong to the serine-threonine kinase family and are the primary signaling pathways involved in cell proliferation from the cell surface to the nucleus. They play an important role in various human diseases. A few non-coding RNAs associated with the MAPK signaling pathway play a significant role in the development of several malignancies, including liver cancer. In this review, we summarize the molecular mechanisms and interactions of microRNA, lncRNA, and other non-coding RNAs in the development of liver cancer that are associated with the MAPK signaling pathway. Further, we briefly discuss the therapeutic strategies for liver cancer related to ncRNA and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qiuxia Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
17
|
Liver Regeneration and Cell Transplantation for End-Stage Liver Disease. Biomolecules 2021; 11:biom11121907. [PMID: 34944550 PMCID: PMC8699389 DOI: 10.3390/biom11121907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation is the only curative option for end-stage liver disease; however, the limitations of liver transplantation require further research into other alternatives. Considering that liver regeneration is prevalent in liver injury settings, regenerative medicine is suggested as a promising therapeutic strategy for end-stage liver disease. Upon the source of regenerating hepatocytes, liver regeneration could be divided into two categories: hepatocyte-driven liver regeneration (typical regeneration) and liver progenitor cell-driven liver regeneration (alternative regeneration). Due to the massive loss of hepatocytes, the alternative regeneration plays a vital role in end-stage liver disease. Advances in knowledge of liver regeneration and tissue engineering have accelerated the progress of regenerative medicine strategies for end-stage liver disease. In this article, we generally reviewed the recent findings and current knowledge of liver regeneration, mainly regarding aspects of the histological basis of regeneration, histogenesis and mechanisms of hepatocytes' regeneration. In addition, this review provides an update on the regenerative medicine strategies for end-stage liver disease. We conclude that regenerative medicine is a promising therapeutic strategy for end-stage liver disease. However, further studies are still required.
Collapse
|
18
|
Abstract
Liver sinusoidal endothelial cells (LSECs) form the wall of the hepatic sinusoids. Unlike other capillaries, they lack an organized basement membrane and have cytoplasm that is penetrated by open fenestrae, making the hepatic microvascular endothelium discontinuous. LSECs have essential roles in the maintenance of hepatic homeostasis, including regulation of the vascular tone, inflammation and thrombosis, and they are essential for control of the hepatic immune response. On a background of acute or chronic liver injury, LSECs modify their phenotype and negatively affect neighbouring cells and liver disease pathophysiology. This Review describes the main functions and phenotypic dysregulations of LSECs in liver diseases, specifically in the context of acute injury (ischaemia-reperfusion injury, drug-induced liver injury and bacterial and viral infection), chronic liver disease (metabolism-associated liver disease, alcoholic steatohepatitis and chronic hepatotoxic injury) and hepatocellular carcinoma, and provides a comprehensive update of the role of LSECs as therapeutic targets for liver disease. Finally, we discuss the open questions in the field of LSEC pathobiology and future avenues of research.
Collapse
|
19
|
Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z, Li M. Nanotheranostics for the Management of Hepatic Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007727. [PMID: 33852769 DOI: 10.1002/smll.202007727] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI), in which an insufficient oxygen supply followed by reperfusion leads to an inflammatory network and oxidative stress in disease tissue to cause cell death, always occurs after liver transplantations and sections. Although pharmacological treatments favorably prevent or protect the liver against experimental IRI, there have been few successes in clinical applications for patient benefits because of the incomprehension of complicated IRI-induced signaling events as well as short blood circulation time, poor solubility, and severe side reactions of most antioxidants and anti-inflammatory drugs. Nanomaterials can achieve targeted delivery and controllable release of contrast agents and therapeutic drugs in desired hepatic IRI regions for enhanced imaging sensitivity and improved therapeutic effects, emerging as novel alternative approaches for hepatic IRI diagnosis and therapy. In this review, the application of nanotechnology is summarized in the management of hepatic IRI, including nanomaterial-assisted hepatic IRI diagnosis, nanoparticulate systems-mediated remission of reactive oxygen species-induced tissue injury, and nanoparticle-based targeted drug delivery systems for the alleviation of IRI-related inflammation. The current challenges and future perspectives of these nanoenabled strategies for hepatic IRI treatment are also discussed.
Collapse
Affiliation(s)
- Yu Guan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ziqing Hei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
20
|
Luo YH, Huang ZT, Zong KZ, Cao ZR, Peng DD, Zhou BY, Shen A, Yan P, Wu ZJ. miR-194 ameliorates hepatic ischemia/reperfusion injury via targeting PHLDA1 in a TRAF6-dependent manner. Int Immunopharmacol 2021; 96:107604. [PMID: 33839577 DOI: 10.1016/j.intimp.2021.107604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia/reperfusion injury (IRI) is an inevitable pathological process in liver resection, shock and transplantation. However, the internal mechanism of hepatic IRI, including inflammatory transduction of multiple signaling pathways, is not fully understood. In the present study, we identified pleckstrin homology-like domain family member 1 (PHLDA1), suppressed by microRNA (miR)-194, as a critical intersection of dual inflammatory signals in hepatic IRI. PHLDA1 was upregulated in hepatic IRI with a concomitant downregulation of miR-194. Overexpression of miR-194 diminished PHLDA1 and inhibitors of the nuclear factor kappa-B kinase (IKK) pathway, thus leading to remission of hepatic pathological injury, apoptosis and release of cytokines. Further enrichment of PHLDA1 reversed the function of miR-194 both in vivo and in vitro. For an in-depth query, we verified PHLDA1 as a direct target of miR-194. Notably, inflammatory signal transduction of PHLDA1 was induced by activating TNF receptor-associated factor 6 (TRAF6), sequentially initiating IKK and mitogen-activated protein kinase (MAPK), both of which aggravate stress and inflammation in hepatic IRI. In conclusion, the miR-194/PHLDA1 axis was a key upstream regulator of IKK and MAPK in hepatic IRI. Targeting PHLDA1 might be a potential strategy for hepatic IRI therapy.
Collapse
Affiliation(s)
- Yun-Hai Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zuo-Tian Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke-Zhen Zong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhen-Rui Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Da-Di Peng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bao-Yong Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ai Shen
- Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ping Yan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhong-Jun Wu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
21
|
Cai H, Qi S, Yan Q, Ling J, Du J, Chen L. Global proteome profiling of human livers upon ischemia/reperfusion treatment. Clin Proteomics 2021; 18:3. [PMID: 33407080 PMCID: PMC7788958 DOI: 10.1186/s12014-020-09310-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury represents a major risk factor for liver transplantation and is related to graft dysfunction and acute/chronic rejection. However, a significant part of these processes remain poorly characterized. To reveal differences in the proteome during liver I/R injury, we collected human liver biopsy samples during hepatectomy before and after the Pringle maneuver and conducted a TMT-based proteomic analysis through quantitative high-throughput mass spectrometry. We used a fold-change threshold of 1.3 and a t-test p-value < 0.05 as the criteria to identify 5,257 total quantifiable proteins. The levels of 142 proteins were increased, while the levels of 103 proteins were decreased in response to hepatic I/R treatment. Bioinformatic analysis further revealed that these differentially expressed proteins are mainly involved in multiple biological functions and enzyme-regulated metabolic pathways. Most proteins whose expression was changed are related to the defense, immune and inflammatory responses as well as lipid and steroid metabolic processes. Based on this finding, we developed a panel for targeted proteomic analysis and used the parallel reaction monitoring (PRM) method, qPCR and western blotting experiments to validate alterations in the expression of some of the identified proteins. The upregulated proteins were found to be involved in immunity and inflammatory responses, and downregulated proteins were enriched in metabolic pathways. This study therefore may provide a research direction for the design of new therapeutic strategies for hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Shunli Qi
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhu, 230032, People's Republic of China
| | - Qi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Jun Ling
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhu, 230032, People's Republic of China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China. .,The Key Laboratory of Pathogen Biology of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Lijian Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhu, 230032, People's Republic of China.
| |
Collapse
|
22
|
Orlando N, Babini G, Chiusolo P, Valentini CG, De Stefano V, Teofili L. Pre-Exposure to Defibrotide Prevents Endothelial Cell Activation by Lipopolysaccharide: An Ingenuity Pathway Analysis. Front Immunol 2020; 11:585519. [PMID: 33343567 PMCID: PMC7744778 DOI: 10.3389/fimmu.2020.585519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023] Open
Abstract
Defibrotide (DFB) effects on different endothelial cell pathways have been investigated focusing on a limited number of genes or molecules. This study explored the modulation of the gene expression profile of steady-state or lipopolysaccharide (LPS)-activated endothelial cells, following the DFB exposure. Starting from differentially regulated gene expression datasets, we utilized the Ingenuity Pathway Analysis (IPA) to infer novel information about the activity of this drug. We found that effects elicited by LPS deeply differ depending on cells were exposed to DFB and LPS at the same time, or if the DFB priming occurs before the LPS exposure. Only in the second case, we observed a significant down-regulation of various pathways activated by LPS. In IPA, the pathways most affected by DFB were leukocyte migration and activation, vasculogenesis, and inflammatory response. Furthermore, the activity of DFB seemed to be associated with the modulation of six key genes, including matrix-metalloproteinases 2 and 9, thrombin receptor, sphingosine-kinase1, alpha subunit of collagen XVIII, and endothelial-protein C receptor. Overall, our findings support a role for DFB in a wide range of diseases associated with an exaggerated inflammatory response of endothelial cells.
Collapse
Affiliation(s)
- Nicoletta Orlando
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrizia Chiusolo
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Caterina Giovanna Valentini
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valerio De Stefano
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luciana Teofili
- Department of Image, Radiation therapy, Oncology and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
23
|
Wang X, Walkey CJ, Maretti-Mira AC, Wang L, Johnson DL, DeLeve LD. Susceptibility of Rat Steatotic Liver to Ischemia-Reperfusion Is Treatable With Liver-Selective Matrix Metalloproteinase Inhibition. Hepatology 2020; 72:1771-1785. [PMID: 32060938 PMCID: PMC7523533 DOI: 10.1002/hep.31179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS This study examined whether enhanced susceptibility of steatotic liver to ischemia-reperfusion (I/R) injury is due to impaired recruitment of bone marrow (BM) progenitors of liver sinusoidal endothelial cells (LSECs, also called sinusoidal endothelial cell progenitor cells [sprocs]) with diminished repair of injured LSECs and whether restoring signaling to recruit BM sprocs reduces I/R injury. APPROACH AND RESULTS Hepatic vessels were clamped for 1 hour in rats fed a high-fat, high-fructose (HFHF) diet for 5, 10, or 15 weeks. Matrix metalloproteinase 9 (MMP-9) antisense oligonucleotides (ASO) or an MMP inhibitor were used to induce liver-selective MMP-9 inhibition. HFHF rats had mild, moderate, and severe steatosis, respectively, at 5, 10, and 15 weeks. I/R injury was enhanced in HFHF rats; this was accompanied by complete absence of hepatic vascular endothelial growth factor (VEGF)-stromal cell-derived factor 1 (sdf1) signaling, leading to lack of BM sproc recruitment. Liver-selective MMP-9 inhibition to protect against proteolytic cleavage of hepatic VEGF using either MMP-9 ASO or intraportal MMP inhibitor in 5-week and 10-week HFHF rats enhanced hepatic VEGF-sdf1 signaling, increased BM sproc recruitment, and reduced alanine aminotransferase (ALT) by 92% and 77% at 5 weeks and by 80% and 64% at 10 weeks of the HFHF diet, respectively. After I/R injury in 15-week HFHF rats, the MMP inhibitor reduced active MMP-9 expression by 97%, ameliorated histologic evidence of injury, and reduced ALT by 58%, which is comparable to control rats sustaining I/R injury. Rescue therapy with intraportal MMP inhibitor, given after ischemia, in the 5-week HFHF rat reduced ALT by 71% and reduced necrosis. CONCLUSIONS Lack of signaling to recruit BM sprocs that repair injured LSECs renders steatotic liver more susceptible to I/R injury. Liver-selective MMP-9 inhibition enhances VEGF-sdf1 signaling and recruitment of BM sprocs, which markedly protects against I/R injury, even in severely steatotic rats.
Collapse
Affiliation(s)
- Xiangdong Wang
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| | - Christopher J. Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX
| | - Ana C. Maretti-Mira
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| | - Lei Wang
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| | - Deborah L. Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX
| | - Laurie D. DeLeve
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| |
Collapse
|
24
|
Geervliet E, Bansal R. Matrix Metalloproteinases as Potential Biomarkers and Therapeutic Targets in Liver Diseases. Cells 2020; 9:E1212. [PMID: 32414178 PMCID: PMC7290342 DOI: 10.3390/cells9051212] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic liver diseases, characterized by an excessive accumulation of extracellular matrix (ECM) resulting in scar tissue formation, are a growing health problem causing increasing morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only treatment for the end-stage liver diseases. During liver damage, injured hepatocytes release proinflammatory factors resulting in the recruitment and activation of immune cells that activate quiescent hepatic stellate cells (HSCs). Upon activation, HSCs transdifferentiate into highly proliferative, migratory, contractile and ECM-producing myofibroblasts. The disrupted balance between ECM deposition and degradation leads to the formation of scar tissue referred to as fibrosis. This balance can be restored either by reducing ECM deposition (by inhibition of HSCs activation and proliferation) or enhancing ECM degradation (by increased expression of matrix metalloproteinases (MMPs)). MMPs play an important role in ECM remodeling and represent an interesting target for therapeutic drug discovery. In this review, we present the current knowledge about ECM remodeling and role of the different MMPs in liver diseases. MMP expression patterns in different stages of liver diseases have also been reviewed to determine their role as biomarkers. Finally, we highlight MMPs as promising therapeutic targets for the resolution of liver diseases.
Collapse
Affiliation(s)
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands;
| |
Collapse
|
25
|
Giacalone VD, Dobosh BS, Gaggar A, Tirouvanziam R, Margaroli C. Immunomodulation in Cystic Fibrosis: Why and How? Int J Mol Sci 2020; 21:ijms21093331. [PMID: 32397175 PMCID: PMC7247557 DOI: 10.3390/ijms21093331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by unconventional mechanisms of inflammation, implicating a chronic immune response dominated by innate immune cells. Historically, therapeutic development has focused on the mutated cystic fibrosis transmembrane conductance regulator (CFTR), leading to the discovery of small molecules aiming at modulating and potentiating the presence and activity of CFTR at the plasma membrane. However, treatment burden sustained by CF patients, side effects of current medications, and recent advances in other therapeutic areas have highlighted the need to develop novel disease targeting of the inflammatory component driving CF lung damage. Furthermore, current issues with standard treatment emphasize the need for directed lung therapies that could minimize systemic side effects. Here, we summarize current treatment used to target immune cells in the lungs, and highlight potential benefits and caveats of novel therapeutic strategies.
Collapse
Affiliation(s)
- Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
- Pulmonary Section, Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; (V.D.G.); (B.S.D.)
- Center for CF & Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| | - Camilla Margaroli
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.G.); (C.M.)
| |
Collapse
|
26
|
Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells 2020; 9:E929. [PMID: 32290100 PMCID: PMC7226820 DOI: 10.3390/cells9040929] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.
Collapse
Affiliation(s)
- Erica Lafoz
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Maria Ruart
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Aina Anton
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Anna Oncins
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Virginia Hernández-Gea
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
27
|
Zabala V, Boylan JM, Thevenot P, Frank A, Senthoor D, Iyengar V, Kim H, Cohen A, Gruppuso PA, Sanders JA. Transcriptional changes during hepatic ischemia-reperfusion in the rat. PLoS One 2019; 14:e0227038. [PMID: 31891620 PMCID: PMC6938360 DOI: 10.1371/journal.pone.0227038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
There are few effective targeted strategies to reduce hepatic ischemia-reperfusion (IR) injury, a contributor to poor outcomes in liver transplantation recipients. It has been proposed that IR injury is driven by the generation of reactive oxygen species (ROS). However, recent studies implicate other mediators of the injury response, including mitochondrial metabolic dysfunction. We examined changes in global gene expression after transient hepatic ischemia and at several early reperfusion times to identify potential targets that could be used to protect against IR injury. Male Wistar rats were subjected to 30 minutes of 70% partial warm ischemia followed by 0, 0.5, 2, or 6 hours of reperfusion. RNA was extracted from the reperfused and non-ischemic lobes at each time point for microarray analysis. Identification of differentially expressed genes and pathway analysis were used to characterize IR-induced changes in the hepatic transcriptome. Changes in the reperfused lobes were specific to the various reperfusion times. We made the unexpected observation that many of these changes were also present in tissue from the paired non-ischemic lobes. However, the earliest reperfusion time, 30 minutes, showed a marked increase in the expression of a set of immediate-early genes (c-Fos, c-Jun, Atf3, Egr1) that was exclusive to the reperfused lobe. We interpreted these results as indicating that this early response represented a tissue autonomous response to reperfusion. In contrast, the changes that occurred in both the reperfused and non-ischemic lobes were interpreted as indicating a non-autonomous response resulting from hemodynamic changes and/or circulating factors. These tissue autonomous and non-autonomous responses may serve as targets to ameliorate IR injury.
Collapse
Affiliation(s)
- Valerie Zabala
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
- Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Joan M. Boylan
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
- Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Health Systems, New Orleans LA, United States of America
| | - Anderson Frank
- Institute of Translational Research, Ochsner Health Systems, New Orleans LA, United States of America
| | - Dewahar Senthoor
- Warren Alpert Medical School, Providence, RI, United States of America
| | - Varun Iyengar
- Warren Alpert Medical School, Providence, RI, United States of America
| | - Hannah Kim
- Division of Biology and Medicine, Brown University, Providence, RI, United States of America
| | - Ari Cohen
- Institute of Translational Research, Ochsner Health Systems, New Orleans LA, United States of America
| | - Philip A. Gruppuso
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America
| | - Jennifer A. Sanders
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
28
|
Yan ZZ, Huang YP, Wang X, Wang HP, Ren F, Tian RF, Cheng X, Cai J, Zhang Y, Zhu XY, She ZG, Zhang XJ, Huang Z, Li H. Integrated Omics Reveals Tollip as an Regulator and Therapeutic Target for Hepatic Ischemia-Reperfusion Injury in Mice. Hepatology 2019; 70:1750-1769. [PMID: 31077413 DOI: 10.1002/hep.30705] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/04/2019] [Indexed: 12/24/2022]
Abstract
Hepatic ischemia-reperfusion (IR) injury is the leading cause of liver dysfunction and failure after liver resection or transplantation and lacks effective therapeutic strategies. Here, we applied a systematic proteomic analysis to identify the prominent contributors to IR-induced liver damage and promising therapeutic targets for this condition. Based on an unbiased proteomic analysis, we found that toll-interacting protein (Tollip) expression was closely correlated with the hepatic IR process. RNA sequencing analysis and phenotypic examination showed a dramatically alleviated hepatic IR injury by Tollip deficiency both in vivo and in hepatocytes. Mechanistically, Tollip interacts with apoptosis signal-regulating kinase 1 (ASK1) and facilitates the recruitment of tumor necrosis factor receptor-associated factor 6 (TRAF6) to ASK1, leading to enhanced ASK1 N-terminal dimerization and the subsequent activation of downstream mitogen-activated protein kinase (MAPK) signaling. Furthermore, the Tollip methionine and phenylalanine motif and TRAF6 ubiquitinating activity are required for Tollip-regulated ASK1-MAPK axis activation. Conclusion: Tollip is a regulator of hepatic IR injury by facilitating ASK1 N-terminal dimerization and the resultant c-Jun N-terminal kinase/p38 signaling activation. Inhibiting Tollip or its interaction with ASK1 might be promising therapeutic strategies for hepatic IR injury.
Collapse
Affiliation(s)
- Zhen-Zhen Yan
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yong-Ping Huang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xin Wang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hai-Ping Wang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China
| | - Fei Ren
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Rui-Feng Tian
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xu Cheng
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Cai
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Yan Zhang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hongliang Li
- College of Life Sciences, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,Institute of Model Animal of Wuhan University, Wuhan, China.,Basic Medical School, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|