1
|
Mei Q, Zhang Y, Li H, Ma W, Huang W, Wu Z, Huang Y, Liang Y, Wei C, Wang J, Ruan Y, Yang L, Huang Y, Shen Y, Liu J, Feng L, Shen Y. Hepatic factor MANF drives hepatocytes reprogramming by detaining cytosolic CK19 in intrahepatic cholangiocarcinoma. Cell Death Differ 2025:10.1038/s41418-025-01460-4. [PMID: 39972058 DOI: 10.1038/s41418-025-01460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is characterized by poor prognosis and limited treatment. Hepatocytes have been considered as one of the origins of ICC, however, the underlying mechanisms remain unclear. Here, we found mesencephalic astrocyte-derived neurotrophic factor (MANF), a hepatoprotective factor, was exceptionally upregulated in human ICC tissues and experimental mouse ICC models induced by sleeping beauty transposon (SBT) or thioacetamide (TAA) challenge. We identified MANF as a biomarker for distinguishing the primary liver cancer and verified the oncogenic role of MANF in ICC using cell lines overexpressing/knocked down MANF and mice specifically knocked in/out MANF in hepatocytes. Lineage tracing revealed that MANF promoted mature hepatocyte transformation into ICC cells. Mechanistically, MANF interacted with CK19 at Ser35 to suppress CK19 membrane recruitment. Cytosolic CK19 bound to AR domain of Notch2 intracellular domain (NICD2) to stabilize NICD2 protein level and trigger Notch signaling, which contributed to hepatocyte transformation to ICC cells. We uncover a novel profile of MANF and the original mechanism, which shed light on ICC diagnosis and intervention.
Collapse
Affiliation(s)
- Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hong Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wei Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenkai Huang
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yongli Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinfeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuefeng Ruan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Wang X, Wang XQ, Luo K, Bai H, Qi JL, Zhang GX. Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma. Chin J Integr Med 2025; 31:170-182. [PMID: 39470920 DOI: 10.1007/s11655-024-4203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Collapse
Affiliation(s)
- Xiang Wang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Hepatobiliary Surgery Department, Shandong Provincial Third Hospittal, Shandong University, Jinan, 250031, China
| | - Xiao-Qing Wang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Kai Luo
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - He Bai
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jia-Lin Qi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Gui-Xin Zhang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
3
|
Colangelo M, Di Martino M, Polidoro MA, Forti L, Tober N, Gennari A, Pagano N, Donadon M. Management of intrahepatic cholangiocarcinoma: a review for clinicians. Gastroenterol Rep (Oxf) 2025; 13:goaf005. [PMID: 39867595 PMCID: PMC11769681 DOI: 10.1093/gastro/goaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive liver malignancy that arises from second-order biliary epithelial cells. Its incidence is gradually increasing worldwide. Well-known risk factors have been described, although in many cases, they are not identifiable. Treatment options are continuously expanding, but the prognosis of iCCA remains dismal. R0 liver resection remains the only curative treatment, but only a limited number of patients can benefit from it. Frequently, major hepatectomies are needed to completely remove the tumour. This could contraindicate surgery or increase postoperative morbidity in patients with chronic liver disease and small remnant liver volume. In cases of anticipated inadequate future liver remnant, regenerative techniques may be used to expand resectability. The role and extent of lymphadenectomy in iCCA are still matters of debate. Improvements in iCCA diagnosis and better understanding of genetic profiles might lead to optimized surgical approaches and drug therapies. The role of neoadjuvant and adjuvant therapies is broadening, gaining more and more acceptance in clinical practice. Combining surgery with locoregional therapies and novel drugs, such as checkpoint-inhibitors and molecular-targeted molecules, might improve treatment options and survival rates. Liver transplantation, after very poor initial results, is now receiving attention for the treatment of patients with unresectable very early iCCA (i.e. <2 cm) in cirrhotic livers, showing survival outcomes comparable to those of hepatocellular carcinoma. Ongoing prospective protocols are testing the efficacy of liver transplantation for patients with unresectable, advanced tumours confined to the liver, with sustained response to neoadjuvant treatment. In such a continuously changing landscape, the aim of our work is to review the state-of-the-art in the surgical and medical treatment of iCCA.
Collapse
Affiliation(s)
- Matteo Colangelo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Marcello Di Martino
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laura Forti
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
| | - Nastassja Tober
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
| | - Alessandra Gennari
- Division of Oncology, University Maggiore Hospital della Carità, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Nico Pagano
- Division of Gastroenterology, University Maggiore Hospital della Carità, Novara, Italy
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Division of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| |
Collapse
|
4
|
Bertinatti JPP, Marçal JMB, Cambruzzi E, Leão DE Alencar DE. CHOLANGIOCARCINOMA: EPIDEMIOLOGY, HISTOPATHOLOGY, AND POTENTIAL PROGNOSTIC AND THERAPEUTIC IMPLICATIONS IN A COHORT FROM A REFERENCE CENTER IN SOUTHERN BRAZIL. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2025; 37:e1851. [PMID: 39813555 PMCID: PMC11729982 DOI: 10.1590/0102-6720202400057e1851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/27/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a rare neoplasm, with high mortality, originating in the bile ducts. Its incidence is higher in Eastern countries due to the endemic prevalence of liver parasites. Factors such as metabolic syndrome, smoking, and pro-inflammatory conditions are also linked to the disease. Clinical features include asthenia, abdominal pain, cholestasis, and increased serum levels of CEA and CA19-9. AIMS The aim of this study was to evaluate CCA prevalence, survival, and potential prognostic and therapeutic implications in a patient cohort and assess correlations with clinical laboratory data and possible associated risk factors. METHODS This is a retrospective study of the clinical and histological data of patients diagnosed with CCA at Santa Casa de Misericórdia in Porto Alegre, Brazil, between 2016 and 2021. RESULTS There was a 56% prevalence of CCA in women, with intrahepatic localization in 55.4% of cases and unifocality in 85.6% of patients. The mean age of the patients was 63 years (26-89 years), with a mean tumor size of 5.5 cm. The median survival time was 7 months (0 to >50). CA19-9 was altered in 81% of patients, whereas GOT/GPT was altered in 62.5% and gamma-glutamyl transferase/alkaline phosphatase/bilirubin in 69.1% of patients. Mortality was higher among patients with extrahepatic CCA. CONCLUSION Risk factors such as smoking, cholecystectomy, cirrhosis, intrahepatic lithiasis, and transplantation should be considered individually by the attending physician for radiological monitoring and incidental discovery of the neoplasm. Lack of timely identification by the attending physician can delay diagnosis, increasing mortality.
Collapse
Affiliation(s)
| | | | - Eduardo Cambruzzi
- Santa Casa de Misericórdia de Porto Alegre - Porto Alegre (RS), Brazil
| | | |
Collapse
|
5
|
Laface C, Fina E, Ricci AD, Guven DC, Ambrogio F, De Summa S, Vitale E, Massafra R, Brunetti O, Rizzo A. Immunobiology of biliary tract cancer and recent clinical findings in approved and upcoming immune checkpoint inhibitors. Expert Opin Biol Ther 2024; 24:1363-1374. [PMID: 39545466 DOI: 10.1080/14712598.2024.2431088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Recently, immunotherapy has offered new hope for treating biliary tract cancer (BTC). However, several issues are to be considered, including the lack of validated predictive biomarkers that could help to identify patient groups which are most likely to benefit from such therapeutic approaches. AREAS COVERED In the current article, we will provide an overview of recent results and ongoing and future research directions of immunotherapy in BTC, with a special focus on recently published, practice-changing data, and ongoing active and recruiting clinical trials. EXPERT OPINION At this moment, dozens of clinical trials in phases I to III are evaluating the role of cancer immunotherapy in this setting, with the hope of adding more therapeutic options for BTC patients. Future research must focus on the development of novel agents and combinations, but the validation of biomarkers remains an urgent need. As more research results emerge, novel combinatorial strategies are destined to further transform the treatment paradigm for this heterogeneous and aggressive tumor type.
Collapse
Affiliation(s)
- Carmelo Laface
- Azienda Sanitaria Provinciale, Reggio Calabria (RC), Italy
| | - Emanuela Fina
- Thoracic Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Castellana Grotte, Italy
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Medical Oncology Clinic, Elazig City Hospital, Health Sciences University, Elazig, Turkey
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori, "Giovanni Paolo II", Bari, Italy
| | - Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaella Massafra
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|
6
|
Smout MJ, Laha T, Chaiyadet S, Brindley PJ, Loukas A. Mechanistic insights into liver-fluke-induced bile-duct cancer. Trends Parasitol 2024; 40:1183-1196. [PMID: 39521672 DOI: 10.1016/j.pt.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Liver fluke infection is a major risk for cholangiocarcinoma (CCA). It has been established that the Asian liver flukes, Clonorchis sinensis and Opisthorchis viverrini secrete growth factors, digestive enzymes, and extracellular vesicles (EVs) which contribute to abnormal cell development in the bile ducts where the worms reside. These secretions - combined with aberrant inflammation and repeated cycles of chronic wounding at the site of parasite attachment and grazing on the epithelium - promote biliary hyperplasia and fibrosis and ultimately malignant transformation. Application of post-genomic and gene-editing tools to the study of liver fluke immunobiology and pathogenesis has accelerated the discovery of essential virulence factors to which targeted therapies and diagnostics can be directed.
Collapse
Affiliation(s)
- Michael J Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, George Washington University, Washington, DC, USA
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
7
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
8
|
Wang J, Liu S, Cao Y, Chen Y. Overcoming treatment resistance in cholangiocarcinoma: current strategies, challenges, and prospects. Front Cell Dev Biol 2024; 12:1408852. [PMID: 39156971 PMCID: PMC11327014 DOI: 10.3389/fcell.2024.1408852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Significant advancements in our understanding and clinical treatment of cholangiocarcinoma (CCA) have been achieved over the past 5 years. Groundbreaking studies have illuminated the immune landscape and pathological characteristics of the tumor microenvironment in CCA. The development of immune- and metabolism-based classification systems has enabled a nuanced exploration of the tumor microenvironment and the origins of CCA, facilitating a detailed understanding of tumor progression modulation. Despite these insights, targeted therapies have not yet yielded satisfactory clinical results, highlighting the urgent need for innovative therapeutic strategies. This review delineates the complexity and heterogeneity of CCA, examines the current landscape of therapeutic strategies and clinical trials, and delves into the resistance mechanisms underlying targeted therapies. Finally, from a single-cell and spatial transcriptomic perspective, we address the challenge of therapy resistance, discussing emerging mechanisms and potential strategies to overcome this barrier and enhance treatment efficacy.
Collapse
Affiliation(s)
- Jiayi Wang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Siyan Liu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yi Cao
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Long G, Wang D, Tang J, Hu K, Zhou L. USP8 promotes the tumorigenesis of intrahepatic cholangiocarcinoma via stabilizing OGT. Cancer Cell Int 2024; 24:238. [PMID: 38973004 PMCID: PMC11229306 DOI: 10.1186/s12935-024-03370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/13/2024] [Indexed: 07/09/2024] Open
Abstract
Ubiquitination was considered to be a crucial factor in intrahepatic cholangiocarcinoma (iCCA) development. Herein, we identified Ubiquitin-specific peptidase 8 (USP8) as a key regulator for promoting the tumorigenesis of iCCA cell via stabilizing OGT. USP8 was overexpressed in human tumor tissues and correlated with worse survival. Moreover, the mass spectrometry and co-immunoprecipitation analysis indicated that USP8 interacted with OGT. USP8 worked as a bona fide deubiquitylase of OGT. It stabilized OGT in a deubiquitylation activity-dependent manner. Meanwhile, DUB-IN3, the USP8 inhibitor, could also restrain the malignancy of intrahepatic cholangiocarcinoma. In addition, USP8 depletion promoted the response of iCCA to pemigatinib. In conclusion, our findings pointed to a previously undocumented catalytic role for USP8 as a deubiquitinating enzyme of OGT. The USP8-OGT axis could be a potential target for iCCA therapy.
Collapse
Affiliation(s)
- Guo Long
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dong Wang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jianing Tang
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kuan Hu
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ledu Zhou
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Zhu X, Bao W, Xie X, Chen B, Li R, Zhao J, Wu L, Yu Z, Li S, Zhu Q, Chen G, Li J. Liensinine inhibits progression of intrahepatic cholangiocarcinoma by regulating TGF-β1 /P-smad3 signaling through HIF-1a. Mol Carcinog 2024; 63:772-784. [PMID: 38289159 DOI: 10.1002/mc.23687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/27/2023] [Accepted: 01/14/2024] [Indexed: 03/16/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a high-grade malignant digestive system tumor with an insidious onset and unfavorable prognosis. Liensinine, a small molecule derived from plants, has been proven to have significant tumor suppressor activity in other cancers. However, there are no reports on whether liensinine can inhibit the proliferation or metastasis of ICC. This study aimed to explore the tumor-suppressive activity of liensinine in ICC and its underlying mechanisms. The phenotypic changes in ICC cells were monitored in vitro using cell function tests. Western blot and immunofluorescence analyses verified the efficacy of liensinine. Tumor-bearing nude mice were used to explore the effect of liensinine on tumors and its toxicity and side effects in vivo. Liensinine suppressed ICC cell proliferation and arrested the cell cycle at the G1 phase. The epithelial-mesenchymal transition (EMT) of ICC cells was also inhibited, thereby restraining their invasion and migration of tumor cells. In addition, this study found that the potential mechanism of liensinine inhibiting EMT may be via suppression of the TGF-β1/P-smad3 signaling pathway through hypoxia-inducible factor 1 alpha (HIF-1a). In vivo experiments showed that liensinine inhibited the growth of Hucc-T1 transplanted tumors in nude mice. Liensinine restrained the proliferation of ICC cells and suppressed EMT in ICC via the HIF-1a-mediated TGF-β1/P-smad3 signaling pathway.
Collapse
Affiliation(s)
- Xuewen Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rizhao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi Li
- Department of Urology Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiandong Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Hepatobiliary Pancreatic Tumor Bioengineering Cross International Joint Laboratory of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Merz V, Messina C, Zecchetto C, Quinzii A, Frisinghelli M, Trentin C, Salati M, Caffo O, Melisi D. Is There Room for Liposomal Irinotecan in Biliary Tract Cancer? A Meta-analysis of Randomised Trials. Clin Oncol (R Coll Radiol) 2024; 36:87-97. [PMID: 38129199 DOI: 10.1016/j.clon.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
AIMS The combination of 5-fluorouracil/leucovorin (5-FU/LV) plus oxaliplatin (FOLFOX) is widely acknowledged as the standard regimen for second-line treatment in patients with advanced biliary tract cancer. Nanoliposomal irinotecan (nal-IRI) has demonstrated its activity in patients with advanced pancreatic cancer. Recent studies have investigated the activity of nal-IRI in combination with 5-FU/LV for biliary tract cancer. However, the results have been contradictory. We conducted a meta-analysis to assess survival outcomes and response rates in randomised trials investigating the activity of nal-IRI in previously treated biliary tract cancer patients. MATERIALS AND METHODS We systematically collected potentially relevant findings from PubMed/Medline, the Cochrane library and EMBASE. Abstracts presented at major international oncological meetings were also reviewed. We extracted hazard ratios and 95% confidence intervals for progression-free survival and overall survival, as well as odds ratios and 95% confidence intervals for objective response rate. The outcomes of the accessible randomised studies evaluating the activity of nal-IRI plus 5-FU/LV were analysed. RESULTS The combination therapy exhibited a statistically significant decrease in the risk of progression (hazard ratio 0.70; 95% confidence interval 0.50-0.97) when compared with 5-FU/LV alone. Additionally, the dual regimen yielded longer overall survival and a higher objective response rate. CONCLUSION Our meta-analysis showed that nal-IRI plus 5-FU/LV had a superior activity in comparison with 5-FU/LV. Further investigations are required to elucidate the role of nal-IRI in this setting and to identify subgroups of patients who could derive the greatest benefit from its administration.
Collapse
Affiliation(s)
- V Merz
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy; Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy.
| | - C Messina
- Oncology Unit, A.R.N.A.S. Civico, Palermo, Italy
| | - C Zecchetto
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy; Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Policlinico "G.B. Rossi", Verona, Italy
| | - A Quinzii
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy; Medical Oncology Unit, Azienda Ospedaliera Universitaria Integrata, Policlinico "G.B. Rossi", Verona, Italy
| | - M Frisinghelli
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - C Trentin
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - M Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - O Caffo
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - D Melisi
- Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy; Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Policlinico "G.B. Rossi", Verona, Italy
| |
Collapse
|
12
|
Song Z, Lin S, Wu X, Ren X, Wu Y, Wen H, Qian B, Lin H, Huang Y, Zhao C, Wang N, Huang Y, Peng B, Li X, Peng H, Shen S. Hepatitis B virus-related intrahepatic cholangiocarcinoma originates from hepatocytes. Hepatol Int 2023; 17:1300-1317. [PMID: 37368186 PMCID: PMC10522522 DOI: 10.1007/s12072-023-10556-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is one of the most common risk factors for intrahepatic cholangiocarcinoma (ICC). However, there is no direct evidence of a causal relationship between HBV infection and ICC. In this study, we attempted to prove that ICC may originate from hepatocytes through a pathological study involving ICC tissue-derived organoids. METHOD The medical records and tumor tissue samples of 182 patients with ICC after hepatectomy were collected. The medical records of 182 patients with ICC were retrospectively analyzed to explore the prognostic factors. A microarray of 182 cases of ICC tumor tissue and 6 cases of normal liver tissue was made, and HBsAg was stained by immunohistochemistry (IHC) to explore the factors closely related to HBV infection. Fresh ICC tissues and corresponding adjacent tissues were collected to make paraffin sections and organoids. Immunofluorescence (IF) staining of factors including HBsAg, CK19, CK7, Hep-Par1 and Albumin (ALB) was performed on both fresh tissues and organoids. In addition, we collected adjacent nontumor tissues of 6 patients with HBV (+) ICC, from which biliary duct tissue and normal liver tissue were isolated and RNA was extracted respectively for quantitative PCR assay. In addition, the expression of HBV-DNA in organoid culture medium was detected by quantitative PCR and PCR electrophoresis. RESULTS A total of 74 of 182 ICC patients were HBsAg positive (40.66%, 74/182). The disease-free survival (DFS) rate of HBsAg (+) ICC patients was significantly lower than that of HBsAg (-) ICC patients (p = 0.0137). IF and IHC showed that HBsAg staining was only visible in HBV (+) ICC fresh tissues and organoids, HBsAg expression was negative in bile duct cells in the portal area. Quantitative PCR assay has shown that the expression of HBs antigen and HBx in normal hepatocytes were significantly higher than that in bile duct epithelial cells. Combined with the IF and IHC staining, it was confirmed that HBV does not infect normal bile duct epithelial cells. In addition, IF also showed that the staining of bile duct markers CK19 and CK7 were only visible in ICC fresh tissue and organoids, and the staining of hepatocyte markers Hep-Par1 and ALB was only visible in normal liver tissue fresh tissue. Real-time PCR and WB had the same results. High levels of HBV-DNA were detected in the culture medium of HBV (+) organoids but not in the culture medium of HBV (-) organoids. CONCLUSION HBV-related ICC might be derived from hepatocytes. HBV (+) ICC patients had shorter DFS than HBV (-) ICC patients.
Collapse
Affiliation(s)
- Zimin Song
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Shuirong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Xiwen Wu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
- Department of Clinical Nutrition, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yifan Wu
- Department of Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Haoxiang Wen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Baifeng Qian
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Haozhong Lin
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yihao Huang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Chenfeng Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Nian Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Yan Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510030, China
| | - Baogang Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China
| | - Xiaoxing Li
- Institute of Precision Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| | - Hong Peng
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| | - Shunli Shen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510030, China.
| |
Collapse
|
13
|
Rosenberg N, Van Haele M, Lanton T, Brashi N, Bromberg Z, Adler H, Giladi H, Peled A, Goldenberg DS, Axelrod JH, Simerzin A, Chai C, Paldor M, Markezana A, Yaish D, Shemulian Z, Gross D, Barnoy S, Gefen M, Amran O, Claerhout S, Fernández-Vaquero M, García-Beccaria M, Heide D, Shoshkes-Carmel M, Schmidt Arras D, Elgavish S, Nevo Y, Benyamini H, Tirnitz-Parker JEE, Sanchez A, Herrera B, Safadi R, Kaestner KH, Rose-John S, Roskams T, Heikenwalder M, Galun E. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. J Hepatol 2022; 77:1631-1641. [PMID: 35988690 DOI: 10.1016/j.jhep.2022.07.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHODS To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor a yellow fluorescent protein (YFP) reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KOFoxl1-CRE;RosaYFP) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months. RESULTS In this Mdr2-KOFoxl1-CRE;RosaYFP mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-sequencing revealed enrichment of the IL-6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. Single-cell RNA-sequencing (scRNA-seq) analysis revealed that IL-6 is expressed by immune and parenchymal cells during senescence, and that IL-6 is part of the senescence-associated secretory phenotype. Administration of an anti-IL-6 antibody to Mdr2-KOFoxl1-CRE;RosaYFP mice inhibited the development of cHCC-CCA tumors. Blocking IL-6 trans-signaling led to a decrease in the number and size of cHCC-CCA tumors, indicating their dependence on this pathway. Furthermore, the administration of a senolytic agent inhibited IL-6 and the development of cHCC-CCA tumors. CONCLUSION Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL-6, which derives in part from cells in senescence, plays an important role in this process via IL-6 trans-signaling. These findings could be applied to develop new therapeutic approaches for cHCC-CCA tumors. LAY SUMMARY Combined hepatocellular carcinoma-cholangiocarcinoma is the third most prevalent type of primary liver cancer (i.e. a cancer that originates in the liver). Herein, we show that this type of cancer originates in stem cells in the liver and that it depends on inflammatory signaling. Specifically, we identify a cytokine called IL-6 that appears to be important in the development of these tumors. Our results could be used for the development of novel treatments for these aggressive tumors.
Collapse
Affiliation(s)
- Nofar Rosenberg
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Matthias Van Haele
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium; Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tali Lanton
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Neta Brashi
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Zohar Bromberg
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Hanan Adler
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Hilla Giladi
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Daniel S Goldenberg
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jonathan H Axelrod
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Alina Simerzin
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Chofit Chai
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Mor Paldor
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Auerlia Markezana
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dayana Yaish
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Zohar Shemulian
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dvora Gross
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Shanny Barnoy
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Maytal Gefen
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Osher Amran
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Sofie Claerhout
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michal Shoshkes-Carmel
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Center for Translational Research, Philadelphia, USA
| | - Dirk Schmidt Arras
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Sharona Elgavish
- Bioinformatics Unit, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Nevo
- Bioinformatics Unit, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Benyamini
- Bioinformatics Unit, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Janina E E Tirnitz-Parker
- Centre for Medical Research, University of Western Australia & Harry Perkins Institute of Medical Research, Crawley, Australia
| | - Aranzazu Sanchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Spain
| | - Rifaat Safadi
- The Liver Institute, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Center for Translational Research, Philadelphia, USA
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Institute, Rosenauer Weg 30, Medical Faculty Tuebingen (MFT), 72076 Tuebingen, Germany.
| | - Eithan Galun
- Goldyne Savad Institute of Gene and Cell Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
14
|
Wang Z, Yu Y, Wu P, Ye Q, Guo Y, Zhang X, Xi L, Li Q, Jin Y, Zhou D, Luo Y, Peng S, Li J. Lactate promotes the growth of patient-derived organoids from hepatopancreatobiliary cancers via ENO1/HIF1α pathway and does not affect their drug sensitivities. Cell Death Dis 2022; 8:214. [PMID: 35443744 PMCID: PMC9021221 DOI: 10.1038/s41420-022-01014-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The long culture duration of patient-derived organoids (PDOs) have severely limited their clinical applications. The aim of this study was to determine the effect of lactate supplementation on the growth, genetic profiles and drug sensitivities of PDOs from hepatopancreatobiliary tumors. LM3, Huh7, Panc02, and RBE cell lines were cultured as organoids in the presence or absence of lactate, and total protein was extracted to measure the expression of α-enolase (ENO1), hypoxia-inducible factor-1α (HIF1α), AKT, and PI3 kinase (PI3K). Thirteen hepatopancreatobiliary tumor specimens were collected during surgical resection and cultured as PDOs with or without l-lactate. Hematoxylin and eosin (H&E) staining and immunohistochemical staining were performed on the original tissues and PDOs to compare their pathological structures, and their genetic profiles were analyzed by whole-exome sequencing (WES). The sensitivity of the PDOs to gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, ivosidenib, infigratinib, and lenvatinib were evaluated in terms of cell viability. Peripheral blood mononuclear cells (PBMCs) were isolated and co-cultured with PDOs to test the sensitivity of PDOs to tislelizumab. The addition of 20 mM lactate significantly promoted the growth of LM3 and Huh 7 organoids by 217% and 36%, respectively, compared to the control group, and the inhibition of lactate transporter decreased their growth. The HIF1α/ENO1/AKT/PI3K pathway was also activated by lactate. The inhibition of enolase also partly decreased the growth of organoids treated with lactate. Furthermore, 20 mM lactate increased the viability of 9 PDOs from 135% to 317% without affecting their pathological features. The genetic similarity, in terms of single nucleotide variations, insertions, and deletions, between original tissues and lactate-treated PDOs ranged from 83.2% to 94.1%, and that between the untreated and lactate-treated PDOs was at least 93.2%. Furthermore, the addition of lactate did not significantly change the dose–response curves of the PDOs to chemotherapeutic drugs, targeted drugs, and immune checkpoint inhibitor, especially for the drugs to which the cells were sensitive. Thus, lactate can be added to the culture medium of PDOs to promote their growth without altering their genetic profiles and drug sensitivities.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Yuanquan Yu
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Peiyao Wu
- Gastroenterology Endoscopy Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210029, Nanjing, Jiangsu Province, China
| | - Qinghuang Ye
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Yinghao Guo
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Xiaoxiao Zhang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Longfu Xi
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Qi Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Yun Jin
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Donger Zhou
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital (Key Laboratory of Cancer Prevention and Intervention of China National MOE), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuyou Peng
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China
| | - Jiangtao Li
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
15
|
Zhu Y, Kwong LN. IDH1 Inhibition Reawakens the Immune Response against Cholangiocarcinoma. Cancer Discov 2022; 12:604-605. [PMID: 35257150 DOI: 10.1158/2159-8290.cd-21-1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isocitrate dehydrogenase 1 mutations (mIDH1) are common in cholangiocarcinoma, but their exact mechanisms in cholangiocarcinoma initiation and maintenance are unclear. In this issue of Cancer Discovery, Wu and colleagues identify immune suppression via TET2 inactivation as the primary means by which mIDH1 maintains cholangiocarcinoma survival, leading to an efficacious new combination of mIDH1 inhibitors and immune checkpoint blockade targeting regulatory T cells. See related article by Wu et al., p. 812 (9).
Collapse
Affiliation(s)
- Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Dong L, Lu D, Chen R, Lin Y, Zhu H, Zhang Z, Cai S, Cui P, Song G, Rao D, Yi X, Wu Y, Song N, Liu F, Zou Y, Zhang S, Zhang X, Wang X, Qiu S, Zhou J, Wang S, Zhang X, Shi Y, Figeys D, Ding L, Wang P, Zhang B, Rodriguez H, Gao Q, Gao D, Zhou H, Fan J. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 2022; 40:70-87.e15. [PMID: 34971568 DOI: 10.1016/j.ccell.2021.12.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/19/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
We performed proteogenomic characterization of intrahepatic cholangiocarcinoma (iCCA) using paired tumor and adjacent liver tissues from 262 patients. Integrated proteogenomic analyses prioritized genetic aberrations and revealed hallmarks of iCCA pathogenesis. Aflatoxin signature was associated with tumor initiation, proliferation, and immune suppression. Mutation-associated signaling profiles revealed that TP53 and KRAS co-mutations may contribute to iCCA metastasis via the integrin-FAK-SRC pathway. FGFR2 fusions activated the Rho GTPase pathway and could be a potential source of neoantigens. Proteomic profiling identified four patient subgroups (S1-S4) with subgroup-specific biomarkers. These proteomic subgroups had distinct features in prognosis, genetic alterations, microenvironment dysregulation, tumor microbiota composition, and potential therapeutics. SLC16A3 and HKDC1 were further identified as potential prognostic biomarkers associated with metabolic reprogramming of iCCA cells. This study provides a valuable resource for researchers and clinicians to further identify molecular pathogenesis and therapeutic opportunities in iCCA.
Collapse
Affiliation(s)
- Liangqing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Ran Chen
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhou Zhang
- Burning Rock Biotech, Shanghai 201114, China
| | - Shangli Cai
- Burning Rock Biotech, Shanghai 201114, China
| | - Peng Cui
- Burning Rock Biotech, Shanghai 201114, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Nixue Song
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Fen Liu
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yunhao Zou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shisheng Wang
- Frontiers Science Center for Disease-related Molecular Network, Institutes for Systems Genetics, Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yongyong Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Siteman Cancer Center, Washington University, St. Louis, MI 63108, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| | - Daming Gao
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, Teh BT, Wongkham S, Gores GJ. Cholangiocarcinoma. Nat Rev Dis Primers 2021; 7:65. [PMID: 34504109 PMCID: PMC9246479 DOI: 10.1038/s41572-021-00300-2] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal adenocarcinoma of the hepatobiliary system, which can be classified as intrahepatic, perihilar and distal. Each anatomic subtype has distinct genetic aberrations, clinical presentations and therapeutic approaches. In endemic regions, liver fluke infection is associated with CCA, owing to the oncogenic effect of the associated chronic biliary tract inflammation. In other regions, CCA can be associated with chronic biliary tract inflammation owing to choledocholithiasis, cholelithiasis, or primary sclerosing cholangitis, but most CCAs have no identifiable cause. Administration of the anthelmintic drug praziquantel decreases the risk of CCA from liver flukes, but reinfection is common and future vaccination strategies may be more effective. Some patients with CCA are eligible for potentially curative surgical options, such as resection or liver transplantation. Genetic studies have provided new insights into the pathogenesis of CCA, and two aberrations that drive the pathogenesis of non-fluke-associated intrahepatic CCA, fibroblast growth factor receptor 2 fusions and isocitrate dehydrogenase gain-of-function mutations, can be therapeutically targeted. CCA is a highly desmoplastic cancer and targeting the tumour immune microenvironment might be a promising therapeutic approach. CCA remains a highly lethal disease and further scientific and clinical insights are needed to improve patient outcomes.
Collapse
Affiliation(s)
- Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | | | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Shahid A. Khan
- Liver Unit, Division of Digestive Diseases, Imperial College London, London, UK
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alphonse E. Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, Singapore, Singapore
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA,
| |
Collapse
|
18
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
19
|
Reicher A, Harris AL, Prinz F, Kiesslich T, Wei M, Öllinger R, Rad R, Pichler M, Kwong LN. Generation of An Endogenous FGFR2-BICC1 Gene Fusion/58 Megabase Inversion Using Single-Plasmid CRISPR/Cas9 Editing in Biliary Cells. Int J Mol Sci 2020; 21:E2460. [PMID: 32252259 PMCID: PMC7178239 DOI: 10.3390/ijms21072460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) gene fusions are bona fide oncogenic drivers in 10-15% of intrahepatic cholangiocarcinoma (CCA), yet currently there are no cell lines publically available to study endogenous FGFR2 gene fusions. The ability of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to generate large yet precise chromosomal rearrangements has presented the possibility of engineering endogenous gene fusions for downstream studies. In this technical report, we describe the generation of an endogenous FGFR2-Bicaudal family RNA binding protein 1 (BICC1) fusion in multiple independent cholangiocarcinoma and immortalized liver cell lines using CRISPR. BICC1 is the most common FGFR2 fusion partner in CCA, and the fusion arises as a consequence of a 58-megabase-sized inversion on chromosome 10. We replicated this inversion to generate a fusion product that is identical to that seen in many human CCA. Our results demonstrate the feasibility of generating large megabase-scale inversions that faithfully reproduce human cancer aberrations.
Collapse
Affiliation(s)
- Andreas Reicher
- Division of Oncology, Medical University of Graz, Graz 8036, Austria; (A.R.); (F.P.)
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz 8036, Austria
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.L.H.); (M.W.)
| | - Antoneicka L Harris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.L.H.); (M.W.)
| | - Felix Prinz
- Division of Oncology, Medical University of Graz, Graz 8036, Austria; (A.R.); (F.P.)
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz 8036, Austria
| | - Tobias Kiesslich
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg 5020, Austria;
| | - Miaoyan Wei
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.L.H.); (M.W.)
- Department of General Surgery, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich 81675, Germany (R.R.)
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich 81675, Germany (R.R.)
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, Graz 8036, Austria; (A.R.); (F.P.)
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz 8036, Austria
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.L.H.); (M.W.)
| |
Collapse
|