1
|
Singh SP, Madke T, Chand P. Global Epidemiology of Hepatocellular Carcinoma. J Clin Exp Hepatol 2025; 15:102446. [PMID: 39659901 PMCID: PMC11626783 DOI: 10.1016/j.jceh.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and a significant global health challenge due to its high mortality rate. The epidemiology of HCC is closely linked to the prevalence of chronic liver diseases, the predominant etiology being hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, alcohol consumption, and metabolic disorders such as metabolic dysfunction-associated steatotic liver disease (MASLD). HCC incidence varies widely globally, with the highest rates observed in East Asia and sub-Saharan Africa. This geographic disparity is largely attributed to the endemicity of HBV and HCV in these regions. In Western countries, the incidence of HCC has been rising, driven by increasing rates of alcohol abuse and the presence of steatosis liver disease. MASLD-associated HCC has a higher body mass index, a higher rate of type 2 diabetes mellitus, hyperlipidemia, hypertension, and association with cardiovascular diseases. Steatosis-associated HCC is also known to develop in the absence of cirrhosis, unlike alcohol-related liver disease and viral hepatitis. Prevention strategies vary by region, focusing on vaccination against HBV, antiviral treatments for HBV and HCV, alcohol moderation, and lifestyle interventions along with weight reduction to reduce obesity and incidence of MASLD-related HCC incidence.
Collapse
Affiliation(s)
- Satender P. Singh
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Tushar Madke
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Phool Chand
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
2
|
Zhang J, Zhang Q, Hu W, Liang Y, Jiang D, Chen H. A transcriptome-wide association study identified susceptibility genes for hepatocellular carcinoma in East Asia. Gastroenterol Rep (Oxf) 2024; 12:goae057. [PMID: 38846986 PMCID: PMC11153834 DOI: 10.1093/gastro/goae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and is prevalent in East Asia. Although genome-wide association studies (GWASs) of HCC have identified 23 risk regions, the susceptibility genes underlying these associations largely remain unclear. To identify novel candidate genes for HCC, we conducted liver single-tissue and cross-tissue transcriptome-wide association studies (TWASs) in two populations of East Asia. Methods GWAS summary statistics of 2,514 subjects (1,161 HCC cases and 1,353 controls) from the Chinese Qidong cohort and 161,323 subjects (2,122 HCC cases and 159,201 controls) from the BioBank Japan project were used to conduct TWAS analysis. The single-tissue and cross-tissue TWAS approaches were both used to detect the association between susceptible genes and the risk of HCC. TWAS identified genes were further annotated by Metascape, UALCAN, GEPIA2, and DepMap. Results We identified 22 novel genes at 16 independent loci significantly associated with HCC risk after Bonferroni correction. Of these, 13 genes were located in novel regions. Besides, we found 83 genes overlapped in the Chinese and Japanese cohorts with P < 0.05, of which, three genes (NUAK2, HLA-DQA1, and ATP6V1G2) were discerned by both single-tissue and cross-tissue TWAS approaches. Among the genes identified through TWAS, a significant proportion of them exhibit a credible role in HCC biology, such as FAM96B, HSPA5, POLRMT, MPHOSPH10, and RABL2A. HLA-DQA1, NUAK2, and HSPA5 associated with the process of carcinogenesis in HCC as previously reported. Conclusions Our findings highlight the value of leveraging the gene expression data to identify new candidate genes beyond the GWAS associations and could further provide a genetic insight for the biology of HCC.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Wenyan Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Yuxuan Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Deke Jiang
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
3
|
Peruhova M, Banova-Chakarova S, Miteva DG, Velikova T. Genetic screening of liver cancer: State of the art. World J Hepatol 2024; 16:716-730. [PMID: 38818292 PMCID: PMC11135278 DOI: 10.4254/wjh.v16.i5.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, remains a global health challenge with rising incidence and limited therapeutic options. Genetic factors play a pivotal role in the development and progression of liver cancer. This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer. We discuss the genetic underpinnings of liver cancer, emphasizing the critical role of risk-associated genetic variants, somatic mutations, and epigenetic alterations. We also explore the intricate interplay between environmental factors and genetics, highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy, and advancements in high-throughput sequencing technologies. By synthesizing the latest research findings, we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer, shedding light on their potential to revolutionize early detection, risk assessment, and targeted therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria
| | - Sonya Banova-Chakarova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria.
| | - Dimitrina Georgieva Miteva
- Department of Genetics, Faculty of Biology, Sofia University" St. Kliment Ohridski, Sofia 1164, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
4
|
Arvanitakis K, Papadakos SP, Vakadaris G, Chatzikalil E, Stergiou IE, Kalopitas G, Theocharis S, Germanidis G. Shedding light on the role of LAG-3 in hepatocellular carcinoma: unraveling immunomodulatory pathways. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a primary malignant liver tumor characterized by chronic inflammation and complex alterations within the tumor microenvironment (TME). Lymphocyte activation gene 3 (LAG-3), also known as CD223, has gained prominence as a potential next-generation immune checkpoint, maintaining continuous expression in response to persistent antigen exposure within the TME, warranting our attention. In patients with HCC, LAG-3 expression on T cells, regulatory T cells (Tregs), and natural killer (NK) cells contributes to immune evasion, while high expression of LAG-3 leads to increased angiogenesis and poor prognosis. By interacting with major histocompatibility complex class II molecules, LAG-3 promotes T cell exhaustion and suppresses antitumor responses, often in collaboration with other immune checkpoints like programmed cell death protein 1 (PD-1), while on Tregs and NK cells, LAG-3 modulates their suppressive functions, indirectly facilitating tumor immune escape. LAG-3 expression may offer prognostic insights, correlating with disease progression and outcomes in HCC patients, while various preclinical studies highlight the potential of LAG-3-targeted therapies in reinvigorating immune responses against HCC, with a few combination approaches targeting LAG-3 alongside other checkpoints demonstrating synergistic effects in restoring T cell function. Therefore, harnessing LAG-3 as a therapeutic target holds promise for enhancing antitumor immunity and potentially improving HCC treatment outcomes. Our narrative review aims to delve into the full spectrum of LAG-3 signaling in HCC, with the goal of a better understanding of the pathophysiological and immunological basis of its use to arrest HCC growth and development.
Collapse
|
5
|
Pan Y, Zhang YR, Wang LY, Wu LN, Ma YQ, Fang Z, Li SB. Construction of CDKN2A-related competitive endogenous RNA network and identification of GAS5 as a prognostic indicator for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:1514-1531. [PMID: 38660664 PMCID: PMC11037068 DOI: 10.4251/wjgo.v16.i4.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Competitive endogenous RNA (ceRNA) is an innovative way of gene expression modulation, which plays a crucial part in neoplasia. However, the intricacy and behavioral characteristics of the ceRNA network in hepatocellular carcinoma (HCC) remain dismal. AIM To establish a cyclin dependent kinase inhibitor 2A (CDKN2A)-related ceRNA network and recognize potential prognostic indicators for HCC. METHODS The mutation landscape of CDKN2A in HCC was first explored using the cBioPortal database. Differential expression analysis was implemented between CDKN2Ahigh and CDKN2Alow expression HCC samples. The targeted microRNAs were predicted by lncBasev3.0, and the targeted mRNAs were predicted by miRDB, and Targetscan database. The univariate and multivariate analysis were utilized to identify independent prognostic indicators. RESULTS CDKN2A was frequently mutated and deleted in HCC. The single-cell RNA-sequencing analysis revealed that CDKN2A participated in cell cycle pathways. The CDKN2A-related ceRNA network-growth arrest specific 5 (GAS5)/miR-25-3p/SRY-box transcription factor 11 (SOX11) was successfully established. GAS5 was recognized as an independent prognostic biomarker, whose overexpression was correlated with a poor prognosis in HCC patients. The association between GAS5 expression and methylation, immune infiltration was explored. Besides, traditional Chinese medicine effective components targeting GAS5 were obtained. CONCLUSION This CDKN2A-related ceRNA network provides innovative insights into the molecular mechanism of HCC formation and progression. Moreover, GAS5 might be a significant prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Yong Pan
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Yi-Ru Zhang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Yun Wang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li-Na Wu
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ying-Qiu Ma
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Zhou Fang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Shi-Bo Li
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| |
Collapse
|
6
|
Wang J, Yang L, Wang HX, Cui SP, Gao Y, Hu B, Zhou L, Lang R. Anti-PD-1 therapy reverses TIGIT +CD226 +NK depletion in immunotherapy resistance of hepatocellular carcinoma through PVR/TIGIT pathway. Int Immunopharmacol 2024; 130:111681. [PMID: 38368771 DOI: 10.1016/j.intimp.2024.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Immunotherapy resistance conducts the main reason for failure of PD-1-based immune checkpoint inhibitors (ICIs) in patients with hepatocellular carcinoma (HCC). This study aims to clarify the mechanism of nature kill cells (NK) depletion in immunotherapy resistance of HCC. Cancerous /paracancerous tissues and peripheral blood (PB) of 55 HCC patients were collected and grouped according to differentiation degree, FCM, IHC and lymphocyte culture drug intervention experiments were used to determine NK cell depletion degree. Furthermore, a mouse model of HCC in situ was constructed and divided into different groups according to intervention measures of ICIs. Immunofluorescence thermography was used to observe changes in tumor burden. NK cells in cancerous tissues significantly up-regulated TIGIT expression (P < 0.001). Intervention experiments revealed that TIGIT and PD-1 expression decreased gradually with increased PD-1 inhibitor dose in moderately-highly differentiated patients (P < 0.05). Animal experiment showed that tumors proliferation in experimental group was inhibited after PD-1 blockage, WB indicated that ICIs decreased TIGIT and PVRL1 protein expression while increased CD226 and PVRL3 protein expression. We concluded that TIGIT+NK cells competitively bind to PVR with CD226 and promote NK cell depletion. Anti-PD-1 decreases PVRL1 expression through PD-1/PD-L1 pathway, reducing the PVR/TIGIT inhibitory signal pathway, and enhancing function of PVR/CD226 activation signal.
Collapse
Affiliation(s)
- Jing Wang
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Han-Xuan Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Song-Ping Cui
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Ya Gao
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Lu S, Huang J, Zhang J, Wu C, Huang Z, Tao X, You L, Stalin A, Chen M, Li J, Tan Y, Wu Z, Geng L, Li Z, Fan Q, Liu P, Lin Y, Zhao C, Wu J. The anti-hepatocellular carcinoma effect of Aidi injection was related to the synergistic action of cantharidin, formononetin, and isofraxidin through BIRC5, FEN1, and EGFR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117209. [PMID: 37757991 DOI: 10.1016/j.jep.2023.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aidi injection (ADI) is a popular anti-tumor Chinese patent medicine, widely used in clinics for the treatment of hepatocellular carcinoma (HCC) with remarkable therapeutic effects through multiple targets and pathways. However, the scientific evidence of the synergistic role of the complex chemical component system and the potential mechanism for treating diseases are ignored and remain to be elucidated. AIM OF THE STUDY This study aimed to elucidate and verify the cooperative association between the potential active ingredient of ADI, which is of significance to enlarge our understanding of its anti-HCC molecular mechanisms. MATERIALS AND METHODS Firstly, the anti-HCC effect of ADI was evaluated in various HCC cells and the zebrafish xenograft model. Subsequently, a variety of bioinformatic technologies, including network pharmacology, weighted gene co-expression network analysis (WGCNA), meta-analysis of gene expression profiles, and pathway enrichment analysis were performed to construct the competitive endogenous RNA (ceRNA) network of ADI intervention in HCC and to establish the relationship between the critical targets/pathways and the key corresponding components, which were involved in ADI against HCC in a synergistic way and were validated by molecular biology experiments. RESULTS ADI exerted remarkable anti-HCC in vitro cells and in vivo zebrafish model, especially that the Hep 3B2.1-7 cell showed substantial sensibility to ADI. The ceRNA network revealed that the EGFR/PI3K/AKT signaling pathway was identified as the promising pathway. Furthermore, the meta-analysis also demonstrated the critical role of BIRC5 and FEN1 as key targets. Finally, the synergistic effect of ADI was revealed by discovering the inhibitory effect of cantharidin on BIRC5, formononetin on FEN1 and EGFR, as well as isofraxidin on EGFR. CONCLUSION Our study unveiled that the incredible protective effect of ADI on HCC resulted from the synergistic inhibition effect of cantharidin, formononetin, and isofraxidin on multiple targets/pathways, including BIRC5, FEN1, and EGFR/PI3K/AKT, respectively, providing a scientific interpretation of ADI against HCC and a typical example of pharmacodynamic evaluation of other proprietary Chinese patent medicine.
Collapse
Affiliation(s)
- Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiaoyu Tao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Meilin Chen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Libo Geng
- Guizhou Yibai Pharmaceutical Co. Ltd, Guiyang, 550008, Guizhou, China.
| | - Zhiqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Qiqi Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Pengyun Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yifan Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chongjun Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
8
|
McEneaney LJ, Vithayathil M, Khan S. Screening, Surveillance, and Prevention of Hepatocellular Carcinoma. GASTROINTESTINAL ONCOLOGY ‐ A CRITICAL MULTIDISCIPLINARY TEAM APPROACH 2E 2024:271-290. [DOI: 10.1002/9781119756422.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Wu F, Ni X, Sun H, Zhou C, Huang P, Xiao Y, Yang L, Yang C, Zeng M. An MRI-Based Prognostic Stratification System for Medical Decision-Making of Multinodular Hepatocellular Carcinoma Patients Beyond the Milan Criteria. J Magn Reson Imaging 2023; 58:1918-1929. [PMID: 37083126 DOI: 10.1002/jmri.28724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The suitability of hepatectomy among patients with multinodular hepatocellular carcinoma (MHCC) beyond the Milan criteria remains controversial. There is a need for a reliable risk stratification tool among these patients for the selection of ideal candidates of curative resection. PURPOSE To determine the clinicoradiological prognostic factors for patients with MHCC beyond the Milan criteria to further develop a stratification system. STUDY TYPE Retrospective. SUBJECTS 176 patients with pathologically confirmed MHCC beyond the Milan criteria. FIELD STRENGTH/SEQUENCE The 1.5 T scanner, including T1-, T2-, diffusion-weighted imaging, in/out-phase imaging, and dynamic contrast-enhanced imaging. ASSESSMENT Conventional MRI features and preoperative laboratory data including aspartate aminotransferase (AST) and α-fetoprotein (AFP) were collected and analyzed. Two nomograms incorporating clinicoradiological variables were independently constructed to predict recurrence-free survival (RFS) and overall survival (OS) with Cox regression analyses and verified with 5-fold cross validation. Based on the nomograms, two prognostic stratification systems for RFS and OS were further developed. STATISTICAL TESTS The Cohen's kappa/intraclass correlation coefficient, C-index, calibration curve, Kaplan-Meier curve, log-rank test. A P value <0.05 was considered statistically significant. RESULTS AST > 40 U/L, increased tumor burden score, radiological liver cirrhosis and nonsmooth tumor margin were independent predictors for poor RFS, while AST > 40 U/L, AFP > 400 ng/mL and radiological liver cirrhosis were independent predictors for poor OS. The two nomograms demonstrated good discrimination performance with C-index of 0.653 (95% confidence interval [CI], 0.602-0.794) and 0.685 (95% CI, 0.623-0.747) for RFS and OS, respectively. The 5-fold cross validation further validated the discrimination capability of the nomograms. Based on the nomogram models, MHCC patients beyond the Milan criteria were stratified into low-/medium-/high-risk groups with significantly different RFS and OS. DATA CONCLUSION The proposed MRI-based prognostic stratification system facilitates the refinement and further subclassification of patients with MHCC beyond the Milan criteria. EVIDENCE LEVEL 4. TECHNICAL EFFICACY 2.
Collapse
Affiliation(s)
- Fei Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Ni
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changwu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Peng Huang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyao Xiao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
10
|
Liu MR, Shi C, Song QY, Kang MJ, Jiang X, Liu H, Pei DS. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma. Hepatol Commun 2023; 7:e0246. [PMID: 37695069 PMCID: PMC10497252 DOI: 10.1097/hc9.0000000000000246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Ferroptosis is a unique form of regulated cell death that provided a new opportunity for cancer therapy. Ferroptosis suppressor protein 1 (FSP1) is a key regulator in the NAD(P)H/FSP1/CoQ10 antioxidant system, which sever as an oxide redox enzyme to scavenge harmful lipid hydroperoxides and escape from ferroptosis in cells. This study aimed to investigate the role of FSP1 on sorafenib-induced ferroptosis and disclosed the underlying mechanisms. METHODS Cell viability, malondialdehyde (MDA), glutathione (GSH), and lipid reactive oxygen species levels were assessed using indicated assay kits. The levels of FSP1 and glutathione peroxidase 4 (GPX4) in the patients with HCC were analyzed based on the database. Western blot and quantitative real-time PCR were performed to detect the protein and mRNA expression. Co-immunoprecipitation was applied to detect the interaction between proteins. Tumor xenograft experiments were used to evaluate whether overexpression of FSP1-inhibited sorafenib-induced ferroptosis in vivo. RESULTS We verified that sorafenib-induced ferroptosis in HCC. Furthermore, we found that sorafenib decreased the protein level of FSP1, and knockdown FSP1 rendered HCC cells susceptible to sorafenib-induced ferroptosis. Co-immunoprecipitation and ubiquitination assays showed that sorafenib accelerated the TRIM54-mediated FSP1 ubiquitination and degradation. Sorafenib-induced ferroptosis was abrogated by TRIM54 suppression. Mechanically, sorafenib-promoted TRIM54 ubiquitinated and degraded FSP1 by means of the ERK pathway. Moreover, FSP1 enhanced tumor development and decreased HCC cellular susceptibility to sorafenib in vivo. CONCLUSIONS Sorafenib facilitated the TRIM54-mediated FSP1 ubiquitination through the ERK pathway, thereby inducing ferroptosis in HCC cells.
Collapse
Affiliation(s)
- Man-ru Liu
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- Department of Human Anatomy, Nanchang University Fuzhou Medical College, Fuzhou, China
| | - Ce Shi
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Qiu-ya Song
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Meng-jie Kang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Xin Jiang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Hui Liu
- Department of Ultrasound Medicine, Suqian First Hospital, Suqian, China
| | - Dong-sheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Tan X, Liu C, Sun L. Association between CTLA4 + 49A/G polymorphism and risk of hepatocellular carcinoma: a systematic review and meta-analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:302-315. [PMID: 37679967 DOI: 10.1080/15257770.2023.2255626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
The aim of this systematic review and meta-analysis was to compile the data examining the association between the CTLA4 + 49 A/G polymorphism and the risk for HCC. Multiple databases were systematically searched for eligible studies and the pooled odds ratios (ORs) were generated using five genetic models. Pooled data from 11 studies with 3,055 HCC patients and 3,450 controls found no statistically significant association between the polymorphism and HCC risk, both overall and in subgroup analyses. In conclusion, the current meta-analysis shows that the CTLA4 + 49 A/G polymorphism is not significantly associated with the risk of developing HCC.
Collapse
Affiliation(s)
- Xiujuan Tan
- Department of Intervention Chemotherapy, Zibo First Hospital, Zibo, China
| | - Chunfeng Liu
- Department of Intervention Chemotherapy, Zibo First Hospital, Zibo, China
| | | |
Collapse
|
12
|
El-Fakharany EM, Ashry M, Abu-Serie MM, Abdel-Wahhab KG, El-Sahra DG, El-Gendi H. In Vitro and In Vivo Synergistic Antitumor Activity of Albumin-Coated Oleic Acid-Loaded Liposomes toward Hepatocellular Carcinoma. Cancer Invest 2023; 41:621-639. [PMID: 37486094 DOI: 10.1080/07357907.2023.2241083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers, closely associated with cirrhosis and fibrosis. This study aimed to assess the antitumor activity of oleic acid-liposomes (uncoated liposomes) upon coating with albumin against HCC. The in vitro studies revealed the high safety of the prepared uncoated and albumin-coated liposomes to normal HFB-4 cells (EC100 of 35.57 ± 0.17 and 79.133 ± 2.92 µM, respectively) with significant anticancer activity against HepG-2 cells with IC50 of 56.29 ± 0.91 and 26.74 ± 0.64 µM, respectively. The albumin-coated liposomes revealed superior apoptosis induction potential (80.7%) with significant upregulation of p53 gene expression (> 7.0-fold), compared to OA. The in vivo study revealed that the administration of uncoated or albumin-coated liposomes (100 mg/kg) for six weeks markedly retarded the DENA-induced HCC in Wistar albino rates through regulating the liver enzymes, total bilirubin level, pro-inflammatory cytokines, and oxidative stress. Accordingly, the current study supports the in vitro and in vivo chemo-preventive feature of albumin-coated liposomes against HCC through modulation of apoptosis, improvement of the immune response, reduction of inflammation, and restoration of impaired oxidative stress, which is the first reported to the best of our knowledge.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), New Borg El-Arab City, Alexandria, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, Alexandria, Egypt
| | | | - Doaa Galal El-Sahra
- Medical Surgical Nursing Department, Faculty of Nursing, Modern University for Technology and Information, Cairo, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, Egypt
| |
Collapse
|
13
|
Wang Z, Jiang X, Zhang L, Chen H. Protective effects of Althaea officinalis L. extract against N-diethylnitrosamine-induced hepatocellular carcinoma in male Wistar rats through antioxidative, anti-inflammatory, mitochondrial apoptosis and PI3K/Akt/mTOR signaling pathways. Food Sci Nutr 2023; 11:4756-4772. [PMID: 37576045 PMCID: PMC10420783 DOI: 10.1002/fsn3.3455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma is the fourth cause of death due to cancer and includes 90% of liver tumors. Therefore, in this study, it was tried to show that Althaea officinalis L. flower extract (ALOF) can protect hepatocytes against N-diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Totally, 70 Wistar rats were divided into seven groups (n = 10/group) of sham, DEN, treatment with silymarin (SIL; DEN + SIL), treatment with ALOF (DEN + 250 and 500 ALOF), and cotreatment with SIL and ALOF (DEN + SIL + 250 and 500 ALOF). At the end of the study, the serum levels of liver indices (albumin, total protein, bilirubin, C-reactive protein, ALT, AST, and ALP), inflammatory cytokines (IL-6, IL-1β, IL-10, and TNF-α), and oxidants parameters (glutathione peroxidase [GPx], superoxide dismutase [SOD], catalase [CAT] activity along with nitric oxide [NO] levels) were evaluated. The level of Bax, Bcl-2, Caspase-3, p53, PI3K, mTOR, and AKT genes were measured. ALOF in cotreatment with SIL was able to regulate liver biochemical parameters, improve serum antioxidant indices, and decrease the level of proinflammatory cytokines significantly (p < .05). ALOF extract in both doses of 250 and 500 mg/kg in cotreatment with SIL caused a significant (p < .05) decrease in the p53-positive cells and a significant (p < .05) increase in Bcl-2-positive cells. Therefore, ALOF was able to modulate the proliferation of cancer cells and protect normal cells through the regulation of Bax/Bcl-2/p53 and PI3K/Akt/mTOR signaling pathways. It seems that ALOF can be used as a prodrug or complementary treatment in the protection of hepatocytes in induced damages caused by carcinogens.
Collapse
Affiliation(s)
- Zhenqian Wang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Xiao Jiang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Long Zhang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Han Chen
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| |
Collapse
|
14
|
Gu Z, Wang L, Dong Q, Xu K, Ye J, Shao X, Yang S, Lu C, Chang C, Hou Y, Zhai Y, Wang X, He F, Sun A. Aberrant LYZ expression in tumor cells serves as the potential biomarker and target for HCC and promotes tumor progression via csGRP78. Proc Natl Acad Sci U S A 2023; 120:e2215744120. [PMID: 37428911 PMCID: PMC10629575 DOI: 10.1073/pnas.2215744120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) takes the predominant malignancy of hepatocytes with bleak outcomes owing to high heterogeneity among patients. Personalized treatments based on molecular profiles will better improve patients' prognosis. Lysozyme (LYZ), a secretory protein with antibacterial function generally expressed in monocytes/macrophages, has been observed for the prognostic implications in different types of tumors. However, studies about the explicit applicative scenarios and mechanisms for tumor progression are still quite limited, especially for HCC. Here, based on the proteomic molecular classification data of early-stage HCC, we revealed that the LYZ level was elevated significantly in the most malignant HCC subtype and could serve as an independent prognostic predictor for HCC patients. Molecular profiles of LYZ-high HCCs were typical of those for the most malignant HCC subtype, with impaired metabolism, along with promoted proliferation and metastasis characteristics. Further studies demonstrated that LYZ tended to be aberrantly expressed in poorly differentiated HCC cells, which was regulated by STAT3 activation. LYZ promoted HCC proliferation and migration in both autocrine and paracrine manners independent of the muramidase activity through the activation of downstream protumoral signaling pathways via cell surface GRP78. Subcutaneous and orthotopic xenograft tumor models indicated that targeting LYZ inhibited HCC growth markedly in NOD/SCID mice. These results propose LYZ as a prognostic biomarker and therapeutic target for the subclass of HCC with an aggressive phenotype.
Collapse
Affiliation(s)
- Zhiwen Gu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Qian Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Jingnan Ye
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Songpeng Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Cuixiu Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
| | - Yuanjun Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Xinxin Wang
- Department of Pathology, Beijing You’an Hospital, Capital Medical University, Beijing100069, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing102206, China
- Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing102206, China
| |
Collapse
|
15
|
Gielen AHC, Samarska I, Den Dulk M, Beckervordersandforth J, Dejong KHC, Bouwense SAW, Dewulf M. Osteoclast-like giant cells in hepatocellular carcinoma case description and review of the literature. Acta Chir Belg 2023; 123:178-184. [PMID: 34110978 DOI: 10.1080/00015458.2021.1940443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND The presence of osteoclast-like giant cells (OGC) in hepatocellular carcinoma (HCC) is rare and literature on this topic is scarce. In this article, we report on a case of a 77-year-old male patient with HCC with OGC and provide an overview of the current literature. METHODS We conducted a systematic search to find all available literature on OGC in HCC. The electronic databases PubMed, Web of Science, Embase and CENTRAL were searched from inception until October 2020. RESULTS Thirteen articles on this topic were identified and were included in this review. Data on 14 patients were available, described in twelve case reports, one patient in a patient series and the present case. Median age of included patients was 68 years. Two patients underwent neoadjuvant therapy prior to surgery. Of the 14 cases, eight tumours with OGC arose in a cirrhotic liver. Oncological outcome in this series was unfavourable, even after surgical resection, with a median disease-free survival of 75 d. CONCLUSIONS The presence of OGC in HCC is rare. Current literature is scarce, and suggests an unfavourable outcome in regard to overall survival of HCC.
Collapse
Affiliation(s)
- Anke H C Gielen
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Iryna Samarska
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marcel Den Dulk
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Kees H C Dejong
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Surgery, Universitätsklinikum Aachen, Aachen, Germany
| | - Stefan A W Bouwense
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maxime Dewulf
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Surgery, AZ Maria Middelares, Gent, Belgium
| |
Collapse
|
16
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
17
|
Genomic landscape of Chinese patients with hepatocellular carcinoma using next-generation sequencing and its association with the prognosis. Ann Hepatol 2023; 28:100898. [PMID: 36634747 DOI: 10.1016/j.aohep.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION AND OBJECTIVES The occurrence of hepatocellular carcinoma (HCC) is not entirely clear at present. This study comprehensively described the landscape of genetic aberrations in Chinese HCC patients using next-generation sequencing (NGS) and investigated the association of genetic aberrations with clinicopathological characteristics and prognosis. MATERIALS AND METHODS The clinicopathological data of 78 HCC patients undergoing surgery were retrospectively analyzed. The genomic DNA extracted from tumor samples was detected using a NGS-based gene panel. RESULTS Mutations in TP53 (55%), TERT (37%), MUC16 (29%) and CTNNB1 (27%) were most common in HCC. The co-occurrences between frequently mutated genes occurring ≥10% were relatively common in HCC. Forty-eight (61.5%) cases harbored DNA damage repair gene mutations, mainly including PRKDC (11.5%), SLX4 (9.0%), ATM (7.7%), MSH6 (7.7%), and PTEN (6.4%), and 39 (50.0%) patients had at least one actionable mutation. FH amplification (odds ratio: 3.752, 95% confidence interval: 1.170-12.028, p=0.026) and RB1 mutations (odds ratio: 13.185, 95% confidence interval: 1.214-143.198, p=0.034) were identified as the independent risk factors for early postoperative recurrence in HCC. CONCLUSIONS Our study provides a novel insight into the genomic profiling of Chinese HCC patients. FH amplification and RB1 mutations may be associated with an increased risk of early postoperative recurrence in HCC.
Collapse
|
18
|
Toh MR, Wong EYT, Wong SH, Ng AWT, Loo LH, Chow PKH, Ngeow JYY. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology 2023; 164:766-782. [PMID: 36738977 DOI: 10.1053/j.gastro.2023.01.033] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cancers worldwide. Classically, HCC develops in genetically susceptible individuals who are exposed to risk factors, especially in the presence of liver cirrhosis. Significant temporal and geographic variations exist for HCC and its etiologies. Over time, the burden of HCC has shifted from the low-moderate to the high sociodemographic index regions, reflecting the transition from viral to nonviral causes. Geographically, the hepatitis viruses predominate as the causes of HCC in Asia and Africa. Although there are genetic conditions that confer increased risk for HCC, these diagnoses are rarely recognized outside North America and Europe. In this review, we will evaluate the epidemiologic trends and risk factors of HCC, and discuss the genetics of HCC, including monogenic diseases, single-nucleotide polymorphisms, gut microbiome, and somatic mutations.
Collapse
Affiliation(s)
- Ming Ren Toh
- Cancer Genetics Service, National Cancer Centre Singapore, Singapore
| | | | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Alvin Wei Tian Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute, Agency for Science, Technology, and Research (A∗STAR), Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, National Cancer Center Singapore and Singapore General Hospital, Singapore; Duke-NUS Medical School Singapore, Singapore
| | - Joanne Yuen Yie Ngeow
- Cancer Genetics Service, National Cancer Centre Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Duke-NUS Medical School Singapore, Singapore.
| |
Collapse
|
19
|
Campani C, Zucman-Rossi J, Nault JC. Genetics of Hepatocellular Carcinoma: From Tumor to Circulating DNA. Cancers (Basel) 2023; 15:cancers15030817. [PMID: 36765775 PMCID: PMC9913369 DOI: 10.3390/cancers15030817] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary hepatic malignancies and is one of the major causes of cancer-related death. Over the last 15 years, the molecular landscape of HCC has been deciphered, with the identification of the main driver genes of liver carcinogenesis that belong to six major biological pathways, such as telomere maintenance, Wnt/b-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase. The combination of genetic and transcriptomic data composed various HCC subclasses strongly related to risk factors, pathological features and prognosis. However, translation into clinical practice is not achieved, mainly because the most frequently mutated genes are undruggable. Moreover, the results derived from the analysis of a single tissue sample may not adequately catch the intra- and intertumor heterogeneity. The analysis of circulating tumor DNA (ctDNA) is broadly developed in other types of cancer for early diagnosis, prognosis and monitoring under systemic treatment in order to identify primary and secondary mechanisms of resistance. The aim of this review is to describe recent data about the HCC molecular landscape and to discuss how ctDNA could be used in the future for HCC detection and management.
Collapse
Affiliation(s)
- Claudia Campani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Hôpital Européen Georges Pompidou, APHP, 75015 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Liver Unit, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, 93000 Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris Nord, 93000 Bobigny, France
- Correspondence: ; Tel.: +33-6-1067-9461
| |
Collapse
|
20
|
Zhu J, Kuang J, Yang Y, Zhang L, Leng B, She R, Zou L. A Prognostic Model Based on NSUN3 Was Established to Evaluate the Prognosis and Response to Immunotherapy in Liver Hepatocellular Carcinoma. Mediators Inflamm 2023; 2023:6645476. [PMID: 37114236 PMCID: PMC10129436 DOI: 10.1155/2023/6645476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
It is difficult for traditional therapies to further improve the prognosis of hepatocellular carcinoma (LIHC), and immunotherapy is considered to be a promising approach to overcome this dilemma. However, only a minority of patients benefit from immunotherapy, which greatly limits its application. Therefore, it is particularly urgent to elucidate the specific regulatory mechanism of tumor immunity so as to provide a new direction for immunotherapy. NOP2/Sun RNA methyltransferase 3 (NSUN3) is a protein with RNA binding and methyltransferase activity, which has been shown to be involved in the occurrence and development of a variety of tumors. At present, the relationship between NSUN3 and immune implication in LIHC has not been reported. In this study, we first revealed that NSUN3 expression is upregulated in LIHC and that patients with high NSUN3 expression have a poor prognosis through multiple databases. Pathway enrichment analysis demonstrated that NSUN3 may be participated in cell adhesion and cell matrix remodeling. Next, we obtained a set of genes coexpressed with NSUN3 (NCGs). Further LASSO regression was performed based on NCGs, and a risk score model was constructed, which proved to have good predictive power. In addition, Cox regression analysis revealed that the risk score of NCGs model was an independent risk factor for LIHC patients. Moreover, we established a nomogram based on the NCGs-related model, which was verified to have a good predictive ability for the prognosis of LIHC. Furthermore, we investigated the relationship between NCGs-related model and immune implication. The results implied that our model was closely related to immune score, immune cell infiltration, immunotherapy response, and multiple immune checkpoints. Finally, the pathway enrichment analysis of NCGs-related model showed that the model may be involved in the regulation of various immune pathways. In conclusion, our study revealed a novel role of NSUN3 in LIHC. The NSUN3-based prognostic model may be a promising biomarker for inspecting the prognosis and immunotherapy response of LIHC.
Collapse
Affiliation(s)
- Jianlin Zhu
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Junxi Kuang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, China
- Department of Emergency, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Yi Yang
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Lei Zhang
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Bo Leng
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Risheng She
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
- Department of Emergency, The Tenth Affiliated Hospital of Southern Medical University, China
| | - Ling Zou
- Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University, China
- Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University, China
| |
Collapse
|
21
|
Chen W, Chen F, Gong M, Jin Z, Shu L, Wang ZW, Wang J. Comprehensive analysis of lncRNA-mediated ceRNA networkfor hepatocellular carcinoma. Front Oncol 2022; 12:1042928. [PMID: 36338699 PMCID: PMC9634570 DOI: 10.3389/fonc.2022.1042928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a high-burden cancer. The molecular mechanism of HCC has not been fully elucidated. Notably, current research has revealed a significant function for long non-coding RNAs (lncRNAs) in the prognosis of patients with HCC. Here, this study aims to construct a regulated lncRNA-mediated ceRNA network and find biological targets for the treatment of HCC. Methods Based on the RNA expression patterns from the TCGA, we did an analysis to determine which genes were expressed differently between liver tumor tissues and noncancerous tissues. Then, using bioinformatic tools, we built a lncRNA-miRNA-mRNA ceRNA network and used GO and KEGG functional analyses on the DEmRNAs connected to ceRNA networks. The main lncRNAs in the subnetwork were chosen, and we next looked at the relationships between these lncRNAs and the clinical characteristics of patients with HCC. The prognosis-related genes and immune cells were identified using Kaplan-Meier and Cox proportional hazard analyses, and CIBERSORT was utilized to separate the 22 immune cell types. CCK8 assay was performed to measure cell viability in HCC cells after lncRNA HOTTIP modulation. Results Differentially expressed mRNA and lncRNAs in HCC and paracancerous tissues were identified. There are 245 lncRNAs, 126 miRNAs, and 1980 mRNAs that are expressed differently in liver tumour tissues than in noncancerous cells. Function analysis showed that mRNAs in ceRNA network were significantly enriched in G1/S transition of mototiv cell cycle, positive regulation of cell cycle process, hepatocellular carcinoma, and cancer related pathways. CD8 T cells and T follicular helper cells had a favourable link with a 0.65 correlation coefficient. Additionally, there was a strong correlation between Eosinophils, activated NK cells, and B memory cells. Strikingly, depletion of lncRNA HOTTIP inhibited viability of HCC cells. In addition, miR-205 upregulation suppressed viability of HCC cells, while miR-205 downregulation repressed viability of HCC cells. Notably, miR-205 depletion rescued HOTTIP depletion-mediated suppression of cell viability in HCC. Conclusion A ceRNA network was created by examining the lncRNA, miRNA, and mRNA expression profiles of liver tumours from the TCGA database. LncRNA HOTTIP promoted cell viability via inhibition of miR-205 in HCC cells.
Collapse
Affiliation(s)
- Weiqing Chen
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Feihua Chen
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mouchun Gong
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhaoqing Jin
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Zhi-wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianjiang Wang, ; Zhi-wei Wang,
| | - Jianjiang Wang
- First People’s Hospital of Hangzhou Lin’an District, Affiliated Lin’an People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jianjiang Wang, ; Zhi-wei Wang,
| |
Collapse
|
22
|
Goyal P, Salem R, Mouli SK. Role of interventional oncology in hepatocellular carcinoma: Future best practice beyond current guidelines. Br J Radiol 2022; 95:20220379. [PMID: 35867889 PMCID: PMC9815732 DOI: 10.1259/bjr.20220379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally. Liver transplant remains the goal of curative treatment, but limited supply of organs decreases accessibility and prolongs waiting time to transplantation. Therefore, interventional oncology therapies have been used to treat the majority of HCC patients, including those awaiting transplant. The Barcelona Clinic Liver Cancer (BCLC) classification is the most widely used staging system in management of HCC that helps allocate treatments. Since its inception in 1999, it was updated for the fifth time in November 2021 and for the first time shaped by expert opinions outside the core BCLC group. The most recent version includes additional options for early-stage disease, substratifies intermediate disease into three groups, and lists alternates to Sorafenib that can double the expected survival of advanced-stage disease. The group also proposed a new BCLC staging schema for disease progression, and endorsed treatment stage migration (TSM) directly into the main staging and treatment algorithm. This article reviews the recent developments underlying the current BCLC guidelines and highlights ongoing research, particularly involving radioembolization, that will shape future best practice.
Collapse
Affiliation(s)
- Piyush Goyal
- Department of Radiology, Section of Interventional Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States
| | - Riad Salem
- Department of Radiology, Section of Interventional Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States
| | - Samdeep K. Mouli
- Department of Radiology, Section of Interventional Radiology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
23
|
Prognostic Significance of CCDC137 Expression and Its Association with Immune Infiltration in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:5638675. [PMID: 36061359 PMCID: PMC9433253 DOI: 10.1155/2022/5638675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Globally, hepatocellular carcinoma (HCC) is one of the most common causes of cancer-associated mortalities. The clinical outcome of HCC patients remains poor due to distant metastasis and recurrence. In recent years, growing evidences have confirmed that the coiled-coil domain-containing (CCDC) family proteins are involved in the progression of several diseases. However, the expression and clinical significance of the coiled-coil domain-containing 137 (CCDC137) in hepatocellular carcinoma (HCC) have not been investigated. Level 3 mRNA expression profiles and clinicopathological data were obtained in TCGA-LIHC. Differentially expressed genes (DEGs) were screened between 371 HCC and 50 nontumor specimens. The prognostic value of CCDC137 was analyzed in HCC patients. The correlations between CCDC137 and cancer immune infiltrates were investigated. In this study, a total of 2897 DEGs were obtained: 2451 genes were significantly upregulated and 446 genes were significantly downregulated. KEGG assays revealed that these DEGs were involved in tumor progression. Among 2897 DEGs, we found that CCDC137 expression was distinctly increased in HCC specimens compared with nontumor specimens. A high level of CCDC137 expression was related to an advanced tumor stage and grade. Moreover, patients with higher levels of CCDC137 expression had a shorter overall survival and disease-free survival than patients with lower CCDC137 levels. CCDC137 expression was positively correlated with infiltrating levels of several immune cells, such as CD8 T cells and Th2 cells. Finally, in vitro experiments confirmed that CCDC137 expression was highly expressed in HCC cells, and its knockdown suppressed the proliferation of HCC cells. Taken together, our findings revealed that CCDC137 might be used as a biomarker for immune infiltration and poor prognosis in HCC, which offered fresh insight on potential therapies for HCC.
Collapse
|
24
|
Zhang CH, Cheng Y, Zhang S, Fan J, Gao Q. Changing epidemiology of hepatocellular carcinoma in Asia. Liver Int 2022; 42:2029-2041. [PMID: 35319165 DOI: 10.1111/liv.15251] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 03/19/2022] [Indexed: 12/24/2022]
Abstract
Liver cancer is the fifth most common cancer and the second leading cause of malignant death in Asia, and Asia reports 72.5% of the world's cases in 2020. As the most common histological type, hepatocellular carcinoma (HCC) accounts for the majority of incidence and mortality of liver cancer cases. This review presents the changing epidemiology of HCC in Asian countries in recent years. Globally, aged, male and Asian populations remain the group with the highest risk of HCC. Hepatitis B virus (HBV) and hepatitis C virus (HCV) are still the leading risk factors of HCC with a slight decline in most Asian countries, which is mainly attributed to HBV vaccination of newborns, prevention of HCV horizontal transmission and treatment of chronic hepatitis. However, the prevalence of HCC caused by metabolic factors, including metabolic syndrome, obesity and non-alcoholic fatty liver diseases, is increasing rapidly in Asian countries, which may eventually become the major cause of HCC. Excessive alcohol consumption continues to be an important risk factor as the average consumption of alcohol is still growing. Hopefully, great effort has been made to better prevention and treatment of HCC in most Asian regions, which significantly prolongs the survival of HCC patients. Asian countries tend to use more aggressive intervention than European and American countries, but it remains unclear whether this preference is related to a better prognosis. In conclusion, HCC remains a major disease burden in Asia, and the management of HCC should be adjusted dynamically based on the changing epidemiology.
Collapse
Affiliation(s)
- Chen-Hao Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yifei Cheng
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Whyte SS, Karns R, Min K, Cho J, Lee S, Lake C, Bondoc A, Yoon J, Shin S. Integrated analysis using ToppMiR uncovers altered miRNA- mRNA regulatory networks in pediatric hepatocellular carcinoma-A pilot study. Cancer Rep (Hoboken) 2022; 6:e1685. [PMID: 35859536 PMCID: PMC9875636 DOI: 10.1002/cnr2.1685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pediatric hepatocellular carcinoma (HCC) is a group of liver cancers whose mechanisms behind their pathogenesis and progression are poorly understood. AIM We aimed to identify alterations in the expression of miRNAs and their putative target mRNAs in not only tumor tissues of patients with pediatric HCC but also in corresponding non-tumorous background livers by using liver tissues without underlying liver disease as a control. METHODS AND RESULTS We performed a small-scale miRNA and mRNA profiling of pediatric HCC (consisting of fibrolamellar carcinoma [FLC] and non-FLC HCC) and paired liver tissues to identify miRNAs whose expression levels differed significantly from control livers without underlying liver disease. ToppMiR was used to prioritize both miRNAs and their putative target mRNAs in a gene-annotation network, and the mRNA profile was used to refine the prioritization. Our analysis generated prioritized lists of miRNAs and mRNAs from the following three sets of analyses: (a) pediatric HCC versus control; (b) FLC versus control; and (c) corresponding non-tumorous background liver tissues from the same patients with pediatric HCC versus control. No liver disease liver tissues were used as the control group for all analyses. Many miRNAs whose expressions were deregulated in pediatric HCC were consistent with their roles in adult HCC and/or other non-hepatic cancers. Our gene ontology analysis of target mRNAs revealed enrichment of biological processes related to the sustenance and propagation of cancer and significant downregulation of metabolic processes. CONCLUSION Our pilot study indicates that alterations in miRNA-mRNA networks were detected in not only tumor tissues but also corresponding non-tumorous liver tissues from patients with pediatric HCC, suggesting multi-faceted roles of miRNAs in disease progression. Our results may lead to novel hypotheses for future large-scale studies.
Collapse
Affiliation(s)
- Senyo S. Whyte
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology & NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kyung‐Won Min
- Department of BiologyGangneung‐Wonju National UniversityGangneungRepublic of Korea
| | - Jung‐Hyun Cho
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Sanghoon Lee
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charissa Lake
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA,Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Je‐Hyun Yoon
- Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Soona Shin
- Division of Pediatric General and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA,Department of SurgeryUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
26
|
Vishnoi K, Ke R, Viswakarma N, Srivastava P, Kumar S, Das S, Singh SK, Principe DR, Rana A, Rana B. Ets1 mediates sorafenib resistance by regulating mitochondrial ROS pathway in hepatocellular carcinoma. Cell Death Dis 2022; 13:581. [PMID: 35789155 PMCID: PMC9253325 DOI: 10.1038/s41419-022-05022-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/21/2023]
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) are on a rise in the Western countries including US, attributed mostly to late detection. Sorafenib has been the first-line FDA-approved drug for advanced unresectable HCC for almost a decade, but with limited efficacy due to the development of resistance. More recently, several other multi-kinase inhibitors (lenvatinib, cabozantinib, regorafenib), human monoclonal antibody (ramucirumab), and immune checkpoint inhibitors (nivolumab, pembrolizumab) have been approved as systemic therapies. Despite this, the median survival of patients is not significantly increased. Understanding of the molecular mechanism(s) that govern HCC resistance is critically needed to increase efficacy of current drugs and to develop more efficacious ones in the future. Our studies with sorafenib-resistant (soraR) HCC cells using transcription factor RT2 Profiler PCR Arrays revealed an increase in E26 transformation-specific-1 (Ets-1) transcription factor in all soraR cells. HCC TMA studies showed an increase in Ets-1 expression in advanced HCC compared to the normal livers. Overexpression or knocking down Ets-1 modulated sorafenib resistance-related epithelial-mesenchymal transition (EMT), migration, and cell survival. In addition, the soraR cells showed a significant reduction of mitochondrial damage and mitochondrial reactive oxygen species (mROS) generation, which were antagonized by knocking down Ets-1 expression. More in-depth analysis identified GPX-2 as a downstream mediator of Ets-1-induced sorafenib resistance, which was down-regulated by Ets-1 knockdown while other antioxidant pathway genes were not affected. Interestingly, knocking down GPX2 expression significantly increased sorafenib sensitivity in the soraR cells. Our studies indicate the activation of a novel Ets-1-GPX2 signaling axis in soraR cells, targeting which might successfully antagonize resistance and increase efficacy.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Rong Ke
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Navin Viswakarma
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Piush Srivastava
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Sandeep Kumar
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Subhasis Das
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Sunil Kumar Singh
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Daniel R. Principe
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Ajay Rana
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Basabi Rana
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
27
|
Papadakos SP, Dedes N, Kouroumalis E, Theocharis S. The Role of the NLRP3 Inflammasome in HCC Carcinogenesis and Treatment: Harnessing Innate Immunity. Cancers (Basel) 2022; 14:3150. [PMID: 35804922 PMCID: PMC9264914 DOI: 10.3390/cancers14133150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
The HCC constitutes one of the most frequent cancers, with a non-decreasing trend in disease mortality despite advances in systemic therapy and surgery. This trend is fueled by the rise of an obesity wave which is prominent the Western populations and has reshaped the etiologic landscape of HCC. Interest in the nucleotide-binding domain leucine-rich repeat containing (NLR) family member NLRP3 has recently been revived since it would appear that, by generating inflammasomes, it participates in several physiologic processes and its dysfunction leads to disease. The NLRP3 inflammasome has been studied in depth, and its influence in HCC pathogenesis has been extensively documented during the past quinquennial. Since inflammation comprises a major regulator of carcinogenesis, it is of paramount importance an attempt to evaluate the contribution of the NLRP3 inflammasome to the generation and management of HCC. The aim of this review was to examine the literature in order to determine the impact of the NLRP3 inflammasome on, and present a hypothesis about its input in, HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.)
| | - Nikolaos Dedes
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.)
| | - Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (N.D.)
| |
Collapse
|
28
|
Alvarez M, Benhammou JN, Darci-Maher N, French SW, Han SB, Sinsheimer JS, Agopian VG, Pisegna JR, Pajukanta P. Human liver single nucleus and single cell RNA sequencing identify a hepatocellular carcinoma-associated cell-type affecting survival. Genome Med 2022; 14:50. [PMID: 35581624 PMCID: PMC9115949 DOI: 10.1186/s13073-022-01055-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common primary liver cancer with poor overall survival. We hypothesized that there are HCC-associated cell-types that impact patient survival. METHODS We combined liver single nucleus (snRNA-seq), single cell (scRNA-seq), and bulk RNA-sequencing (RNA-seq) data to search for cell-type differences in HCC. To first identify cell-types in HCC, adjacent non-tumor tissue, and normal liver, we integrated single-cell level data from a healthy liver cohort (n = 9 non-HCC samples) collected in the Strasbourg University Hospital; an HCC cohort (n = 1 non-HCC, n = 14 HCC-tumor, and n = 14 adjacent non-tumor samples) collected in the Singapore General Hospital and National University; and another HCC cohort (n = 3 HCC-tumor and n = 3 adjacent non-tumor samples) collected in the Dumont-UCLA Liver Cancer Center. We then leveraged these single cell level data to decompose the cell-types in liver bulk RNA-seq data from HCC patients' tumor (n = 361) and adjacent non-tumor tissue (n = 49) from the Cancer Genome Atlas (TCGA) multi-center cohort. For replication, we decomposed 221 HCC and 209 adjacent non-tumor liver microarray samples from the Liver Cancer Institute (LCI) cohort collected by the Liver Cancer Institute and Zhongshan Hospital of Fudan University. RESULTS We discovered a tumor-associated proliferative cell-type, Prol (80.4% tumor cells), enriched for cell cycle and mitosis genes. In the liver bulk tissue from the TCGA cohort, the proportion of the Prol cell-type is significantly increased in HCC and associates with a worse overall survival. Independently from our decomposition analysis, we reciprocally show that Prol nuclei/cells significantly over-express both tumor-elevated and survival-decreasing genes obtained from the bulk tissue. Our replication analysis in the LCI cohort confirmed that an increased estimated proportion of the Prol cell-type in HCC is a significant marker for a shorter overall survival. Finally, we show that somatic mutations in the tumor suppressor genes TP53 and RB1 are linked to an increase of the Prol cell-type in HCC. CONCLUSIONS By integrating liver single cell, single nucleus, and bulk expression data from multiple cohorts we identified a proliferating cell-type (Prol) enriched in HCC tumors, associated with a decreased overall survival, and linked to TP53 and RB1 somatic mutations.
Collapse
Affiliation(s)
- Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jihane N Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Nicholas Darci-Maher
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Samuel W French
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Steven B Han
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Janet S Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, UCLA, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
| | - Vatche G Agopian
- Dumont-UCLA Transplant and Liver Cancer Centers, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joseph R Pisegna
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Kong W, Mao Z, Han C, Ding Z, Yuan Q, Zhang G, Li C, Wu X, Chen J, Guo M, Hong S, Yu F, Liu R, Wang X, Zhang J. A Novel Epithelial-Mesenchymal Transition Gene Signature Correlated With Prognosis, and Immune Infiltration in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:863750. [PMID: 35517787 PMCID: PMC9065556 DOI: 10.3389/fphar.2022.863750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Although many genes related to epithelial-mesenchymal transition (EMT) have been explored in hepatocellular carcinoma (HCC), their prognostic significance still needs further analysis. Methods: Differentially expressed EMT-related genes were obtained through the integrated analysis of 4 Gene expression omnibus (GEO) datasets. The univariate Cox regression and Lasso Cox regression models are utilized to determine the EMT-related gene signature. Based on the results of multivariate Cox regression, a predictive nomogram is established. Time-dependent ROC curve and calibration curve are used to show the distinguishing ability and consistency of the nomogram. Finally, we explored the correlation between EMT risk score and immune immunity. Results: We identified a nine EMT-related gene signature to predict the survival outcome of HCC patients. Based on the EMT risk score's median, HCC patients in each dataset were divided into high and low-risk groups. The survival outcomes of HCC patients in the high-risk group were significantly worse than those in the low-risk group. The prediction nomogram based on the EMT risk score has better distinguishing ability and consistency. High EMT risk score was related to immune infiltration. Conclusion: The nomogram based on the EMT risk score can reliably predict the survival outcome of HCC patients, thereby providing benefits for medical decisions.
Collapse
Affiliation(s)
- Weihao Kong
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongxiang Mao
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Han
- Registration Review Department, Anhui Center for Drug Evaluation & Inspection, Hefei, China
| | - Zhenxing Ding
- Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qianqian Yuan
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Gaosong Zhang
- Department Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chong Li
- Department Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuesheng Wu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Manyu Guo
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Shaocheng Hong
- The First Clinical Medical College of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Feng Yu
- Department of Emergency Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rongqiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingyu Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianlin Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Zhong X, Yu X, Chang H. Exploration of a Novel Prognostic Nomogram and Diagnostic Biomarkers Based on the Activity Variations of Hallmark Gene Sets in Hepatocellular Carcinoma. Front Oncol 2022; 12:830362. [PMID: 35359370 PMCID: PMC8960170 DOI: 10.3389/fonc.2022.830362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background The initiation and progression of tumors were due to variations of gene sets rather than individual genes. This study aimed to identify novel biomarkers based on gene set variation analysis (GSVA) in hepatocellular carcinoma. Methods The activities of 50 hallmark pathways were scored in three microarray datasets with paired samples with GSVA, and differential analysis was performed with the limma R package. Unsupervised clustering was conducted to determine subtypes with the ConsensusClusterPlus R package in the TCGA-LIHC (n = 329) and LIRI-JP (n = 232) cohorts. Differentially expressed genes among subtypes were identified as initial variables. Then, we used TCGA-LIHC as the training set and LIRI-JP as the validation set. A six-gene model calculating the risk scores of patients was integrated with the least absolute shrinkage and selection operator (LASSO) and stepwise regression analyses. Kaplan–Meier (KM) and receiver operating characteristic (ROC) curves were performed to assess predictive performances. Multivariate Cox regression analyses were implemented to select independent prognostic factors, and a prognostic nomogram was integrated. Moreover, the diagnostic values of six genes were explored with the ROC curves and immunohistochemistry. Results Patients could be separated into two subtypes with different prognoses in both cohorts based on the identified differential hallmark pathways. Six prognostic genes (ASF1A, CENPA, LDHA, PSMB2, SRPRB, UCK2) were included in the risk score signature, which was demonstrated to be an independent prognostic factor. A nomogram including 540 patients was further integrated and well-calibrated. ROC analyses in the five cohorts and immunohistochemistry experiments in solid tissues indicated that CENPA and UCK2 exhibited high and robust diagnostic values. Conclusions Our study explored a promising prognostic nomogram and diagnostic biomarkers in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiongdong Zhong
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xianchang Yu
- Department of Cardiothoracic Surgery, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Hao Chang
- Department of Protein Modification and Cancer Research, Hanyu Biomed Center Beijing, Beijing, China
| |
Collapse
|
31
|
Sun L, Zhang J, Wen K, Huang S, Li D, Xu Y, Wu J. The Prognostic Value of Lysine Acetylation Regulators in Hepatocellular Carcinoma. Front Mol Biosci 2022; 9:840412. [PMID: 35355509 PMCID: PMC8959434 DOI: 10.3389/fmolb.2022.840412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a tumor with high morbidity and mortality worldwide. lysine acetylation regulators (LARs) dynamically regulate Lysine acetylation modification which plays an important regulatory role in cancer. Therefore, we aimed to explore the potential clinical prognostic value of LARs in HCC. Methods: Differentially expressed LARs in normal liver and HCC tissues were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. To identify genes with prognostic value and establish the risk characteristics of LARs, consensus clustering was employed. We used univariate Cox regression survival analysis and LASSO Cox regression based on LARs to determine the independent prognostic signature of HCC. CIBERSORT and Gene Set Enrichment Analysis (GSEA) were used to estimate immune infiltration and functional enrichment analysis respectively. The expression of LAR was detected by Real-time quantitative polymerase chain reaction (RT-qPCR). statistical analyses were conducted using SPSS and R software. Results: In this study, the 33 LARs expression data and corresponding clinical information of HCC were obtained using TCGA and ICGC datasets. We found majority of the LARs were differentially expressed. Consensus cluster analysis was carried out based on the TCGA cohort, and three HCC subtypes (cluster 1, 2, and 3) were obtained. The LA3 subgroup had the worst clinical outcomes. Nine key LARs were identified to affect prognosis. The results showed that LARs signature has a strong independent prognostic value in HCC patients, whether in the training datasets or in the testing datasets. GSEA results showed that various tumor-related processes and pathways were abundant in the high-risk groups. RT-qPCR results showed that HAT1, HDAC1, HDAC2, HDAC4, and HDAC11 were highly expressed in HCC cells. Conclusion: Our results suggest that LARs play critical roles in HCC and are helpful for individual prognosis monitoring and clinical decision-making of HCC.
Collapse
Affiliation(s)
- Liying Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|
32
|
The Predictive Efficacy of Serum Exosomal microRNA-122 and microRNA-148a for Hepatocellular Carcinoma Based on Smart Healthcare. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5914541. [PMID: 35028121 PMCID: PMC8752226 DOI: 10.1155/2022/5914541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022]
Abstract
Objective Hepatocellular carcinoma (HCC) remains a devastating tumor globally. Serum exosomes are reliable biomarkers for tumors, including HCC. Hence, this study explored the efficacy and mechanism of serum exosomes in HCC. Methods microRNA (miR)-122 and miR-148a expressions in serum exosomes from HCC patients and healthy subjects and their predictive efficacy for HCC were detected. Correlation between serum exosomal miR-122/148a expressions with survival rate, clinical stage, lymph node metastasis, and tumor differentiation level and levels of HCC-related serum markers (CA199, FucAFP, ALD-A, and AFu) were detected. PAX2 staining intensity and expression in HCC were measured. PAX2 predictive efficacy for HCC and its correlation with clinical stage, lymph node metastasis, tumor differentiation level, and HCC-related serum marker levels were analyzed. The targeted binding relationship between miR-122 and miR-148a and PAX2 was predicted and verified. Results Serum exosomal miR-122 and miR-148a expressions were downregulated in HCC, showing potent predictive efficacy for HCC, which was negatively related to clinical stage and lymph node metastasis and positively related to tumor differentiation level, patient survival rate, and HCC-related serum marker levels. PAX2 showed increased staining intensity and expression in HCC, together with high predictive efficacy for HCC. PAX2 expression showed a positive correlation with clinical stage and lymph node metastasis and a negative correlation with tumor differentiation level and HCC-related serum marker levels. miR-122 and miR-148a conjointly targeted PAX2 in HCC. Conclusion We demonstrated that serum exosomal miR-122 and miR-148a played a predictive role and were linked to prognosis in HCC via interactions with PAX2.
Collapse
|
33
|
Zou C, El Dika I, Vercauteren KOA, Capanu M, Chou J, Shia J, Pilet J, Quirk C, Lalazar G, Andrus L, Kabbani M, Yaqubie A, Khalil D, Mergoub T, Chiriboga L, Rice CM, Abou‐Alfa GK, de Jong YP. Mouse characteristics that affect establishing xenografts from hepatocellular carcinoma patient biopsies in the United States. Cancer Med 2021; 11:602-617. [PMID: 34951132 PMCID: PMC8817074 DOI: 10.1002/cam4.4375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Chenhui Zou
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Imane El Dika
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Koen O. A. Vercauteren
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Joanne Chou
- Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jinru Shia
- Department of Pathology Memorial Sloan Kettering Cancer Center New York New York USA
| | - Jill Pilet
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Cellular Biophysics The Rockefeller University New York New York USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Mohammad Kabbani
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Amin Yaqubie
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| | - Danny Khalil
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Taha Mergoub
- Memorial Sloan Kettering Cancer Center Sloan Kettering Institute New York New York USA
| | - Luis Chiriboga
- Department of Pathology Center for Biospecimen Research and Development NYU Langone Health New York New York USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| | - Ghassan K. Abou‐Alfa
- Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
- Department of Medicine Weill Medical College at Cornell University New York New York USA
| | - Ype P. de Jong
- Division of Gastroenterology and Hepatology Weill Medical College at Cornell University New York New York USA
- Laboratory of Virology and Infectious Disease The Rockefeller University New York New York USA
| |
Collapse
|
34
|
Common genetic variation in alcohol-related hepatocellular carcinoma: a case-control genome-wide association study. Lancet Oncol 2021; 23:161-171. [PMID: 34902334 DOI: 10.1016/s1470-2045(21)00603-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma is a frequent consequence of alcohol-related liver disease, with variable incidence among heavy drinkers. We did a genome-wide association study (GWAS) to identify common genetic variants for alcohol-related hepatocellular carcinoma. METHODS We conducted a two-stage case-control GWAS in a discovery cohort of 2107 unrelated European patients with alcohol-related liver disease aged 20-92 years recruited between Oct 22, 1993, and March 12, 2017. Cases were patients with alcohol-related hepatocellular carcinoma diagnosed by imaging or histology. Controls were patients with alcohol-related liver disease without hepatocellular carcinoma. We used an additive logistic regression model adjusted for the first ten principal components to assess genetic variants associated with alcohol-related hepatocellular carcinoma. We did another analysis with adjustment for age, sex, and liver fibrosis. New candidate associations (p<1 × 10-6) and variants previously associated with alcohol-related hepatocellular carcinoma were evaluated in a validation cohort of 1933 patients with alcohol-related liver disease aged 29-92 years recruited between July 21, 1995, and May 2, 2019. We did a meta-analysis of the two case-control cohorts. FINDINGS The discovery cohort included 775 cases and 1332 controls. Of 7 962 325 variants assessed, we identified WNT3A-WNT9A (rs708113; p=1·11 × 10-8) and found support for previously reported regions associated with alcohol-related hepatocellular carcinoma risk at TM6SF2 (rs58542926; p=6·02 × 10-10), PNPLA3 (rs738409; p=9·29 × 10-7), and HSD17B13 (rs72613567; p=2·49 × 10-4). The validation cohort included 874 cases and 1059 controls and three variants were replicated: WNT3A-WNT9A (rs708113; p=1·17 × 10-3), TM6SF2 (rs58542926; p=4·06 × 10-5), and PNPLA3 (rs738409; p=1·17 × 10-4). All three variants reached GWAS significance in the meta-analysis: WNT3A-WNT9A (odds ratio 0·73, 95% CI 0·66-0·81; p=3·93 × 10-10), TM6SF2 (1·77, 1·52-2·07; p=3·84×10-13), PNPLA3 (1·34, 1·22-1·47; p=7·30 × 10-10). Adjustment for clinical covariates yielded similar results. We observed an additive effect of at-risk alleles on alcohol-related hepatocellular carcinoma. WNT3A-WNT9A rs708113 was not associated with liver fibrosis. INTERPRETATION WNT3A-WNT9A is a susceptibility locus for alcohol-related hepatocellular carcinoma, suggesting an early role of the Wnt-β-catenin pathway in alcohol-related hepatocellular carcinoma carcinogenesis. FUNDING Ligue Nationale contre le Cancer, Bpifrance, INSERM, AFEF, CARPEM, Labex OncoImmunology, and Agence Nationale de la Recherche.
Collapse
|
35
|
Yang S, Cheng Y, Wang X, Wei P, Wang H, Tan S. Identification of the Immune Cell Infiltration Landscape in Hepatocellular Carcinoma to Predict Prognosis and Guide Immunotherapy. Front Genet 2021; 12:777931. [PMID: 34899862 PMCID: PMC8657761 DOI: 10.3389/fgene.2021.777931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Globally, hepatocellular carcinoma (HCC) is the sixth most frequent malignancy with a high incidence and a poor prognosis. Immune cell infiltration (ICI) underlies both the carcinogenesis and immunogenicity of tumors. However, a comprehensive classification system based on the immune features for HCC remains unknown. Methods: The HCC dataset from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts was used in this study. The ICI patterns of 571 patients were characterized using two algorithms: the patterns were determined based on the ICI using the ConsensusClusterPlus package, and principal component analysis (PCA) established the ICI scores. Differences in the immune landscape, biological function, and somatic mutations across ICI scores were evaluated and compared, followed by a predictive efficacy evaluation of ICI scores for immunotherapy by the two algorithms and validation using an external immunotherapy cohort. Results: Based on the ICI profile of the HCC patients, three ICI patterns were identified, including three subtypes having different immunological features. Individual ICI scores were determined; the high ICI score subtype was characterized by enhanced activation of immune-related signaling pathways and a significantly high tumor mutation burden (TMB); concomitantly, diminished immunocompetence and enrichment of pathways associated with cell cycle and RNA degradation were found in the low ICI score subtype. Taken together, our results contribute to a better understanding of an active tumor and plausible reasons for its poor prognosis. Conclusion: The present study reveals that ICI scores may serve as valid prognostic biomarkers for immunotherapy in HCC.
Collapse
Affiliation(s)
- Shiyan Yang
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastroenterology, Huaian Hospital Affiliated to Xuzhou Medical University, Huaian, China
| | - Yajun Cheng
- Department of Gastroenterology, People's Hospital of Lianshui, Huaian, China
| | - Xiaolong Wang
- The Department of General Surgery, Tumor Hospital of Huaian, Huaian, China
| | - Ping Wei
- The Department of Ultrasound, Huaian Hospital Affiliated to Xuzhou Medical University, Huaian, China
| | - Hui Wang
- The Department of Rehabilitation Medicine, Huaian Hospital Affiliated to Xuzhou Medical University, Huaian, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
The Relevance of SOCS1 Methylation and Epigenetic Therapy in Diverse Cell Populations of Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11101825. [PMID: 34679523 PMCID: PMC8534387 DOI: 10.3390/diagnostics11101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
The suppressor of cytokine signaling 1 (SOCS1) is a tumor suppressor gene found to be hypermethylated in cancers. It is involved in the oncogenic transformation of cirrhotic liver tissues. Here, we investigated the clinical relevance of SOCS1 methylation and modulation upon epigenetic therapy in diverse cellular populations of hepatocellular carcinoma (HCC). HCC clinical specimens were evaluated for SOCS1 methylation and mRNA expression. The effect of 5-Azacytidine (5-AZA), a demethylation agent, was assessed in different subtypes of HCC cells. We demonstrated that the presence of SOCS1 methylation was significantly higher in HCC compared to peri-HCC and non-tumoral tissues (52% vs. 13% vs. 14%, respectively, p < 0.001). In vitro treatment with a non-toxic concentration of 5-AZA significantly reduced DNMT1 protein expression for stromal subtype lines (83%, 73%, and 79%, for HLE, HLF, and JHH6, respectively, p < 0.01) compared to cancer stem cell (CSC) lines (17% and 10%, for HepG2 and Huh7, respectively), with the strongest reduction in non-tumoral IHH cells (93%, p < 0.001). 5-AZA modulated the SOCS1 expression in different extents among the cells. It was restored in CSC HCC HepG2 and Huh7 more efficiently than sorafenib. This study indicated the relevance of SOCS1 methylation in HCC and how cellular heterogeneity influences the response to epigenetic therapy.
Collapse
|
37
|
Xue C, Gu X, Li L. Immune classifier-based signatures provide good prognostic stratification and predict the clinical benefits of immune-based therapies for hepatocellular carcinoma. Cancer Cell Int 2021; 21:471. [PMID: 34488768 PMCID: PMC8422634 DOI: 10.1186/s12935-021-02183-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive cancer with a high rate of death globally. The use of bioinformatics may help to identify immune cell-related genes both as targets for potential immunotherapies and for their value associated with predicting therapy responses. METHODS In this study, mRNA expression profiles of HCC samples from The Cancer Genome Atlas (TCGA) database were subjected to gene enrichment, cell type abundance, immune cell infiltration, and pathway enrichment analyses to determine immune cell gene features, cell type abundance, and functional annotation characteristics. We also evaluated their prognostic values using Cox regression and Kaplan-Meier analyses and assessed potential responses to chemotherapy. Four subgroups (Groups 1-4) were identified. Group 4 was associated with advanced clinical characteristics, high immune cell enrichment scores, and the poorest outcomes. RESULTS Differentially expressed genes (DEGs) in the HCC samples were enriched in the following pathways: antigen binding, cell surface receptor signal transduction of the immune response, and cell surface activated receptor signal transduction of the immune response. Highly expressed genes in Group 4 were enriched in elements of the WNT signalling pathway. We identified five immune-related genes (SEMA3A, TNFRSF11B, GUCA2A, SAA1, and CALCR) that were significantly related to HCC prognosis. A prognostic model based on these five genes exhibited good predictive value, with 1-year and 5-year area under the curve (AUC) values of > 0.66. Group 4 was also potentially more sensitive to EHT 1864, FH535, and lapatinib chemotherapies than the other groups. CONCLUSIONS We identified and validated four HCC subgroups based on immune system-related genes and identified five genes that may be used for an immune-based prognostic model for HCC treatment.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
38
|
Pang Y, Lv J, Kartsonaki C, Yu C, Guo Y, Chen Y, Yang L, Millwood IY, Walters RG, Wang S, Chen J, Chen Z, Li L. Metabolic risk factors, genetic predisposition, and risk of severe liver disease in Chinese: a prospective study of 0.5 million people. Am J Clin Nutr 2021; 114:496-504. [PMID: 33964851 DOI: 10.1093/ajcn/nqab099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metabolic risk factors have been shown to be associated with severe liver disease (SLD) in Chinese populations. However, there is limited evidence on the combined impact of these factors, or the genetic variants associated with SLD. OBJECTIVES We examined the associations of combined metabolic risk factors with risks of SLD, both overall and by genetic predisposition to SLD. METHODS The study population involved 486,828 participants of the prospective China Kadoorie Biobank aged 30-79 years from 10 diverse areas in China without a history of cancer or liver disease at baseline. Cox regression was used to estimate adjusted HRs for SLD associated with combined metabolic risk factors (central adiposity, physical inactivity, and diabetes) by stratum of genetic risk [assessed separately by a PNPLA3 variant (rs738409) and a BMI genetic risk score]. RESULTS During ∼10 years of follow-up, 3279 incident cases of SLD were recorded. The overall mean BMI was 23.8 kg/m2 (SD, 3.4 kg/m2), and 5.9% participants had diabetes. Compared with those with 3 metabolic factors, participants with 2, 1, and 0 metabolic factors had 31% (HR, 0.69; 95% CI: 0.65-0.73), 43% (HR, 0.57; 95% CI: 0.53-0.60), and 52% (HR, 0.48; 95% CI: 0.42-0.56) lower risks of SLD, respectively. For both BMI and nonalcoholic fatty liver disease variants, participants with fewer metabolic factors had a lower risk of SLD, lower levels of gamma-glutamyl transferase, and lower fatty liver index scores, in participants with low and high genetic risks (P value for interaction > 0.05). CONCLUSIONS In relatively lean Chinese adults, individuals with fewer metabolic risk factors had a lower relative risk of SLD and a more favorable profile of liver biomarkers across all strata of genetic risk.
Collapse
Affiliation(s)
- Yuanjie Pang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response (PKU-PHEPR), Peking University, Beijing, China
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response (PKU-PHEPR), Peking University, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Sisi Wang
- Liuzhou Center for Disease Prevention and Control, Liuzhou, China
| | - Junshi Chen
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response (PKU-PHEPR), Peking University, Beijing, China
| |
Collapse
|
39
|
Association of Polymorphisms in the Glutathione S-Transferase Theta-1 Gene with Cirrhosis and Hepatocellular Carcinoma in Brazilian Patients with Chronic Hepatitis C. Vaccines (Basel) 2021; 9:vaccines9080831. [PMID: 34451956 PMCID: PMC8402309 DOI: 10.3390/vaccines9080831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress contributes to hepatitis C virus (HCV)–induced liver damage. Host genetic factors may be involved in progression of HCV infection. The present study was conducted to determine the influence of glutathione S-transferase (GST)-M1 and T1 gene polymorphisms during different stages of HCV infection, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The study population comprised 190 patients (47 with chronic hepatitis, 83 with cirrhosis (without HCC), and 60 with HCC). GSTM1 and GSTT1 gene polymorphisms were analyzed via multiplex polymerase chain reaction. The GSTT1-null genotype was more commonly detected in patients with cirrhosis (n = 17; 20.5%) and HCC (n = 13; 21.7%) than those with chronic hepatitis (n = 3; 6.4%). The differences in GSTT1-null genotype frequencies were significant for cirrhosis vs. chronic hepatitis (odds ratio, OR, 3.778 (95% confidence interval, CI, 1.045–13.659); p = 0.043) and HCC vs. chronic hepatitis (OR, 4.057 (95% CI, 1.083–15.201); p = 0.038) groups. However, the incidence of individual GSTM1-null or combined GSTM1/GSTT1 double-null genotypes did not vary significantly between the groups. Our collective findings support the utility of the GSTT1-null genotype as a useful biomarker for liver disease progression in Brazilian patients with chronic hepatitis C.
Collapse
|
40
|
Sukowati CHC, El-Khobar KE, Tiribelli C. Immunotherapy against programmed death-1/programmed death ligand 1 in hepatocellular carcinoma: Importance of molecular variations, cellular heterogeneity, and cancer stem cells. World J Stem Cells 2021; 13:795-824. [PMID: 34367478 PMCID: PMC8316870 DOI: 10.4252/wjsc.v13.i7.795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy related to diverse etiological factors. Different oncogenic mechanisms and genetic variations lead to multiple HCC molecular classifications. Recently, an immune-based strategy using immune checkpoint inhibitors (ICIs) was presented in HCC therapy, especially with ICIs against the programmed death-1 (PD-1) and its ligand PD-L1. However, despite the success of anti-PD-1/PD-L1 in other cancers, a substantial proportion of HCC patients fail to respond. In this review, we gather current information on biomarkers of anti-PD-1/PD-L1 treatment and the contribution of HCC heterogeneity and hepatic cancer stem cells (CSCs). Genetic variations of PD-1 and PD-L1 are associated with chronic liver disease and progression to cancer. PD-L1 expression in tumoral tissues is differentially expressed in CSCs, particularly in those with a close association with the tumor microenvironment. This information will be beneficial for the selection of patients and the management of the ICIs against PD-1/PD-L1.
Collapse
Affiliation(s)
| | | | - Claudio Tiribelli
- Centro Studi Fegato, Fondazione Italiana Fegato ONLUS, Trieste 34149, Italy
| |
Collapse
|
41
|
Zheng Q, Yang Q, Zhou J, Gu X, Zhou H, Dong X, Zhu H, Chen Z. Immune signature-based hepatocellular carcinoma subtypes may provide novel insights into therapy and prognosis predictions. Cancer Cell Int 2021; 21:330. [PMID: 34193146 PMCID: PMC8243542 DOI: 10.1186/s12935-021-02033-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) has a poor prognosis and has become the sixth most common malignancy worldwide due to its high incidence. Advanced approaches to therapy, including immunotherapeutic strategies, have played crucial roles in decreasing recurrence rates and improving clinical outcomes. The HCC microenvironment is important for both tumour carcinogenesis and immunogenicity, but a classification system based on immune signatures has not yet been comprehensively described. Methods HCC datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the International Cancer Genome Consortium (ICGC) were used in this study. Gene set enrichment analysis (GSEA) and the ConsensusClusterPlus algorithm were used for clustering assessments. We scored immune cell infiltration and used linear discriminant analysis (LDA) to improve HCC classification accuracy. Pearson's correlation analyses were performed to assess relationships between immune signature indices and immunotherapies. In addition, weighted gene co-expression network analysis (WGCNA) was applied to identify candidate modules closely associated with immune signature indices. Results Based on 152 immune signatures from HCC samples, we identified four distinct immune subtypes (IS1, IS2, IS3, and IS4). Subtypes IS1 and IS4 had more favourable prognoses than subtypes IS2 and IS3. These four subtypes also had different immune system characteristics. The IS1 subtype had the highest scores for IFNγ, cytolysis, angiogenesis, and immune cell infiltration among all subtypes. We also identified 11 potential genes, namely, TSPAN15, TSPO, METTL9, CD276, TP53I11, SPINT1, TSPO, TRABD2B, WARS2, C9ORF116, and LBH, that may represent potential immunological biomarkers for HCC. Furthermore, real-time PCR revealed that SPINT1, CD276, TSPO, TSPAN15, METTL9, and WARS2 expression was increased in HCC cells. Conclusions The present gene-based immune signature classification and indexing may provide novel perspectives for both HCC immunotherapy management and prognosis prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02033-4.
Collapse
Affiliation(s)
- Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Qin Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jiaming Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Haibo Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Xuejun Dong
- Department of Clinical Laboratory Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
42
|
The TGF-β Pathway: A Pharmacological Target in Hepatocellular Carcinoma? Cancers (Basel) 2021; 13:cancers13133248. [PMID: 34209646 PMCID: PMC8268320 DOI: 10.3390/cancers13133248] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Transforming Growth Factor-beta (TGF-β) superfamily members are essential for tissue homeostasis and consequently, dysregulation of their signaling pathways contributes to the development of human diseases. In the liver, TGF-β signaling participates in all the stages of disease progression from initial liver injury to hepatocellular carcinoma (HCC). During liver carcinogenesis, TGF-β plays a dual role on the malignant cell, behaving as a suppressor factor at early stages, but contributing to later tumor progression once cells escape from its cytostatic effects. Moreover, TGF-β can modulate the response of the cells forming the tumor microenvironment that may also contribute to HCC progression, and drive immune evasion of cancer cells. Thus, targeting the TGF-β pathway may constitute an effective therapeutic option for HCC treatment. However, it is crucial to identify biomarkers that allow to predict the response of the tumors and appropriately select the patients that could benefit from TGF-β inhibitory therapies. Here we review the functions of TGF-β on HCC malignant and tumor microenvironment cells, and the current strategies targeting TGF-β signaling for cancer therapy. We also summarize the clinical impact of TGF-β inhibitors in HCC patients and provide a perspective on its future use alone or in combinatorial strategies for HCC treatment.
Collapse
|
43
|
Umemura T, Joshita S, Saito H, Wakabayashi SI, Kobayashi H, Yamashita Y, Sugiura A, Yamazaki T, Ota M. Investigation of the Effect of KIR-HLA Pairs on Hepatocellular Carcinoma in Hepatitis C Virus Cirrhotic Patients. Cancers (Basel) 2021; 13:cancers13133267. [PMID: 34209910 PMCID: PMC8267716 DOI: 10.3390/cancers13133267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Natural killer (NK) cells normally respond to tumor cells and virally infected cells by killing them via the innate immune system. However, the functional impairment of NK cells has been observed in hepatocellular carcinoma. The NK-cell phenotype is partially mediated through the binding of killer cell immunoglobulin-like receptors (KIR) with human leukocyte antigen (HLA) class I ligands. This study evaluated the involvement of KIR–HLA pairs in hepatocellular carcinoma development in 211 patients with hepatitis C virus-associated cirrhosis. HLA-Bw4 and the KIR3DL1+HLA-Bw4 pair were significantly associated with hepatocellular carcinoma onset during a median follow-up of 6.6 years, which suggested that functional interactions between KIR and HLA or HLA-Bw4 may influence the risk of cancer development. Abstract Natural killer cells are partially mediated through the binding of killer cell immunoglobulin-like receptors (KIR) with human leukocyte antigen (HLA) class I ligands. This investigation examined the risk of hepatocellular carcinoma (HCC) in relation to KIR–HLA pairs in patients with compensated hepatitis C virus (HCV)-associated cirrhosis. A total of 211 Japanese compensated HCV cirrhotic cases were retrospectively enrolled. After KIR, HLA-A, HLA-Bw, and HLA-C typing, associations between HLA, KIR, and KIR–HLA combinations and HCC development were evaluated using the Cox proportional hazards model with the stepwise method. During a median follow-up period of 6.6 years, 69.7% of patients exhibited HCC. The proportions of HLA-Bw4 and the KIR3DL1 + HLA-Bw4 pair were significantly higher in patients with HCC than in those without (78.9% vs. 64.1%; odds ratio (OR)—2.10, 95% confidence interval (CI)—1.10–4.01; p = 0.023 and 76.2% vs. 60.9%, odds ratio—2.05, p = 0.024, respectively). Multivariate analysis revealed the factors of male gender (hazard ratio (HR)—1.56, 95% CI—1.12–2.17; p = 0.009), α-fetoprotein > 5.6 ng/mL (HR—1.56, 95% CI—1.10–2.10; p = 0.011), and KIR3DL1 + HLA-Bw4 (HR—1.69, 95% CI—1.15–2.48; p = 0.007) as independent risk factors for developing HCC. Furthermore, the cumulative incidence of HCC was significantly higher in patients with KIR3DL1 + HLA-Bw4 than in those without (log-rank test; p = 0.013). The above findings suggest KIR3DL1 + HLA-Bw4, in addition to HLA-Bw4, as a novel KIR–HLA pair possibly associated with HCC development in HCV cirrhosis. HCV-associated cirrhotic patients with the risk factors of male gender, α-fetoprotein > 5.6 ng/mL, and KIR3DL1 + HLA-Bw4 may require careful surveillance for HCC onset.
Collapse
Affiliation(s)
- Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
- Consultation Center for Liver Diseases, Shinshu University Hospital, Matsumoto 390-8621, Nagano, Japan
- Department of Life Innovation, Shinshu University, Matsumoto 390-8621, Nagano, Japan
- Correspondence: ; Tel.: +81-263-37-2634; Fax: +81-263-32-9412
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
| | - Hiromi Saito
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
| | - Shun-ichi Wakabayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
| | - Hiroyuki Kobayashi
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
| | - Yuki Yamashita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
| | - Ayumi Sugiura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
| | - Masao Ota
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan; (S.J.); (H.S.); (S.-i.W.); (H.K.); (Y.Y.); (A.S.); (T.Y.); (M.O.)
| |
Collapse
|
44
|
Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, Li S, Lu W, Xie Q, Chen H, Lai J, Chen Q, Jiang X, Liu S, Zhang Z, Zhao M. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer 2021; 9:jitc-2020-002305. [PMID: 34168004 PMCID: PMC8231064 DOI: 10.1136/jitc-2020-002305] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neutrophils play a controversial role in tumor development. The function of programmed cell death-1 ligand (PD-L1+) neutrophils, however, may inhibit the cytotoxicity of anti-tumor immunity. In this study, we elucidate the stimulators of PD-L1+ neutrophils in tumor microenvironment (TME) and explore the optimal combination to enhance the effect of lenvatinib by inhibiting PD-L1+ neutrophils in hepatocellular carcinoma. METHODS Neutrophil infiltration after lenvatinib treatment was examined with RNA sequencing and multicolor flow cytometry analysis in patient samples, subcutaneous and orthotopic mouse models. Neutrophils and T cells were isolated from peripheral blood and tumor tissues and purified with magnetic beads for cytotoxicity assay. Metabolites and cytokines were detected by a biochemical analyzer manufactured by Yellow Springs Instrument (YSI) and proteome profiler cytokines array. In vitro screening of pathway inhibitors was used to identify possible candidates that could reduce PD-L1+ neutrophil infiltration. Further in vivo assays were used for verification. RESULTS Lenvatinib increased neutrophil recruitment by inducing CXCL2 and CXCL5 secretion in TME. After entering TME, neutrophils polarized toward N2 phenotype. PD-L1 expression was simultaneously upregulated. Thus, lenvatinib efficacy on tumor cells hindered. The increasing PD-L1+ neutrophils positively corelated with a suppressive T cell phenotype. Further investigation indicated that JAK/STAT1 pathway activated by immune-cell-derived interferon γ and MCT1/NF-kB/COX-2 pathway activated by high concentrations of tumor-derived lactate could induce PD-L1+ neutrophils. The latter could be significantly inhibited by COX-2 inhibitor celecoxib. Further in vivo assays verified that Celecoxib decreased the survival of lactate-stimulated PD-L1+ neutrophil and promoted the antitumor effect of lenvatinib. CONCLUSIONS PD-L1+ neutrophils decrease T cell cytotoxicity. Tumor-derived lactate induces PD-L1 expression on neutrophils via MCT1/NF-κB/COX-2 pathway. Thus, COX-2 inhibitor could reduce PD-L1+ neutrophil and restore T cell cytotoxicity. This may provide a potent addition to lenvatinib.
Collapse
Affiliation(s)
- Haijing Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Anna Kan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Hepatic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Lyu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Meng He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shaolong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiankun Xie
- Department of Radiation Oncology, Southern Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huiming Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jinfa Lai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qifeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiongying Jiang
- Interventional Radiology Divison, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shousheng Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenfeng Zhang
- Minimally Invasive Interventional Division, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Ming Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China .,Minimally Invasive Interventional Division, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
45
|
Ho DWH, Tsui YM, Chan LK, Sze KMF, Zhang X, Cheu JWS, Chiu YT, Lee JMF, Chan ACY, Cheung ETY, Yau DTW, Chia NH, Lo ILO, Sham PC, Cheung TT, Wong CCL, Ng IOL. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun 2021; 12:3684. [PMID: 34140495 PMCID: PMC8211687 DOI: 10.1038/s41467-021-24010-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Interaction between tumor cells and immune cells in the tumor microenvironment is important in cancer development. Immune cells interact with the tumor cells to shape this process. Here, we use single-cell RNA sequencing analysis to delineate the immune landscape and tumor heterogeneity in a cohort of patients with HBV-associated human hepatocellular carcinoma (HCC). We found that tumor-associated macrophages suppress tumor T cell infiltration and TIGIT-NECTIN2 interaction regulates the immunosuppressive environment. The cell state transition of immune cells towards a more immunosuppressive and exhaustive status exemplifies the overall cancer-promoting immunocellular landscape. Furthermore, the heterogeneity of global molecular profiles reveals co-existence of intra-tumoral and inter-tumoral heterogeneity, but is more apparent in the latter. This analysis of the immunosuppressive landscape and intercellular interactions provides mechanistic information for the design of efficacious immune-oncology treatments in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Xin Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | | | - Yung-Tuen Chiu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | | | | | - Nam-Hung Chia
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Irene Lai-Oi Lo
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
46
|
Paradis V. Hepatocellular Carcinomas: Towards a pathomolecular approach. Liver Int 2021; 41 Suppl 1:83-88. [PMID: 34155797 DOI: 10.1111/liv.14867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
Molecular analysis of primary liver malignancies has provided a refinement of the pathological diagnosis of this entity and the identification of an increasing number of tumor subtypes of hepatocellular proliferation, either malignant (hepatocellular carcinomas) or benign (hepatocellular adenomas). Besides the diagnosis, a combined pathomolecular approach can also provide further insights into patient prognosis, and help select patients who can benefit from targeted therapies. Hepatocellular carcinomas define a heterogeneous group of malignant hepatocellular proliferation at various levels: macroscopic, histological and molecular. While most carcinomas occur in patients with chronic liver diseases and advanced fibrosis in the background liver, some arise from the malignant transformation of a pre-existing hepatocellular adenoma. TERT promoter mutations are the most frequent genomic alterations observed in the process of malignancy, and they occur early in the process of liver carcinogenesis. Overall, a more active biopsy strategy should be considered a key step in the management of patients with HCC.
Collapse
Affiliation(s)
- Valérie Paradis
- Department of Pathology, Université de Paris, Hôpital Beaujon, Paris, France
| |
Collapse
|
47
|
de Almeida NAA, Ribeiro CRDA, Raposo JV, de Paula VS. Immunotherapy and Gene Therapy for Oncoviruses Infections: A Review. Viruses 2021; 13:822. [PMID: 34063186 PMCID: PMC8147456 DOI: 10.3390/v13050822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has been shown to be highly effective in some types of cancer caused by viruses. Gene therapy involves insertion or modification of a therapeutic gene, to correct for inappropriate gene products that cause/may cause diseases. Both these types of therapy have been used as alternative ways to avoid cancers caused by oncoviruses. In this review, we summarize recent studies on immunotherapy and gene therapy including the topics of oncolytic immunotherapy, immune checkpoint inhibitors, gene replacement, antisense oligonucleotides, RNA interference, clustered regularly interspaced short palindromic repeats Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based gene editing, transcription activator-like effector nucleases (TALENs) and custom treatment for Epstein-Barr virus, human T-lymphotropic virus 1, hepatitis B virus, human papillomavirus, hepatitis C virus, herpesvirus associated with Kaposi's sarcoma, Merkel cell polyomavirus, and cytomegalovirus.
Collapse
Affiliation(s)
| | | | | | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21040-360 Rio de Janeiro, Brazil; (N.A.A.d.A.); (C.R.d.A.R.); (J.V.R.)
| |
Collapse
|
48
|
Zeisel MB, Guerrieri F, Levrero M. Host Epigenetic Alterations and Hepatitis B Virus-Associated Hepatocellular Carcinoma. J Clin Med 2021; 10:jcm10081715. [PMID: 33923385 PMCID: PMC8071488 DOI: 10.3390/jcm10081715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and a leading cause of cancer-related deaths worldwide. Although much progress has been made in HCC drug development in recent years, treatment options remain limited. The major cause of HCC is chronic hepatitis B virus (HBV) infection. Despite the existence of a vaccine, more than 250 million individuals are chronically infected by HBV. Current antiviral therapies can repress viral replication but to date there is no cure for chronic hepatitis B. Of note, inhibition of viral replication reduces but does not eliminate the risk of HCC development. HBV contributes to liver carcinogenesis by direct and indirect effects. This review summarizes the current knowledge of HBV-induced host epigenetic alterations and their association with HCC, with an emphasis on the interactions between HBV proteins and the host cell epigenetic machinery leading to modulation of gene expression.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Correspondence: (M.B.Z.); (M.L.)
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), 69003 Lyon, France;
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
- Correspondence: (M.B.Z.); (M.L.)
| |
Collapse
|
49
|
Exploration and validation of a novel prognostic signature based on comprehensive bioinformatics analysis in hepatocellular carcinoma. Biosci Rep 2021; 40:226788. [PMID: 33111935 PMCID: PMC7670566 DOI: 10.1042/bsr20203263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to construct a novel signature for indicating the prognostic outcomes of hepatocellular carcinoma (HCC). Gene expression profiles were downloaded from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. The prognosis-related genes with differential expression were identified with weighted gene co-expression network analysis (WGCNA), univariate analysis, the least absolute shrinkage and selection operator (LASSO). With the stepwise regression analysis, a risk score was constructed based on the expression levels of five genes: Risk score = (−0.7736* CCNB2) + (1.0083* DYNC1LI1) + (−0.6755* KIF11) + (0.9588* SPC25) + (1.5237* KIF18A), which can be applied as a signature for predicting the prognosis of HCC patients. The prediction capacity of the risk score for overall survival was validated with both TCGA and ICGC cohorts. The 1-, 3- and 5-year ROC curves were plotted, in which the AUC was 0.842, 0.726 and 0.699 in TCGA cohort and 0.734, 0.691 and 0.700 in ICGC cohort, respectively. Moreover, the expression levels of the five genes were determined in clinical tumor and normal specimens with immunohistochemistry. The novel signature has exhibited good prediction efficacy for the overall survival of HCC patients.
Collapse
|
50
|
Peng T, Wonganan O, Zhang Z, Yu J, Xi R, Cao Y, Suksamrarn A, Zhang G, Wang F. A 2-Benzylmalonate Derivative as STAT3 Inhibitor Suppresses Tumor Growth in Hepatocellular Carcinoma by Upregulating β-TrCP E3 Ubiquitin Ligase. Int J Mol Sci 2021; 22:ijms22073354. [PMID: 33805945 PMCID: PMC8036434 DOI: 10.3390/ijms22073354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
The aberrant activation of a signal transducer and activator of transcription 3 (STAT3) restrains type I interferon (IFN) α/β-induced antiviral responses and is associated with the development of cancer. Designing specific STAT3 inhibitors will thus provide new options for use as IFN therapy. Herein, we identified a novel small molecule, dimethyl 2-(4-(2-(methyl(phenyl(p-tolyl)methyl)amino)ethoxy)benzyl)malonate (CIB-6), which can inhibit the IFN-α-induced interferon stimulated response element (ISRE) luciferase reporter (IC50 value = 6.4 μM) and potentiate the antiproliferative effect of IFN-α in human hepatocellular carcinoma (HCC) cells. CIB-6 was found to bind to the STAT3 Src homology 2 (SH2) domain, thereby selectively inhibiting STAT3 phosphorylation without affecting Janus kinases and STAT1/2. CIB-6 also inhibited the migration and invasion of HCC cells by inhibiting the epithelial-mesenchymal transition (EMT) process. Mechanistically, CIB-6 reduced the expression of β-catenin (an EMT key protein) via upregulating β-transducin repeat-containing protein (β-TrCP) and curbed nuclear factor kappa-B (NF-κB) activation through restricting the phosphorylation of the inhibitor of NF-κB (IκB) kinase (IKK) via STAT3 inhibition. Treatment with CIB-6 significantly retarded tumor growth in nude mice with SK-HEP-1 xenografts. In addition, clinical sample analysis revealed that lower β-TrCP and higher β-catenin expression could affect the median survival time of HCC patients. Our findings suggest that CIB-6 could be a new therapeutic strategy for HCC therapy through STAT3-mediated β-TrCP/β-catenin/NF-κB axis.
Collapse
Affiliation(s)
- Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.P.); (O.W.); (J.Y.); (R.X.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Orawan Wonganan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.P.); (O.W.); (J.Y.); (R.X.); (Y.C.)
| | - Zhonghui Zhang
- School of Chemistry Engineering, Sichuan University, Chengdu 610041, China;
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.P.); (O.W.); (J.Y.); (R.X.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.P.); (O.W.); (J.Y.); (R.X.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.P.); (O.W.); (J.Y.); (R.X.); (Y.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand;
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.P.); (O.W.); (J.Y.); (R.X.); (Y.C.)
- Correspondence: (G.Z.); (F.W.); Tel.: +86-28-82890333 (G.Z.); +86-28-82890651 (F.W.)
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (T.P.); (O.W.); (J.Y.); (R.X.); (Y.C.)
- Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
- Correspondence: (G.Z.); (F.W.); Tel.: +86-28-82890333 (G.Z.); +86-28-82890651 (F.W.)
| |
Collapse
|