1
|
Auzinger G. Basic concepts in the management of Acute Liver Failure. Best Pract Res Clin Gastroenterol 2024; 73:101960. [PMID: 39709220 DOI: 10.1016/j.bpg.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Georg Auzinger
- King's College Hospital, Liver Intensive Care Unit, London, UK; Cleveland Clinic London, Department of Critical Care, London, UK.
| |
Collapse
|
2
|
Saner FH, Scarlatescu E, Gold A, Abufarhaneh E, Alghamdi SA, Tolba Y, Aljudaibi B, Broering DC, Raptis DA, Bezinover D. Advanced strategies for intensive care management of acute liver failure. Best Pract Res Clin Gastroenterol 2024; 73:101962. [PMID: 39709216 DOI: 10.1016/j.bpg.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
Acute liver failure (ALF) is defined as the loss of hepatic function in conjunction with hepatic encephalopathy and coagulopathy. There is histological evidence of profound hepatocyte damage. If it is not aggressively managed, ALF can be fatal within a few days. It is a rare disease, often occurring in patients without prior liver disease. Despite numerous causes, ALF usually presents as acute liver necrosis with a clinical picture that includes cognitive dysfunction, increased aminotransferases, and severe coagulopathy. It is essential to distinguish between ALF and acute-on-chronic liver failure (ACLF). Causes for ALF include paracetamol Acute liver failure (ALF) is characterized by acute liver dysfunction associated with overdose, right heart failure (ischemic liver injury), viral hepatitis (A, B, D and E), autoimmune hepatitis and drug-induced liver injury (including some herbal and nutritional supplements). In developed countries, the prevalence of ALF is 1:1,000,000. Survival rates have increased due to improved ICU management.
Collapse
Affiliation(s)
- Fuat H Saner
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia.
| | - Ecaterina Scarlatescu
- Department of Anesthesia and Intensive Care Medicine III, Fundeni Clinical Institute, Bucharest, Romania; University of Medicine and Pharmacy "Carol Davila", Anesthesia and Intensive Care Department, Bucharest, Romania
| | - Andrew Gold
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ehab Abufarhaneh
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Saad Ali Alghamdi
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Yasser Tolba
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Bandar Aljudaibi
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Dieter C Broering
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Dimitri A Raptis
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Dmitri Bezinover
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Roy A, Kumar Y, Verma N. Coagulopathy in acute liver failure. Best Pract Res Clin Gastroenterol 2024; 73:101956. [PMID: 39709211 DOI: 10.1016/j.bpg.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/22/2024] [Indexed: 12/23/2024]
Abstract
Acute liver failure (ALF) is a rare but rapidly progressing syndrome, marked by severe liver dysfunction and altered mental status. While definitions of ALF vary across different guidelines, with timelines ranging from 4 to 26 weeks between jaundice onset and encephalopathy, the key defining features remain encephalopathy and coagulopathy. Elevated coagulation markers, particularly prothrombin time and international normalized ratio, have traditionally been associated with bleeding risks. However, emerging evidence suggests a rebalanced state of coagulation in ALF, similar to cirrhosis, where bleeding risks-both spontaneous and procedural-are surprisingly low. Viscoelastic hemostatic assays and thrombin generation assays further confirm this rebalanced hemostatic state. Current guidelines for correcting coagulopathy in ALF remain limited, typically reserved for active bleeding or prior to high-risk invasive procedures.
Collapse
Affiliation(s)
- Akash Roy
- Institute of Gastrosciences and Liver Transplantation, Apollo Multi-speciality Hospitals, Kolkatta, India
| | - Yogendra Kumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Premkumar M, Karvellas CJ, Kulkarni AV, Bhujade H, Reddy KR. Role of point-of-care ultrasound (POCUS) in clinical hepatology. Hepatology 2024:01515467-990000000-00946. [PMID: 38954829 DOI: 10.1097/hep.0000000000000990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Hospitalized patients with cirrhosis frequently require critical care management for sepsis, HE, respiratory failure, acute variceal bleeding, acute kidney injury (AKI), shock, and optimization for liver transplantation, while outpatients have unique care considerations. Point-of-care ultrasonography (POCUS) enhances bedside examination of the hepatobiliary system and relevant extrahepatic sites. POCUS includes cardiac US and is used to assess volume status and hemodynamic parameters like cardiac output, systemic vascular resistance, cardiac contractility, and pulmonary artery pressure, which aid in the early and accurate diagnosis of heart failure, cirrhotic cardiomyopathy, porto-pulmonary hypertension, hepatopulmonary syndrome, arrhythmia, and pulmonary embolism. This also helps in fluid management and vasopressor use in the resuscitation of patients with cirrhosis. Lung ultrasound (LUS) can help in differentiating pneumonia, effusion, and edema. Further, US guides interventions such as line placement, drainage of abdominal collections/abscesses, relief of tension pneumothorax, drainage of pleural and pericardial effusions, and biliary drainage in cholangitis. Additionally, its role is essential to assess liver masses foci of sepsis, for appropriate sites for paracentesis, and to assess for vascular disorders such as portal vein or hepatic vein thrombosis. Renal US can identify renal and postrenal causes of AKI and aid in diagnosis of prerenal AKI through volume assessment. In this review, we address the principles and methods of POCUS in hospitalized patients and in outpatients with cirrhosis and discuss the application of this diverse modality in clinical hepatology.
Collapse
Affiliation(s)
- Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Constantine J Karvellas
- Department of Critical Care Medicine, Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Harish Bhujade
- Department of Radiodiagnosis and Interventional Radiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
5
|
Abstract
Acute liver injury (ALI), that is, the development of reduced liver function in patients without preexisting liver disease, can result from a wide range of causes, such as viral or bacterial infection, autoimmune disease, or adverse reaction to prescription and over-the-counter medications. ALI patients present with a complex coagulopathy, characterized by both hypercoagulable and hypocoagulable features. Similarly, ALI patients display a profound dysregulation of the fibrinolytic system with the vast majority of patients presenting with a hypofibrinolytic phenotype. Decades of research in experimental acute liver injury in mice suggest that fibrinolytic proteins, including plasmin(ogen), plasminogen activators, fibrinolysis inhibitors, and fibrin(ogen), can contribute to initial hepatotoxicity and/or stimulate liver repair. This review summarizes major experimental findings regarding the role of fibrinolytic factors in ALI from the last approximately 30 years and identifies unanswered questions, as well as highlighting areas for future research.
Collapse
Affiliation(s)
- Gina E Capece
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Lauren G Poole
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey
| |
Collapse
|
6
|
Zhang J, Wang X, Peng Y, Wei J, Luo Y, Luan F, Li H, Zhou Y, Wang C, Yu K. Combined metabolomic and proteomic analysis of sepsis related acute liver injury and its pathogenesis research. Int Immunopharmacol 2024; 130:111666. [PMID: 38412671 DOI: 10.1016/j.intimp.2024.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Sepsis-induced acute liver injury is common in patients in intensive care units. However, the exact mechanism of this condition remains unclear. The purpose of this study was to investigate the roles and mechanisms of proteins and metabolites in the liver tissue of mice after sepsis and elucidate the molecular biological mechanisms of sepsis-related liver injury. METHODS First, a lipopolysaccharide (LPS)-induced sepsis mouse model was established. Then, according to alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection in mouse serum and liver histopathological examination (HE) staining, the septic mice were divided into two groups: acute liver injury after sepsis and nonacute liver injury after sepsis. Metabolomics and proteomic analyses were performed on the liver tissues of the two groups of mice to identify significantly different metabolites and proteins. The metabolomics and proteomics results were further analysed to identify the biological indicators and pathogenesis related to the occurrence and development of sepsis-related acute liver injury at the protein and metabolite levels. RESULTS A total of 14 differentially expressed proteins and 46 differentially expressed metabolites were identified. Recombinant Erythrocyte Membrane Protein Band 4.2 (Epb42) and adenosine diphosphate (ADP) may be the key proteins and metabolites responsible for sepsis-related acute liver injury, according to the correlation analysis of proteomics and metabolomics. The expression of the differential protein Epb42 was further verified by western blot (WB) detection. CONCLUSIONS Our study suggests that the differential protein Epb42 may be key proteins causing sepsis-associated acute liver injury, providing new and valuable information on the possible mechanism of sepsis-associated acute liver injury.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China; Department of Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, 1 Jiaozhou Road, Shibei District, Qingdao 266011, Shandong, China
| | - Xibo Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yahui Peng
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Jieling Wei
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yinghao Luo
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Feiyu Luan
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Hongxu Li
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Yang Zhou
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Changsong Wang
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China.
| | - Kaijiang Yu
- Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, 23 Postal Street, Nangang District, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Trovato FM, Artru F, Miquel R, Pirani T, McPhail MJW. Liver Elastography in Acute Liver Failure: A Pilot Study. Crit Care Explor 2024; 6:e1048. [PMID: 38343443 PMCID: PMC10857654 DOI: 10.1097/cce.0000000000001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES We aimed to assess the feasibility and reliability of sequential ultrasonographic and elastographic monitoring in acute liver failure (ALF). DESIGN Observational study. SETTING ALF is a rare, life-threatening disease that requires intensive care admission and often liver transplant, where the accurate selection of patients is crucial. Liver elastography is a noninvasive tool that can measure hepatic stiffness, but previous results have been inconclusive in ALF. PATIENTS Patients admitted between October 2021 and March 2023 to the Liver Intensive Therapy Unit at King's College Hospital with ALF were recruited, with healthy control (HC) individuals and acute-on-chronic liver failure (ACLF) used as controls. INTERVENTION None. MEASUREMENTS Average shear wave velocity was recorded with ElastPQ on the right and left liver lobes and the spleen. Portal vein flow, hepatic artery resistive index, and peak systolic velocity were also recorded. Physiologic and histologic data were used for comparison. MAIN RESULTS Forty patients with ALF, 22 patients with ACLF, and 9 HC individuals were included in the study. At admission, liver stiffness measurement (LSM) of the right lobe was statistically different between HC individuals (5.6 ± 2 kPa), ALF (31.7 ± 17 kPa), and ACLF (76.3 ± 71 kPa) patients (ALF vs. ACLF, p = 0.0301). Spleen size and stiffness discriminated between ALF (10.4 ± 2 cm and 21.4 ± 16.6 kPa) and ACLF (14 ± 2.3 cm and 42.6 ± 26 kPa). At admission, LSM was not different between ALF patients who spontaneously survived versus patients who died or were transplanted in the following 90 days. However, the trend over the first 10 days of admission was different with a peak of LSM at day 5 in spontaneous survivors followed by reduction during the recovery phase. ALF patients with poor prognosis showed a persistently increased LSM. CONCLUSIONS In ALF stiffness peaks at day 5 of admission with subsequent reduction in patients spontaneously surviving, showing significant difference according to the prognosis at day 7 of admission. LSM might be useful in distinguishing acute from acute-on-chronic liver failure together with spleen volume and stiffness.
Collapse
Affiliation(s)
- Francesca M Trovato
- School of Immunology and Microbial Sciences, Department of Inflammation Biology, Kings College London, London, United Kingdom
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Florent Artru
- School of Immunology and Microbial Sciences, Department of Inflammation Biology, Kings College London, London, United Kingdom
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Rosa Miquel
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Tasneem Pirani
- School of Immunology and Microbial Sciences, Department of Inflammation Biology, Kings College London, London, United Kingdom
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Mark J W McPhail
- School of Immunology and Microbial Sciences, Department of Inflammation Biology, Kings College London, London, United Kingdom
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, United Kingdom
| |
Collapse
|
8
|
Elhence A, Shalimar. Von Willebrand Factor as a Biomarker for Liver Disease - An Update. J Clin Exp Hepatol 2023; 13:1047-1060. [PMID: 37975050 PMCID: PMC10643510 DOI: 10.1016/j.jceh.2023.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 11/19/2023] Open
Abstract
The von Willebrand factor (vWF) is best known for its role in the hemostatic pathway, aiding platelet adhesion and aggregation, as well as circulating along with coagulation factor VIII, prolonging its half-life. However, vWF is more than a hemostatic protein and is a marker of endothelial dysfunction in patients with cirrhosis. The levels of vWF increase progressively as cirrhosis progresses. Despite its qualitative defects, it can support and carry out its hemostatic role and contribute to a pro-coagulant disbalance. Moreover, it has been shown to be a good noninvasive marker for predicting clinically significant portal hypertension (CSPH). The vWF has been shown to predict decompensation and mortality among cirrhosis patients independently of the stage of liver disease and severity of portal hypertension. Increased vWF levels in the setting of endothelial injury predict bacterial translocation and systemic inflammation. The vWF-to-thrombocyte ratio (VITRO) score adds to the diagnostic ability of vWF alone in detecting CSPH non-invasively. Not only have vWF levels been shown to help predict the risk of hepatocellular carcinoma (HCC) among cirrhosis patients, but they also predict the risk of complications post-resection for HCC and response to systemic therapies. vWF-induced portal microthrombi have been purported to contribute to the pathogenesis of acute liver failure progression as well as non-cirrhotic portal hypertension. The prospect of modulation of vWF levels using drugs such as non-selective beta-blockers, statins, anticoagulants, and non-absorbable antibiotics and its use as a predictive biomarker for the response to these drugs needs to be explored.
Collapse
Affiliation(s)
- Anshuman Elhence
- Department of Gastroenterology, National Cancer Institute- All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Stravitz RT, Fontana RJ, Karvellas C, Durkalski V, McGuire B, Rule JA, Tujios S, Lee WM. Future directions in acute liver failure. Hepatology 2023; 78:1266-1289. [PMID: 37183883 PMCID: PMC10521792 DOI: 10.1097/hep.0000000000000458] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Acute liver failure (ALF) describes a clinical syndrome of rapid hepatocyte injury leading to liver failure manifested by coagulopathy and encephalopathy in the absence of pre-existing cirrhosis. The hallmark diagnostic features are a prolonged prothrombin time (ie, an international normalized ratio of prothrombin time of ≥1.5) and any degree of mental status alteration (HE). As a rare, orphan disease, it seemed an obvious target for a multicenter network. The Acute Liver Failure Study Group (ALFSG) began in 1997 to more thoroughly study and understand the causes, natural history, and management of ALF. Over the course of 22 years, 3364 adult patients were enrolled in the study registry (2614 ALF and 857 acute liver injury-international normalized ratio 2.0 but no encephalopathy-ALI) and >150,000 biosamples collected, including serum, plasma, urine, DNA, and liver tissue. Within the Registry study sites, 4 prospective substudies were conducted and published, 2 interventional ( N -acetylcysteine and ornithine phenylacetate), 1 prognostic [ 13 C-methacetin breath test (MBT)], and 1 mechanistic (rotational thromboelastometry). To review ALFSG's accomplishments and consider next steps, a 2-day in-person conference was held at UT Southwestern Medical Center, Dallas, TX, entitled "Acute Liver Failure: Science and Practice," in May 2022. To summarize the important findings in the field, this review highlights the current state of understanding of ALF and, more importantly, asks what further studies are needed to improve our understanding of the pathogenesis, natural history, and management of this unique and dramatic condition.
Collapse
Affiliation(s)
| | | | | | - Valerie Durkalski
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Jody A. Rule
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Shannan Tujios
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - William M. Lee
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
10
|
Hvas CL, Larsen JB. The Fibrinolytic System and Its Measurement: History, Current Uses and Future Directions for Diagnosis and Treatment. Int J Mol Sci 2023; 24:14179. [PMID: 37762481 PMCID: PMC10532028 DOI: 10.3390/ijms241814179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The fibrinolytic system is a key player in keeping the haemostatic balance, and changes in fibrinolytic capacity can lead to both bleeding-related and thrombosis-related disorders. Our knowledge of the fibrinolytic system has expanded immensely during the last 75 years. From the first successful use of thrombolysis in myocardial infarction in the 1960s, thrombolytic therapy is now widely implemented and has reformed treatment in vascular medicine, especially ischemic stroke, while antifibrinolytic agents are used routinely in the prevention and treatment of major bleeding worldwide. Despite this, this research field still holds unanswered questions. Accurate and timely laboratory diagnosis of disturbed fibrinolysis in the clinical setting remains a challenge. Furthermore, despite growing evidence that hypofibrinolysis plays a central role in, e.g., sepsis-related coagulopathy, coronary artery disease, and venous thromboembolism, there is currently no approved treatment of hypofibrinolysis in these settings. The present review provides an overview of the fibrinolytic system and history of its discovery; measurement methods; clinical relevance of the fibrinolytic system in diagnosis and treatment; and points to future directions for research.
Collapse
Affiliation(s)
- Christine Lodberg Hvas
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, 8200 Aarhus N, Denmark;
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, 8200 Aarhus N, Denmark
| | - Julie Brogaard Larsen
- Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, 8200 Aarhus N, Denmark
- Department of Clinical Biochemistry, Regional Hospital Horsens, 8700 Horsens, Denmark
| |
Collapse
|
11
|
Groeneveld DJ, Poole LG, Bouck EG, Schulte A, Wei Z, Williams KJ, Watson VE, Lisman T, Wolberg AS, Luyendyk JP. Robust coagulation activation and coagulopathy in mice with experimental acetaminophen-induced liver failure. J Thromb Haemost 2023; 21:2430-2440. [PMID: 37054919 PMCID: PMC10524846 DOI: 10.1016/j.jtha.2023.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Patients with acetaminophen (APAP)-induced acute liver failure (ALF) display both hyper- and hypocoagulable changes not necessarily recapitulated by standard hepatotoxic doses of APAP used in mice (eg, 300 mg/kg). OBJECTIVES We sought to examine coagulation activation in vivo and plasma coagulation potential ex vivo in experimental settings of APAP-induced hepatotoxicity and repair (300-450 mg/kg) and APAP-induced ALF (600 mg/kg) in mice. RESULTS APAP-induced ALF was associated with increased plasma thrombin-antithrombin complexes, decreased plasma prothrombin, and a dramatic reduction in plasma fibrinogen compared with lower APAP doses. Hepatic fibrin(ogen) deposits increased independent of APAP dose, whereas plasma fibrin(ogen) degradation products markedly increased in mice with experimental ALF. Early pharmacologic anticoagulation (+2 hours after 600 mg/kg APAP) limited coagulation activation and reduced hepatic necrosis. The marked coagulation activation evident in mice with APAP-induced ALF was associated with a coagulopathy detectable ex vivo in plasma. Specifically, prolongation of the prothrombin time and inhibition of tissue factor-initiated clot formation were evident even after restoration of physiological fibrinogen concentrations. Plasma endogenous thrombin potential was similarly reduced at all APAP doses. Interestingly, in the presence of ample fibrinogen, ∼10 times more thrombin was required to clot plasma from mice with APAP-induced ALF compared with plasma from mice with simple hepatotoxicity. CONCLUSION The results indicate that robust pathologic coagulation cascade activation in vivo and suppressed coagulation ex vivo are evident in mice with APAP-induced ALF. This unique experimental setting may fill an unmet need as a model to uncover mechanistic aspects of the complex coagulopathy of ALF.
Collapse
Affiliation(s)
- Dafna J Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Lauren G Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Emma G Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony Schulte
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Kurt J Williams
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Victoria E Watson
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Ton Lisman
- Section of Hepatobiliary Surgery and Liver Transplantation and Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
12
|
Scheiner B, Balcar L, Lisman T, Mandorfer M. Reply to: 'From coagulation imbalance to prediction of advanced chronic liver disease decompensation: The wind of change?'. J Hepatol 2023; 79:e27-e28. [PMID: 36813119 DOI: 10.1016/j.jhep.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ton Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Shingina A, Mukhtar N, Wakim-Fleming J, Alqahtani S, Wong RJ, Limketkai BN, Larson AM, Grant L. Acute Liver Failure Guidelines. Am J Gastroenterol 2023; 118:1128-1153. [PMID: 37377263 DOI: 10.14309/ajg.0000000000002340] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/04/2023] [Indexed: 06/29/2023]
Abstract
Acute liver failure (ALF) is a rare, acute, potentially reversible condition resulting in severe liver impairment and rapid clinical deterioration in patients without preexisting liver disease. Due to the rarity of this condition, published studies are limited by the use of retrospective or prospective cohorts and lack of randomized controlled trials. Current guidelines represent the suggested approach to the identification, treatment, and management of ALF and represent the official practice recommendations of the American College of Gastroenterology. The scientific evidence was reviewed using the Grading of Recommendations, Assessment, Development and Evaluation process to develop recommendations. When no robust evidence was available, expert opinions were summarized using Key Concepts. Considering the variety of clinical presentations of ALF, individualization of care should be applied in specific clinical scenarios.
Collapse
Affiliation(s)
- Alexandra Shingina
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nizar Mukhtar
- Department of Gastroenterology, Kaiser Permanente, San Francisco, California, USA
| | - Jamilé Wakim-Fleming
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland Ohio, USA
| | - Saleh Alqahtani
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, USA
- Liver Transplantation Unit, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, California, Gastroenterology Section, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, USA
| | | | - Anne M Larson
- Division of Gastroenterology and Hepatology, University of Washington, Seattle, Washington, USA
| | - Lafaine Grant
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Airola C, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Microvascular Thrombosis and Liver Fibrosis Progression: Mechanisms and Clinical Applications. Cells 2023; 12:1712. [PMID: 37443746 PMCID: PMC10341358 DOI: 10.3390/cells12131712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Fibrosis is an unavoidable consequence of chronic inflammation. Extracellular matrix deposition by fibroblasts, stimulated by multiple pathways, is the first step in the onset of chronic liver disease, and its propagation promotes liver dysfunction. At the same time, chronic liver disease is characterized by alterations in primary and secondary hemostasis but unlike previously thought, these changes are not associated with an increased risk of bleeding complications. In recent years, the role of coagulation imbalance has been postulated as one of the main mechanisms promoting hepatic fibrogenesis. In this review, we aim to investigate the function of microvascular thrombosis in the progression of liver disease and highlight the molecular and cellular networks linking hemostasis to fibrosis in this context. We analyze the predictive and prognostic role of coagulation products as biomarkers of liver decompensation (ascites, variceal hemorrhage, and hepatic encephalopathy) and liver-related mortality. Finally, we evaluate the current evidence on the application of antiplatelet and anticoagulant therapies for prophylaxis of hepatic decompensation or prevention of the progression of liver fibrosis.
Collapse
Affiliation(s)
- Carlo Airola
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Maria Pallozzi
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Hepatology Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (M.P.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
15
|
Lisman T. Bleeding and Thrombosis in Patients With Cirrhosis: What's New? Hemasphere 2023; 7:e886. [PMID: 37234821 PMCID: PMC10208707 DOI: 10.1097/hs9.0000000000000886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Ton Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
16
|
Kietaibl S, Ahmed A, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, De Robertis E, Faraoni D, Filipescu DC, Fries D, Godier A, Haas T, Jacob M, Lancé MD, Llau JV, Meier J, Molnar Z, Mora L, Rahe-Meyer N, Samama CM, Scarlatescu E, Schlimp C, Wikkelsø AJ, Zacharowski K. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. Eur J Anaesthesiol 2023; 40:226-304. [PMID: 36855941 DOI: 10.1097/eja.0000000000001803] [Citation(s) in RCA: 80] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Management of peri-operative bleeding is complex and involves multiple assessment tools and strategies to ensure optimal patient care with the goal of reducing morbidity and mortality. These updated guidelines from the European Society of Anaesthesiology and Intensive Care (ESAIC) aim to provide an evidence-based set of recommendations for healthcare professionals to help ensure improved clinical management. DESIGN A systematic literature search from 2015 to 2021 of several electronic databases was performed without language restrictions. Grading of Recommendations, Assessment, Development and Evaluation (GRADE) was used to assess the methodological quality of the included studies and to formulate recommendations. A Delphi methodology was used to prepare a clinical practice guideline. RESULTS These searches identified 137 999 articles. All articles were assessed, and the existing 2017 guidelines were revised to incorporate new evidence. Sixteen recommendations derived from the systematic literature search, and four clinical guidances retained from previous ESAIC guidelines were formulated. Using the Delphi process on 253 sentences of guidance, strong consensus (>90% agreement) was achieved in 97% and consensus (75 to 90% agreement) in 3%. DISCUSSION Peri-operative bleeding management encompasses the patient's journey from the pre-operative state through the postoperative period. Along this journey, many features of the patient's pre-operative coagulation status, underlying comorbidities, general health and the procedures that they are undergoing need to be taken into account. Due to the many important aspects in peri-operative nontrauma bleeding management, guidance as to how best approach and treat each individual patient are key. Understanding which therapeutic approaches are most valuable at each timepoint can only enhance patient care, ensuring the best outcomes by reducing blood loss and, therefore, overall morbidity and mortality. CONCLUSION All healthcare professionals involved in the management of patients at risk for surgical bleeding should be aware of the current therapeutic options and approaches that are available to them. These guidelines aim to provide specific guidance for bleeding management in a variety of clinical situations.
Collapse
Affiliation(s)
- Sibylle Kietaibl
- From the Department of Anaesthesiology & Intensive Care, Evangelical Hospital Vienna and Sigmund Freud Private University Vienna, Austria (SK), Department of Anaesthesia and Critical Care, University Hospitals of Leicester NHS Trust (AAh), Department of Cardiovascular Sciences, University of Leicester, UK (AAh), Department of Paediatric and Obstetric Anaesthesia, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark (AAf), Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark (AAf), Department of Anaesthesiology & Critical Care, CNRS/TIMC-IMAG UMR 5525/Themas, Grenoble-Alpes University Hospital, Grenoble, France (PA), Department of Anaesthesiology & Intensive Care, Hospital Universitario Rio Hortega, Valladolid, Spain (CA), Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania (GB), Division of Anaesthesia, Analgesia, and Intensive Care - Department of Medicine and Surgery, University of Perugia, Italy (EDR), Department of Anesthesiology, Perioperative and Pain Medicine, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA (DFa), University of Medicine and Pharmacy Carol Davila, Department of Anaesthesiology & Intensive Care, Emergency Institute for Cardiovascular Disease, Bucharest, Romania (DCF), Department of Anaesthesia and Critical Care Medicine, Medical University Innsbruck, Innsbruck, Austria (DFr), Department of Anaesthesiology & Critical Care, APHP, Université Paris Cité, Paris, France (AG), Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, Florida, USA (TH), Department of Anaesthesiology, Intensive Care and Pain Medicine, St.-Elisabeth-Hospital Straubing, Straubing, Germany (MJ), Department of Anaesthesiology, Medical College East Africa, The Aga Khan University, Nairobi, Kenya (MDL), Department of Anaesthesiology & Post-Surgical Intensive Care, University Hospital Doctor Peset, Valencia, Spain (JVL), Department of Anaesthesiology & Intensive Care, Johannes Kepler University, Linz, Austria (JM), Department of Anesthesiology & Intensive Care, Semmelweis University, Budapest, Hungary (ZM), Department of Anaesthesiology & Post-Surgical Intensive Care, University Trauma Hospital Vall d'Hebron, Barcelona, Spain (LM), Department of Anaesthesiology & Intensive Care, Franziskus Hospital, Bielefeld, Germany (NRM), Department of Anaesthesia, Intensive Care and Perioperative Medicine, GHU AP-HP. Centre - Université Paris Cité - Cochin Hospital, Paris, France (CMS), Department of Anaesthesiology and Intensive Care, Fundeni Clinical Institute, Bucharest and University of Medicine and Pharmacy Carol Davila, Bucharest, Romania (ES), Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Centre Linz and Ludwig Boltzmann-Institute for Traumatology, The Research Centre in Co-operation with AUVA, Vienna, Austria (CS), Department of Anaesthesia and Intensive Care Medicine, Zealand University Hospital, Roskilde, Denmark (AW) and Department of Anaesthesiology, Intensive Care Medicine & Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany (KZ)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jiménez-Dinamarca I, Prado Y, Tapia P, Gatica S, Alt C, Lin CP, Reyes-Martínez C, Feijóo CG, Aravena C, González-Canacer A, Correa S, Varela D, Cabello-Verrugio C, Simon F. Disseminated intravascular coagulation phenotype is regulated by the TRPM7 channel during sepsis. Biol Res 2023; 56:8. [PMID: 36869357 PMCID: PMC9983216 DOI: 10.1186/s40659-023-00419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Sepsis is an uncontrolled inflammatory response against a systemic infection that results in elevated mortality, mainly induced by bacterial products known as endotoxins, producing endotoxemia. Disseminated intravascular coagulation (DIC) is frequently observed in septic patients and is associated with organ failure and death. Sepsis activates endothelial cells (ECs), promoting a prothrombotic phenotype contributing to DIC. Ion channel-mediated calcium permeability participates in coagulation. The transient reception potential melastatin 7 (TRPM7) non-selective divalent cation channel that also contains an α-kinase domain, which is permeable to divalent cations including Ca2+, regulates endotoxin-stimulated calcium permeability in ECs and is associated with increased mortality in septic patients. However, whether endothelial TRPM7 mediates endotoxemia-induced coagulation is not known. Therefore, our aim was to examine if TRPM7 mediates coagulation during endotoxemia. RESULTS The results showed that TRPM7 regulated endotoxin-induced platelet and neutrophil adhesion to ECs, dependent on the TRPM7 ion channel activity and by the α-kinase function. Endotoxic animals showed that TRPM7 mediated neutrophil rolling on blood vessels and intravascular coagulation. TRPM7 mediated the increased expression of the adhesion proteins, von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1), and P-selectin, which were also mediated by the TRPM7 α-kinase function. Notably, endotoxin-induced expression of vWF, ICAM-1 and P-selectin were required for endotoxin-induced platelet and neutrophil adhesion to ECs. Endotoxemic rats showed increased endothelial TRPM7 expression associated with a procoagulant phenotype, liver and kidney dysfunction, increased death events and an increased relative risk of death. Interestingly, circulating ECs (CECs) from septic shock patients (SSPs) showed increased TRPM7 expression associated with increased DIC scores and decreased survival times. Additionally, SSPs with a high expression of TRPM7 in CECs showed increased mortality and relative risk of death. Notably, CECs from SSPs showed significant results from the AUROC analyses for predicting mortality in SSPs that were better than the Acute Physiology and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scores. CONCLUSIONS Our study demonstrates that sepsis-induced DIC is mediated by TRPM7 in ECs. TRPM7 ion channel activity and α-kinase function are required by DIC-mediated sepsis-induced organ dysfunction and its expression are associated with increased mortality during sepsis. TRPM7 appears as a new prognostic biomarker to predict mortality associated to DIC in SSPs, and as a novel target for drug development against DIC during infectious inflammatory diseases.
Collapse
Affiliation(s)
- Ivanka Jiménez-Dinamarca
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile.,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
| | - Pablo Tapia
- Unidad de Paciente Crítico Adulto, Hospital Clínico La Florida, Santiago, Chile
| | - Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile.,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cristian Reyes-Martínez
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Carmen G Feijóo
- Fish Immunology Laboratory, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Alejandra González-Canacer
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Simón Correa
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile
| | - Diego Varela
- Programa de Fisiología Y Biofísica, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute On Immunology and Immunotherapy, Santiago, Chile. .,Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile. .,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Republica 330, 8370186, Santiago, Chile. .,Millennium Institute On Immunology and Immunotherapy, Santiago, Chile. .,Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
18
|
circ_0001274 Competitively Binds miR-143-3p to Upregulate VWF Expression to Improve Acute Traumatic Coagulopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9650323. [PMID: 36760352 PMCID: PMC9904904 DOI: 10.1155/2023/9650323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 02/04/2023]
Abstract
Accumulating evidence has noted the circRNA-microRNA- (circRNA-miRNA-) mRNA competing endogenous RNA (ceRNA) regulatory network in disease development and progression. The current study explored the ceRNA network in acute traumatic coagulopathy (ATC). Potential ATC-related genes were screened, and upstream miRNAs and circRNAs of VWF (the candidate target) were assayed through database searching and high-throughput sequencing technology. circ_0001274/miR-143-3p/VWF ceRNA regulatory network was constructed and validated. The expression of circ_0001274/miR-143-3p/VWF was determined in the peripheral blood samples from ATC patients and ATC mouse models. Online database and circRNA sequencing analysis results identified VWF as a key gene in ATC as supported by assays and that VWF was lowly expressed in ATC patients and mice. Further experiments demonstrated that miR-143-3p could target and inhibit VWF, and circ_0001274 could competitively sponge miR-143-3p. Functionally, circ_0001274 could competitively sequester miR-143-3p to upregulate VWF expression, potentially improving ATC. Our study highlights the critical role of circ_0001274/miR-143-3p/VWF axis in improving ATC.
Collapse
|
19
|
Zanetto A, Northup P, Roberts L, Senzolo M. Haemostasis in cirrhosis: Understanding destabilising factors during acute decompensation. J Hepatol 2023; 78:1037-1047. [PMID: 36708812 DOI: 10.1016/j.jhep.2023.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
Hospitalised patients with decompensated cirrhosis are in a rebalanced haemostatic state due to a parallel decline in both pro- and anti-haemostatic pathways. However, this rebalanced haemostatic state is highly susceptible to perturbations and may easily tilt towards hypocoagulability and bleeding. Acute kidney injury, bacterial infections and sepsis, and progression from acute decompensation to acute-on-chronic liver failure are associated with additional alterations of specific haemostatic pathways and a higher risk of bleeding. Unfortunately, there is no single laboratory method that can accurately stratify an individual patient's bleeding risk and guide pre-procedural prophylaxis. A better understanding of haemostatic alterations during acute illness would lead to more rational and individualised management of hospitalised patients with decompensated cirrhosis. This review will outline the latest findings on haemostatic alterations driven by acute kidney injury, bacterial infections/sepsis, and acute-on-chronic liver failure in these difficult-to-treat patients and provide evidence supporting more tailored management of bleeding risk.
Collapse
Affiliation(s)
- Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Azienda Ospedale - Università Padova, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Patrick Northup
- Division of Gastroenterology and Hepatology, NYU Grossman School of Medicine, NYU Transplant Institute, New York, NY, USA
| | - Lara Roberts
- King's Thrombosis Centre, Department of Haematological Medicine, King's College Hospital, London, UK
| | - Marco Senzolo
- Gastroenterology and Multivisceral Transplant Unit, Azienda Ospedale - Università Padova, Padova, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
20
|
Maiwall R. Platelets in acute liver failure: an innocent bystander or instigator? Hepatol Int 2022; 16:1256-1258. [PMID: 36194338 DOI: 10.1007/s12072-022-10427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
21
|
Sacco M, Tardugno M, Lancellotti S, Ferretti A, Ponziani FR, Riccardi L, Zocco MA, De Magistris A, Santopaolo F, Pompili M, De Cristofaro R. ADAMTS-13/von Willebrand factor ratio: A prognostic biomarker for portal vein thrombosis in compensated cirrhosis. A prospective observational study. Dig Liver Dis 2022; 54:1672-1680. [PMID: 35778228 DOI: 10.1016/j.dld.2022.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS In cirrhosis, decreased portal flow velocity, thrombophilia factors, and portal hypertension are considered risk factors for portal vein thrombosis (PVT). In cirrhosis, the transformation of the stellate cells causes a progressive decrease of ADAMTS-13, while VWF multimers secretion by endothelial cells is strongly enhanced. This imbalance leads to an accumulation of ultra-large VWF multimers that in sinusoidal circulation could favor PVT both in intra- and extra-hepatic branches, mostly in decompensated cirrhosis. This prospective study was aimed at identifying possible clinical, biochemical, and hemostatic factors predictive for non-tumoral PVT in a cohort of patients with compensated cirrhosis. METHODS Seventynine compensated cirrhosis patients were prospectively followed for 48 months, receiving a periodic Doppler-ultrasound liver examination associated with an extensive evaluation of clinical, biochemical, and hemostatic profile. RESULTS Five patients developed PVT (cumulative prevalence = 6.3%), occurring 4-36 months after enrollment. In logistic regression analysis, the ADAMTS-13/VWF:GpIbR ratio < 0.4 was the only independent variable significantly associated with PVT (OR 14.6, 95% C.I.:1.36-157.2, p = 0.027). A Cox-regression-analysis confirmed this finding (HR = 7.7, p = 0.027). CONCLUSIONS The ADAMTS-13/VWF ratio < 0.4 measured in compensated cirrhosis could be a reliable predictive biomarker for PVT development, paving the way to novel therapeutic strategies to prevent and treat PVT in this clinical setting.
Collapse
Affiliation(s)
- Monica Sacco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica S. Cuore, Facoltà di Medicina e Chirurgia "Agostino Gemelli", Roma, Italy
| | - Maira Tardugno
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica S. Cuore, Facoltà di Medicina e Chirurgia "Agostino Gemelli", Roma, Italy
| | - Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Antonietta Ferretti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Francesca Romana Ponziani
- Dipartimento di Scienze Mediche e Chirurgiche, Hepatology Service, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Laura Riccardi
- Dipartimento di Scienze Mediche e Chirurgiche, Hepatology Service, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Maria Assunta Zocco
- Dipartimento di Scienze Mediche e Chirurgiche, Hepatology Service, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Antonio De Magistris
- Dipartimento di Scienze Mediche e Chirurgiche, Hepatology Service, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Francesco Santopaolo
- Dipartimento di Scienze Mediche e Chirurgiche, Hepatology Service, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Maurizio Pompili
- Dipartimento di Scienze Mediche e Chirurgiche, Hepatology Service, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Raimondo De Cristofaro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica S. Cuore, Facoltà di Medicina e Chirurgia "Agostino Gemelli", Roma, Italy; Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy.
| |
Collapse
|
22
|
Lin J, Ling Q, Yan L, Chen B, Wang F, Qian Y, Gao Y, Wang Q, Wu H, Sun X, Shi Y, Kong X. Ancient Herbal Formula Mahuang Lianqiao Chixiaodou Decoction Protects Acute and Acute-on-Chronic Liver Failure via Inhibiting von Willebrand Factor Signaling. Cells 2022; 11:3368. [PMID: 36359765 PMCID: PMC9656135 DOI: 10.3390/cells11213368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) are characterized by systemic inflammation and high mortality, but there is no effective clinical treatment. As a classic traditional Chinese medicine (TCM) formula, MaHuang-LianQiao-ChiXiaoDou decoction (MHLQD) has been used clinically for centuries to treat liver diseases. METHODS The LPS/D-GalN-induced ALF mice model and the CCl4+LPS/D-GalN-induced ACLF mice model were used to observe the therapeutic effects of MHLQD on mice mortality, hepatocytes death, liver injury, and immune responses. RESULTS MHLQD treatment significantly improved mice mortality. Liver injury and systemic and hepatic immune responses were also ameliorated after MHLQD treatment. Mechanistically, proteomic changes in MHLQD-treated liver tissues were analyzed and the result showed that the thrombogenic von Willebrand factor (VWF) was significantly inhibited in MHLQD-treated ALF and ACLF models. Histological staining and western blotting confirmed that VWF/RAP1B/ITGB3 signaling was suppressed in MHLQD-treated ALF and ACLF models. Furthermore, mice treated with the VWF inhibitor ADAMTS13 showed a reduced therapeutic effect from MHLQD treatment. CONCLUSIONS Our study indicated that MHLQD is an effective herbal formula for the treatment of ALF and ACLF, which might be attributed to the protection of hepatocytes from death via VWF/RAP1B/ITGB3 signaling.
Collapse
Affiliation(s)
- Jiacheng Lin
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qihua Ling
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Yan
- Department of General Practice, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bowu Chen
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yihan Qian
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Wang
- Department of Emergency Internal Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanjun Shi
- Abdominal Transplantation Center, General Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
23
|
Pillai AA, Kriss M, Al‐Adra DP, Chadha RM, Cushing MM, Farsad K, Fortune BE, Hess AS, Lewandowski R, Nadim MK, Nydam T, Sharma P, Karvellas CJ, Intagliata N. Coagulopathy and hemostasis management in patients undergoing liver transplantation: Defining a dynamic spectrum across phases of care. Liver Transpl 2022; 28:1651-1663. [PMID: 35253365 PMCID: PMC9790275 DOI: 10.1002/lt.26451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023]
Abstract
Patients with acute and chronic liver disease present with a wide range of disease states and severity that may require liver transplantation (LT). Physiologic alterations occur that are dynamic throughout all phases of perioperative care, creating complex management scenarios that necessitate multidisciplinary clinical care. Specifically, alterations in hemostasis in liver disease can be pronounced and evolve with disease progression over time. Recent studies and society guidance address this emerging paradigm and offer recommendations to assist with hemostatic management in patients with liver disease. However, patients undergoing LT are unique and diverse, often with unstable disease that requires specialized approaches. Our aim is to provide a focused review of hemostatic management of the LT patient, distinguish unique aspects of the three main phases of care (before LT, perioperative, and after LT), and identify knowledge gaps and critical areas of future research.
Collapse
Affiliation(s)
- Anjana A. Pillai
- Department of MedicineUniversity of Chicago MedicineChicagoIllinoisUSA
| | - Michael Kriss
- Department of Internal MedicineUniversity of ColoradoAuroraColoradoUSA
| | - David P. Al‐Adra
- Department of SurgerySchool of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Ryan M. Chadha
- Department of Anesthesiology and Perioperative MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Melissa M. Cushing
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Khashayar Farsad
- Department of Interventional RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | | | - Aaron S. Hess
- Department of AnesthesiologyUniversity of WisconsinMadisonWisconsinUSA,Department of Pathology & Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
| | | | - Mitra K. Nadim
- Department of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Trevor Nydam
- Department of SurgeryUniversity of ColoradoAuroraColoradoUSA
| | - Pratima Sharma
- Department of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | | | | |
Collapse
|
24
|
Abstract
Abbreviated pathogenesis and clinical course of the acute liver failure syndrome. The pathogenesis and clinical course of the syndrome of acute liver failure (ALF) differs depending upon the etiology of the primary liver injury. In turn, the severity of the liver injury and resulting synthetic failure is often the primary determinant of whether a patient is referred for emergency liver transplantation. Injuries by viral etiologies trigger the innate immune system via pathogen-associated molecular patterns (PAMPs), while toxin-induced (and presumably ischemia-induced) injuries do so via damage-associated molecular patterns (DAMPs). The course of the clinical syndrome further depends upon the relative intensity and composition of cytokine release, resulting in an early proinflammatory phenotype (SIRS) and later compensatory anti-inflammatory response phenotype (CARS). The outcomes of overwhelming immune activation are the systemic (extrahepatic) features of ALF (cardiovascular collapse, cerebral edema, acute kidney injury, respiratory failure, sepsis) which ultimately determine the likelihood of death.Acute liver failure (ALF) continues to carry a high risk of mortality or the need for transplantation despite recent improvements in overall outcomes over the past two decades. Optimal management begins with identifying that liver failure is indeed present and its etiology, since outcomes and the need for transplantation vary widely across the different etiologies. Most causes of ALF can be divided into hyperacute (ischemia and acetaminophen) and subacute types (other etiologies), based on time of evolution of signs and symptoms of liver failure; the former evolve in 3 to 4 days and the latter typically in 2 to 4 weeks. Both involve intense release of cytokines and hepatocellular contents into the circulation with multiorgan effects/consequences.Management involves optimizing fluid balance and cardiovascular support, including the use of continuous renal replacement therapy, vasopressors, and pulmonary ventilation. Early evaluation for liver transplantation is advised particularly for acetaminophen toxicity, which evolves so rapidly that delay is likely to lead to death.Vasopressor support, high-grade hepatic encephalopathy, and unfavorable (subacute) etiologies heighten the need for urgent listing for liver transplantation. Prognostic scores such as Kings Criteria, Model for End-Stage Liver Disease, and the Acute Liver Failure Group prognostic index take these features into account and provide reasonable but imperfect predictive accuracy. Future treatments may include liver support devices and/or agents that improve hepatocyte regeneration.
Collapse
Affiliation(s)
- Shannan Tujios
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas
| | - R. Todd Stravitz
- Section of Hepatology, Department of Internal Medicine, Hume-Lee Transplant Center, Virginia Commonwealth University, Richmond, Virginia
| | - William M. Lee
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse Models of Liver Parenchyma Injuries and Regeneration. Front Cell Dev Biol 2022; 10:903740. [PMID: 35721478 PMCID: PMC9198899 DOI: 10.3389/fcell.2022.903740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Canjun Xiao
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
| | - Jun Shi
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Zhiying He
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Present an outline of acute liver failure, from its definition to its management in critical care, updated with findings of selected newer research. RECENT FINDINGS Survival of patients with acute liver failure has progressively improved. Intracranial hypertension complicating hepatic encephalopathy is now much less frequent than in the past and invasive ICP monitoring is now rarely used. Early renal replacement therapy and possibly therapeutic plasma exchange have consolidated their role in the treatment. Further evidence confirms the low incidence of bleeding in these patients despite striking abnormalities in standard tests of coagulation and new findings of abnormalities on thromboelastographic testing. Specific coagulopathy profiles including an abnormal vWF/ADAMTS13 ratio may be associated with poor outcome and increased bleeding risk. Use of N-acetylcysteine in nonparacetamol-related cases remains unsupported by robust clinical evidence. New microRNA-based prognostic markers to select patients for transplantation are described but are still far from widespread clinical applicability; imaging-based prognostication tools are also promising. The use of extracorporeal artificial liver devices in clinical practice is yet to be supported by evidence. SUMMARY Medical treatment of patients with acute liver failure is now associated with significantly improved survival. Better prognostication and selection for emergency liver transplant may further improve care for these patients.
Collapse
|
27
|
von Meijenfeldt FA, Stravitz RT, Lee WM, Lisman T. Reply. Hepatology 2022; 75:770-771. [PMID: 34923660 DOI: 10.1002/hep.32286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 12/08/2022]
Affiliation(s)
- Fien A von Meijenfeldt
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - R Todd Stravitz
- Hume-Lee Transplant Center of Virginia Commonwealth University, Richmond, Virginia, USA
| | - William M Lee
- University of Texas-Southwestern Medical Center, Dallas, Texas, USA
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
28
|
Zellos A, Debray D, Indolfi G, Czubkowski P, Samyn M, Hadzic N, Gupte G, Fischler B, Smets F, de Cléty SC, Grenda R, Mozer Y, Mancell S, Jahnel J, Auzinger G, Worth A, Lisman T, Staufner C, Baumann U, Dhawan A, Alonso E, Squires RH, Verkade HJ. Proceedings of ESPGHAN Monothematic Conference 2020: "Acute Liver Failure in Children": Diagnosis and Initial Management. J Pediatr Gastroenterol Nutr 2022; 74:e45-e56. [PMID: 35226643 DOI: 10.1097/mpg.0000000000003341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The Hepatology Committee of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) aims to educate pediatric gastroenterologists, members of ESPGHAN and professionals from other specialties promoting an exchange of clinical expertise in the field of pediatric hepatology. Herewith we have concentrated on detailing the recent advances in acute liver failure in infants and children. METHODS The 2020 ESPGHAN monothematic three-day conference on pediatric hepatology disease, entitled "acute liver failure" (ALF), was organized in Athens, Greece. ALF is a devastating disease with high mortality and most cases remain undiagnosed. As knowledge in diagnosis and treatment of ALF in infants and children has increased in the past decades, the objective was to update physicians in the field with the latest research and developments in early recognition, curative therapies and intensive care management, imaging techniques and treatment paradigms in these age groups. RESULTS In the first session, the definition, epidemiology, various causes of ALF, in neonates and older children and recurrent ALF (RALF) were discussed. The second session was dedicated to new aspects of ALF management including hepatic encephalopathy (HE), coagulopathy, intensive care interventions, acute on chronic liver failure, and the role of imaging in treatment and prognosis. Oral presentations by experts in various fields are summarized highlighting key learning points. CONCLUSIONS The current report summarizes the major learning points from this meeting. It also identifies areas where there is gap of knowledge, thereby identifying the research agenda for the near future.
Collapse
Affiliation(s)
- Aglaia Zellos
- First Department of Pediatrics, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dominique Debray
- Pediatric Hepatology Unit, Hôpital Necker-Enfants Malades, Reference Center for Rare Pediatric Liver Diseases, ERN Rare Liver and Transplant Child, Paris, France
| | - Giuseppe Indolfi
- Department Neurofarba University of Florence, Meyer Children's University Hospital of Florence, Florence, Italy
| | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology and Nutritional Disorders and Pediatrics. The Children's Memorial Health Institute, Warsaw, Poland
| | - Marianne Samyn
- Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital
| | | | - Girish Gupte
- Birmingham Children's Hospital NHS Trust, Birmingham, UK
| | - Björn Fischler
- Department of Pediatrics, CLINTEC Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Françoise Smets
- Pediatrics, Cliniques universitaires Saint-Luc, Université Catholique de Louvain
| | - Stéphan Clément de Cléty
- Paediatric intensive care, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation & Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Yael Mozer
- Schneider Children's Medical Center, Israel
| | | | | | - Georg Auzinger
- King's College Hospital, Department Chair, Critical Care Cleveland Clinic
| | - Austen Worth
- Great Ormond Street Hospital for Children, London, UK
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Anil Dhawan
- Variety Children Hospital, Director Paediatric Liver GI and Nutrition and Mowat Labs, King's College Hospital, London, UK
| | - Estelle Alonso
- Siragusa Transplant Center, Ann and Robert H. Lurie Children' Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Henkjan J Verkade
- Department of Paediatrics, University of Groningen, Beatrix Children's Hospital, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
29
|
Driever EG, Lisman T. Effects of Inflammation on Hemostasis in Acutely Ill Patients with Liver Disease. Semin Thromb Hemost 2022; 48:596-606. [PMID: 35135033 DOI: 10.1055/s-0042-1742438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with liver diseases are in a rebalanced state of hemostasis, due to simultaneous decline in pro- and anticoagulant factors. This balance seems to remain even in the sickest patients, but is less stable and might destabilize when patients develop disease complications. Patients with acute decompensation of cirrhosis, acute-on-chronic liver failure, or acute liver failure often develop complications associated with changes in the hemostatic system, such as systemic inflammation. Systemic inflammation causes hemostatic alterations by adhesion and aggregation of platelets, release of von Willebrand factor (VWF), enhanced expression of tissue factor, inhibition of natural anticoagulant pathways, and inhibition of fibrinolysis. Laboratory tests of hemostasis in acutely-ill liver patients may indicate a hypocoagulable state (decreased platelet count, prolongations in prothrombin time and activated partial thromboplastin time, decreased fibrinogen levels) due to decreased synthetic liver capacity or consumption, or a hypercoagulable state (increased VWF levels, hypofibrinolysis in global tests). Whether these changes are clinically relevant and should be corrected with antithrombotic drugs or blood products is incompletely understood. Inflammation and activation of coagulation may cause local ischemia, progression of liver disease, and multiorgan failure. Anti-inflammatory treatment in acutely-ill liver patients may be of potential interest to prevent thrombotic or bleeding complications and halt progression of liver disease.
Collapse
Affiliation(s)
- Ellen G Driever
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Zhong HJ, Zhuang YP, Zhang YT, Xu SP, Hong MF, He XX. Distinguishing between the complications of Wilson disease-related cirrhosis and HBV-related cirrhosis. Curr Med Res Opin 2022; 38:75-81. [PMID: 34665066 DOI: 10.1080/03007995.2021.1993160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Complications affect the outcome of patients with cirrhosis. The favorable prognosis of patients with Wilson disease (WD)-related cirrhosis suggests that its complications differ from those of hepatitis B virus (HBV) infection-related cirrhosis. We aimed to delineate the differences in complications between WD-related and HBV-related cirrhosis. METHODS The electronic-medical data from patients with WD-related and HBV-related cirrhosis were extracted and analyzed. RESULTS In total, 211 patients with WD-related cirrhosis and 374 patients with HBV-related cirrhosis were enrolled. Most patients with WD progressed to cirrhosis <10 years after disease onset, whereas those with HBV infection often progressed after >10 years. Patients with WD-related cirrhosis had a markedly lower prevalence of ascites (8.5% vs. 38.5%), gastroesophageal varices/variceal bleeding (13.3% vs. 47.6%), renal impairment (0 vs. 7.6%) and primary liver cancer (0 vs. 39.3%; all p < .001) than those with HBV-related cirrhosis. After adjustment for potential confounders, patients with WD-related cirrhosis carried a lower risk of varices/variceal bleeding. CONCLUSIONS Although patients with WD progressed to cirrhosis much faster, the prevalence of complications from WD-related cirrhosis was low. Patients with WD-related cirrhosis were less likely to develop gastroesophageal varices/variceal bleeding than those with HBV-related cirrhosis.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- South China University of Technology, Guangzhou, China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi-Ting Zhang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shun-Peng Xu
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ming-Fan Hong
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
31
|
Eapen CE, Venkataraman J. Rodenticide (Yellow Phosphorus Poison)-Induced Hepatotoxicity in India: Constraints During Management. J Clin Exp Hepatol 2021; 11:414-417. [PMID: 34276149 PMCID: PMC8267345 DOI: 10.1016/j.jceh.2021.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Key Words
- ALF, Acute Liver Failure
- ALI, Acute Liver Injury
- HDU, High Dependency Unit
- ICU, Intensive Care Unit
- INASL, Indian National Association for the study of Liver
- KCH, King's College Hospital
- LT, Liver transplantation
- MELD, Model for End-Stage Liver Disease
- PLEX, Plasma Exchange
- TN, Tamil Nadu
- YPP, Yellow Phosphorus Poison
- vWF, von Willebrand Factor
Collapse
Affiliation(s)
| | - Jayanthi Venkataraman
- Department of Hepatology, Sri Ramachandra Institute of Higher Education & Research, Chennai, India
| |
Collapse
|
32
|
Pavlick M, DeLaforcade A, Penninck DG, Webster CRL. Evaluation of coagulation parameters in dogs with gallbladder mucoceles. J Vet Intern Med 2021; 35:1763-1772. [PMID: 34196054 PMCID: PMC8295708 DOI: 10.1111/jvim.16203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gallbladder mucocele (GBM) is a common biliary disorder in dogs. Limited information is available on the coagulation status of dogs with GBM. HYPOTHESIS/OBJECTIVES To determine patterns of coagulation alterations in dogs with GBM and correlate them with clinicopathologic abnormalities and ultrasonographic findings of disease severity. ANIMALS Twenty-three dogs with GBM identified on ultrasound examination were prospectively enrolled. METHODS At the time of GBM identification, blood and urine were collected for CBC, serum biochemical panel, urinalysis, prothrombin time, activated partial thromboplastin time (aPTT), factor VIII, protein C (PC), von Willebrand's factor (vWF), antithrombin activity, fibrinogen, D-dimers, and thromboelastrography (TEG). Gallbladder mucoceles were classified into ultrasound types 1 to 5. Medical records were reviewed for clinical presentation, underlying conditions and to determine if systemic inflammatory response syndrome (SIRS) was present. RESULTS Based on TEG parameters, maximal amplitude, and G, 19/23 (83%) of dogs with GBM had evaluations consistent with hypercoagulability. On plasma-based coagulation testing, dogs with GBM had increased total PC activity (20/23, 87%), fibrinogen (9/23, 39%), platelet count (9/23, 39%), and D-dimers (6/15, 40%) as well as prolongations in aPTT (9/22, 41%) and low vWF activity (5/21, 24%). No correlation was found between TEG G value and any coagulation or clinical pathology variables, ultrasound stage of GBM or disease severity as assessed by the presence of SIRS. CONCLUSIONS AND CLINICAL IMPORTANCE Dogs with ultrasonographically identified GBM have changes in whole blood kaolin-activated TEG supporting a hypercoagulable state although traditional plasma-based coagulation testing suggests that a complex state of hemostasis exists.
Collapse
Affiliation(s)
- Michelle Pavlick
- Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts, USA
| | - Armelle DeLaforcade
- Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts, USA
| | - Dominique G Penninck
- Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts, USA
| | - Cynthia R L Webster
- Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts, USA
| |
Collapse
|
33
|
Lisman T, Hernandez‐Gea V, Magnusson M, Roberts L, Stanworth S, Thachil J, Tripodi A. The concept of rebalanced hemostasis in patients with liver disease: Communication from the ISTH SSC working group on hemostatic management of patients with liver disease. J Thromb Haemost 2021; 19:1116-1122. [PMID: 33792172 PMCID: PMC8252070 DOI: 10.1111/jth.15239] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Patients with liver diseases acquire complex alterations in their hemostatic system that may lead to abnormalities in routine diagnostic test of hemostasis. Thrombocytopenia, prolongations in the prothrombin time and activated partial thromboplastin time, and decreased plasma fibrinogen are common in patients with advanced liver disease. Historically, liver diseases therefore have been classified as an acquired bleeding disorder. Laboratory and clinical observations have demonstrated that although routine diagnostic tests of hemostasis suggest a hypocoagulable state, patients with liver disease also tend to develop thrombotic events. Overall, patients have commensurate changes in both pro- and antihemostatic pathways. This new hemostatic balance, however, appears much more fragile than the hemostatic balance in individuals with normal liver function, and patients with liver disease can readily experience both hemostasis-related bleeding and thrombotic events. These insights into the hemostatic balance in patients with liver disease have led to revised recommendations for clinical management of hemostasis. In 2020, an SSC working group within the ISTH has been founded with the aim to disseminate new concepts on prevention and treatment of bleeding and thrombosis in patients with liver disease. The current document will outline the hemostatic changes in patients with liver disease, the limitations of routine diagnostic tests of hemostasis, and the concept of rebalanced hemostasis.
Collapse
Affiliation(s)
- Ton Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Virginia Hernandez‐Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital ClínicIDIBAPSUniversity of BarcelonaCentro de Investigación Biomédica Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN‐Liver)BarcelonaSpain
| | - Maria Magnusson
- Clinical Chemistry and Blood Coagulation ResearchMMKDepartment of PediatricsCLINTECKarolinska InstitutetDepartment of HematologyKarolinska University HospitalStockholmSweden
| | - Lara Roberts
- King's Thrombosis CentreDepartment of Haematological MedicineKing's College HospitalLondonUK
| | - Simon Stanworth
- Transfusion MedicineNHS Blood and TransplantOxfordUK
- Department of HaematologyOxford University HospitalsNHS Foundation TrustOxfordUK
- Radcliffe Department of MedicineUniversity of Oxford and NIHR Oxford Biomedical Research Centre (Haematology)OxfordUK
| | - Jecko Thachil
- Department of HaematologyManchester Royal InfirmaryManchesterUK
| | - Armando Tripodi
- IRCCS Ca’ Granda Maggiore Hospital FoundationAngelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi VillaMilanoItaly
| |
Collapse
|
34
|
von Meijenfeldt FA, Havervall S, Adelmeijer J, Lundström A, Rudberg A, Magnusson M, Mackman N, Thalin C, Lisman T. Prothrombotic changes in patients with COVID-19 are associated with disease severity and mortality. Res Pract Thromb Haemost 2021; 5:132-141. [PMID: 33537537 PMCID: PMC7845083 DOI: 10.1002/rth2.12462] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Patients with severe coronavirus disease 2019 (COVID-19) are at significant risk of thrombotic complications. However, their prothrombotic state is incompletely understood. Therefore, we measured in vivo activation markers of hemostasis, plasma levels of hemostatic proteins, and functional assays of coagulation and fibrinolysis in plasma from patients with COVID-19 and determined their association with disease severity and 30-day mortality. METHODS We included 102 patients with COVID-19 receiving various levels of respiratory support admitted to general wards, intermediate units, or intensive care units and collected plasma samples shortly after hospital admission. RESULTS Patients with COVID-19 with higher respiratory support had increased in vivo activation of coagulation and fibrinolysis, as reflected by higher plasma levels of d-dimer, thrombin-antithrombin, and plasmin-antiplasmin complexes as compared to patients with no to minimal respiratory support and healthy controls. Moreover, the patients with COVID-19 with higher respiratory support exhibited substantial ex vivo thrombin generation and lower ex vivo fibrinolytic capacity, despite higher doses of anticoagulant therapy compared to less severely ill patients. Fibrinogen, factor VIII, and von Willebrand factor levels increased, and ADAMTS13 levels decreased with increasing respiratory support in patients with COVID-19. Low platelet count; low levels of prothrombin, antithrombin, and ADAMTS13; and high levels of von Willebrand factor were associated with short-term mortality. CONCLUSIONS Severe COVID-19 is associated with prothrombotic changes with increased in vivo activation of coagulation and fibrinolysis, despite anticoagulant therapy.
Collapse
Affiliation(s)
- Fien A. von Meijenfeldt
- Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Sebastian Havervall
- Division of Internal MedicineDepartment of Clinical SciencesKarolinska InstitutetDanderyd HospitalStockholmSweden
| | - Jelle Adelmeijer
- Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Annika Lundström
- Division of Internal MedicineDepartment of Clinical SciencesKarolinska InstitutetDanderyd HospitalStockholmSweden
| | - Ann‐Sofie Rudberg
- Department of NeurologyDanderyd HospitalStockholmSweden
- Department of Clinical NeurosciencesKarolinska InstitutetStockholmSweden
| | - Maria Magnusson
- Clinical Chemistry and Blood Coagulation ResearchMMKDepartment of PediatricsDepartment of HematologyCLINTECKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Nigel Mackman
- UNC Blood Research CenterDivision of HematologyDepartment of MedicineUniversity of North Carolina at Chapel HillNCUSA
| | - Charlotte Thalin
- Division of Internal MedicineDepartment of Clinical SciencesKarolinska InstitutetDanderyd HospitalStockholmSweden
| | - Ton Lisman
- Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|