1
|
Hao B, Liu Y, Wang B, Wu H, Chen Y, Zhang L. Hepatitis B surface antigen: carcinogenesis mechanisms and clinical implications in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:44. [PMID: 40141002 PMCID: PMC11938626 DOI: 10.1186/s40164-025-00642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Liver cancer is the third leading cause of death globally, with hepatitis B virus (HBV) infection being identified as the primary risk factor for its development. The occurrence of HBV-related hepatocellular carcinoma (HCC) is attributed to various mechanisms, such as chronic inflammation and liver cell regeneration induced by the cytotoxic immune response triggered by the virus, abnormal activation of oncogenes arising from HBV DNA insertion mutations, and epigenetic alterations mediated by viral oncoproteins. The envelope protein of the HBV virus, known as hepatitis B surface antigen (HBsAg), is a key indicator of increased risk for developing HCC in HBsAg-positive individuals. The HBsAg seroclearance status is found to be associated with recurrence in HCC patients undergoing hepatectomy. Additional evidence indicates that HBsAg is essential to the entire process of tumor development, from initiation to advancement, and acts as an oncoprotein involved in accelerating tumor progression. This review comprehensively analyzes the extensive effects and internal mechanisms of HBsAg during the various stages of the initiation and progression of HCC. Furthermore, it highlights the importance and potential applications of HBsAg in the realms of HCC early diagnosis and personalized therapeutic interventions. An in-depth understanding of the molecular mechanism of HBsAg in the occurrence and development of HCC is provided, which is expected to develop more precise and efficient strategies for the prevention and management of HCC in the future.
Collapse
Affiliation(s)
- Bingyan Hao
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bohan Wang
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haofeng Wu
- Hepatic Surgery Center, Institute of Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Chen
- Department of Paediatrics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Tongji Hospital, Tongji Medical College, Shanxi Medical University, Huazhong University of Science and Technology, Taiyuan, 030032, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Supekar R, Sarkar J, Chakrabarti P, Biswas S. Diagnostic challenges due to hepatitis B virus surface antigen mutations outside the major hydrophilic region. Arch Virol 2025; 170:71. [PMID: 40063291 DOI: 10.1007/s00705-025-06256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 01/29/2025] [Indexed: 03/29/2025]
Abstract
The number of observed cases of occult hepatitis B virus infection (OBI) in eastern India has been increasing. Here, S gene mutations were identified in apparently healthy individuals with OBI, and the S protein variants from these patients were characterized in vitro. Plasma samples from 217 healthy blood donors were collected from three different regions in eastern India and screened for hepatitis B virus (HBV) infection using a nucleic acid amplification test and immunoassays for serological markers. S protein variants found in positive plasma samples were characterized using a liver cell line. Twenty-nine of the 217 plasma samples tested, were positive for HBV DNA and were negative for hepatitis B surface antigen (HBsAg) and antibody to HBV core antigen (anti-HBc). Sequencing of the HBV S gene revealed a novel S protein mutation (L173H) in an area outside the major hydrophilic region. Known OBI-associated mutations (S34L, P178R), a mutation resulting in a stop codon at position 196, associated with lamivudine-resistance, the substitution I81T, and a dual mutation (G145A and Q101H) were also identified. S proteins containing these mutations, produced by transfection of human hepatoma (Huh7) cells with recombinant plasmids, were undetectable or gave significantly weaker signals than the wild-type control, despite similar levels of S mRNA production for the mutant and wild-type plasmids. The OBI cases in this study were unexpectedly seronegative. In vitro analysis revealed that the mutations identified here caused the virus to evade immunodetection using commercial immunoassays, thereby rendering a large portion of the population "silently" infected with HBV.
Collapse
Affiliation(s)
- Ruchi Supekar
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jit Sarkar
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Community Health Program, SWANIRVAR, North 24 Parganas, West Bengal, India
| | - Partha Chakrabarti
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhajit Biswas
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Choi YM, Jang J, Kim DH, Kim Z, Kim E, Choe WH, Kim BJ. PreS1 deletions in genotype C HBV leads to severe hepatic inflammation and hepatocarcinogenesis via the IRE1-JNK axis. JHEP Rep 2025; 7:101274. [PMID: 39980750 PMCID: PMC11840487 DOI: 10.1016/j.jhepr.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 02/22/2025] Open
Abstract
Background & Aims Deletion of 15-21 nucleotides covering the preS1 start codon frequently occurs in patients with chronic HBV (CHB) with HBV genotype C and has been reported to be related to progression to hepatocellular carcinoma (HCC). However, the underlying mechanism causing the distinct phenotype of this HBV variant remains largely unknown. We investigated the mechanism by which preS1Del is related to liver disease progression and enhanced HBV replication, focusing on endoplasmic reticulum (ER) stress. Methods The effects of HBV replicative capacity, ER stress signaling, inflammation, cell death, and tumorigenesis resulting from PreS1 deletions were investigated through in vitro and in vivo experiments. Inhibitors of the IRE1-JNK pathway and IL6 blockade were used to examine HCC tumor load induced by preS1 deletions. Results The PreS1Del variant selectively activates the IRE1 pathway, mainly via enhanced colocalization between the ER and HBsAg in infected hepatocytes. This leads to enhanced HBV replication and production of tumor-promoting inflammatory cytokines and IL6 and COX2 via the IRE1-JNK signaling pathway. Furthermore, in vivo data showed that the activation of IRE1-JNK signaling consequently leads to lipid accumulation and apoptosis within 21Del-HBV-infected hepatocytes, collectively driving severe tumorigenesis in the liver. Notably, several inhibitors of the IRE1-JNK pathway dramatically inhibited HBV replication and inflammation induced by 21Del-HBV but not by the wild-type HBV in infected hepatocytes. Furthermore, IL6 blockade significantly reduced HCC tumor load induced by 21Del-HBV. Conclusions PreS1Del leads to enhanced HBV replication and HCC development through IRE1-JNK-IL6/COX2-mediated hepatocyte proliferation and liver inflammation. Inhibitors interfering with the IRE1-JNK-IL6 pathway could selectively inhibit HBV replication and inflammation in preS1Dels, suggesting their potential for the treatment of patients with CHB with preS1-deleted HBV variants. Impact and implications Deletion of 15-21 nucleotides at the preS1 start codon is common in patients with CHB with HBV genotype C and is linked to HCC progression. However, the mechanisms underlying the distinct phenotype of this variant remain largely unknown. We found that the preS1Del variant selectively activates the IRE1 pathway, primarily through enhanced IRE1-JNK-IL6 signaling. Inhibition of either the IRE1-JNK pathway or IL6 reduced HBV replication and tumor load in in vivo HCC models. This study enhances our understanding of the mechanisms of liver disease progression caused by 5' preS1Del variants and provides new insights into treatment strategies for patients with these variants. We believe our findings will resonate with a diverse audience, including patients and their physicians, the medical community, academia, the life sciences sector, and the general public.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Ziyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Eunseo Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Won Hyeok Choe
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Choi YM, Kim DH, Cho EJ, Kim Z, Jang J, Kim H, Yu SJ, Kim BJ. The sV184A Variant in HBsAg Specific to HBV Subgenotype C2 Leads to Enhanced Viral Replication and Apoptotic Cell Death Induced by PERK-eIF2α-CHOP-Mediated ER Stress. J Med Virol 2025; 97:e70253. [PMID: 39977392 DOI: 10.1002/jmv.70253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
HBV genotype C, particularly subgenotype C2, is associated with an elevated risk of HCC and aggressive disease activity. We previously identified a nonsynonymous sV184A variant in the HBsAg region, predominantly in HBV subgenotype C2. This study investigates the mechanistic role of the sV184A variant in promoting liver disease progression. Analysis of 109 chronically HBV-infected patients revealed that the sV184A variant correlates with significantly elevated HBV DNA. Both patient data and public database indicated that sV184A is associated with high frequency of BCP mutations, however, the high HBV DNA in the sV184A group are independent of the presence of BCP mutations. In vitro and in vivo studies demonstrated that the sV184A variant enhances HBV replication and induces ER stress via the PERK-eIF2α-CHOP pathway, leading to apoptosis. HBV large surface (LHB)(LHB) protein was found to be a key factor, responsible for the strong ER stress, as the sV184A variant increases LHB protein stability. Pharmacological inhibition of PERK signaling or mutation of the LHB mitigated HBV proliferation and apoptosis induced by the sV184A variant. The sV184A variant specific to HBV subgenotype C2 significantly promotes HBV replication and apoptosis, serving as a driver of advanced liver disease and potentially increasing mutation rates in affected patients.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ziyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyunsoo Kim
- Department of Convergent Bioscience and Informatics, Chungnam National University, Daejeon, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Jeng LB, Chan WL, Teng CF. Molecular Mechanisms and Therapeutic Targets of Hepatitis B Virus Pre-S Mutant-Associated Hepatocellular Carcinoma Tumorigenesis. Cancer Control 2025; 32:10732748251320492. [PMID: 39945469 PMCID: PMC11826862 DOI: 10.1177/10732748251320492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Despite significant progress in diagnosis and therapeutics, hepatocellular carcinoma (HCC) is still among the most commonly occurring and life-taking human cancers globally, raising an urgent need for discovering effective therapeutic targets.Purpose: Chronic hepatitis B virus (HBV) infection is a major etiological factor associated with HCC development, progression, and prognosis. Pre-S mutants are naturally occurring mutated forms of HBV large surface proteins and predict a higher risk of HCC development and recurrence. Moreover, pre-S mutants function as important HBV oncoproteins which can promote HCC tumorigenesis through initiating a variety of oncogenic signaling pathways. Targeting pre-S mutant-induced oncogenic signaling pathways displays therapeutic potential in HCC.Research Design: This review summarizes the underlying molecular mechanisms of pre-S mutant-associated HCC tumorigenesis and highlights their potential in serving as therapeutic targets for HCC.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Ling Chan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Master Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Chen Y, Wang G, Li M, Wang J, Gu J, Huang R, Wu C, Zhang Q, Liu Y. Virological and Immunological Characteristics of HBeAg-Positive Chronic Hepatitis B Patients With Low HBsAg Levels. Aliment Pharmacol Ther 2024. [PMID: 39696718 DOI: 10.1111/apt.18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND HBeAg-positive chronic hepatitis B (CHB) with low HBsAg levels represents a relatively rare serological pattern and is closely associated with the severity of liver disease. However, the underlying mechanisms in such cases remain largely unclear. METHODS Treatment-naïve HBeAg-positive CHB patients with low HBsAg levels in China were enrolled and analysed. In vitro cell experiments and immunoassays were conducted to investigate the effects of the preS2 deletion mutation on virus reproduction and host immune response. RESULTS Treatment-naïve HBeAg-positive CHB patients with low HBsAg levels (low HBsAg group) exhibited higher fibrosis scores and a greater prevalence of quasispecies mutations introduced by preS2 deletion compared to patients with positive HBeAg and high HBsAg levels (high HBsAg group). Further analysis revealed that fibrosis scores in CHB patients with the preS2 deletion mutations were significantly higher compared to both in wild-type patients and the high HBsAg group. In vitro assays indicated that while this mutation may not impact HBV replication, it significantly reduced viral infectivity. The number of viral-specific IFN-γ-secreting cells induced by the mutant was significantly lower than that induced by the wild-type strain. Additionally, the levels of HBs-specific B cells and cytokine secretion from lymphocytes triggered by the mutant strain were significantly reduced. CONCLUSIONS HBeAg-positive CHB patients with low HBsAg and genotype C exhibited higher noninvasive fibrosis indexes compared with typical patients, accompanied by a significant increase in quasispecies variants associated with preS2 deletion. The emergence of the preS2 deletion mutants in patients could be due to its enhanced ability to evade the host immunity.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
| | - Guiyang Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ming Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Wang
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Huang
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Wu
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Quan Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Hung JH, Teng CF, Hung HC, Chen YL, Chen PJ, Ho CL, Chuang CH, Huang W. Genomic instabilities in hepatocellular carcinoma: biomarkers and application in immunotherapies. Ann Hepatol 2024; 29:101546. [PMID: 39147130 DOI: 10.1016/j.aohep.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 06/18/2024] [Indexed: 08/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. For patients with advanced HCC, liver function decompensation often occurs, which leads to poor tolerance to chemotherapies and other aggressive treatments. Therefore, it remains critical to develop effective therapeutic strategies for HCC. Etiological factors for HCC are complex and multifaceted, including hepatitis virus infection, alcohol, drug abuse, chronic metabolic abnormalities, and others. Thus, HCC has been categorized as a "genomically unstable" cancer due to the typical manifestation of chromosome breakage and aneuploidy, and oxidative DNA damage. In recent years, immunotherapy has provided a new option for cancer treatments, and the degree of genomic instability positively correlates with immunotherapy efficacies. This article reviews the endogenous and exogenous causes that affect the genomic stability of liver cells; it also updates the current biomarkers and their detection methods for genomic instabilities and relevant applications in cancer immunotherapies. Including genomic instability biomarkers in consideration of cancer treatment options shall increase the patients' well-being.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chiao-Feng Teng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan; Program for Cancer Biology and Drug Development, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsu-Chin Hung
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lin Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsiang Chuang
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wenya Huang
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Diseases and Signal Transduction, National Cheng Kung University, Tainan, Taiwan..
| |
Collapse
|
8
|
Chen W, Xu H, Guo L, Zheng F, Yao J, Wang L. Role of ACSL4 in modulating farnesoid X receptor expression and M2 macrophage polarization in HBV-induced hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e706. [PMID: 39268355 PMCID: PMC11391271 DOI: 10.1002/mco2.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024] Open
Abstract
The intricate relationship between bile acid (BA) metabolism, M2 macrophage polarization, and hepatitis B virus-hepatocellular carcinoma (HBV-HCC) necessitates a thorough investigation of ACSL4's (acyl-CoA synthetase long-chain family member 4) role. This study combines advanced bioinformatics and experimental methods to elucidate ACSL4's significance in HBV-HCC development. Using bioinformatics, we identified differentially expressed genes in HBV-HCC. STRING and gene set enrichment analysis analyses were employed to pinpoint critical genes and pathways. Immunoinfiltration analysis, along with in vitro and in vivo experiments, assessed M2 macrophage polarization and related factors. ACSL4 emerged as a pivotal gene influencing HBV-HCC. In HBV-HCC liver tissues, ACSL4 exhibited upregulation, along with increased levels of M2 macrophage markers and BA. Silencing ACSL4 led to heightened farnesoid X receptor (FXR) expression, reduced BA levels, and hindered M2 macrophage polarization, thereby improving HBV-HCC conditions. This study underscores ACSL4's significant role in HBV-HCC progression. ACSL4 modulates BA-mediated M2 macrophage polarization and FXR expression, shedding light on potential therapeutic targets and novel insights into HBV-HCC pathogenesis.
Collapse
Affiliation(s)
- Wenbiao Chen
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Huixuan Xu
- Department of Rheumatology and Immunology The Second Clinical Medical College Jinan University (Shenzhen People's Hospital) Shenzhen China
| | - Liliangzi Guo
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Fengping Zheng
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - Jun Yao
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Lisheng Wang
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| |
Collapse
|
9
|
Tu T, Wettengel J, Xia Y, Testoni B, Littlejohn M, Le Bert N, Ebert G, Verrier ER, Tavis JE, Cohen C. Major open questions in the hepatitis B and D field - Proceedings of the inaugural International emerging hepatitis B and hepatitis D researchers workshop. Virology 2024; 595:110089. [PMID: 38640789 PMCID: PMC11517827 DOI: 10.1016/j.virol.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| | - Jochen Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA; Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany; German Center for Infection Research, Munich Partner Site, 81675, Munich, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China; Pingyuan Laboratory, Henan, China
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France; University of Lyon, Université Claude-Bernard, Lyon, France; Hepatology Institute of Lyon, France
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital and Department of Infectious Disease, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany
| | - Eloi R Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, UMR_S1110, Strasbourg, France
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine and the Saint Louis University Institute for Drug and Biotherapeutic Innovation, Saint Louis, MO, USA
| | | |
Collapse
|
10
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
11
|
Lin CL, Kao JH. Precision Management of Patients with HBV Infection. CURRENT HEPATOLOGY REPORTS 2024; 23:22-31. [DOI: 10.1007/s11901-024-00632-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 01/03/2025]
|
12
|
Liang YJ, Chiou YW, Chiu APT, Shiao MS, Teng W, Lin CW, Cheng ML, Huang YH, Liang KH, Su CW, Lai CY, Chen CL, Wu JC. Antiviral therapy reduces hepatocellular carcinoma through suppressing hepatitis B virus replication may improve ER stress, mitochondrial and metabolic dysfunctions and decrease p62 in hybridized mice with single HBV transgene and miR-122. J Med Virol 2023; 95:e29325. [PMID: 38108211 DOI: 10.1002/jmv.29325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Hepatitis B virus (HBV) hijacks autophagy for its replication. Nucleos(t)ide analogs (NUCs) treatment suppressed HBV replication and reduced hepatocellular carcinoma (HCC) incidence. However, the use of NUCs in chronic hepatitis B (CHB) patients with normal or minimally elevated serum alanine aminotransferase (ALT) levels is still debated. Animal models are crucial for studying the unanswered issue and evaluating new therapies. MicroRNA-122 (miR-122), which regulates fatty acid and cholesterol metabolism, is downregulated during hepatitis and HCC progression. The reciprocal inhibition of miR-122 with HBV highlights its role in HCC development as a tumor suppressor. By crossbreeding HBV-transgenic mice with miR-122 knockout mice, we generated a hybrid mouse model with a high incidence of HCC up to 89% and normal ALT levels before HCC. The model exhibited early-onset hepatic steatosis, progressive liver fibrosis, and impaired late-phase autophagy. Metabolomics and microarray analysis identified metabolic signatures, including dysregulation of lipid metabolism, inflammation, genomic instability, the Warburg effect, reduced TCA cycle flux, energy deficiency, and impaired free radical scavenging. Antiviral treatment reduced HCC incidence in hybrid mice by approximately 30-35% compared to untreated mice. This effect was linked to the activation of ER stress-responsive transcription factor ATF4, clearance of autophagosome cargo p62, and suppression of the CHOP-mediated apoptosis pathway. In summary, this study suggests that despite minimal ALT elevation, HBV replication can lead to liver injury. Endoplasmic reticulum stress, reduced miR-122 levels, mitochondrial and metabolic dysfunctions, blocking protective autophagy resulting in p62 accumulation, apoptosis, fibrosis, and HCC. Antiviral may improve the above-mentioned pathogenesis through HBV suppression.
Collapse
Affiliation(s)
- Yuh-Jin Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Wei Chiou
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Abby Pei-Ting Chiu
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ming-Shi Shiao
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Wei Teng
- Department of Gastroenterology & Hepatology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
| | - Chin-Wei Lin
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Yen-Hua Huang
- Center for Systems and Synthetic Biology and Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Wei Su
- Department of Medicine, Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Division of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Division of Holistic and Multidisciplinary Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chi-Yu Lai
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Li Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Jaw-Ching Wu
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
13
|
Li Y, Ou JHJ. Regulation of Mitochondrial Metabolism by Hepatitis B Virus. Viruses 2023; 15:2359. [PMID: 38140600 PMCID: PMC10747323 DOI: 10.3390/v15122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria play important roles in the synthesis of ATP, the production of reactive oxygen species, and the regulation of innate immune response and apoptosis. Many viruses perturb mitochondrial activities to promote their replication and cause cell damage. Hepatitis B virus (HBV) is a hepatotropic virus that can cause severe liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). This virus can also alter mitochondrial functions and metabolism to promote its replication and persistence. In this report, we summarize recent research progress on the interaction between HBV and mitochondrial metabolism, as well as the effect this interaction has on HBV replication and persistence.
Collapse
Affiliation(s)
| | - Jing-hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA;
| |
Collapse
|
14
|
Guo Y, Shao J, Zhang R, Han M, Kong L, Liu Z, Li H, Wei D, Lu M, Zhang S, Zhang C, Wei H, Chen Z, Bian H. Large HBV Surface Protein-Induced Unfolded Protein Response Dynamically Regulates p27 Degradation in Hepatocellular Carcinoma Progression. Int J Mol Sci 2023; 24:13825. [PMID: 37762128 PMCID: PMC10530851 DOI: 10.3390/ijms241813825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zhinan Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China; (Y.G.)
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China; (Y.G.)
| |
Collapse
|
15
|
He L, Li H, Li C, Liu Z, Lu M, Zhang R, Wu D, Wei D, Shao J, Liu M, Wei H, Zhang C, Wang Z, Kong L, Chen Z, Bian H. HMMR alleviates endoplasmic reticulum stress by promoting autophagolysosomal activity during endoplasmic reticulum stress-driven hepatocellular carcinoma progression. Cancer Commun (Lond) 2023; 43:981-1002. [PMID: 37405956 PMCID: PMC10508155 DOI: 10.1002/cac2.12464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/06/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The mechanism of hepatitis B virus (HBV)-induced carcinogenesis remains an area of interest. The accumulation of hepatitis B surface antigen in the endoplasmic reticulum (ER) of hepatocytes stimulates persistent ER stress. Activity of the unfolded protein response (UPR) pathway of ER stress may play an important role in inflammatory cancer transformation. How the protective UPR pathway is hijacked by cells as a tool for malignant transformation in HBV-related hepatocellular carcinoma (HCC) is still unclear. Here, we aimed to define the key molecule hyaluronan-mediated motility receptor (HMMR) in this process and explore its role under ER stress in HCC development. METHODS An HBV-transgenic mouse model was used to characterize the pathological changes during the tumor progression. Proteomics and transcriptomics analyses were performed to identify the potential key molecule, screen the E3 ligase, and define the activation pathway. Quantitative real-time PCR and Western blotting were conducted to detect the expression of genes in tissues and cell lines. Luciferase reporter assay, chromatin immunoprecipitation, coimmunoprecipitation, immunoprecipitation, and immunofluorescence were employed to investigate the molecular mechanisms of HMMR under ER stress. Immunohistochemistry was used to clarify the expression patterns of HMMR and related molecules in human tissues. RESULTS We found sustained activation of ER stress in the HBV-transgenic mouse model of hepatitis-fibrosis-HCC. HMMR was transcribed by c/EBP homologous protein (CHOP) and degraded by tripartite motif containing 29 (TRIM29) after ubiquitination under ER stress, which caused the inconsistent expression of mRNA and protein. Dynamic expression of TRIM29 in the HCC progression regulated the dynamic expression of HMMR. HMMR could alleviate ER stress by increasing autophagic lysosome activity. The negative correlation between HMMR and ER stress, positive correlation between HMMR and autophagy, and negative correlation between ER stress and autophagy were verified in human tissues. CONCLUSIONS This study identified the complicated role of HMMR in autophagy and ER stress, that HMMR controls the intensity of ER stress by regulating autophagy in HCC progression, which could be a novel explanation for HBV-related carcinogenesis.
Collapse
Affiliation(s)
- Lin He
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Hao Li
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
- Department of Gastroenterologythe General Hospital of Western Theatre CommandChengduSichuanP. R. China
| | - Can Li
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Ze‐Kun Liu
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Meng Lu
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Ren‐Yu Zhang
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Dong Wu
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Ding Wei
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Jie Shao
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Man Liu
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Hao‐Lin Wei
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Cong Zhang
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Zhe Wang
- State Key Laboratory of Cancer BiologyDepartment of PathologyXijing Hospital and School of Basic MedicineFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Ling‐Min Kong
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Zhi‐Nan Chen
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Huijie Bian
- National Translational Science Centre for Molecular Medicine & Department of Cell BiologyFourth Military Medical UniversityXi'anShaanxiP. R. China
| |
Collapse
|
16
|
Uchida T, Imamura M, Hayes CN, Suehiro Y, Teraoka Y, Ohya K, Aikata H, Abe-Chayama H, Ishida Y, Tateno C, Hara Y, Hino K, Okamoto T, Matsuura Y, Aizaki H, Wake K, Kohara M, Liang TJ, Oka S, Chayama K. HBV with precore and basal core promoter mutations exhibits a high replication phenotype and causes ER stress-mediated cell death in humanized liver chimeric mice. Hepatology 2023; 78:929-942. [PMID: 36896966 PMCID: PMC11519831 DOI: 10.1097/hep.0000000000000335] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Mutations within the precore (PC) and basal core promoter (BCP) regions of the HBV genome are associated with fulminant hepatitis and HBV reactivation. These mutations may enhance viral replication, but little is known about whether they directly induce damage to the liver. We investigated mechanisms of direct cytopathic effects induced by the infection with PC/BCP mutants in the absence of immune response in vitro and in vivo . APPROACH AND RESULTS Mice with humanized livers and hepatocytes derived from humanized mice were infected with either wild-type or mutant-type PC/BCP HBV, and the HBV replication and human hepatocyte damage were evaluated. HBV proliferated vigorously in mice with PC/BCP-mutant infection, and the severe loss of human hepatocytes with a slight human ALT elevation subsequently occurred only in PC/BCP mutant mice. In PC/BCP mutant infection, the accumulation of HBsAg in humanized livers colocalized with the endoplasmic reticulum, leading to apoptosis through unfolded protein response in HBV-infected hepatocytes. RNA-sequencing revealed the molecular characteristics of the phenotype of PC/BCP mutant infection in a humanized mouse model. Reduced ALT elevation and higher HBV DNA levels in this model are consistent with characteristics of HBV reactivation, indicating that the hepatocyte damage in this model might mimic HBV reactivation followed by hepatocyte damage under immunosuppressive conditions. CONCLUSION PC and BCP mutations were associated with enhanced viral replication and cell death induced by ER stress using HBV infection models. These mutations might be associated with liver damage in patients with fulminant hepatitis or HBV reactivation.
Collapse
Affiliation(s)
- Takuro Uchida
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C. Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yosuke Suehiro
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Teraoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuki Ohya
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Center for Medical Specialist Graduate Education and Research, Hiroshima, Japan
| | - Yuji Ishida
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashihiroshima, Japan
| | - Chise Tateno
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashihiroshima, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Toru Okamoto
- Institute for Advanced Co-creation Studies, Research Institute for Microbial Diseases Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenjiro Wake
- Liver Research Unit, Minophagen Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Collaborative Research Laboratory of Medical Innovation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
| |
Collapse
|
17
|
Xu S, Mu X, Xu X, Bi C, Ji J, Kan Y, Yao L, Bi Y, Xie Q. Genetic Heterogeneity and Mutated PreS Analysis of Duck Hepatitis B Virus Recently Isolated from Ducks and Geese in China. Animals (Basel) 2023; 13:ani13081282. [PMID: 37106845 PMCID: PMC10135025 DOI: 10.3390/ani13081282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, we detected 12 duck and 11 goose flocks that were positive for duck hepatitis B virus (DHBV) using polymerase chain reaction and isolated 23 strains between 2020 and 2022 in China. The complete genomes of goose strains E200801 and E210501 shared the highest identity (99.9%), whereas those of strains Y220217 and E210526 shared the lowest identity (91.39%). The phylogenetic tree constructed based on the genome sequences of these strains and reference strains was classified into three major clusters: the Chinese branch DHBV-I, the Chinese branch DHBV-II, and the Western branch DHBV-III. Furthermore, the duck-origin strain Y200122 was clustered into a separate branch and was predicted to be a recombinant strain derived from DHBV-M32990 (belonging to the Chinese branch DHBV-I) and Y220201 (belonging to the Chinese branch DHBV-II). Additionally, preS protein analysis of the 23 DHBV strains revealed extensive mutation sites, almost half of which were of duck origin. All goose-origin DHBV contained the mutation site G133E, which is related to increased viral pathogenicity. These data are expected to promote further research on the epidemiology and evolution of DHBV. Continuing DHBV surveillance in poultry will enhance the understanding of the evolution of HBV.
Collapse
Affiliation(s)
- Shuqi Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Xinhao Mu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Congying Bi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Loureiro D, Tout I, Narguet S, Bed CM, Roinard M, Sleiman A, Boyer N, Pons‐Kerjean N, Castelnau C, Giuly N, Tonui D, Soumelis V, El Benna J, Soussan P, Moreau R, Paradis V, Mansouri A, Asselah T. Mitochondrial stress in advanced fibrosis and cirrhosis associated with chronic hepatitis B, chronic hepatitis C, or nonalcoholic steatohepatitis. Hepatology 2023; 77:1348-1365. [PMID: 35971873 PMCID: PMC10026976 DOI: 10.1002/hep.32731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection causes oxidative stress (OS) and alters mitochondria in experimental models. Our goal was to investigate whether HBV might alter liver mitochondria also in humans, and the resulting mitochondrial stress might account for the progression of fibrosis in chronic hepatitis B (CHB). APPROACH AND RESULTS The study included 146 treatment-naïve CHB mono-infected patients. Patients with CHB and advanced fibrosis (AF) or cirrhosis (F3-F4) were compared to patients with no/mild-moderate fibrosis (F0-F2). Patients with CHB were further compared to patients with chronic hepatitis C (CHC; n = 33), nonalcoholic steatohepatatis (NASH; n = 12), and healthy controls ( n = 24). We detected oxidative damage to mitochondrial DNA (mtDNA), including mtDNA strand beaks, and identified multiple mtDNA deletions in patients with F3-F4 as compared to patients with F0-F2. Alterations in mitochondrial function, mitochondrial unfolded protein response, biogenesis, mitophagy, and liver inflammation were observed in patients with AF or cirrhosis associated with CHB, CHC, and NASH. In vitro , significant increases of the mitochondrial formation of superoxide and peroxynitrite as well as mtDNA damage, nitration of the mitochondrial respiratory chain complexes, and impairment of complex I occurred in HepG2 cells replicating HBV or transiently expressing hepatitits B virus X protein. mtDNA damage and complex I impairment were prevented with the superoxide-scavenging Mito-Tempo or with inducible nitric oxide synthase (iNOS)-specific inhibitor 1400 W. CONCLUSIONS Our results emphasized the importance of mitochondrial OS, mtDNA damage, and associated alterations in mitochondrial function and dynamics in AF or cirrhosis in CHB and NASH. Mitochondria might be a target in drug development to stop fibrosis progression.
Collapse
Affiliation(s)
- Dimitri Loureiro
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Issam Tout
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Stéphanie Narguet
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Cheikh Mohamed Bed
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Morgane Roinard
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Ahmad Sleiman
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Boyer
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Pons‐Kerjean
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Pharmacy, Hôpital Beaujon, Clichy, France
| | - Corinne Castelnau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Giuly
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Dorothy Tonui
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Vassili Soumelis
- Université de Paris Cité, INSERM U976 HIPI Unit, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint‐Louis, Paris, France
| | - Jamel El Benna
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | | | - Richard Moreau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Abdellah Mansouri
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Tarik Asselah
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| |
Collapse
|
19
|
Zhao M, Lei Y, Zhou Y, Sun M, Li X, Zhou Z, Huang J, Li X, Zhao B. Development and investigation of metabolism-associated risk assessment models for patients with viral hepatitis. Front Cell Infect Microbiol 2023; 13:1165647. [PMID: 37065201 PMCID: PMC10095836 DOI: 10.3389/fcimb.2023.1165647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Dysregulation of metabolism plays an important role in the onset and progression of multiple pathogenic diseases, including viral hepatitis. However, a model to predict viral hepatitis risk by metabolic pathways is still lacking. Thus, we developed two risk assessment models for viral hepatitis based on metabolic pathways identified through univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analysis. The first model is designed to assess the progression of the disease by evaluating changes in the Child–Pugh class, hepatic decompensation, and the development of hepatocellular carcinoma. The second model is focused on determining the prognosis of the illness, taking into account the patient’s cancer status. Our models were further validated by Kaplan–Meier plots of survival curves. In addition, we investigated the contribution of immune cells in metabolic processes and identified three distinct subsets of immune cells—CD8+ T cells, macrophages, and NK cells—that have significantly affected metabolic pathways. Specifically, our findings suggest that resting or inactive macrophages and NK cells contribute to maintaining metabolic homeostasis, particularly with regard to lipid and α-amino acid metabolism, thereby potentially reducing the risk of viral hepatitis progression. Moreover, maintaining metabolic homeostasis ensures a balance between killer-proliferative and exhausted CD8+ T cells, which helps in mitigating CD8+ T cell-mediated liver damage while preserving energy reserves. In conclusion, our study offers a useful tool for early disease detection in viral hepatitis patients through metabolic pathway analysis and sheds light on the immunological understanding of the disease through the examination of immune cell metabolic disorders.
Collapse
Affiliation(s)
- Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Lei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanyan Zhou
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingan Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Xinyu Li,
| |
Collapse
|
20
|
Zhang J, Hu C, Xie X, Qi L, Li C, Li S. Immune Checkpoint Inhibitors in HBV-Caused Hepatocellular Carcinoma Therapy. Vaccines (Basel) 2023; 11:vaccines11030614. [PMID: 36992198 DOI: 10.3390/vaccines11030614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the main risk factor for the development of hepatocellular carcinoma (HCC), the most common type of liver cancer, with high incidence and mortality worldwide. Surgery, liver transplantation, and ablation therapies have been used to treat early HBV-caused HCC (HBV-HCC); meanwhile, in the advanced stage, chemoradiotherapy and drug-targeted therapy are regularly considered, but with limited efficacy. Recently, immunotherapies, such as tumor vaccine therapy, adoptive cell transfer therapy, and immune checkpoint inhibitor therapy, have demonstrated promising efficacy in cancer treatment. In particular, immune checkpoint inhibitors can successfully prevent tumors from achieving immune escape and promote an anti-tumor response, thereby boosting the therapeutic effect in HBV-HCC. However, the advantages of immune checkpoint inhibitors in the treatment of HBV-HCC remain to be exploited. Here, we describe the basic characteristics and development of HBV-HCC and introduce current treatment strategies for HBV-HCC. Of note, we review the principles of immune checkpoint molecules, such as programmed cell death protein 1(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in HBV-HCC, as well as related inhibitors being considered in the clinic. We also discuss the benefits of immune checkpoint inhibitors in the treatment of HBV-HCC and the efficacy of those inhibitors in HCC with various etiologies, aiming to provide insights into the use of immune checkpoint inhibitors for the treatment of HBV-HCC.
Collapse
Affiliation(s)
- Jin Zhang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Changwei Hu
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiaoxiao Xie
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Linzhi Qi
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shangze Li
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
21
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
22
|
Shaha M, Majumder S, Hossain MS, Jahan M, Rahmat R, Asma R, Islam MA, Rahman MH, Das KC, Sarker PK, Mahtab MA, Akbar SMF, Salimullah M. Identification of a novel variant of hepatitis B virus isolated from patient co-infected with hepatitis C virus. Virus Res 2022; 319:198859. [PMID: 35809696 DOI: 10.1016/j.virusres.2022.198859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis B virus (HBV) is a major public health concern worldwide. Co-infection of hepatitis B patients with other pathogens intensifies the severity of the disease. We report a novel variant of hepatitis B virus (HBV) in Bangladesh isolated from a patient co-infected with hepatitis C virus (HCV) who exhibited liver cirrhosis. From 150 collected plasma samples, we sequenced HBV complete genome from one HBV-HCV co-infected patient. The complete genome was analysed using bioinformatics tools, NCBI BLAST, Geno2Pheno, and SnapGene software. The strain belongs to genotype A and subgenotype A1. Upon analysing the complete genome of this strain, we found a frameshift deletion of 54 nucleotides at the pre-S2 region, a functional regulator of HBV surface protein. Furthermore, we observed a Y126H mutation in the polymerase protein of this strain. This is the first report with such an unusual pre-S deletion event of the HBV genome in an HCV-co-infected patient associated with liver cirrhosis. These findings may inform scientists about genomic modifications in the HBV genome associated with HCV co-infection.
Collapse
Affiliation(s)
- Modhusudon Shaha
- Microbial Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sumen Majumder
- Microbial Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh; Department of Microbiology, Jagannath University, Dhaka 1000, Bangladesh
| | - Md Saddam Hossain
- Microbial Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh
| | - Munira Jahan
- Department of Virology, Bangabandhu Sheikh Mujib Medical University Hospital, Dhaka 1000, Bangladesh
| | - Raad Rahmat
- Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Mohakhali, Dhaka 1212, Bangladesh
| | - Ridwana Asma
- Department of Virology, Bangabandhu Sheikh Mujib Medical University Hospital, Dhaka 1000, Bangladesh
| | | | - Md Hadisur Rahman
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh
| | - Palash Kumar Sarker
- Microbial Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University Hospital, Dhaka 1000, Bangladesh
| | | | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh.
| |
Collapse
|
23
|
Liu W, Cai S, Pu R, Li Z, Liu D, Zhou X, Yin J, Chen X, Chen L, Wu J, Tan X, Wang X, Cao G. HBV preS Mutations Promote Hepatocarcinogenesis by Inducing Endoplasmic Reticulum Stress and Upregulating Inflammatory Signaling. Cancers (Basel) 2022; 14:cancers14133274. [PMID: 35805045 PMCID: PMC9265300 DOI: 10.3390/cancers14133274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Viral mutations at the preS region of hepatitis B virus (HBV) significantly increase the risk of developing hepatocellular carcinoma (HCC). Compared to HBV preS deletion, the oncogenic effect of preS combo mutation has rarely been investigated. With a cohort including 2114 subjects, we demonstrated that preS combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C significantly increased the risk of HCC in patients without antiviral treatment, whereas preS2 deletion significantly increased the risk of HCC in patients with antiviral treatment. The prevalence of C3116T/T31C (43.61%) was higher than preS2 deletion (7.16%). By using Sleeping Beauty mouse models and in vitro experiments, we found G2950A/G2951A/A2962G/C2964A, C3116T/T31C, and preS2 deletion promoted hepatocarcinogenesis by increasing levels of inflammatory cytokines, activating STAT3 pathway, enhancing endoplasmic reticulum stress, and altering gene expression profiles in inflammation- and metabolism-related pathways. These results suggest that preS combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C had similar oncogenic effects of preS2 deletion and should also be monitored. Abstract This study aimed to elucidate the effects and underlying mechanisms of hepatitis B virus (HBV) preS mutations on hepatocarcinogenesis. The effect of the preS mutations on hepatocellular carcinoma (HCC) occurrence was evaluated using a prospective cohort study with 2114 HBV-infected patients, of whom 612 received antiviral treatments. The oncogenic functions of HBV preS mutations were investigated using cancer cell lines and Sleeping Beauty (SB) mouse models. RNA-sequencing and microarray were applied to identify key molecules involved in the mutant-induced carcinogenesis. Combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C significantly increased HCC risk in patients without antiviral treatment, whereas the preS2 deletion significantly increased HCC risk in patients with antiviral treatment. In SB mice, the preS1/preS2/S mutants induced a higher rate of tumor and higher serum levels of inflammatory cytokines than did wild-type counterpart. The preS1/preS2/S mutants induced altered gene expression profiles in the inflammation- and metabolism-related pathways, activated pathways of endoplasmic reticulum (ER) stress, affected the response to hypoxia, and upregulated the protein level of STAT3. Inhibiting the STAT3 pathway attenuated the effects of the preS1/preS2/S mutants on cell proliferation. G2950A/G2951A/A2962G/C2964A, C3116T/T31C, and preS2 deletion promote hepatocarcinogenesis via inducing ER stress, metabolism alteration, and STAT3 pathways, which might be translated into HCC prophylaxis.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Shiliang Cai
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Rui Pu
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Donghong Liu
- Department of Liver Cancer Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 200433, China;
| | - Xinyu Zhou
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Liping Chen
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Jianfeng Wu
- Department of Pathology, Xijing Hospital, Xi’an 710032, China;
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Xin Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200433, China;
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
- Correspondence: ; Tel.: +86-21-8187-1060
| |
Collapse
|
24
|
Chen YJ, Su CW, Wei CY, Chau GY, Chen PH, Chao Y, Huang YH, Wu JC, Yang TC, Lee PC, Hou MC. Comparison of prognoses between cirrhotic and noncirrhotic patients with hepatocellular carcinoma and esophageal varices undergoing surgical resection. J Chin Med Assoc 2022; 85:679-686. [PMID: 35507056 DOI: 10.1097/jcma.0000000000000739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal varices (EV) is common and is a poor prognostic factor for patients with hepatocellular carcinoma (HCC). However, the outcomes between cirrhotic and noncirrhotic HCC patients with EV is not well studied. The present study aimed to investigate the clinical manifestations and prognoses of HCC patients after surgical resection stratified by the cirrhosis status. METHODS A total of 111 patients with HCC and EV, who underwent surgical resection, were retrospectively enrolled between July 2003 and July 2019. The diagnosis of liver cirrhosis was established using the Ishak fibrosis score F5 or F6 in the nontumor part of liver specimens. Prognostic factors were analyzed using the Cox proportional hazards model. RESULTS There were 85 (76.6%) and 26 (23.4%) patients with and without cirrhosis, respectively. Compared with those without cirrhosis, there were more females, less seropositive rate of hepatitis B surface antigen (HBsAg), more seropositive rate of antibody against to hepatitis C virus (HCV), less albumin-bilirubin (ALBI) grade 1, lower platelet count, and more had tumor burden within the Milan criteria in cirrhotic patients. Cirrhotic patients had a higher risk of posthepatectomy decompensation compared to noncirrhotic patients (hazard ratio 9.577, p = 0.017). No difference was observed in overall survival and recurrence-free survival between patients with or without cirrhosis. CONCLUSION Compared with patients without cirrhosis, cirrhotic patients with HCC and EV are vulnerable to posthepatectomy decompensation. However, cirrhosis is not a poor prognostic factor of overall survival and recurrence for HCC patients after surgical resection.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Wei Su
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Hospitalist Ward, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Cheng-Yi Wei
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Gar-Yang Chau
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ping-Hsien Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Divsion of Gastroenterology and Hepatology, Department of Medicine, West Garden Hospital, Taipei, Taiwan, ROC
| | - Yee Chao
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tsung-Chieh Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Pei-Chang Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
25
|
Non-Achievement of Alanine Aminotransferase Normalization Associated with the Risk of Hepatocellular Carcinoma during Nucleos(t)ide Analogue Therapies: A Multicenter Retrospective Study. J Clin Med 2022; 11:jcm11092354. [PMID: 35566481 PMCID: PMC9101732 DOI: 10.3390/jcm11092354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with a chronic hepatitis B virus (HBV) infection who are treated with nucleos(t)ide analogues (NAs) are still at risk for hepatocellular carcinoma (HCC), and it has been clinically questioned whether patients with a high risk of HCC can be identified efficiently. We aimed to clarify the risk factors associated with the development of HCC during NA therapies. A total of 611 chronically HBV-infected patients without a history of HCC, who were treated with NAs for more than 6 months (median 72 months), from 2000 to 2021, were included from 16 hospitals in the Tohoku district in Japan. Incidences of HCC occurrence were analyzed with clinical factors, including on-treatment responses. Alanine aminotransferase (ALT) normalization, based on the criteria of three guidelines, was analyzed with other parameters, including the age−male−ALBI−platelets (aMAP) risk score. During the observation period, 48 patients developed HCC, and the cumulative HCC incidence was 10.6% at 10 years. Non-achievement of ALT normalization at 1 year of therapy was mostly associated with HCC development when ALT ≤ 30 U/L was used as the cut-off (cumulative incidence, 19.9% vs. 5.3% at 10 years, p < 0.001). The effectiveness of the aMAP risk score at the start of treatment was validated in this cohort. A combination of an aMAP risk score ≥ 50 and non-achievement of ALT normalization could stratify the risk of HCC significantly, and notably, there was no HCC development in 103 patients without these 2 factors. In conclusion, non-achievement of ALT normalization (≤30 U/L) at 1 year might be useful in predicting HCC during NA therapies and, in combination with the aMAP risk score, could stratify the risk more precisely.
Collapse
|
26
|
Gao L, Chen X, Fu Z, Yin J, Wang Y, Sun W, Ren H, Zhang Y. Kinsenoside Alleviates Alcoholic Liver Injury by Reducing Oxidative Stress, Inhibiting Endoplasmic Reticulum Stress, and Regulating AMPK-Dependent Autophagy. Front Pharmacol 2022; 12:747325. [PMID: 35115920 PMCID: PMC8804359 DOI: 10.3389/fphar.2021.747325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background:Anoectochilus roxburghii (Orchidaceae) is a traditional Chinese medicinal herb with anti-inflammatory, antilipemic, liver protective, immunomodulatory, and other pharmacological activities. Kinsenoside (KD), which shows protective effects against a variety types of liver damage, is an active ingredient extracted from A. roxburghii. However, the liver protective effects and potential mechanisms of KD in alcoholic liver disease (ALD) remain unclear. This study aimed to investigate the liver protective activity and potential mechanisms of KD in ALD. Methods: AML12 normal mouse hepatocyte cells were used to detect the protective effect of KD against ethanol-induced cell damage. An alcoholic liver injury model was induced by feeding male C57BL/6J mice with an ethanol-containing liquid diet, in combination with intraperitoneal administration of 5% carbon tetrachloride (CCl4) in olive oil. Mice were divided into control, model, silymarin (positive control), and two KD groups, treated with different doses. After treatment, hematoxylin–eosin and Masson’s trichrome staining of liver tissues was performed, and serum alanine aminotransferase (ALT) and aspartate transaminase (AST) levels were determined to assess the protective effect of KD against alcoholic liver injury. Moreover, proteomics techniques were used to explore the potential mechanism of KD action, and ELISA assay, immunohistochemistry, TUNEL assay, and western blotting were used to verify the mechanism. Results: The results showed that KD concentration-dependently reduced ethanol-induced lipid accumulation in AML12 cells. In ALD mice model, the histological examination of liver tissues, combined with the determination of ALT and AST serum levels, demonstrated a protective effect of KD in the alcoholic liver injury mice. In addition, KD treatment markedly enhanced the antioxidant capacity and reduced the endoplasmic reticulum (ER) stress, inflammation, and apoptosis compared with those in the model group. Furthermore, KD increased the phosphorylation level of AMP-activated protein kinase (AMPK), inhibited the mechanistic target of rapamycin, promoted the phosphorylation of ULK1 (Ser555), increased the level of the autophagy marker LC3A/B, and restored ethanol-suppressed autophagic flux, thus activating AMPK-dependent autophagy. Conclusion: This study indicates that KD alleviates alcoholic liver injury by reducing oxidative stress and ER stress, while activating AMPK-dependent autophagy. All results suggested that KD may be a potential therapeutic agent for ALD.
Collapse
Affiliation(s)
- Limin Gao
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Chen
- Department of Clinical Laboratory, the Central Hospital of Wuhan, Wuhan, China
| | - Zeyu Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Weiguang Sun, ; Hong Ren, ; Yonghui Zhang,
| |
Collapse
|
27
|
Teng W, Chang TT, Yang HI, Peng CY, Su CW, Su TH, Hu TH, Yu ML, Yang HC, Wu JC. Risk scores to predict HCC and the benefits of antiviral therapy for CHB patients in gray zone of treatment guidelines. Hepatol Int 2021; 15:1421-1430. [PMID: 34741723 DOI: 10.1007/s12072-021-10263-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUNDS ALT ≥ 80 U/L and HBV DNA ≥ 2000 IU/ml are treatment criteria of APASL guidelines for chronic hepatitis B (CHB) patients. The need of antiviral therapy for patients in gray zone (ALT < 80 U/L or HBV DNA < 2000 IU/ml) is controversial. This study aimed to develop a scoring system to predict hepatocellular carcinoma (HCC) and evaluate the benefit of antiviral therapy in these patients. METHODS Seven hundred and forty-nine patients were analyzed. Significant variables were weighted to develop a scoring system for HCC prediction. The area under receiver operating curves (AUROC) were estimated and validated by REVEAL-HBV cohort (n = 3527). RESULTS Older age (p < 0.001), male sex (p = 0.036), family history of HCC (p = 0.002) and HBV DNA ≥ 2000 IU/ml (p = 0.045) were independently associated with HCC. A 14-point risk score system predicts 3 and 5-years HCC risk to be 0.866 and 0.868 of AUROC, respectively in the derivation cohort; 0.821 and 0.820, in the REVEAL-HBV cohort. The cumulative HCC incidence was higher in the high risk (score ≥ 8) group both in derivation and validation cohorts (p < 0.001). Patients with antiviral therapy had lower HCC incidence compared to those without (p = 0.016). Of note, antiviral therapy significantly decreased HCC in the high risk group (p = 0.005), but not in the low risk group (p = 0.705). CONCLUSIONS A risk scoring system is established and validated. Of CHB patients in gray zone of APASL guidelines, those with risk scores ≥ 8 had higher risk of HCC, but the risk could be significantly reduced by antiviral therapy.
Collapse
Affiliation(s)
- Wei Teng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan, Republic of China
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Chien-Wei Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Tung-Hung Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Tsung-Hui Hu
- Department of Gastroenterology and Hepatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Hung-Chih Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China.
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China.
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
28
|
Mokaya J, Vasylyeva TI, Barnes E, Ansari MA, Pybus OG, Matthews PC. Global prevalence and phylogeny of hepatitis B virus (HBV) drug and vaccine resistance mutations. J Viral Hepat 2021; 28:1110-1120. [PMID: 33893696 PMCID: PMC8581767 DOI: 10.1111/jvh.13525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Vaccination and anti-viral therapy with nucleos(t)ide analogues (NAs) are key approaches to reducing the morbidity, mortality and transmission of hepatitis B virus (HBV) infection. However, the efficacy of these interventions may be reduced by the emergence of drug resistance-associated mutations (RAMs) and/or vaccine escape mutations (VEMs). We have assimilated data on the global prevalence and distribution of HBV RAMs/VEMs from publicly available data and explored the evolution of these mutations. We analysed sequences downloaded from the HBV Database and calculated prevalence of 41 RAMs and 38 VEMs catalogued from published studies. We generated maximum likelihood phylogenetic trees and used treeBreaker to investigate the distribution and estimated the age of selected mutations across tree branches. RAM M204I/V had the highest prevalence, occurring in 3.8% (109/2838) of all HBV sequences in our data set, and a significantly higher rate in genotype C at 5.4% (60/1102, p = 0.0007). VEMs had an overall prevalence of 1.3% (37/2837) and had the highest prevalence in genotype C and in Asia at 2.2% (24/1102; p = 0.002) and 1.6% (34/2109; p = 0.009), respectively. Phylogenetic analysis suggested that RAM/VEMs can arise independently of treatment/vaccine exposure. In conclusion, HBV RAMs/VEMs have been found globally and across genotypes, with the highest prevalence observed in genotype C. Screening for genotype and for resistance-associated mutations may help to improve stratified patient treatment. As NAs and HBV vaccines are increasingly being deployed for HBV prevention and treatment, monitoring for resistance and advocating for better treatment regimens for HBV remains essential.
Collapse
Affiliation(s)
| | - Tetyana I. Vasylyeva
- Division of Infectious Diseases & Global Public HealthDepartment of MedicineUniversity of CaliforniaSan DiegoCAUSA
| | - Eleanor Barnes
- Nuffield Department of MedicineOxfordUK
- Department of HepatologyOxford University Hospitals NHS Foundation TrustJohn Radcliffe HospitalOxfordUK
- National Institutes of Health Research Health Informatics CollaborativeNIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
| | - M. Azim Ansari
- Nuffield Department of MedicineOxfordUK
- Wellcome Centre for Human GeneticsOxfordUK
| | | | - Philippa C. Matthews
- Nuffield Department of MedicineOxfordUK
- National Institutes of Health Research Health Informatics CollaborativeNIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Department of Infectious Diseases and MicrobiologyOxford University Hospitals NHS Foundation TrustJohn Radcliffe HospitalOxfordUK
| |
Collapse
|
29
|
Inoue J, Sato K, Ninomiya M, Masamune A. Envelope Proteins of Hepatitis B Virus: Molecular Biology and Involvement in Carcinogenesis. Viruses 2021; 13:1124. [PMID: 34208172 PMCID: PMC8230773 DOI: 10.3390/v13061124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The envelope of hepatitis B virus (HBV), which is required for the entry to hepatocytes, consists of a lipid bilayer derived from hepatocyte and HBV envelope proteins, large/middle/small hepatitis B surface antigen (L/M/SHBs). The mechanisms and host factors for the envelope formation in the hepatocytes are being revealed. HBV-infected hepatocytes release a large amount of subviral particles (SVPs) containing L/M/SHBs that facilitate escape from the immune system. Recently, novel drugs inhibiting the functions of the viral envelope and those inhibiting the release of SVPs have been reported. LHBs that accumulate in ER is considered to promote carcinogenesis and, especially, deletion mutants in the preS1/S2 domain have been reported to be associated with the development of hepatocellular carcinoma (HCC). In this review, we summarize recent reports on the findings regarding the biological characteristics of HBV envelope proteins, their involvement in HCC development and new agents targeting the envelope.
Collapse
Affiliation(s)
- Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (K.S.); (M.N.); (A.M.)
| | | | | | | |
Collapse
|