1
|
Orosz L, Sárvári KP, Dernovics Á, Rosztóczy A, Megyeri K. Pathogenesis and clinical features of severe hepatitis E virus infection. World J Virol 2024; 13:91580. [PMID: 38984076 PMCID: PMC11229844 DOI: 10.5501/wjv.v13.i2.91580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/24/2024] Open
Abstract
The hepatitis E virus (HEV), a member of the Hepeviridae family, is a small, non-enveloped icosahedral virus divided into eight distinct genotypes (HEV-1 to HEV-8). Only genotypes 1 to 4 are known to cause diseases in humans. Genotypes 1 and 2 commonly spread via fecal-oral transmission, often through the consumption of contaminated water. Genotypes 3 and 4 are known to infect pigs, deer, and wild boars, often transferring to humans through inadequately cooked meat. Acute hepatitis caused by HEV in healthy individuals is mostly asymptomatic or associated with minor symptoms, such as jaundice. However, in immunosuppressed individuals, the disease can progress to chronic hepatitis and even escalate to cirrhosis. For pregnant women, an HEV infection can cause fulminant liver failure, with a potential mortality rate of 25%. Mortality rates also rise amongst cirrhotic patients when they contract an acute HEV infection, which can even trigger acute-on-chronic liver failure if layered onto pre-existing chronic liver disease. As the prevalence of HEV infection continues to rise worldwide, highlighting the particular risks associated with severe HEV infection is of major medical interest. This text offers a brief summary of the characteristics of hepatitis developed by patient groups at an elevated risk of severe HEV infection.
Collapse
Affiliation(s)
- László Orosz
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - Károly Péter Sárvári
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - Áron Dernovics
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| | - András Rosztóczy
- Department of Internal Medicine, Division of Gastroenterology, University of Szeged, Szeged 6725, Csongrád-Csanád, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, University of Szeged, Szeged 6720, Csongrád-Csanád, Hungary
| |
Collapse
|
2
|
Ferri G, Giantomassi G, Tognetti D, Olivastri A, Vergara A. Hepatitis E Virus RNA Detection in Liver and Muscle Tissues Sampled from Home Slaughtered Domestic Pigs in Central Italy. FOOD AND ENVIRONMENTAL VIROLOGY 2024:10.1007/s12560-024-09606-2. [PMID: 38862750 DOI: 10.1007/s12560-024-09606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Hepatitis E virus is a worldwide emerging foodborne pathogen; raw or undercooked meats and liver pork products can cause infection through the orofecal route. In Central-Southern Italy, small traditional farming method, associated with the possibility of environmental sharing with wild species, can facilitate HEV diffusion and persistence. The aim of this study was to determine HEV genotype and subtype in Marche region from home slaughtered domestic pigs involved in small and traditional food chains. A total of 236 liver and muscle tissues and 6 pooled salami samples were screened. Laboratory workflow started with homogenization, followed by RNA extraction. Nested reverse transcription PCR and qRT-PCR were used to amplify specific parts of overlapping open reading frames belonging to the HEV genome. A total of 42/236 (17.79%) liver and 8/236 (3.39%) diaphragm specimens were positive; none of the pooled salami specimens showed positive HEV signal. The discovered HEV3c presented high nucleotide similarities with ones amplified from wild boar populations hunted in the same province. Extensive farming methods and environmental sharing with wild animal species support cross-infection infections, as observed in the present study. Although salami resulted negative for HEV RNA detection, the effects of food technologies on viral loads remain unclear. Therefore, further scientific investigations coupled with efficacious standardized laboratory procedures will be the next challenge.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Strada Porvinciale 18, 64100, Teramo, Italy.
| | | | | | | | - Alberto Vergara
- Department of Veterinary Medicine, Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Strada Porvinciale 18, 64100, Teramo, Italy
| |
Collapse
|
3
|
Li X, Sun X, Pinpin J, Zhao Q, Sun Y. Multifunctional ORF3 protein of hepatitis E virus. J Med Virol 2024; 96:e29691. [PMID: 38783788 DOI: 10.1002/jmv.29691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is transmitted primarily through the fecal-oral route and can cause acute hepatitis in humans. Since HEV was identified as a zoonotic pathogen, different species of HEV strains have been globally identified from various hosts, leading to an expanding range of hosts. The HEV genome consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. The ORF3 protein is the smallest but has many functions in HEV release and pathogenesis. In this review, we systematically summarize recent progress in understanding the functions of the HEV ORF3 protein in virion release, biogenesis of quasi-enveloped viruses, antigenicity, and host environmental regulation. This review will help us to understand HEV replication and pathogenesis mechanisms better.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ji Pinpin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Tan J, Harlow J, Cecillon J, Nasheri N. Assessing the efficacy of different bead-based assays in capturing hepatitis E virus. J Virol Methods 2024; 324:114860. [PMID: 38061674 DOI: 10.1016/j.jviromet.2023.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Hepatitis E virus (HEV) generally causes acute liver infection in humans and its transmission could be waterborne, foodborne, bloodborne, or zoonotic. To date, there is no standard method for the detection of HEV from food and environmental samples. Herein, we explored the possibility of using magnetic beads for the capture and detection of HEV. For this purpose, we employed Dynabeads M-270 Epoxy magnetic beads, coated with different monoclonal antibodies (mAbs) against HEV capsid protein, and the Nanotrap Microbiome A Particle magnetic beads, which are coated with chemical affinity baits, to capture HEV-3 particles in suspension. Viral RNA was extracted by heat-shock or QIAamp viral RNA kit and subjected to quantification using digital-droplet RT-PCR (ddRT-PCR). We demonstrated that the mAb-coupled Dynabeads and the Nanotrap particles, both were able to successfully capture HEV-3. The latter, however had lower limit of detection (<140gc compared with <1400 gc) and significantly higher extraction efficiency in comparison to the mAb-coupled Dynabeads (41.1% vs 8.8%). We have also observed that viral RNA extraction by heat-shock is less efficient compared to using highly denaturing reagents in QIAmp viral RNA extraction kit. As such, magnetic beads have the potential to be used to capture HEV virions for research and surveillance purposes.
Collapse
Affiliation(s)
- Jeremy Tan
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Jonathon Cecillon
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
5
|
Oechslin N, Da Silva N, Ankavay M, Moradpour D, Gouttenoire J. A genome-wide CRISPR/Cas9 screen identifies a role for Rab5A and early endosomes in hepatitis E virus replication. Proc Natl Acad Sci U S A 2023; 120:e2307423120. [PMID: 38109552 PMCID: PMC10756275 DOI: 10.1073/pnas.2307423120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. As the other positive-strand RNA viruses, it is believed to replicate its genome in a membrane-associated replication complex. However, current understanding of the host factors required for productive HEV infection is limited and the site as well as the composition of the HEV replication complex are still poorly characterized. To identify host factors required for HEV RNA replication, we performed a genome-wide CRISPR/Cas9 screen in permissive human cell lines harboring subgenomic HEV replicons allowing for positive and negative selection. Among the validated candidates, Ras-related early endosomal protein Rab5A was selected for further characterization. siRNA-mediated silencing of Rab5A and its effectors APPL1 and EEA1, but not of the late and recycling endosome components Rab7A and Rab11A, respectively, significantly reduced HEV RNA replication. Furthermore, pharmacological inhibition of Rab5A and of dynamin-2, required for the formation of early endosomes, resulted in a dose-dependent decrease of HEV RNA replication. Colocalization studies revealed close proximity of Rab5A, the HEV ORF1 protein, corresponding to the viral replicase, as well as HEV positive- and negative-strand RNA. In conclusion, we successfully exploited CRISPR/Cas9 and selectable subgenomic replicons to identify host factors of a noncytolytic virus. This approach revealed a role for Rab5A and early endosomes in HEV RNA replication, likely by serving as a scaffold for the establishment of functional replication complexes. Our findings yield insights into the HEV life cycle and the virus-host interactions required for productive infection.
Collapse
Affiliation(s)
- Noémie Oechslin
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Nathalie Da Silva
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Maliki Ankavay
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| |
Collapse
|
6
|
Hooda P, Al-Dosari M, Sinha N, Parvez MK, Sehgal D. Inhibition of HEV Replication by FDA-Approved RdRp Inhibitors. ACS OMEGA 2023; 8:41570-41578. [PMID: 37969986 PMCID: PMC10633873 DOI: 10.1021/acsomega.3c05637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Hepatitis E virus (HEV) is primarily a hepatotropic virus that is responsible for acute hepatitis E in the general population and for chronic hepatitis in immunocompromised individuals. In the absence of a globally accessible vaccine, pegylated interferon-α and ribavirin are the only antiviral agents available for the treatment of chronic patients. As viral RNA-dependent RNA polymerases (RdRps) are indispensable for RNA replication, they are considered potential drug targets. In this study, we screened some well-known RdRp inhibitor molecules, notably, favipiravir, sofosbuvir, remdesivir, filibuvir, and tegobuvir. Of these, monotherapy with favipiravir and sofosbuvir inhibited the RdRp activity with an IC50 value of 10.2 ± 4.9 and 5.2 ± 2.9 μM, respectively, compared to the reference drug ribavirin (3.5 ± 1.6 μM). Further investigation of the combination therapy showed a reduction in viral RNA copy numbers by approximately 90%. Therefore, favipiravir has an additive effect when used with sofosbuvir. Therefore, we propose that favipiravir is a promising anti-HEV drug that can be used in combination with sofosbuvir.
Collapse
Affiliation(s)
- Preeti Hooda
- Virology
Lab, Department of Life Sciences, Shiv Nadar
Institute of Eminence, Gautam Budh
Nagar 201314, India
| | - Mohammed Al-Dosari
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Neha Sinha
- Department
of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mohammad K. Parvez
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Deepak Sehgal
- Virology
Lab, Department of Life Sciences, Shiv Nadar
Institute of Eminence, Gautam Budh
Nagar 201314, India
| |
Collapse
|
7
|
Oechslin N, Ankavay M, Moradpour D, Gouttenoire J. Expanding the Hepatitis E Virus Toolbox: Selectable Replicons and Recombinant Reporter Genomes. Viruses 2023; 15:v15040869. [PMID: 37112849 PMCID: PMC10147066 DOI: 10.3390/v15040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Hepatitis E virus (HEV) has received relatively little attention for decades although it is now considered as one of the most frequent causes of acute hepatitis worldwide. Our knowledge of this enterically-transmitted, positive-strand RNA virus and its life cycle remains scarce but research on HEV has gained momentum more recently. Indeed, advances in the molecular virology of hepatitis E, including the establishment of subgenomic replicons and infectious molecular clones, now allow study of the entire viral life cycle and to explore host factors required for productive infection. Here, we provide an overview on currently available systems, with an emphasis on selectable replicons and recombinant reporter genomes. Furthermore, we discuss the challenges in developing new systems which should enable to further investigate this widely distributed and important pathogen.
Collapse
|
8
|
LeDesma R, Heller B, Biswas A, Maya S, Gili S, Higgins J, Ploss A. Structural features stabilized by divalent cation coordination within hepatitis E virus ORF1 are critical for viral replication. eLife 2023; 12:e80529. [PMID: 36852909 PMCID: PMC9977285 DOI: 10.7554/elife.80529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an RNA virus responsible for over 20 million infections annually. HEV's open reading frame (ORF)1 polyprotein is essential for genome replication, though it is unknown how the different subdomains function within a structural context. Our data show that ORF1 operates as a multifunctional protein, which is not subject to proteolytic processing. Supporting this model, scanning mutagenesis performed on the putative papain-like cysteine protease (pPCP) domain revealed six cysteines essential for viral replication. Our data are consistent with their role in divalent metal ion coordination, which governs local and interdomain interactions that are critical for the overall structure of ORF1; furthermore, the 'pPCP' domain can only rescue viral genome replication in trans when expressed in the context of the full-length ORF1 protein but not as an individual subdomain. Taken together, our work provides a comprehensive model of the structure and function of HEV ORF1.
Collapse
Affiliation(s)
- Robert LeDesma
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton UniversityPrincetonUnited States
| | - Brigitte Heller
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton UniversityPrincetonUnited States
| | - Abhishek Biswas
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton UniversityPrincetonUnited States
| | - Stephanie Maya
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton UniversityPrincetonUnited States
| | - Stefania Gili
- Department of Geosciences, Princeton UniversityPrincetonUnited States
| | - John Higgins
- Department of Geosciences, Princeton UniversityPrincetonUnited States
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton UniversityPrincetonUnited States
| |
Collapse
|
9
|
Muñoz-Chimeno M, Rodriguez-Paredes V, García-Lugo MA, Avellon A. Hepatitis E genotype 3 genome: A comprehensive analysis of entropy, motif conservation, relevant mutations, and clade-associated polymorphisms. Front Microbiol 2022; 13:1011662. [PMID: 36274715 PMCID: PMC9582770 DOI: 10.3389/fmicb.2022.1011662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis E virus genotype 3 (HEV-3) is an EU/EEA emergent zoonosis. HEV-3 clades/subtypes have been described. Its genome contains ORF1, which encodes nonstructural proteins for virus replication, ORF2, the capsid protein, and ORF3, a multifunctional protein involved in virion pathogenesis. The study aims with respect to HEV-3 are to: (1) calculate genome entropy (excluding hypervariable region); (2) analyze the described motifs/mutations; (3) characterize clade/subtype genome polymorphisms. Seven hundred and five sequences from the GenBank database were used. The highest entropies were identified in zoonotic genotypes (HEV-3 and HEV-4) with respect to HEV-1 in X domain, RdRp, ORF2, and ORF3. There were statistically significant differences in the entropy between proteins, protease and ORF3 being the most variable and Y domain being the most conserved. Methyltransferase and Y domain motifs were completely conserved. By contrast, essential protease H581 residue and catalytic dyad exhibited amino acid changes in 1.8% and 0.4% of sequences, respectively. Several X domain amino acids were associated with clades. We found sequences with mutations in all helicase motifs except number IV. Helicase mutations related to increased virulence and/or fulminant hepatitis were frequent, the 1,110 residue being a typical HEV-3e and HEV-3f-A2 polymorphism. RdRp motifs III, V, VII also had high mutation rates. Motif III included residues that are polymorphisms of HEV-3e (F1449) and HEV-3 m (D1451). RdRp ribavirin resistance mutations were frequent, mainly 1479I (67.4, 100% in HEV-3efglmk) and 1634R/K (10.0%, almost 100% in HEV-3e). With respect to ORF2, 19/27 neutralization epitopes had mutations. The S80 residue in ORF3 presented mutations in 3.5% of cases. Amino acids in the ORF3-PSAP motif had high substitution rates, being more frequent in the first PSAP (44.8%) than in the second (1.5%). This is the first comprehensive analysis of the HEV-3 genome, aimed at improving our knowledge of the genome, and establishing the basis for future genotype-to-phenotype analysis, given that viral features associated with severity have not been explored in depth. Our results demonstrate there are important genetic differences in the studied genomes that sometimes affect significant viral structures, and constitute clade/subtype polymorphisms that may affect the clinical course or treatment efficacy.
Collapse
Affiliation(s)
- Milagros Muñoz-Chimeno
- Hepatitis Unit, National Center of Microbiology, Carlos III Institute of Health, Madrid, Spain
- Alcalá de Henares University, Madrid, Spain
| | | | | | - Ana Avellon
- Hepatitis Unit, National Center of Microbiology, Carlos III Institute of Health, Madrid, Spain
- CIBERESP Epidemiology and Public Health, Madrid, Spain
- *Correspondence: Ana Avellon,
| |
Collapse
|