1
|
Kongtanawanich K, Prasopporn S, Jamnongsong S, Thongsin N, Payungwong T, Okada S, Hokland M, Wattanapanitch M, Jirawatnotai S. A live single-cell reporter system reveals drug-induced plasticity of a cancer stem cell-like population in cholangiocarcinoma. Sci Rep 2024; 14:22619. [PMID: 39349745 PMCID: PMC11442615 DOI: 10.1038/s41598-024-73581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer stem cells (CSC) play an important role in carcinogenesis and are acknowledged to be responsible for chemoresistance in cholangiocarcinoma (CCA). Studying CCA CSC has been challenging, due to lack of consensus CSC markers, and to their plastic nature. Since dual expression of the core pluripotent factors SOX2/OCT4 has been shown to correlate with poor outcome in CCA patients, we selected the SOX2/OCT4 activating short half-life GFP-based live reporter (SORE6-dsCopGFP) to study CSC dynamics at the single-cell level. Transduction of five human CCA cell lines resulted in the expression of 1.8-13.1% GFP-positive (SORE6POS) cells. By live imaging, we found that SORE6POS CCA cells possess self-renewal capacity and that they can be induced to differentiate. Significantly, the SORE6POS cells were highly tumorigenic, both in vitro and in vivo, thus implicating the characteristics of primary CSCs. When we then analyzed for selected CSC-related markers, we found that the majority of both CD133+/CD44+, and CD133+/LGR5+ CCA cells were SORE6POS cells. Exposing transduced cells to standard CCA chemotherapy revealed higher growth rate inhibition at 50% (GR50s) for SORE6POS cells compared to GFP-negative (SORE6NEG) ones indicating that these CSC-like cells were more resistant to the treatment. Moreover, the chemotherapy induced SORE6POS from SORE6NEG cells, while retaining the existing SORE6POS population. Finally, treatment of transduced cells with CDK4/6 inhibitors in vitro for 3 days resulted in a lowered CSC number in the culture. Thus, applying a live reporter system allowed us to elucidate the stem cell diversity and drug-induced plasticity of CCA CSCs. These findings have clear implications for future management of such patients.
Collapse
Affiliation(s)
| | - Sunisa Prasopporn
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supawan Jamnongsong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nontaphat Thongsin
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tongchai Payungwong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
| |
Collapse
|
2
|
Serrano Uson Junior PL, Bekaii-Saab T. Moving beyond single-agent checkpoint inhibition in biliary tract cancers: what is the next frontier? Immunotherapy 2023; 15:531-540. [PMID: 37096922 DOI: 10.2217/imt-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Background: Immunotherapy has been shown to improve outcomes for patients with cancer. Biliary tract cancers are a group of lethal diseases, and immunotherapy is an exciting new strategy to treat patients in advanced stages. Role of immunotherapy in biliary cancers: Durvalumab, an anti-PD-L1 antibody, is a new immunotherapy option for patients with advanced biliary cancers. In a randomized phase III trial, the combination of durvalumab and chemotherapy improved disease outcomes, including overall survival, in patients with advanced biliary cancers regardless of PD-L1 expression. Future perspective: Promising new combinations with new and potent antibodies or antiangiogenics are under development. Combinations with new immunotherapy agents targeting CTLA-4 or OX40 can enhance T-cell activation and improve outcomes compared with single anti-PD-1/PD-L1 agents. Furthermore, ctDNA is being used as an alternative to tissue genomic analysis and can be used to identify actionable targets. In this review, we will discuss the most important studies involving immunotherapy in biliary cancers as well as future perspectives in the field.
Collapse
|
3
|
Feng M, Xu H, Zhou W, Pan Y. The BRD4 inhibitor JQ1 augments the antitumor efficacy of abemaciclib in preclinical models of gastric carcinoma. J Exp Clin Cancer Res 2023; 42:44. [PMID: 36755269 PMCID: PMC9909925 DOI: 10.1186/s13046-023-02615-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Advanced gastric cancer (GC) is a lethal malignancy, harboring recurrent alterations in cell cycle pathway, especially the CDKN2A-CDK4/CDK6/CCND1 axis. However, monotherapy of CDK4/6 inhibitors has shown limited antitumor effects for GC, and combination treatments were urgently needed for CDK4/6 inhibitors. METHODS Here, we performed a comprehensive analysis, including drug screening, pan-cancer genomic dependency analysis, and epigenetic sequencing to identify the candidate combination with CDK4/6 inhibitors. Mechanisms were investigated by bulk RNA-sequencing and experimental validation was conducted on diverse in vitro or in vivo preclinical GC models. RESULTS We found that the BRD4 inhibitor JQ1 augments the antitumor efficacy of the CDK4/6 inhibitor abemaciclib (ABE). Diverse in vitro and in vivo preclinical GC models are examined and synergistic benefits from the combination therapy are obtained consistently. Mechanistically, the combination of ABE and JQ1 enhances the cell cycle arrest of GC cells and induces unique characteristics of cellular senescence through the induction of DNA damage, which is revealed by transcriptomic profiling and further validated by substantial in vitro and in vivo GC models. CONCLUSION This study thus proposes a candidate combination therapy of ABE and JQ1 to improve the therapeutic efficacy and worth further investigation in clinical trials for GC.
Collapse
Affiliation(s)
- Mei Feng
- Division of General Surgery, Peking University First Hospital, Peking University, No. 8 Xi Shiku Street, Beijing, 100034, China
| | - Hao Xu
- Division of General Surgery, Peking University First Hospital, Peking University, No. 8 Xi Shiku Street, Beijing, 100034, China
| | - Wenyuan Zhou
- NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yisheng Pan
- Division of General Surgery, Peking University First Hospital, Peking University, No. 8 Xi Shiku Street, Beijing, 100034, China.
| |
Collapse
|
4
|
Zhou W, Ma X, Wang J, Xu X, Koivisto O, Feng J, Viitala T, Zhang H. Co-delivery CPT and PTX prodrug with a photo/thermo-responsive nanoplatform for triple-negative breast cancer therapy. SMART MEDICINE 2022; 1:e20220036. [PMID: 39188747 PMCID: PMC11235718 DOI: 10.1002/smmd.20220036] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is still the most aggressive cancer in women. Combination chemotherapy holds great potential for cancer therapy; however, the off-target and side effects of free chemotherapy administration remain a major challenge. In this study, we developed a photo/thermo-responsive nanoplatform that can be used for TNBC treatment via photothermic therapy in combination with multidrug therapy. By conjugating the chemotherapy drug PTX prodrug on the surface of mesoporous silica-coated gold nanorod nanoparticles and then loading another chemotherapy drug, CPT, the Au@MSN-PTX@CPT nanoparticles exhibited great photothermal response, redox response drug release and cancer cell inhibition abilities. Otherwise, we further coated the Au@MSN-PTX@CPT nanoparticle with a temperature-sensitive polymer poly(N-isopropylacrylamide-co-methacrylic acid) (p(NIPAM-co-MAAc)), and the polymer-coated Au@MSN-PTX@TPT@polymer nanoparticles showed perfect near-infrared (NIR) light controlled drug release. Finally, the Au@MSN-PTX@CPT@polymer nanoparticles were injected into the 4T1 breast cancer mouse model. The Au@MSN-PTX@CPT@polymer nanoparticles preferably accumulated at the tumor site and had reduced chemotherapy injuries and great antitumor activity when combined with 650 nm laser treatment. In summary, our developed Au@MSN-PTX@CPT@polymer nanoparticles served as a good method for controlled chemodrug delivery and provided a good choice for TNBC combination therapy.
Collapse
Affiliation(s)
- Wenhui Zhou
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Southern Medical University Affiliated Fengxian HospitalShanghaiChina
| | - Xiaodong Ma
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Jie Wang
- Southern Medical University Affiliated Fengxian HospitalShanghaiChina
| | - Xiaoyu Xu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Oliver Koivisto
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Jing Feng
- Southern Medical University Affiliated Fengxian HospitalShanghaiChina
- Longgang District People's Hospital of ShenzhenShenzhenChina
| | - Tapani Viitala
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
5
|
Terenziani R, Galetti M, La Monica S, Fumarola C, Zoppi S, Alfieri R, Digiacomo G, Cavazzoni A, Cavallo D, Corradi M, Tiseo M, Petronini PG, Bonelli M. CDK4/6 Inhibition Enhances the Efficacy of Standard Chemotherapy Treatment in Malignant Pleural Mesothelioma Cells. Cancers (Basel) 2022; 14:cancers14235925. [PMID: 36497412 PMCID: PMC9739278 DOI: 10.3390/cancers14235925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The loss of the CDKN2A/ARF (cyclin-dependent kinase inhibitor 2A/alternative reading frame) gene is the most common alteration in malignant pleural mesothelioma (MPM), with an incidence of about 70%, thus representing a novel target for mesothelioma treatment. In the present study, we evaluated the antitumor potential of combining the standard chemotherapy regimen used for unresectable MPM with the CDK4/6 (cyclin-dependent kinase 4 or 6) inhibitor abemaciclib. METHODS Cell viability, cell death, senescence, and autophagy induction were evaluated in two MPM cell lines and in a primary MPM cell culture. RESULTS The simultaneous treatment of abemaciclib with cisplatin and pemetrexed showed a greater antiproliferative effect than chemotherapy alone, both in MPM cell lines and in primary cells. This combined treatment induced cellular senescence or autophagic cell death, depending on the cell type. More in detail, the induction of cellular senescence was related to the increased expression of p21, whereas autophagy induction was due to the impairment of the AKT/mTOR signaling. Notably, the effect of the combination was irreversible and no resumption in tumor cell proliferation was observed after drug withdrawal. CONCLUSION Our results demonstrated the therapeutic potential of CDK4/6 inhibitors in combination with chemotherapy for the treatment of MPM and are consistent with the recent positive results in the MiST2 arm in abemaciclib-treated patients.
Collapse
Affiliation(s)
- Rita Terenziani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
- Correspondence: (M.G.); (S.L.M.); Tel.: +39-0521-033764 (M.G.); +39-0521-033747 (S.L.M.)
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: (M.G.); (S.L.M.); Tel.: +39-0521-033764 (M.G.); +39-0521-033747 (S.L.M.)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia Zoppi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Center of Excellence for Toxicological Research (CERT), University of Parma, 43126 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | | | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
6
|
Prasopporn S, Suppramote O, Ponvilawan B, Jamyuang C, Chanthercrob J, Chaiboonchoe A, More-Krong P, Kongsri K, Suntiparpluacha M, Chanwat R, Korphaisarn K, Okada S, Sampattavanich S, Jirawatnotai S. Combining the SMAC mimetic LCL161 with Gemcitabine plus Cisplatin therapy inhibits and prevents the emergence of multidrug resistance in cholangiocarcinoma. Front Oncol 2022; 12:1021632. [PMID: 36531039 PMCID: PMC9748615 DOI: 10.3389/fonc.2022.1021632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly lethal gastrointestinal malignancy that has one of the worst prognoses among solid tumors. The combination of Gemcitabine + Cisplatin (GEM/CIS) remains the standard first-line treatment for advanced stage CCA. However, this drug combination yields only a modest objective response rate, and in cases that initially respond to this treatment, drug resistance commonly rapidly develops. To improve the efficiency of GEM/CIS therapy for CCA, a thorough understanding of the mechanism of GEM/CIS resistance in CCA is required. To that end - in this study, we developed several acquired GEM/CIS-resistant CCA cell lines and we screened those cell lines for acquired vulnerability. The screening process revealed that subset of CCA with GEM/CIS resistance acquired vulnerability to the small-molecule second mitochondrial-derived activator of caspases (SMAC) mimetics LCL161 and Birinapant. The observed acquired vulnerability was found to be associated with upregulation of an inhibitor of apoptosis protein 2 (cIAP2), a known target of SMAC mimetics. LCL161 or cIAP2-shRNA downregulated cIAP2 and restored the sensitivity to GEM/CIS in GEM/CIS-resistant CCA cell lines and in in vivo GEM/CIS-resistant xenograft models. A strong synergic effect was observed when LCL161 was added to GEM/CIS. Interestingly, this synergism was also observed in drug-naïve CCA cell lines, xenografts, and patient-derived organoids. This triplet therapy also prevented the emergence of multidrug-resistant CCA in in vitro and in vivo models. Our findings suggest that activation of cIAP2 allows CCA to escape GEM/CIS, and that suppression of cIAP2 reestablishes the apoptotic profile of CCA, thus restoring its vulnerability to GEM/CIS. The results of this study indicate that combining the SMAC mimetic LCL161 with GEM/CIS inhibits and prevents the emergence of multidrug resistance in CCA.
Collapse
Affiliation(s)
- Sunisa Prasopporn
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Orawan Suppramote
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Ben Ponvilawan
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanette Jamyuang
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimkanya More-Krong
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamonchanok Kongsri
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monthira Suntiparpluacha
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rawisak Chanwat
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgical Oncology, National Cancer Institute, Bangkok, Thailand
| | - Krittiya Korphaisarn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,*Correspondence: Siwanon Jirawatnotai,
| |
Collapse
|
7
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|