1
|
Parsha R, Kota SK. Elavl1 is dispensable for appendicular skeletal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614008. [PMID: 39386561 PMCID: PMC11463591 DOI: 10.1101/2024.09.23.614008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Elavl1/HuR is a RNA binding protein implicated in multiple developmental processes with pleiotropic roles in RNA life cycle. Loss of Elavl1 is incompatible with life with early embryonic loss of Elavl1 in epiblast cells being lethal with defects in placental branching and embryonic tissue growth. Postnatal global deletion of Elavl1/HuR results in lethality with atrophy in multiple tissues mainly due to loss of progenitor cells. However, roles of Elavl1 specifically during embryonic limb development is not well understood. Here we report that deletion of Elavl1 in limb bud mesenchyme in mouse did not reveal any abnormalities during embryonic development with normal development in pre- and postnatal limb skeleton. Analyses of skeletal patterning, morphogenesis and skeletal maturation including skeletal elements in stylopod, zeugopod and autopod during development did not reveal any significant differences between long bones from control and Elavl1 conditional knockout animals. Our study indicates differential dependency and susceptibility to loss of Elavl1 in different stem cell lineages with its functions being dispensable during limb development.
Collapse
Affiliation(s)
- Rohini Parsha
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA
| | - Satya K. Kota
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA
| |
Collapse
|
2
|
Adesanya O, Das D, Kalsotra A. Emerging roles of RNA-binding proteins in fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1840. [PMID: 38613185 PMCID: PMC11018357 DOI: 10.1002/wrna.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
A rampant and urgent global health issue of the 21st century is the emergence and progression of fatty liver disease (FLD), including alcoholic fatty liver disease and the more heterogenous metabolism-associated (or non-alcoholic) fatty liver disease (MAFLD/NAFLD) phenotypes. These conditions manifest as disease spectra, progressing from benign hepatic steatosis to symptomatic steatohepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma. With numerous intricately regulated molecular pathways implicated in its pathophysiology, recent data have emphasized the critical roles of RNA-binding proteins (RBPs) in the onset and development of FLD. They regulate gene transcription and post-transcriptional processes, including pre-mRNA splicing, capping, and polyadenylation, as well as mature mRNA transport, stability, and translation. RBP dysfunction at every point along the mRNA life cycle has been associated with altered lipid metabolism and cellular stress response, resulting in hepatic inflammation and fibrosis. Here, we discuss the current understanding of the role of RBPs in the post-transcriptional processes associated with FLD and highlight the possible and emerging therapeutic strategies leveraging RBP function for FLD treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Pattnaik B, Negi V, Chaudhuri R, Desiraju K, Faizan MI, Akhtar A, Ansari MS, Shakir M, Gheware A, Prakash YS, Guleria R, Ghosh B, Agrawal A, Ahmad T. MiR-326-mediated overexpression of NFIB offsets TGF-β induced epithelial to mesenchymal transition and reverses lung fibrosis. Cell Mol Life Sci 2023; 80:357. [PMID: 37950757 PMCID: PMC11072886 DOI: 10.1007/s00018-023-05005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 11/13/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressively fatal and incurable disease characterized by the loss of alveolar structures, increased epithelial-mesenchymal transition (EMT), and aberrant tissue repair. In this study, we investigated the role of Nuclear Factor I-B (NFIB), a transcription factor critical for lung development and maturation, in IPF. Using both human lung tissue samples from patients with IPF, and a mouse model of lung fibrosis induced by bleomycin, we showed that there was a significant reduction of NFIB both in the lungs of patients and mice with IPF. Furthermore, our in vitro experiments using cultured human lung cells demonstrated that the loss of NFIB was associated with the induction of EMT by transforming growth factor beta (TGF-β). Knockdown of NFIB promoted EMT, while overexpression of NFIB suppressed EMT and attenuated the severity of bleomycin-induced lung fibrosis in mice. Mechanistically, we identified post-translational regulation of NFIB by miR-326, a miRNA with anti-fibrotic effects that is diminished in IPF. Specifically, we showed that miR-326 stabilized and increased the expression of NFIB through its 3'UTR target sites for Human antigen R (HuR). Moreover, treatment of mice with either NFIB plasmid or miR-326 reversed airway collagen deposition and fibrosis. In conclusion, our study emphasizes the critical role of NFIB in lung development and maturation, and its reduction in IPF leading to EMT and loss of alveolar structures. Our study highlights the potential of miR-326 as a therapeutic intervention for IPF. The schema shows the role of NFIB in maintaining the normal epithelial cell characteristics in the lungs and how its reduction leads to a shift towards mesenchymal cell-like features and pulmonary fibrosis. A In normal lungs, NFIB is expressed abundantly in the epithelial cells, which helps in maintaining their shape, cell polarity and adhesion molecules. However, when the lungs are exposed to factors that induce pulmonary fibrosis, such as bleomycin, or TGF-β, the epithelial cells undergo epithelial to mesenchymal transition (EMT), which leads to a decrease in NFIB. B The mesenchymal cells that arise from EMT appear as spindle-shaped with loss of cell junctions, increased cell migration, loss of polarity and expression of markers associated with mesenchymal cells/fibroblasts. C We designed a therapeutic approach that involves exogenous administration of NFIB in the form of overexpression plasmid or microRNA-326. This therapeutic approach decreases the mesenchymal cell phenotype and restores the epithelial cell phenotype, thus preventing the development or progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Vinny Negi
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Rituparna Chaudhuri
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Koundinya Desiraju
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Areej Akhtar
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Sufyan Ansari
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Shakir
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Atish Gheware
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Y S Prakash
- Departments of Anesthesiology, Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Randeep Guleria
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Balaram Ghosh
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
| | - Anurag Agrawal
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Trivedi School of Biosciences, Ashoka University, NH 44, Rajiv Gandhi Education City, Sonipat, Haryana, 131029, India.
| | - Tanveer Ahmad
- Molecular Immunogenetics Laboratory and Centre of Excellence for Translational Research in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Multidisciplinary Centre for Advanced Research & Studies, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Ding H, Xiang R, Jia Y, Ye J, Xia Z. Cyclosporin A-mediated translocation of HuR improves MTX-induced cognitive impairment in a mouse model via NCOA4-mediated ferritinophagy. Aging (Albany NY) 2023; 15:12537-12550. [PMID: 37950727 PMCID: PMC10683624 DOI: 10.18632/aging.205195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a subject that requires critical solutions in neuroscience and oncology. However, its potential mechanism of action remains ambiguous. The aim of this study was to investigate the vital role of HuR in the neuroprotection of cyclosporin A (CsA) during methotrexate (MTX)-induced cognitive impairment. A series of Hu-antigen R (HuR) gain and loss experiments were used to examine cyclosporin A (CsA)-mediated translocation of HuR's ability to improve MTX-induced cognitive impairment through NCOA4-mediated ferritinophagy in vitro and in vivo. Obtained results show that the administration of CsA alleviated MTX-induced cognitive impairment in mice. The presence of MTX promoted the shuttling of HuR from the cytoplasm to the nucleus, whereas treatment with CsA increased cytoplasmic HuR expression levels and the levels of ferritinophagy-related proteins, such as NCOA4 and LC3II, compared to the MTX group. However, applying KH-3, an inhibitor of HuR, reversed CsA's impact on the expression of ferritinophagy-related proteins in the hippocampus and in vitro. Also, treatment with CsA attenuated microglial activation by altering Iba-1 expression and decreased TNF-α and IL-1β levels in mice hippocampi. Moreover, KH-3 neutralized CsA's effects on the expression of both Iba-1 and HuR in vivo and in vitro. In summary, CsA was confirmed to have a neuroprotective role in CICI. Its possible underlying mechanisms may be involved in the translocation of HuR. Mediating the translocation of HuR during CICI could mitigate neruoinflammation and neuronal apoptosis via NCOA4-mediated ferritinophagy and, thus, alleviate cognitive impairment in mice with CICI.
Collapse
Affiliation(s)
- Huang Ding
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People’s Republic of China
| | - Rong Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People’s Republic of China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People’s Republic of China
| | - Jishi Ye
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People’s Republic of China
| | - Zhongyuan Xia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People’s Republic of China
| |
Collapse
|
5
|
Ferrigno A, Campagnoli LIM, Barbieri A, Marchesi N, Pascale A, Croce AC, Vairetti M, Di Pasqua LG. MCD Diet Modulates HuR and Oxidative Stress-Related HuR Targets in Rats. Int J Mol Sci 2023; 24:9808. [PMID: 37372956 DOI: 10.3390/ijms24129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The endogenous antioxidant defense plays a big part in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder that can lead to serious complications such as cirrhosis and cancer. HuR, an RNA-binding protein of the ELAV family, controls, among others, the stability of MnSOD and HO-1 mRNA. These two enzymes protect the liver cells from oxidative damage caused by excessive fat accumulation. Our aim was to investigate the expression of HuR and its targets in a methionine-choline deficient (MCD) model of NAFLD. To this aim, we fed male Wistar rats with an MCD diet for 3 and 6 weeks to induce NAFLD; then, we evaluated the expression of HuR, MnSOD, and HO-1. The MCD diet induced fat accumulation, hepatic injury, oxidative stress, and mitochondrial dysfunction. A HuR downregulation was also observed in association with a reduced expression of MnSOD and HO-1. Moreover, the changes in the expression of HuR and its targets were significantly correlated with oxidative stress and mitochondrial injury. Since HuR plays a protective role against oxidative stress, targeting this protein could be a therapeutic strategy to both prevent and counteract NAFLD.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | | | - Annalisa Barbieri
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Anna Cleta Croce
- IGM-CNR, Unit of Histochemistry and Cytometry, University of Pavia, 27100 Pavia, Italy
| | - Mariapia Vairetti
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Papadopoulos G, Legaki AI, Georgila K, Vorkas P, Giannousi E, Stamatakis G, Moustakas II, Petrocheilou M, Pyrina I, Gercken B, Kassi E, Chavakis T, Pateras IS, Panayotou G, Gika H, Samiotaki M, Eliopoulos AG, Chatzigeorgiou A. Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity. Metabolism 2023; 144:155552. [PMID: 36996933 DOI: 10.1016/j.metabol.2023.155552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND High-Fructose Corn Syrup (HFCS), a sweetener rich in glucose and fructose, is nowadays widely used in beverages and processed foods; its consumption has been correlated to the emergence and progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nevertheless, the molecular mechanisms by which HFCS impacts hepatic metabolism remain scarce, especially in the context of obesity. Besides, the majority of current studies focuses either on the detrimental role of fructose in hepatic steatosis or compare separately the additive impact of fructose versus glucose in high fat diet-induced NAFLD. AIM By engaging combined omics approaches, we sought to characterize the role of HFCS in obesity-associated NAFLD and reveal molecular processes, which mediate the exaggeration of steatosis under these conditions. METHODS Herein, C57BL/6 mice were fed a normal-fat-diet (ND), a high-fat-diet (HFD) or a HFD supplemented with HFCS (HFD-HFCS) and upon examination of their metabolic and NAFLD phenotype, proteomic, lipidomic and metabolomic analyses were conducted to identify HFCS-related molecular alterations of the hepatic metabolic landscape in obesity. RESULTS Although HFD and HFD-HFCS mice displayed comparable obesity, HFD-HFCS mice showed aggravation of hepatic steatosis, as analysis of the lipid droplet area in liver sections revealed (12,15 % of total section area in HFD vs 22,35 % in HFD-HFCS), increased NAFLD activity score (3,29 in HFD vs 4,86 in HFD-HFCS) and deteriorated hepatic insulin resistance, as compared to the HFD mice. Besides, the hepatic proteome of HFD-HFCS mice was characterized by a marked upregulation of 5 core proteins implicated in de novo lipogenesis (DNL), while an increased phosphatidyl-cholines(PC)/phosphatidyl-ethanolamines(PE) ratio (2.01 in HFD vs 3.04 in HFD-HFCS) was observed in the livers of HFD-HFCS versus HFD mice. Integrated analysis of the omics datasets indicated that Tricarboxylic Acid (TCA) cycle overactivation is likely contributing towards the intensification of steatosis during HFD-HFCS-induced NAFLD. CONCLUSION Our results imply that HFCS significantly contributes to steatosis aggravation during obesity-related NAFLD, likely deriving from DNL upregulation, accompanied by TCA cycle overactivation and deteriorated hepatic insulin resistance.
Collapse
Affiliation(s)
- Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Konstantina Georgila
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Vorkas
- Institute of Applied Biosciences, Centre for Research and Technology, 57001, Thermi, Thessaloniki, Greece
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - George Stamatakis
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Ioannis I Moustakas
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Maria Petrocheilou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001, Thermi, Thessaloniki, Greece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Ioannis S Pateras
- 2nd Department of Pathology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Panayotou
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Helen Gika
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001, Thermi, Thessaloniki, Greece
| | - Martina Samiotaki
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Xu J, Liu X, Wu S, Zhang D, Liu X, Xia P, Ling J, Zheng K, Xu M, Shen Y, Zhang J, Yu P. RNA-binding proteins in metabolic-associated fatty liver disease (MAFLD): From mechanism to therapy. Biosci Trends 2023; 17:21-37. [PMID: 36682800 DOI: 10.5582/bst.2022.01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease globally and seriously increases the public health burden, affecting approximately one quarter of the world population. Recently, RNA binding proteins (RBPs)-related pathogenesis of MAFLD has received increasing attention. RBPs, vividly called the gate keepers of MAFLD, play an important role in the development of MAFLD through transcription regulation, alternative splicing, alternative polyadenylation, stability and subcellular localization. In this review, we describe the mechanisms of different RBPs in the occurrence and development of MAFLD, as well as list some drugs that can improve MAFLD by targeting RBPs. Considering the important role of RBPs in the development of MAFLD, elucidating the RNA regulatory networks involved in RBPs will facilitate the design of new drugs and biomarkers discovery.
Collapse
Affiliation(s)
- Jiawei Xu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuqin Wu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kai Zheng
- Medical Care Strategic Customer Department, China Merchants Bank Shenzhen Branch, Shenzhen, Guangdong, Guangdong, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College / The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Analysis of the Role of Stellate Cell VCAM-1 in NASH Models in Mice. Int J Mol Sci 2023; 24:ijms24054813. [PMID: 36902241 PMCID: PMC10002755 DOI: 10.3390/ijms24054813] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) can progress to non-alcoholic steatohepatitis (NASH), characterized by inflammation and fibrosis. Fibrosis is mediated by hepatic stellate cells (HSC) and their differentiation into activated myofibroblasts; the latter process is also promoted by inflammation. Here we studied the role of the pro-inflammatory adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) in HSCs in NASH. VCAM-1 expression was upregulated in the liver upon NASH induction, and VCAM-1 was found to be present on activated HSCs. We therefore utilized HSC-specific VCAM-1-deficient and appropriate control mice to explore the role of VCAM-1 on HSCs in NASH. However, HSC-specific VCAM-1-deficient mice, as compared to control mice, did not show a difference with regards to steatosis, inflammation and fibrosis in two different models of NASH. Hence, VCAM-1 on HSCs is dispensable for NASH development and progression in mice.
Collapse
|
9
|
Way GW. Letter to the editor: HuR in liver homeostasis. Hepatology 2023; 77:E59. [PMID: 36103144 DOI: 10.1002/hep.32786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/08/2022]
Affiliation(s)
- Grayson W Way
- Center for Clinical and Translational Research , Virginia Commonwealth University , Richmond , Virginia , USA.,Department of Microbiology and Immunology , Virginia Commonwealth University , Richmond , Virginia , USA
| |
Collapse
|
10
|
Subramanian P, Gargani S, Kontoyiannis DL, Chavakis T. Reply. Hepatology 2023; 77:E60-E61. [PMID: 36104065 DOI: 10.1002/hep.32790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine , Technische Universität Dresden , Dresden , Germany
| | - Sofia Gargani
- Institute for Fundamental Biomedical Research , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| | - Dimitris L Kontoyiannis
- Institute for Fundamental Biomedical Research , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece.,Department of Genetics, Development and Molecular Biology, School of Biology , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine , Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
11
|
Wang Y, Tai YL, Way G, Zeng J, Zhao D, Su L, Jiang X, Jackson KG, Wang X, Gurley EC, Liu J, Liu J, Chen W, Wang XY, Sanyal AJ, Hylemon PB, Zhou H. RNA binding protein HuR protects against NAFLD by suppressing long noncoding RNA H19 expression. Cell Biosci 2022; 12:172. [PMID: 36224648 PMCID: PMC9558407 DOI: 10.1186/s13578-022-00910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND NAFLD has become the most common chronic liver disease worldwide. Human antigen R (HuR), an RNA-binding protein, is an important post-transcriptional regulator. HuR has been reported as a key player in regulating lipid homeostasis in the liver and adipose tissues by using tissue-specific HuR knockout mice. However, the underlying mechanism by which hepatocyte-specific HuR regulates hepatic lipid metabolism under metabolic stress remains unclear and is the focus of this study. METHODS Hepatocyte-specific HuR deficient mice (HuRhKO) and age-/gender-matched control mice, as well as long-noncoding RNA H19 knockout mice (H19-/-), were fed a Western Diet plus sugar water (WDSW). Hepatic lipid accumulation, inflammation and fibrosis were examined by histology, RNA transcriptome analysis, qRT-PCR, and Western blot analysis. Bile acid composition was measured using LC-MS/MS. RESULTS Hepatocyte-specific deletion of HuR not only significantly increased hepatic lipid accumulation by modulating fatty acid synthesis and metabolism but also markedly induced inflammation by increasing immune cell infiltration and neutrophil activation under metabolic stress. In addition, hepatic deficiency of HuR disrupted bile acid homeostasis and enhanced liver fibrosis. Mechanistically, HuR is a repressor of H19 expression. Analysis of a recently published dataset (GSE143358) identified H19 as the top-upregulated gene in liver-specific HuR knockout mice. Similarly, hepatocyte-specific deficiency of HuR dramatically induced the expression of H19 and sphingosine-1 phosphate receptor 2 (S1PR2), but reduced the expression of sphingosine kinase 2 (SphK2). WDSW-induced hepatic lipid accumulation was alleviated in H19-/- mice. Furthermore, the downregulation of H19 alleviated WDSW-induced NAFLD in HuRhKO mice. CONCLUSIONS HuR not only functions as an RNA binding protein to modulate post-transcriptional gene expression but also regulates H19 promoter activity. Hepatic HuR is an important regulator of hepatic lipid metabolism via modulating H19 expression.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, China
| | - Yun-Ling Tai
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
| | - Grayson Way
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Jing Zeng
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
| | - Derrick Zhao
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Lianyong Su
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Xixian Jiang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Kaitlyn G. Jackson
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Xuan Wang
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Emily C. Gurley
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA USA
| | - Jinpeng Liu
- Department of Computer Science, University of Kentucky, Lexington, KY USA
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang-Yang Wang
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
- Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA USA
- Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Arun J. Sanyal
- Department of Internal Medicine/GI Division, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Phillip B. Hylemon
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street, MMRB-5044, Richmond, VA 23298-0678 USA
- McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
12
|
Sommerauer C, Kutter C. Noncoding RNAs in liver physiology and metabolic diseases. Am J Physiol Cell Physiol 2022; 323:C1003-C1017. [PMID: 35968891 DOI: 10.1152/ajpcell.00232.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The liver holds central roles in detoxification, energy metabolism and whole-body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage- and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatio-temporally defined manner. Proteins interacting with RNAs can be categorized into canonical or non-canonical RNA binding proteins (RBPs) depending on the existence of classical RNA binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances of how of RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Christian Sommerauer
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, grid.4714.6Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
13
|
Fibrogenic Pathways in Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD). Int J Mol Sci 2022; 23:ijms23136996. [PMID: 35805998 PMCID: PMC9266719 DOI: 10.3390/ijms23136996] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD), recently also re-defined as metabolic dysfunction associated fatty liver disease (MAFLD), is rapidly increasing, affecting ~25% of the world population. MALFD/NAFLD represents a spectrum of liver pathologies including the more benign hepatic steatosis and the more advanced non-alcoholic steatohepatitis (NASH). NASH is associated with enhanced risk for liver fibrosis and progression to cirrhosis and hepatocellular carcinoma. Hepatic stellate cells (HSC) activation underlies NASH-related fibrosis. Here, we discuss the profibrogenic pathways, which lead to HSC activation and fibrogenesis, with a particular focus on the intercellular hepatocyte–HSC and macrophage–HSC crosstalk.
Collapse
|
14
|
Wu X, Xu L. The RNA-binding protein HuR in human cancer: A friend or foe? Adv Drug Deliv Rev 2022; 184:114179. [PMID: 35248670 PMCID: PMC9035123 DOI: 10.1016/j.addr.2022.114179] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022]
Abstract
The RNA-binding proteins (RBPs) are critical trans factors that associate with specific cis elements present in mRNAs whose stability and translation are subject to regulation. The RBP Hu antigen R (HuR) is overexpressed in a wide variety of human cancers and serves as a prognostic factor of poor clinical outcome. HuR promotes tumorigenesis by interacting with a subset of oncogenic mRNAs implicated in different cancer hallmarks, and resistance to therapy. Reduction of HuR levels in cancer cells leads to tumor regression in mouse xenograft models. These findings prompt a working model whereby cancer cells use HuR, a master switch of multiple oncogenic mRNAs, to drive drug resistance and promote cell survival and metastasis, thus rendering the tumor cells with high cytoplasmic HuR more progressive and resistant to therapy. This review summarizes the roles of HuR in cancer and other diseases, therapeutic potential of HuR inhibition, and the current status of drug discovery on HuR.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA.
| | - Liang Xu
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA; Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
15
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|