1
|
Linking Green Human Resource Practices and Environmental Economics Performance: The Role of Green Economic Organizational Culture and Green Psychological Climate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010953. [PMID: 34682698 PMCID: PMC8535584 DOI: 10.3390/ijerph182010953] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
An eco-friendly environment with green strategies can help to achieve better environmental performance. However, literature on the relationship between green human resource management practices (GHRMP) and sustainable environmental efficiency (SEF) is limited. Moreover, there is limited knowledge about the factors that could mediate the relationship between GHRMP and SEF. Therefore, the present study examines the impact of green human resource management practices mediating through green psychological climate (GPC) and green organizational culture (GOC) for better environmental efficacy. For this purpose, the primary data on variables are collected by using structured assessment tools and analyzed through regression models. Unlike previous studies, this study adopts a mediation model and unfolds not only the role of green human resource practices in psychological climate and green organizational culture but also clarifies the mediating role of GPC and GOC in sustainable environmental efficiency. The findings unfolded that ecological factors such as green psychological climate, green organizational culture, and sustainable environmental efficiency are positively affected by green human resources management. In addition, green organizational culture and green psychological climate positively mediate the relationship between GHRMP and SEF. This study recommends adopting green human resource management strategies and increasing technical innovations to improve sustainability and economic performance.
Collapse
|
2
|
Riordan S, Skouteris G, Williams R. Metabolic Activity and Clinical Efficacy of Animal and Human Hepatocytes in Bioartificial Support Systems for Acute Liver Failure. Int J Artif Organs 2018. [DOI: 10.1177/039139889802100609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- S.M. Riordan
- Institute of Hepatology, University College London Medical School and Hospitals, London - England
| | - G.G. Skouteris
- Institute of Hepatology, University College London Medical School and Hospitals, London - England
| | - R. Williams
- Institute of Hepatology, University College London Medical School and Hospitals, London - England
| |
Collapse
|
3
|
Fuhrman MP, Herrmann VM, Smith GS. Reactive Oxygen Species and Glutathione: Potential for Parenteral Nutrition Supplementation? Nutr Clin Pract 2016. [DOI: 10.1177/088453369901400508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
4
|
Gebbing M, Bergmann T, Schulz E, Ehrhardt A. Gene therapeutic approaches to inhibit hepatitis B virus replication. World J Hepatol 2015; 7:150-164. [PMID: 25729471 PMCID: PMC4342598 DOI: 10.4254/wjh.v7.i2.150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic hepatitis B virus (HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammation of the liver and over years this can lead to cirrhosis and the development of hepatocellular carcinomas. Currently available therapeutics for chronically infected individuals aim at reducing viral replication and to slow down or stop the progression of the disease. Therefore, novel treatment options are needed to efficiently combat and eradicate this disease. Here we provide a state of the art overview of gene therapeutic approaches to inhibit HBV replication. We discuss non-viral and viral approaches which were explored to deliver therapeutic nucleic acids aiming at reducing HBV replication. Types of delivered therapeutic nucleic acids which were studied since many years include antisense oligodeoxynucleotides and antisense RNA, ribozymes and DNAzymes, RNA interference, and external guide sequences. More recently designer nucleases gained increased attention and were exploited to destroy the HBV genome. In addition we mention other strategies to reduce HBV replication based on delivery of DNA encoding dominant negative mutants and DNA vaccination. In combination with available cell culture and animal models for HBV infection, in vitro and in vivo studies can be performed to test efficacy of gene therapeutic approaches. Recent progress but also challenges will be specified and future perspectives will be discussed. This is an exciting time to explore such approaches because recent successes of gene therapeutic strategies in the clinic to treat genetic diseases raise hope to find alternative treatment options for patients chronically infected with HBV.
Collapse
|
5
|
Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res 2007; 25:72-86. [PMID: 18074201 PMCID: PMC2217617 DOI: 10.1007/s11095-007-9504-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 11/14/2007] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is one of the leading causes of liver cirrhosis and hepatocellular carcinoma (HCC). Current treatment strategies of HBV infection including the use of interferon (IFN)-α and nucleotide analogues such as lamivudine and adefovir have met with only partial success. Therefore, it is necessary to develop more effective antiviral therapies that can clear HBV infection with fewer side effects. RNA interference (RNAi), by which a small interfering RNA (siRNA) induces the gene silence at a post-transcriptional level, has the potential of treating HBV infection. The successful use of chemically synthesized siRNA, endogenous expression of small hairpin RNA (shRNA) or microRNA (miRNA) to silence the target gene make this technology towards a potentially rational therapeutics for HBV infection. However, several challenges including poor siRNA stability, inefficient cellular uptake, widespread biodistribution and non-specific effects need to be overcome. In this review, we discuss several strategies for improving the anti-HBV therapeutic efficacy of siRNAs, while avoiding their off-target effects and immunostimulation. There is an in-depth discussion on the (1) mechanisms of RNAi, (2) methods for siRNA/shRNA production, (3) barriers to RNAi-based therapies, and (4) delivery strategies of siRNA for treating HBV infection.
Collapse
Affiliation(s)
- Yong Chen
- Huai-An 4th People’s Hospital, Jiangsu, China
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| | - Guofeng Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 S Manassas Street, Memphis, Tennessee 38103 USA
| |
Collapse
|
6
|
Inhibition on Hepatitis B virus in vitro of recombinant MAP30 from bitter melon. Mol Biol Rep 2007; 36:381-8. [DOI: 10.1007/s11033-007-9191-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 11/26/2007] [Indexed: 12/12/2022]
|
7
|
Zoulim F, Lucifora J. Hepatitis B virus drug resistance: mechanism and clinical implications for the prevention of treatment failure. Future Virol 2006. [DOI: 10.2217/17460794.1.3.361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide. Recently, the research efforts to identify new inhibitors enabled the development of antiviral agents to treat patients chronically infected by HBV. In clinical practice, the use of nucleoside analogs, which inhibit viral polymerase activity, induces suppression of viral replication accompanied by an improvement in biochemical and histological conditions in most patients. However, many clinical studies revealed the emergence of drug-resistant mutants during extended treatment. This review focuses on the mechanism of HBV drug-resistant mutant selection and on the clinical implications of HBV drug resistance for the prevention of treatment failure.
Collapse
Affiliation(s)
- Fabien Zoulim
- INSERM Unit 271, 151 cours Albert Thomas, 69003 Lyon, France
| | - Julie Lucifora
- INSERM Unit 271, 151 cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
8
|
Yi J, Gong WD, Wang L, Ling R, Chen JH, Yun J. VP22 fusion protein-based dominant negative mutant can inhibit hepatitis B virus replication. World J Gastroenterol 2005; 11:6429-32. [PMID: 16425411 PMCID: PMC4355781 DOI: 10.3748/wjg.v11.i41.6429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effect of VP22 fusion protein-based dominant negative (DN) mutant on Hepatitis Bvrus (HBV) replication.
METHODS: Full-length or truncated fragment of VP22 was fused to C terminal of HBV core protein (HBc), and subcloned into pcDNA3.1 (-) vector, yielding eukaryotic expression plasmids of DN mutant. After transfection into HepG2.2.15 cells, the expression of DN mutant was identified by immunofluorescence staining. The inhibitory effect of DN mutant on HBV replication was indexed as the supernatant HBsAg concentration determined by RIA and HBV-DNA content by fluorescent quantification-PCR (FQ-PCR). Meanwhile, metabolism of HepG2.2.15 cells was evaluated by MTT colorimetry.
RESULTS: VP22-based DN mutants and its truncated fragment were expressed in HepG2.2.15 cells, and had no toxic effect on host cells. DN mutants could inhibit HBV replication and the transduction ability of mutant-bearing protein had a stronger inhibitory effect on HBV replication. DN mutants with full length of VP22 had the strongest inhibitory effect on HBV replication, reducing the HBsAg concentration by 81.94%, and the HBV-DNA content by 72.30%. MTT assay suggested that there were no significant differences in cell metabolic activity between the groups.
CONCLUSION: VP22-based DN mutant can inhibit HBV replication effectively.
Collapse
Affiliation(s)
- Jun Yi
- Department of general Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
9
|
Wedemeyer J, Malek NP, Manns MP, Bahr MJ. Molekulare Therapie in der Gastroenterologie und Hepatologie. Internist (Berl) 2005; 46:861-2, 864-8, 870-2. [PMID: 15997383 DOI: 10.1007/s00108-005-1462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
During recent years, molecular techniques have significantly impacted our understanding and therapeutic concepts in gastrointestinal and liver disease. In a number of diseases, diagnostic work-up includes molecular data that supplements the phenotypical evaluation. This includes monogenic diseases as well as the identification of genetic risk factors (e. g. NOD2/CARD15 mutation in Crohn's disease) and viral disease. Attempts to replace liver transplantation in hereditary liver disease by targeted molecular interventions (e. g. via viral vectors) are still experimental, but the associated techniques have improved considerably. The molecular identification of therapeutic targets was followed by the development of specifically tailored therapeutics. These agents are mainly used in the treatment of chronic inflammatory bowel disease and gastrointestinal tumors.
Collapse
Affiliation(s)
- J Wedemeyer
- Abteilung Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Germany
| | | | | | | |
Collapse
|
10
|
Abstract
Hepatitis C virus (HCV) is a human hepatotropic virus with an estimated worldwide prevalence of 170 million cases, including approximately 4 million cases in the US. It is a major cause of liver disease and is the most common indication for liver transplantation in the US. The majority of infected individuals are eligible for therapy. Since it is difficult to predict who will have progressive disease, those with significant inflammation or fibrosis on histologic examination of liver biopsy are generally offered treatment. The following chapter is an overview of the patent literature during 2000-mid-2002, and discusses the potential of various treatment modalities for HCV.
Collapse
Affiliation(s)
- F Fred Poordad
- Department of Hepatology and Liver Transplantation, Cedars-Sinai Medical Center, 8635 W. Third St, #590W, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
11
|
Wu HL, Huang LR, Huang CC, Lai HL, Liu CJ, Huang YT, Hsu YW, Lu CY, Chen DS, Chen PJ. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant. Gastroenterology 2005; 128:708-16. [PMID: 15765406 PMCID: PMC7094679 DOI: 10.1053/j.gastro.2004.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Present therapy for chronic hepatitis B attains control only in limited proportions. Small interfering RNA (siRNA) offers a new tool with potential therapeutic applications for hepatitis B virus (HBV). Given the importance of sequence identity in the effectiveness of siRNA and the heterogeneity of HBV sequences among different isolates, a short hairpin RNA (shRNA)-expressing plasmid, pSuper/HBVS1, was developed to target a region conserved among major HBV genotypes and assess its effectiveness control of HBV. METHODS HBV replication-competent plasmid was cotransfected with pSuper/HBVS1 to HuH-7 cells or to mice. The levels of viral proteins, RNA, and DNA were examined in transfected cells and animals. The effects of pSuper/HBVS1 on clinical isolates with genotypes B and C were also determined. RESULTS pSuper/HBVS1 significantly decreased levels of viral proteins, RNA, and DNA for HBV genotype A in cell culture and in mice. Comparable suppressive effects were observed on clinical isolates of genotypes B and C. A clone with a silent mutation in the target region was identified from a patient with genotype C. This mutant revealed diminished sensitivity to pSuper/HBVS1 and could be selected out in the presence of pSuper/HBVS1 in cell culture. CONCLUSIONS These findings indicated that shRNA could suppress HBV expression and replication for genotypes A, B, and C, promising an advance in treatment of HBV. However, the emergence of resistant mutants in HBV quasispecies should be considered.
Collapse
Affiliation(s)
- Hui-Lin Wu
- Hepatitis Research Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Rung Huang
- Graduate Institute of Microbiology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chuan-Chuan Huang
- Hepatitis Research Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiao-Lei Lai
- Hepatitis Research Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Jen Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tzu Huang
- Hepatitis Research Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yun-Wei Hsu
- Hepatitis Research Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Yi Lu
- Hepatitis Research Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ding-Shinn Chen
- Hepatitis Research Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Hepatitis Research Center, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Address requests for reprints to: Pei-Jer Chen, MD, PhD, 7, Chung-Shan S. Road, Taipei 100, Taiwan; fax: (886)2-23317624.
| |
Collapse
|
12
|
|
13
|
Torresi J, Locarnini SA. New therapeutic strategies in the treatment of hepatitis B virus infection. Expert Opin Investig Drugs 2005; 8:289-305. [PMID: 15992079 DOI: 10.1517/13543784.8.3.289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Principally, because of the association of the chronic carrier state with the development of cirrhotic liver disease and hepatocellular carcinoma, chronic hepatitis B infection is a public health problem of global significance. In the main, therapy for chronic hepatitis B is limited to the use of alpha interferon for a limited number of chronic hepatitis B virus (HBV) carriers who have chronic hepatitis with active viral replication. The development of antiviral nucleoside analogues for the herpes viruses and human immunodeficiency virus (HIV) has resulted in the identification of several compounds which also have activity against HBV. Unfortunately, these agents have not been associated with the clearance of hepatitis B infection, but rather only the suppression of active infection while the patient is receiving medication. In addition, the development of drug-resistance to these agents by the virus will most likely limit their long-term efficacy. Gene therapy has recently been applied to HBV both in vitro and in vivo. This has included the use of antisense oligodeoxynucleotides and RNA, ribozymes, dominant negative mutants and therapeutic HBV vaccines. These newer therapeutic modalities may hold promise as effective treatments for chronic hepatitis B, but to date, have been limited by the problem of delivery to the target cell population or infected organ in vivo. Combination nucleoside analogue therapy may also provide an important treatment modality for chronic hepatitis B, although this will require further investigation.
Collapse
Affiliation(s)
- J Torresi
- Victorian Infectious Diseases Reference Laboratory, 10 Wreckyn Street, North Melbourne, Victoria, 3051, Australia.
| | | |
Collapse
|
14
|
Wu J, Wu GY, Zern MA. The prospects of hepatic drug delivery and gene therapy. Expert Opin Investig Drugs 2005; 7:1795-817. [PMID: 15991930 DOI: 10.1517/13543784.7.11.1795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Liver targeted therapy is designed to deliver a substance preferentially to the organ in order to increase the accumulation, improve the therapeutic effect and reduce toxicity to other organs. The aim of selective targeting is to deliver a substance to a specific cell type in the liver. A variety of vehicles have been designed and further modified for selective targeting of therapeutics to the liver. The targeting properties and strategies of commonly used agents, such as liposomes, microspheres and recombinant chylomicrons, are discussed. Viral and non-viral vectors, such as cationic liposomes, reconstituted chylomicron remnants, adenoviruses, adeno-associated viruses, retroviruses, and SV-40, are currently being evaluated for the delivery of DNA to the liver. New developments in improving the targeting efficiency of the available vectors while avoiding their disadvantages have made their use in clinical trials of various genetic disorders possible. For viral hepatitis, antisense and ribozyme techniques are being employed with selective targeting approaches. A commonly employed current strategy for targeting hepatocellular carcinoma cells is to make the tumour cells convert non-toxic 'prodrugs' to toxic metabolites in situ, achieving a high concentration of the toxic product in the local milieu, while avoiding systemic toxicity. Although gene therapy itself is in its infancy, some encouraging results have been developed in studies of familial hypercholesterolaemia, haemophilia, alpha1-antitrypsin deficiency and Crigler-Najjar syndrome. The potential strengths as well as the problems with these studies are discussed.
Collapse
Affiliation(s)
- J Wu
- Department of Medicine, Division of Gastroenterology & Hepatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5083, USA.
| | | | | |
Collapse
|
15
|
Hilleman MR. Critical overview and outlook: pathogenesis, prevention, and treatment of hepatitis and hepatocarcinoma caused by hepatitis B virus. Vaccine 2004; 21:4626-49. [PMID: 14585670 DOI: 10.1016/s0264-410x(03)00529-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Viral hepatitis B is an enigmatic disease in which the host's own immune response to persistent viral infection may bring about host destruction through antiviral inflammatory responses which might otherwise present as a benign or inapparent disease. The simple solution to the hepatitis B problem is by immunoprophylaxis using the vaccine licensed in 1981, which prevents both infection and the late sequelae of liver cirrhosis and hepatocarcinoma. Immunotherapeutic vaccines against persistent hepatitis B infection have not been successful and new explorations are being directed to therapies which include antisense, ribozymes, gene silencing by RNA interference (RNAi) and aptamer approaches. Limited benefits from nucleoside therapy and limitations in opportunity for liver transplantation have left a large void of curative treatments. Findings with respect to e antigen tolerance provide a basis for exploration to determine whether passively administered e antigen might suppress cell-mediated immunity, creating a commensal state in which virus persists but without pathologic damage to the host. Therapy of hepatocarcinoma by conventional chemotherapy, radiation, or surgical resection and ablation gives little hope for restoration of health unless the tumor is detected very early. The large engagement of the world medical science community to develop therapeutic vaccines against cancer is now in major clinical trials to determine the hope and credibility for the immunization approach. Vaccines based on tumor peptides which are linked to heat shock proteins and directed to host dendritic cells give reason for excitement and may be the "best show in town". A new era of tumor therapy will need to be based on new discoveries in immune function which are required to pursue immunotherapy on a more rational basis. The many facets of current hepatitis B virology, pathogenesis, immunoprophylaxis, immunotherapeusis, chemotherapy, and tumor pathogenesis and therapy are discussed here, in depth, but in keeping with needed brevity.
Collapse
Affiliation(s)
- Maurice R Hilleman
- Merck Institute for Vaccinology, 770 Sumneytown Pike, West Point, PA 19486, USA.
| |
Collapse
|
16
|
Arad U, Axelrod J, Ben-nun-Shaul O, Oppenheim A, Galun E. Hepatitis B virus enhances transduction of human hepatocytes by SV40-based vectors. J Hepatol 2004; 40:520-6. [PMID: 15123369 DOI: 10.1016/j.jhep.2003.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 11/23/2003] [Accepted: 11/25/2003] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Chronic HBV infection, a world-wide epidemic, can lead to chronic hepatitis and eventually to cirrhosis and hepatocellular carcinoma. The liver poses obstacles for many available gene-transfer vectors. SV40-based vectors can transduce human hepatic and hematopoietic cells. We studied the effect of HBV on the transduction - efficiency of human hepatic cells by SV40 - based vectors. METHODS A SV40-vector carrying the luciferase gene, and wild-type SV40, were used to assess transduction efficiency of human HBV-positive and HBV-negative hepatic cells. Transduction efficiency was measured as luciferase activity or by T-antigen staining. To evaluate whether differences in transduction efficiency are due to cell recognition and/or nuclear transport, MHC-I receptors were measured by FACS analysis and SV40-DNA was extracted from the nuclei of transduced cells and quantified. RESULTS Two HBV-positive cell-lines, HepG2.2.2.15 and FLC4-A10II, were transduced significantly more efficiently than their parental HBV-negative cell-lines. Transient transfection of HuH-7 cells with the HBV genome also increased transduction efficiency. The level of MHC-I, the cellular receptor for SV40, was comparable in all the cell-lines studied. However, soon after infection with SV40, the nuclei of HepG2.2.2.15 contained >6-fold more SV40-DNA than HepG2. CONCLUSIONS HBV increases transduction by SV40-vectors. This is due to enhanced vector entry and/or transport into the nucleus. SV40-vectors appear to have a potential for gene therapy for the treatment of HBV infections.
Collapse
Affiliation(s)
- Uri Arad
- Department of Hematology and Goldyne Savad Gene Therapy Institute, The Hebrew University-Hadassah Medical School and Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Christian Trepo
- Department of Hepatology Hotel-Dieu Hospital, 1 Place de l'Hopital, 69288 Lyon Cedex 02, France.
| | | | | |
Collapse
|
18
|
Abstract
Current treatment modalities available for hepatitis B virus (HBV) or hepatitis C virus (HCV) infections are not efficient. The enormous disease burden caused by these two infections makes the development of novel therapies critical. For HCV, the development of an effective vaccine is urgent in view of the escalating number of infected individuals. Molecular therapies for HBV and HCV infection can be directed at reducing viral load by interfering with the life cycle of the viruses or at generating immune response against viral epitopes. The antiviral approaches consist of the delivery or expression of antisense RNAs, ribozymes or dominant negative proteins. Viral biology can be interrupted by attacking various potential targets within the two viruses. DNA-based vaccination strategies are being explored for both prevention and treatment of these diseases. Both non-viral and recombinant viral vectors are being developed for safe, effective and long-term gene transfer to the liver. Although no "ideal" vector is available at this time, the ingenuity of numerous investigators is leading to the improvement of the vector systems, promising successful application of gene therapy to the prevention and treatment of viral hepatitis in the foreseeable future.
Collapse
Affiliation(s)
- Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Potent inhibition of endogenous gene expression by RNA interference has been achieved by using sequence-specific posttranscriptional gene silencing through the action of small interfering RNA molecules (siRNA). In these reports, the natural function of genes could be deduced through the ensuing loss of function. Based on the extraordinary effectiveness in silencing endogenous genes, we wondered whether siRNA could be applied against viral replication in a hepatitis B virus (HBV) model using HBV-specific siRNA. To test this idea, HepG2 2.2.15, a human hepatoblastoma cell line that constitutively produces infectious HBV particles, was transfected with HBV-specific siRNAs and controls. HBV surface antigen (HBsAg) secretion into culture media was inhibited by 78%, 67%, and 42% with siRNA against the polyadenylation (PA), precore (PreC), and surface (S) regions, respectively, compared with controls as detected by enzyme-linked immunosorbent assay. After exposure to HBVPA siRNA, Northern blot analysis showed that HBV pregenomic RNA levels were decreased by 72%, and levels of HBV RNA containing the polyadenylation signal sequence were suppressed by 86%, as detected by RNase protection assay. Levels of HBV core-associated DNA, a replication intermediate, also decreased by 71%. Immunocytochemistry revealed that 30% to 40% of the cells transfected with HBVPA siRNA were completely negative for detectable HBsAg levels. Controls consisting of treatment with HBV-specific siRNA alone, lipofection reagent alone, or random double-stranded RNA (dsRNA) lipofection complex failed to decrease HBV surface antigen, HBV messenger RNA (mRNA), or core-associated HBV-DNA levels. In conclusion, siRNA inhibits hepatitis B viral replication in a cell culture system. Future studies are needed to explore the specific delivery of siRNA to liver cells in vivo and the applicability of this approach.
Collapse
Affiliation(s)
- Masayoshi Konishi
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1845, USA
| | | | | |
Collapse
|
20
|
Yu AS, Keeffe EB. Nucleoside analogues and other antivirals for treatment of hepatitis B in the peritransplant period. Clin Liver Dis 2003; 7:551-72. [PMID: 14509526 DOI: 10.1016/s1089-3261(03)00044-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic HBV infection is a common cause of advanced liver disease that is associated with substantial mortality. Furthermore, chronic hepatitis B was historically a controversial indication for liver transplantation because of a low post-transplant survival, with graft infection being the major contributor to adverse outcomes. The initial use of hepatitis B immune globulin as prophylaxis, followed later by combined therapy with lamivudine, markedly reduced viral recurrence and improved the survival of patients transplanted for acute or chronic hepatitis B with liver failure. Lamivudine alone can also be used for long-term prophylaxis against de novo HBV infection that can be transmitted by organs from donors positive for anti-HBc or anti-HBs. When used in patients with decompensated chronic hepatitis B with cirrhosis, lamivudine has been shown to improve clinical manifestations, prolong pretransplant survival, and defer, or even obviate, the need for transplantation. Despite prophylaxis, viral mutations with breakthrough reinfection may occur and lead to liver failure. The recently approved adefovir dipivoxil, which is active against lamivudine-resistant mutation, and other nucleoside analogs that are in various phases of development, offer hope as rescue therapy for viral recurrence. Other therapeutic alternatives in the future may include gene therapy and immune interventions.
Collapse
Affiliation(s)
- Andy S Yu
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
21
|
Hasselblatt P, Blum HE, Offensperger WB. New ways of interfering with HCV replication. Hepatology 2003; 37:1470-2. [PMID: 12790128 DOI: 10.1002/hep.510370633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
22
|
MESH Headings
- Adjuvants, Immunologic/therapeutic use
- Antiviral Agents/therapeutic use
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/physiopathology
- Carcinoma, Hepatocellular/prevention & control
- Hepacivirus/drug effects
- Hepacivirus/genetics
- Hepacivirus/physiology
- Hepatitis B virus/drug effects
- Hepatitis B virus/genetics
- Hepatitis B virus/physiology
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/physiopathology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/physiopathology
- Humans
- Liver Cirrhosis/etiology
- Liver Cirrhosis/physiopathology
- Liver Cirrhosis/prevention & control
- Liver Neoplasms/etiology
- Liver Neoplasms/physiopathology
- Liver Neoplasms/prevention & control
- Reverse Transcriptase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Robert Y M Chen
- Victorian Infectious Diseases Reference Laboratory and St Vincent's Hospital,Melbourne, Victoria, Australia
| | | | | |
Collapse
|
23
|
Blum HE, Moradpour D. Antiviral treatment of patients with HBV-related cirrhosis. J Gastroenterol Hepatol 2002; 17 Suppl 3:S306-10. [PMID: 12472955 DOI: 10.1046/j.1440-1746.17.s3.19.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Hubert E Blum
- Department of Medicine II, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
24
|
Sánchez-Quijano A, Leal M, Lissen E. [Chronic hepatitis C in patients coinfected by human immunodeficiency virus]. GASTROENTEROLOGIA Y HEPATOLOGIA 2002; 25:423-31. [PMID: 12069706 DOI: 10.1016/s0210-5705(02)70277-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A Sánchez-Quijano
- Grupo Estudio Hepatitis Vírica y SIDA, Hospital Universitario Virgen del Rocío, Sevilla, Spain.
| | | | | |
Collapse
|
25
|
|
26
|
Abstract
Hepatitis B virus (HBV) infection is a major global health concern and is the most common cause of chronic liver disease worldwide. The natural history and clinical outcomes of chronic HBV infection are determined by the viral replication cycle and the host immune responses. Treatment of chronic hepatitis B is directed at interrupting the natural history by suppressing HBV replication before development of any significant irreversible liver cell damage. Effective antiviral therapies should be followed by sustained suppression of HBV-DNA, normalization of transaminases levels and a stable stage of HBeAg seroconversion with persistence of circulating anti-HBeAg antibodies. Two major classes of antiviral therapeutic agents that have been approved for treatment of chronic hepatitis B are immunomodulating agents (i.e. interferon) and the nucleoside analogs (i.e. lamivudine). A 4-6 month course of interferon-alpha has resulted in improvement of survival in 20%-30% of patients with chronic hepatitis B who had elevated serum ALT levels without hepatic decompensation. Interferon-alpha therapy is associated with HBeAg seroconversion; normalization of ALT levels, reduced hepatic inflammation, and possibly reduced disease progression to cirrhosis and hepatocellular carcinoma. Interferon can also be used with caution in patients with early compensated cirrhosis. A 12-month course of lamivudine has been shown to be well tolerated and effective. Lamivudine can be used in decompensated cirrhosis and immunosuppressed patients and for prevention of recurrent HBV infection after liver transplantation. The response rates after 3 years of lamivudine therapy account for 40-65%. A major problem of antiviral treatment is the emergence of drug resistance conferred by mutations in the YMDD motif of HBV reverse transcriptase. The prevalence of YMDD mutations increases with longer durations of antiviral therapies and this has been detected in 20% of immunocompetent patients receiving lamivudine per year. Contentious issues remain when to stop the treatment if HBeAg seroconversion does not occur. Many new immunomodulatory therapies and antiviral agents are in various stages of clinical development and have shown some promise. Among newer HBV antivirals, adefovir dipivoxil, entecavir, emtricitabine, DAPD and clevudine appear to be at least as potent as lamivudine in suppressing HBV replication. In vitro studies have shown that YMDD mutations confer cross-resistance between lamivudine and emtricitabine. However, adefovir, dipivoxil, lobucavir, DAPD and possibly clevudine suppress replications of both YMDD mutants and wild types of HBV. Immunomodulatory approaches for treatment of chronic hepatitis B are conceptually attractive, but newer agents used to date (thymosin-alpha, interleukin-12, therapeutic vaccines) have not demonstrated sufficient efficacy for widespread use. Combinations of an immunomodulatory agent and nucleoside analog may improve the therapeutic efficacy and reduce the emergence of drug resistance. Nevertheless, combinations of interferon and lamivudine therapies do not confer such additional benefits. The next challenge for HBV treatment is to use antivirals in combination and/or in cyclical therapy to minimize the emergence of drug resistance and increase efficacy, particularly to achieve sustainable post-treatment suppression of HBV. Randomized prospective control trials of combined antiviral therapies given simultaneously or sequentially are needed to establish safe and effective combined regimens that can be recommended for future treatment strategies.
Collapse
Affiliation(s)
- Chutima Pramoolsinsup
- Division of Gastroenterology and Tropical Medicine, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
27
|
Delaney W, Bartholomeusz A, Locarnini SA. Evolving therapies for the treatment of chronic hepatitis B virus infection. Expert Opin Investig Drugs 2002; 11:169-87. [PMID: 11829711 DOI: 10.1517/13543784.11.2.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the availability of prophylactic vaccines lamivudine and IFN-alpha, chronic hepatitis B remains an enormous global health problem. Several promising nucleosides/nucleotides are undergoing clinical trials, including adefovir dipivoxil, the latter of which is active against lamivudine-resistant hepatitis B virus (HBV). In addition to nucleosides/nucleotides, it will be important to develop new agents with different modes of action. Novel small molecule inhibitors, as well as gene therapy approaches, have produced encouraging results in vitro and in animal models. Additional immunomodulatory therapies, including thymosin-alpha 1, IL-12 and several therapeutic vaccines, are also being explored. Combination therapy with multiple nucleosides/nucleotides and other agents will play an important role in the treatment of hepatitis and may help achieve complete viral suppression, host-mediated elimination of infected cells and lasting immunity.
Collapse
Affiliation(s)
- William Delaney
- Victorian Infectious Diseases Reference Laboratory, Carlton South, VIC 3053, Australia
| | | | | |
Collapse
|
28
|
Butz K, Denk C, Fitscher B, Crnkovic-Mertens I, Ullmann A, Schröder CH, Hoppe-Seyler F. Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene 2001; 20:6579-86. [PMID: 11641783 DOI: 10.1038/sj.onc.1204805] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Revised: 07/02/2001] [Accepted: 07/05/2001] [Indexed: 12/29/2022]
Abstract
A substantial proportion of the worldwide liver cancer incidence is associated with chronic hepatitis B virus (HBV) infection. The therapeutic management of HBV infections is still problematic and novel antiviral strategies are urgently required. Using the peptide aptamer screening system, we aimed to isolate new molecules, which can block viral replication by interfering with capsid formation. Eight peptide aptamers were isolated from a randomized expression library, which specifically bound to the HBV core protein under intracellular conditions. One of them, named C1-1, efficiently inhibited viral capsid formation and, consequently, HBV replication and virion production. Hence, C1-1 is a novel model compound for inhibiting HBV replication by blocking capsid formation and provides a new basis for the development of therapeutic molecules with specific antiviral potential against HBV infections.
Collapse
Affiliation(s)
- K Butz
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
François G, Kew M, Van Damme P, Mphahlele MJ, Meheus A. Mutant hepatitis B viruses: a matter of academic interest only or a problem with far-reaching implications? Vaccine 2001; 19:3799-815. [PMID: 11427251 DOI: 10.1016/s0264-410x(01)00108-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- G François
- WHO Collaborating Centre for Prevention and Control of Viral Hepatitis, Department of Epidemiology and Social Medicine, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium.
| | | | | | | | | |
Collapse
|
30
|
Chiou HC, Lucas MA, Coffin CC, Banaszczyk MG, Ill CR, Lollo CP. Gene therapy strategies for the treatment of chronic viral hepatitis. Expert Opin Biol Ther 2001; 1:629-39. [PMID: 11727499 DOI: 10.1517/14712598.1.4.629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic viral hepatitis is a major clinical problem, with over half a billion persons infected worldwide. Current therapies, principally treatment with recombinant IFN-alpha protein, have limited benefit. Recent studies suggest that gene-based expression of IFN-alpha is a possible therapeutic alternative that may improve the effectiveness of treatment. Gene delivery to the liver and consequent IFN-alpha expression therein, has the potential to concentrate the protein at the target organ and provide more continuous exposure to the therapeutic agent. Other potential gene and nucleic acid therapeutics for viral hepatitis are also being investigated. Key to the deployment of these future therapies is a suitable method of gene delivery. Although recombinant viral vector systems, such as adenovirus, are currently the most effective means of gene delivery to the liver, their use presents many concerns. These include immune and inflammatory reactions to the viral vector and possible adverse interactions between the recombinant virus and the pre-existing viral infection. Non-viral gene delivery systems would be a preferred treatment modality. The efficiency of current non-viral systems is not adequate for systemically administered liver gene therapy. However, recent use of membrane permeabilisation techniques has shown that high efficiency non-viral gene transfer agents are possible. The future coupling of these improved delivery systems with gene- or nucleic acid-based therapeutics currently in development holds out great promise for new generations of antihepatitis therapies.
Collapse
Affiliation(s)
- H C Chiou
- Immune Response Corporation, 5935 Darwin Court, Carlsbad, CA 92008, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The hepatitis C virus (HCV) is the leading cause of chronic liver disease worldwide. It is estimated that about 170 million people are chronically infected with HCV. Chronic hepatitis C is a major cause of cirrhosis and hepatocellular carcinoma and HCV-related end-stage liver disease is, in many countries, the first cause of liver transplantation. HCV infection is characterized by its propensity to chronicity. Because of its high genetic variability, HCV has the capability to escape the immune response of the host. HCV is not directly cytopathic and liver lesions are mainly related to immune-mediated mechanisms, which are characterized by a predominant type 1 helper cell response. Co-factors influencing the outcome of the disease including age, gender and alcohol consumption are poorly understood and other factors such as immunologic and genetic factors may play an important role. Recent studies have shown that the combination therapy with alpha interferon and ribavirin induces a sustained virological response in about 40% of patients with chronic hepatitis C. The sustained response rates are mainly dependent on the viral genotype (roughly 60% in genotype non-1 and 30% in genotype 1). Reliable diagnostic tools are now available and useful for detecting HCV infection, to quantify viral load and to determine the viral type. The assessment of the viral quasispecies and the characterization of viral sequences might be clinically relevant but standardized and simple techniques are needed. The lack of animal models and of in vitro culture systems hampers the understanding of the pathogenesis of chronic hepatitis C and the development of new antivirals. New therapeutic schedules with higher and/or daily doses of alpha interferon do not seem to improve the efficacy greatly. The conjugation with polyethylene glycol (PEG) improved the pharmacodynamics and the efficacy of alpha interferon. Emerging new therapies include inhibitors of viral enzymes (protease, helicase and polymerase), cytokines (IL-12 and IL-10), antisense oligonucleotides and ribozymes. The first candidate compounds should be available in the next few years. The development of an effective vaccine remains the most difficult and pressing challenge. Because of the high protein variability of HCV, protective vaccines could be extremely difficult to produce and therapeutic vaccines seem more realistic. Considerable progress has been made in the field of HCV since its discovery 10 years ago but a major effort needs to be made in the next decade to control HCV-related liver disease.
Collapse
Affiliation(s)
- N Boyer
- Service d'Hépatologie, Centre de Recherche Claude Bernard sur les Hépatites Virales and INSERM U-481, Hôpital Beaujon, Clichy, France
| | | |
Collapse
|
32
|
Abstract
Hepatitis C virus (HCV) infection may occur in infants and children, although it is much less common than it is in adults. The main transmission routes include mother-to-infant transmission, use of HCV infected blood products, unsterile needles or syringes and other invasive procedures. The natural course of HCV infection in children is variable: some (20-40%) develop an acute resolving infection and spontaneous regression occurs in approximately one-third of infants of HCV infected mothers before 2 years of age. Approximately 60-80% of HCV infected children develop a chronic infection with varying degrees of activity and fibrosis, mostly mild during childhood. However, the potential risks of liver cirrhosis and hepatoma during later life are obvious. Interferon is the main agent used to treat HCV infection in children. The response to interferon at the end of 4-12 months of therapy ranges from 25-90%. A sustained response was found in 36-56% of children 6-36 months after the end of therapy. The duration of therapy is recommended to be 12 months. At the end of 3 months, an evaluation of the response is indicated in the majority of children, except those with thalassemia, in whom evaluation of response should be conducted at the end of 6 months of therapy. The benefit of other therapies, such as combination therapy with interferon and ribavirin in children with hepatitis C is currently under investigation.
Collapse
Affiliation(s)
- M H Chang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei
| |
Collapse
|
33
|
Offensperger WB, Thoma C, Moradpour D, von Weizsäcker F, Offensperger S, Blum HE. Antisense oligonucleotide therapy of hepadnavirus infection. Methods Enzymol 1999; 314:524-36. [PMID: 10565037 DOI: 10.1016/s0076-6879(99)14127-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
34
|
Zoulim F. Therapy of chronic hepatitis B virus infection: inhibition of the viral polymerase and other antiviral strategies. Antiviral Res 1999; 44:1-30. [PMID: 10588330 DOI: 10.1016/s0166-3542(99)00056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B infection remains a major public health problem worldwide. The hepatitis B virus belongs to the family of hepadnaviruses that replicate their DNA genome via a reverse transcription pathway. The chronicity of infection in infected hepatocytes is maintained by the persistence of the viral covalently closed circular DNA. The main strategies to combat chronic HBV infection rely on the stimulation of the specific antiviral immune response and on the inhibition of viral replication. While the prolonged administration of reverse transcriptase inhibitors is most often associated with a control of viral replication rather than eradication, it may select for resistant mutants. The search for new viral targets is therefore mandatory to design combination strategies to prevent the emergence of resistant mutants and eventually clear viral infection.
Collapse
|
35
|
Protzer U, Nassal M, Chiang PW, Kirschfink M, Schaller H. Interferon gene transfer by a hepatitis B virus vector efficiently suppresses wild-type virus infection. Proc Natl Acad Sci U S A 1999; 96:10818-23. [PMID: 10485909 PMCID: PMC17966 DOI: 10.1073/pnas.96.19.10818] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/1999] [Accepted: 07/13/1999] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B viruses specifically target the liver, where they efficiently infect quiescent hepatocytes. Here we show that human and avian hepatitis B viruses can be converted into vectors for liver-directed gene transfer. These vectors allow hepatocyte-specific expression of a green fluorescent protein in vitro and in vivo. Moreover, when used to transduce a type I interferon gene, expression of interferon efficiently suppresses wild-type virus replication in the duck model of hepatitis B virus infection. These data suggest local cytokine production after hepatitis-B-virus-mediated gene transfer as a promising concept for the treatment of acquired liver diseases, including chronic hepatitis B.
Collapse
Affiliation(s)
- U Protzer
- Zentrum für Molekulare Biologie Heidelberg, University of Heidelberg, Im Neuenheimer Feld, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Rosen HR, Gretch DR. Hepatitis C virus: current understanding and prospects for future therapies. MOLECULAR MEDICINE TODAY 1999; 5:393-9. [PMID: 10462751 DOI: 10.1016/s1357-4310(99)01523-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) is the leading cause of chronic liver disease worldwide and the leading indication for liver transplantation. The hallmark of the disease is its propensity to evolve into chronicity, probably because viral heterogeneity allows the virus to escape immune-mediated neutralization. Treatment with interferon alpha (IFN-alpha) has been disappointing, but higher and more frequent doses, and combination therapies, including nucleoside analogs, might lead to improved suppression of HCV RNA levels. Molecular analysis of HCV before and during treatment has indicated that high viral RNA levels and the presence of HCV genotype 1 are independent predictors of poor treatment outcome. New antiviral agents in development include inhibitors of HCV replicative enzymes, such as protease, helicase and polymerase, as well as several genetic approaches, such as ribozymes and antisense oligonucleotides. The main hindrance to drug development for hepatitis C is the lack of a small animal model or a productive tissue culture system for assessing drug action.
Collapse
Affiliation(s)
- H R Rosen
- Division of Gastroenterology and Hepatology, Portland VA Medical Center, Portland, OR 97207, USA.
| | | |
Collapse
|
37
|
Abstract
Multiple agents have been proposed for the prevention and treatment of fibrosis. S-adenosylmethionine was reported to oppose CCl4-induced fibrosis in the rat, to attenuate the consequences of the ethanol-induced oxidative stress, and to decrease mortality in cirrhotics. Anti-inflammatory medications and agents that interfere with collagen synthesis, such as inhibitors of prolyl-4-hydroxylase and antioxidants, are also being tested. In nonhuman primates, polyenylphosphatidylcholine (PPC), extracted from soybeans, protected against alcohol-induced fibrosis and cirrhosis and prevented the associated hepatic phosphatidylcholine (PC) depletion by increasing 18:2 containing PC species; it also attenuated the transformation of stellate cells into collagen-producing transitional cells. Furthermore, it increased collagen breakdown, as shown in cultured stellate cells enriched with PPC or pure dilinoleoyl PC, the main PC species present in the extract. Because PPC and dilinoleoyl PC promote the breakdown of collagen, there is reasonable hope that this treatment may be useful for the management of fibrosis of alcoholic, as well as nonalcoholic, etiologies and that it may affect not only the progression of the disease, but may also reverse pre-existing fibrosis, as demonstrated for CCl4-induced cirrhosis in the rat and as presently tested in an ongoing clinical trial.
Collapse
Affiliation(s)
- C S Lieber
- Alcohol Research and Treatment Center, Bronx Veterans Affairs Medical Center and Mount Sinai School of Medicine, New York 10468, USA.
| |
Collapse
|
38
|
Shiratori Y, Kanai F, Ohashi M, Omata M. Strategy of liver-directed gene therapy: present status and future prospects. LIVER 1999; 19:265-74. [PMID: 10459623 DOI: 10.1111/j.1478-3231.1999.tb00048.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The liver is particularly amenable to gene therapy as it is the site of many metabolic diseases and malignancies. Thus, liver-directed gene therapy is being actively pursued and developed as a method of treatment for various liver diseases. Strategies of liver-directed gene therapy include drug delivery to the liver, compensation of the defective gene(s), anti-tumor activity, anti-viral therapy, and immunomodulation. The strategy chosen for liver-directed gene therapy depends on the genetic basis of the disease. Many aspects are key factors to the success of the chosen strategy: intervention of genes, efficient gene delivery system, stable transgene expression, transgene regulation, target cell transfection, and timing of transgene expression. Several tactics can be used to overcome problems in the above, and these include the use of a gene switch to exogenously regulate transgene expression, targeting at the transcriptional level, circumvention of the immune response (as in the use of adenovirus vector to achieve long-term correction of genetic diseases), and genetically engineered antibodies in gene transfer. At the present rate of research activity and development, gene therapies may soon be more efficient than current standard treatments for some liver diseases.
Collapse
Affiliation(s)
- Y Shiratori
- Department of Internal Medicine (Gastroenterology), Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Yamamoto M, Hayashi N, Takehara T, Ueda K, Mita E, Tatsumi T, Sasaki Y, Kasahara A, Hori M. Intracellular single-chain antibody against hepatitis B virus core protein inhibits the replication of hepatitis B virus in cultured cells. Hepatology 1999; 30:300-7. [PMID: 10385671 DOI: 10.1002/hep.510300105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatitis B virus (HBV) is one of the major causes of chronic liver diseases and hepatocellular carcinoma. In this study, we used a single chain antibody (sFv), which is a man-made antibody with a strong affinity of immunoglobulin, to inhibit HBV replication. Because HBV replication can only take place in the viral nucleocapsid made of HBV core protein (HBc), we generated anti-HBc sFv and examined whether intracellular anti-HBc sFv could inhibit viral replication in the human hepatoblastoma-derived cell line that produces HBV (HB611). With respect to HBV replication intermediates, both single-stranded and partially double-stranded DNA intermediates were markedly suppressed in the cells expressing anti-HBc sFv, although HBV RNA intermediates were not affected. This suggested that intracellular anti-HBc sFv inhibited HBV DNA replication by inhibiting reverse transcription from HBV pregenome RNA to single-stranded DNA. Because the sFv-HBc complex was detected in the cells expressing anti-HBc sFv by immunoprecipitation analysis but the quantity of intracellular HBc was not affected, the anti-HBc sFv was suggested to inhibit HBV DNA replication by interfering with the function of HBc. These results indicate that intracellular sFv against HBc might be effective as a novel active molecule for gene therapy of hepatitis B.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Internal Medicine and Therapeutics, Osaka University School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Soriano V, Rodríguez-Rosado R, García-Samaniego J. Management of chronic hepatitis C in HIV-infected patients. AIDS 1999; 13:539-46. [PMID: 10203378 DOI: 10.1097/00002030-199904010-00002] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Abstract
The impairment of transsulphuration during methionine degradation in hepatic failure can be counteracted by treatment with S-adenosylmethionine. Regarding the pathogenesis of hepatic encephalopathy, no convincing evidence exists for tryptophan, glutamine or glutamate being involved. Portal-systemic shunting-induced hyperammonaemia may reduce plasma branched-chain amino acids. The glucose effect on urea synthesis does not exist in cirrhosis.
Collapse
Affiliation(s)
- E Holm
- Department of Pathophysiology, Medical Clinic I Mannheim, University of Heidelberg, Germany.
| | | | | |
Collapse
|
42
|
Chemin I, Moradpour D, Wieland S, Offensperger WB, Walter E, Behr JP, Blum HE. Liver-directed gene transfer: a linear polyethlenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo. J Viral Hepat 1998; 5:369-75. [PMID: 9857346 DOI: 10.1046/j.1365-2893.1998.00126.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Efficient DNA delivery is a prerequisite for the successful implementation of molecular antiviral strategies against chronic viral hepatitis and gene therapy in general. The cationic polymer polyethylenimine (PEI) has recently been explored as a gene transfer vector in various cell types in vitro and in vivo. In this study, we evaluated a linear PEI derivative (lPEI) as a vector for gene and oligodeoxynucleotide transfer into hepatocytes in vitro and in vivo. A simple protocol was developed that allowed transfection of up to 50% of primary hepatocytes in vitro. In addition, fluorescent oligodeoxynucleotides were efficiently delivered to the liver in vivo after intravenous injection into Pekin ducks. Thus, lPEI mediates highly efficient gene and oligodeoxynucleotide transfer into primary hepatocytes and is potentially useful for DNA delivery in vivo.
Collapse
Affiliation(s)
- I Chemin
- Department of Medicine II, University Hospital Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Zoulim F, Trépo C. Drug therapy for chronic hepatitis B: antiviral efficacy and influence of hepatitis B virus polymerase mutations on the outcome of therapy. J Hepatol 1998; 29:151-68. [PMID: 9696505 DOI: 10.1016/s0168-8278(98)80191-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- F Zoulim
- Inserm Unit 271, Hôtel Dieu Hospital, Lyon, France.
| | | |
Collapse
|
44
|
Benz C, Angermüller S, Klöters-Plachky P, Sauer P, Stremmel W, Stiehl A. Effect of S-adenosylmethionine versus tauroursodeoxycholic acid on bile acid-induced apoptosis and cytolysis in rat hepatocytes. Eur J Clin Invest 1998; 28:577-83. [PMID: 9726039 DOI: 10.1046/j.1365-2362.1998.00315.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND S-adenosylmethionine (SAMe) increases survival in alcoholic liver cirrhosis and may have a beneficial effect in cholestatic liver disease. SAMe repletes glutathione stores and protects tissue from oxygen free radicals. The effect of SAMe on bile acid-induced apoptosis is unknown. In the present study the possible hepatoprotective effect of SAMe was evaluated and compared with that of tauroursodeoxycholic acid (TUDCA). METHODS Primary rat hepatocytes treated with glycochenodeoxycholic acid (GCDCA) were used as a model for cholestasis-induced hepatocellular damage, which served to study the effects of SAMe and TUDCA on bile acid-induced apoptosis and cytolysis. RESULTS SAMe reduced bile acid-induced apoptosis but did not prevent bile acid-induced cytolysis. Compared with SAMe, TUDCA was more efficient in reducing apoptosis due to toxic bile acids. The combination of SAMe and TUDCA had additive effects in reducing apoptosis. CONCLUSION The reduction in bile acid-induced apoptosis by SAMe may represent one of the factors responsible for its beneficial effects in the treatment of liver diseases.
Collapse
Affiliation(s)
- C Benz
- Department of Medicine, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Moradpour D, Kary P, Rice CM, Blum HE. Continuous human cell lines inducibly expressing hepatitis C virus structural and nonstructural proteins. Hepatology 1998; 28:192-201. [PMID: 9657112 DOI: 10.1002/hep.510280125] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigation of the hepatitis C virus (HCV) life cycle and the evaluation of novel antiviral strategies are limited by the lack of an efficient cell culture system. Therefore, continuous human cell lines inducibly expressing the entire HCV open reading frame were generated with use of a tetracycline-regulated gene expression system. HCV transgenes were found to be chromosomally integrated in a head-to-tail configuration. Northern blot analyses revealed a tightly regulated unspliced transcript of approximately 9 kilobases (kb). HCV structural and nonstructural proteins were faithfully processed, indicating that the cellular and viral proteolytic machineries and posttranslational modification pathways are fully functional in these cell lines. Steady state expression levels could be regulated over a broad range by the concentration of tetracycline present in the culture medium. Kinetic analyses revealed a half-life of less than 1 hour for the HCV RNA whereas a half-life of approximately 9.5, 12, 11, and 10 hours was found for core, NS3, NS4A, and NS5A proteins, respectively. Viral proteins were found to colocalize in the cytoplasm in a pattern characteristic of the endoplasmic reticulum. High-level expression of HCV proteins in the fully induced state was toxic to the cells. These cell lines provide a unique in vitro system to analyze structural and functional properties of HCV proteins, their interactions with cellular proteins and pathways, and the requirements for HCV morphogenesis. In addition, they should prove useful for the evaluation of novel antiviral strategies against hepatitis C in a well-defined and reproducible cellular context.
Collapse
Affiliation(s)
- D Moradpour
- Department of Medicine II, University of Freiburg, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
Chronic hepatitis C infection is the most common liver disease in the United States; it accounts for up to 12,000 deaths annually and is the most common referral for liver transplantation. Recognition of acute infection is desirable because treatment may prevent chronicity. Interferon remains the primary treatment, but new agents and combinations are being developed.
Collapse
Affiliation(s)
- R S Koff
- University of Massachusetts Medical School, Department of Medicine, Framingham, USA
| |
Collapse
|