1
|
Zhang X, Liu Y, Yang R, Guo Y, Yan M, Xiao Y, Dong Y, Zhang R, Qin Y, Bu Y, Zhang Y, Gao H. Phosphorylation of RasGRP1 by Shc3 prevents RasGRP1 degradation and contributes to Ras/c-Jun activation in hepatocellular carcinoma. Mol Cell Biochem 2024; 479:2307-2321. [PMID: 37646951 DOI: 10.1007/s11010-023-04839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Ras guanine nucleotide-releasing protein 1 (RasGRP1), a Ras activator, is upregulated in hepatocellular carcinoma (HCC) and other kinds of cancer and is associated with the poor prognosis of patients. However, little is known about the underlying regulatory mechanisms of RasGRP1 in the context of cancer. Here, we report that RasGRP1 physically interacted with the adaptor protein Src homolog and collagen homolog 3 (Shc3). Moreover, RasGRP1 C-terminus domain (aa 607-797) bound to the central collagen-homology 1 (CH1) domain of Shc3. Subsequently, Shc3 enhanced the RasGRP1 tyrosine phosphorylation rate and stability by inhibiting its ubiquitination. Notably, the phosphorylation-mimicking mutants of RasGRP1, RasGRP1 Y704A, and Y748A, rescued the phosphorylation and ubiquitination levels of RasGRP1 in HCC cells. Further investigation showed that the RasGRP1 and Shc3 interaction induced activation of Ras and c-Jun, resulting in cell proliferation in vitro. Moreover, the regulation of Shc3/RasGRP1/Ras/c-Jun signal transduction was confirmed in vivo using the subcutaneous xenograft mouse model. Thus, we propose that continuous Shc3 overexpression may be a possible mechanism for maintaining RasGRP1 stability and that persistent activation of Ras/c-Jun signaling through the interaction of RasGRP1 and Shc3 is a key event increasing cell proliferation. Our findings suggest that the interaction of RasGRP1 and Shc3 plays an important role in HCC tumorigenesis and suggests the potential clinical usage of novel biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yun Liu
- Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Rui Yang
- Department of Critical Care Medicine, Tianjin First Central Hospital, Tianjin Institute of Emergency Medicine, Tianjin, 300192, China
| | - Yuanyuan Guo
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Meiling Yan
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ying Xiao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yunzhuo Dong
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Ruixia Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yinpeng Qin
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yishan Bu
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Yi Zhang
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Huier Gao
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China.
| |
Collapse
|
2
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
You X, Dou L, Tan M, Xiong X, Sun Y. SHOC2 plays an oncogenic or tumor-suppressive role by differentially targeting the MAPK and mTORC1 signals in liver cancer. LIFE MEDICINE 2024; 3:lnae023. [PMID: 39871893 PMCID: PMC11749279 DOI: 10.1093/lifemedi/lnae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/21/2024] [Indexed: 01/29/2025]
Abstract
SHOC2 is a scaffold protein that activates the RAS-MAPK signal. Our recent study showed that SHOC2 is also a negative regulator of the mTORC1 signal in lung cancer cells. Whether and how SHOC2 differentially regulates the RAS-MAPK vs. the mTORC1 signals in liver cancer remains unknown. Here, we showed that S HOC2 is overexpressed in human liver cancer tissues, and SHOC2 overexpression promotes the growth and survival of liver cancer cells via activation of the RAS-MAPK signal, although the mTORC1 signal is inactivated. SHOC2 knockdown suppresses the growth of liver cancer cells mainly through inactivating the RAS-MAPK signal. Thus, in the cell culture models, SHOC2 regulation of growth is dependent of the RAS-MAPK but not the mTORC1 signal. Interestingly, in a mouse liver cancer model induced by diethylnitrosamine (DEN)-high-fat diet (HFD), hepatocyte-specific Shoc2 deletion inactivates the Ras-Mapk signal but has no effect in liver tumorigenesis. However, in the Pten loss-induced liver cancer model, Shoc2 deletion further activates mTorc1 without affecting the Ras-Mapk signal and promotes liver tumorigenesis. Collectively, it appears that SHOC2 could act as either an oncogene (via activating the MAPK signal) or a tumor suppressor (via inactivating the mTORC1 signal) in the manner dependent of the dominancy of the MAPK vs. mTORC1 signals.
Collapse
Affiliation(s)
- Xiahong You
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Longyu Dou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Mingjia Tan
- Department of Radiation Oncology, University of Michigan, Ann Arbor MI 48109, United States
| | - Xiufang Xiong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou 310029, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
5
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
6
|
Mao B, Liu S, Zhu S, Wu F, Yuan W, Yan Y, Wang B. The janus face of serotonin: Regenerative promoter and chronic liver disease aggravator. Heliyon 2024; 10:e30703. [PMID: 38756588 PMCID: PMC11096747 DOI: 10.1016/j.heliyon.2024.e30703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The progression of liver diseases, from viral hepatitis and fatty liver disease to cirrhosis and hepatocellular carcinoma (HCC), is the most representative series of pathological events in liver diseases. While serotonin (5-HT) primarily regulates brain functions such as psychology, mood, and appetite in the central nervous system (CNS), peripheral 5-HT plays a crucial role in regulating tumor development, glucose and lipid metabolism, immune function and inflammatory response related to liver diseases. These peripheral physiological processes involving 5-HT are the key mechanisms driving the development of these liver diseases. This study presents an overview of the existing literature, focusing on the role of 5-HT in HCC, cirrhosis, fatty liver disease, viral hepatitis, and liver injury. In summary, while 5-HT promotes liver regeneration, it can also contribute to the progression of chronic liver disease. These findings indicate the potential for the development and use of 5-HT-related drugs for the treatment of liver diseases, including HCC and cirrhosis.
Collapse
Affiliation(s)
- Benliang Mao
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shanfei Zhu
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Fan Wu
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Wei Yuan
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Yong Yan
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
- College of Clinical Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
8
|
Ning J, Chen L, Xiao G, Zeng Y, Shi W, Tanzhu G, Zhou R. The protein arginine methyltransferase family (PRMTs) regulates metastases in various tumors: From experimental study to clinical application. Biomed Pharmacother 2023; 167:115456. [PMID: 37696085 DOI: 10.1016/j.biopha.2023.115456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Tumor metastasis is the leading cause of mortality among advanced cancer patients. Understanding its mechanisms and treatment strategies is vital for clinical application. Arginine methylation, a post-translational modification catalyzed by protein arginine methyltransferases (PRMTs), is implicated in diverse physiological processes and disease progressions. Previous research has demonstrated PRMTs' involvement in tumor occurrence, progression, and metastasis. This review offers a comprehensive summary of the relationship between PRMTs, prognosis, and metastasis in various cancers. Our focus centers on elucidating the molecular mechanisms through which PRMTs regulate tumor metastasis. We also discuss relevant clinical trials and effective PRMT inhibitors, including chemical compounds, long non-coding RNA (lncRNA), micro-RNA (miRNA), and nanomaterials, for treating tumor metastasis. While a few studies present conflicting results, the overall trajectory suggests that inhibiting arginine methylation exhibits promise in curtailing tumor metastasis across various cancers. Nonetheless, the underlying mechanisms and molecular interactions are diverse. The development of inhibitors targeting arginine methylation, along with the progression of clinical trials, holds substantial potential in the field of tumor metastasis, meriting sustained attention.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha 410008, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| |
Collapse
|
9
|
Zhao B, Qiao H, Zhao Y, Gao Z, Wang W, Cui Y, Li J, Guo Z, Chuai X, Chiu S. HBV precore G1896A mutation promotes growth of hepatocellular carcinoma cells by activating ERK/MAPK pathway. Virol Sin 2023; 38:680-689. [PMID: 37331658 PMCID: PMC10590694 DOI: 10.1016/j.virs.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the leading causes of hepatocellular carcinoma (HCC). The HBV genome is prone to mutate and several variants are closely related to the malignant transformation of liver disease. G1896A mutation (G to A mutation at nucleotide 1896) is one of the most frequently observed mutations in the precore region of HBV, which prevents HBeAg expression and is strongly associated with HCC. However, the mechanisms by which this mutation causes HCC are unclear. Here, we explored the function and molecular mechanisms of the G1896A mutation during HBV-associated HCC. G1896A mutation remarkably enhanced the HBV replication in vitro. Moreover, it increased tumor formation and inhibited apoptosis of hepatoma cells, and decreased the sensitivity of HCC to sorafenib. Mechanistically, the G1896A mutation could activate ERK/MAPK pathway to enhanced sorafenib resistance in HCC cells and augmented cell survival and growth. Collectively, our study demonstrates for the first time that the G1896A mutation has a dual regulatory role in exacerbating HCC severity and sheds some light on the treatment of G1896A mutation-associated HCC patients.
Collapse
Affiliation(s)
- Baoxin Zhao
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hongxiu Qiao
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Zhao
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhiyun Gao
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Weijie Wang
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Cui
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jian Li
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhanjun Guo
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Xia Chuai
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, 050017, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan, 430207, China.
| | - Sandra Chiu
- Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
10
|
Bayat Z, Tarokhian A, Taherkhani A. Cinnamic acids as promising bioactive compounds for cancer therapy by targeting MAPK3: a computational simulation study. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:621-630. [PMID: 37223879 DOI: 10.1515/jcim-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Mitogen-activated protein kinase-3 (MAPK3) is the upstream regulator in the MAPK cascade and is involved in many critical signaling pathways and biological processes, such as cell proliferation, survival, and apoptosis. MAPK3 overexpression is linked to onset, development, metastasis, and drug resistance in several human cancers. Thus, identifying novel and effective MAPK3 inhibitors is highly demanded. Herein, we aimed to discover organic compounds from cinnamic acid derivatives as potential MAPK3 inhibitors. METHODS The binding affinity of 20 cinnamic acids to the MAPK3 active site was tested using the AutoDock 4.0 software. Top-ranked cinnamic acids were ranked based on the ΔG binding values between the ligands and the receptor's active site. Interaction modes between top-ranked cinnamic acids and MAPK3 catalytic site were indicated using the Discovery Studio Visualizer tool. Molecular dynamics (MD) simulation was carried out to study the stability of the docked pose for the most potent MAPK3 inhibitor in this study. RESULTS Cynarin, chlorogenic acid, rosmarinic acid, caffeic acid 3-glucoside, and cinnamyl caffeate exhibited a salient binding affinity to the MAPK3 active site with the criteria of ΔG binding <-10 k cal/mol. Further, the inhibition constant value for cynarin was calculated at the picomolar concentration. The docked pose of cynarin within the MAPK3 catalytic domain was stable in 100 ns simulation. CONCLUSIONS Cynarin, chlorogenic acid, rosmarinic acid, caffeic acid 3-glucoside, and cinnamyl caffeate might be helpful in cancer therapy by inhibiting MAPK3.
Collapse
Affiliation(s)
- Zeynab Bayat
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aida Tarokhian
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Domènech Omella J, Cortesi EE, Verbinnen I, Remmerie M, Wu H, Cubero FJ, Roskams T, Janssens V. A Novel Mouse Model of Combined Hepatocellular-Cholangiocarcinoma Induced by Diethylnitrosamine and Loss of Ppp2r5d. Cancers (Basel) 2023; 15:4193. [PMID: 37627221 PMCID: PMC10453342 DOI: 10.3390/cancers15164193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Primary liver cancer (PLC) can be classified in hepatocellular (HCC), cholangiocarcinoma (CCA), and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). The molecular mechanisms involved in PLC development and phenotype decision are still not well understood. Complete deletion of Ppp2r5d, encoding the B56δ subunit of Protein Phosphatase 2A (PP2A), results in spontaneous HCC development in mice via a c-MYC-dependent mechanism. In the present study, we aimed to examine the role of Ppp2r5d in an independent mouse model of diethylnitrosamine (DEN)-induced hepatocarcinogenesis. Ppp2r5d deletion (heterozygous and homozygous) accelerated HCC development, corroborating its tumor-suppressive function in liver and suggesting Ppp2r5d may be haploinsufficient. Ppp2r5d-deficient HCCs stained positively for c-MYC, consistent with increased AKT activation in pre-malignant and tumor tissues of Ppp2r5d-deficient mice. We also found increased YAP activation in Ppp2r5d-deficient tumors. Remarkably, in older mice, Ppp2r5d deletion resulted in cHCC-CCA development in this model, with the CCA component showing increased expression of progenitor markers (SOX9 and EpCAM). Finally, we observed an upregulation of Ppp2r5d in tumors from wildtype and heterozygous mice, revealing a tumor-specific control mechanism of Ppp2r5d expression, and suggestive of the involvement of Ppp2r5d in a negative feedback regulation restricting tumor growth. Our study highlights the tumor-suppressive role of mouse PP2A-B56δ in both HCC and cHCC-CCA, which may have important implications for human PLC development and targeted treatment.
Collapse
Affiliation(s)
- Judit Domènech Omella
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Emanuela E. Cortesi
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
| | - Iris Verbinnen
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
| | - Hanghang Wu
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
| | - Francisco J. Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (H.W.); (F.J.C.)
- Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Tania Roskams
- Translational Cell & Tissue Research, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (E.E.C.); (T.R.)
- Department of Pathology, University Hospitals Leuven (UZ Leuven), 3000 Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (J.D.O.); (I.V.); (M.R.)
- KU Leuven Cancer Institute (LKI), 3000 Leuven, Belgium
| |
Collapse
|
12
|
Gao T, Yang X, Fujisawa M, Ohara T, Wang T, Tomonobu N, Sakaguchi M, Yoshimura T, Matsukawa A. SPRED2: A Novel Regulator of Epithelial-Mesenchymal Transition and Stemness in Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24054996. [PMID: 36902429 PMCID: PMC10003366 DOI: 10.3390/ijms24054996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The downregulation of SPRED2, a negative regulator of the ERK1/2 pathway, was previously detected in human cancers; however, the biological consequence remains unknown. Here, we investigated the effects of SPRED2 loss on hepatocellular carcinoma (HCC) cell function. Human HCC cell lines, expressing various levels of SPRED2 and SPRED2 knockdown, increased ERK1/2 activation. SPRED2-knockout (KO)-HepG2 cells displayed an elongated spindle shape with increased cell migration/invasion and cadherin switching, with features of epithelial-mesenchymal transition (EMT). SPRED2-KO cells demonstrated a higher ability to form spheres and colonies, expressed higher levels of stemness markers and were more resistant to cisplatin. Interestingly, SPRED2-KO cells also expressed higher levels of the stem cell surface markers CD44 and CD90. When CD44+CD90+ and CD44-CD90- populations from WT cells were analyzed, a lower level of SPRED2 and higher levels of stem cell markers were detected in CD44+CD90+ cells. Further, endogenous SPRED2 expression decreased when WT cells were cultured in 3D, but was restored in 2D culture. Finally, the levels of SPRED2 in clinical HCC tissues were significantly lower than those in adjacent non-HCC tissues and were negatively associated with progression-free survival. Thus, the downregulation of SPRED2 in HCC promotes EMT and stemness through the activation of the ERK1/2 pathway, and leads to more malignant phenotypes.
Collapse
Affiliation(s)
- Tong Gao
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Xu Yang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tianyi Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7141
| |
Collapse
|
13
|
Zhang W, Zhang Y, Wan Y, Liu Q, Zhu X. A bile acid-related prognostic signature in hepatocellular carcinoma. Sci Rep 2022; 12:22355. [PMID: 36572736 PMCID: PMC9792463 DOI: 10.1038/s41598-022-26795-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Due to the high mortality of hepatocellular carcinoma (HCC), its prognostic models are urgently needed. Bile acid (BA) metabolic disturbance participates in hepatocarcinogenesis. We aim to develop a BA-related gene signature for HCC patients. Research data of HCC were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) online databases. After least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a BA-related prognostic signature in TCGA cohort based on differentially expressed prognostic BA-related genes. Then, the predictive performance of the signature was evaluated and verified in TCGA and ICGC cohort respectively. We obtained the risk score of each HCC patient according to the model. The differences of immune status and drug sensitivity were compared in patients that were stratified based on risk score. The protein and mRNA levels of the modeling genes were validated in the Human Protein Atlas database and our cell lines, respectively. In TCGA cohort, we selected 4 BA-related genes to construct the first BA-related prognostic signature. The risk signature exhibited good discrimination and predictive ability, which was verified in ICGC cohort. Patients were classified into high- and low-risk groups according to their median scores. The occurrence of death increased with increasing risk score. Low-risk patients owned favorable overall survival. High-risk patients possessed high immune checkpoint expression and low IC50 values for sorafenib, cisplatin and doxorubicin. Real-time quantitative PCR and immunohistochemical results validate expression of modeling genes in the signature. We constructed the first BA-related gene signature, which might help to identify HCC patients with poor prognosis and guide individualized treatment.
Collapse
Affiliation(s)
- Wang Zhang
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Zhang
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yipeng Wan
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Liu
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Zhu
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Makino Y, Hikita H, Kato S, Sugiyama M, Shigekawa M, Sakamoto T, Sasaki Y, Murai K, Sakane S, Kodama T, Sakamori R, Kobayashi S, Eguchi H, Takemura N, Kokudo N, Yokoi H, Mukoyama M, Tatsumi T, Takehara T. STAT3 is Activated by CTGF-mediated Tumor-stroma Cross Talk to Promote HCC Progression. Cell Mol Gastroenterol Hepatol 2022; 15:99-119. [PMID: 36210625 PMCID: PMC9672888 DOI: 10.1016/j.jcmgh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Signal transducer and activator of transcription 3 (STAT3) is known as a pro-oncogenic transcription factor. Regarding liver carcinogenesis, however, it remains controversial whether activated STAT3 is pro- or anti-tumorigenic. This study aimed to clarify the significance and mechanism of STAT3 activation in hepatocellular carcinoma (HCC). METHODS Hepatocyte-specific Kras-mutant mice (Alb-Cre KrasLSL-G12D/+; KrasG12D mice) were used as a liver cancer model. Cell lines of hepatoma and stromal cells including stellate cells, macrophages, T cells, and endothelial cells were used for culture. Surgically resected 12 HCCs were used for human analysis. RESULTS Tumors in KrasG12D mice showed up-regulation of phosphorylated STAT3 (p-STAT3), together with interleukin (IL)-6 family cytokines, STAT3 target genes, and connective tissue growth factor (CTGF). Hepatocyte-specific STAT3 knockout (Alb-Cre KrasLSL-G12D/+ STAT3fl/fl) downregulated p-STAT3 and CTGF and suppressed tumor progression. In coculture with stromal cells, proliferation, and expression of p-STAT3 and CTGF, were enhanced in hepatoma cells via gp130/STAT3 signaling. Meanwhile, hepatoma cells produced CTGF to stimulate integrin/nuclear factor kappa B signaling and up-regulate IL-6 family cytokines from stromal cells, which could in turn activate gp130/STAT3 signaling in hepatoma cells. In KrasG12D mice, hepatocyte-specific CTGF knockout (Alb-Cre KrasLSL-G12D/+ CTGFfl/fl) downregulated p-STAT3, CTGF, and IL-6 family cytokines, and suppressed tumor progression. In human HCC, single cell RNA sequence showed CTGF and IL-6 family cytokine expression in tumor cells and stromal cells, respectively. CTGF expression was positively correlated with that of IL-6 family cytokines and STAT3 target genes in The Cancer Genome Atlas. CONCLUSIONS STAT3 is activated by CTGF-mediated tumor-stroma crosstalk to promote HCC progression. STAT3-CTGF positive feedback loop could be a therapeutic target.
Collapse
Affiliation(s)
- Yuki Makino
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiya Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Sakamoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichi Sasaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuyuki Takemura
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
15
|
Makino Y, Hikita H, Fukumoto K, Sung JH, Sakano Y, Murai K, Sakane S, Kodama T, Sakamori R, Kondo J, Kobayashi S, Tatsumi T, Takehara T. Constitutive Activation of the Tumor Suppressor p53 in Hepatocytes Paradoxically Promotes Non-Cell Autonomous Liver Carcinogenesis. Cancer Res 2022; 82:2860-2873. [PMID: 35696550 PMCID: PMC9379366 DOI: 10.1158/0008-5472.can-21-4390] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
In chronic liver diseases (CLD), p53 is constitutively activated in hepatocytes due to various etiologies as viral infection, ethanol exposure, or lipid accumulation. This study was aimed to clarify the significance of p53 activation on the pathophysiology of CLDs. In Kras-mutant liver cancer model, murine double minute 2 (Mdm2), a negative regulator of p53, was specifically deleted in hepatocytes [Alb-Cre KrasLSL-G12D Mdm2fl/fl (LiKM; KrasG12D mutation and Mdm2 loss in the liver)]. Accumulation of p53 and upregulation of its downstream genes were observed in hepatocytes in LiKM mice. LiKM mice showed liver inflammation accompanied by hepatocyte apoptosis, senescence-associated secretory phenotype (SASP), and the emergence of hepatic progenitor cells (HPC). More importantly, Mdm2 deletion promoted non-cell autonomous development of liver tumors. Organoids generated from HPCs harbored tumor-formation ability when subcutaneously inoculated into NOD/Shi-scid/IL2Rγ (null) mice. Treatment with acyclic retinoid suppressed growth of HPCs in vitro and inhibited tumorigenesis in LiKM mice. All of the phenotypes in LiKM mice, including accelerated liver tumorigenesis, were negated by further deletion of p53 in hepatocytes (Alb-Cre KrasLSL-G12D Mdm2fl/fl p53fl/fl). Activation of hepatic p53 was noted in liver biopsy samples obtained from 182 patients with CLD, in comparison with 23 normal liver samples without background liver diseases. In patients with CLD, activity of hepatic p53 was positively correlated with the expression of apoptosis, SASP, HPC-associated genes and tumor incidence in the liver after biopsy. In conclusion, activation of hepatocyte p53 creates a microenvironment prone to tumor formation from HPCs. Optimization of p53 activity in hepatocytes is important to prevent patients with CLD from hepatocarcinogenesis. SIGNIFICANCE This study reveals that activation of p53 in hepatocytes promotes liver carcinogenesis derived from HPCs, which elucidates a paradoxical aspect of a tumor suppressor p53 and novel mechanism of liver carcinogenesis. See related commentary by Barton and Lozano, p. 2824.
Collapse
Affiliation(s)
- Yuki Makino
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji Fukumoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ji Hyun Sung
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Sakano
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jumpei Kondo
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan.,Corresponding Author: Tetsuo Takehara, Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Phone: 816-6879-3621; Fax: 816-6879-3629; E-mail:
| |
Collapse
|
16
|
Gao Z, Fan T, Chen L, Yang M, Wai Wong VK, Chen D, Liu Z, Zhou Y, Wu W, Qiu Z, Zhang C, Li Y, Jiang Y. Design, synthesis and antitumor evaluation of novel 1H-indole-2-carboxylic acid derivatives targeting 14-3-3η protein. Eur J Med Chem 2022; 238:114402. [DOI: 10.1016/j.ejmech.2022.114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022]
|
17
|
Vafeiadou V, Hany D, Picard D. Hyperactivation of MAPK Induces Tamoxifen Resistance in SPRED2-Deficient ERα-Positive Breast Cancer. Cancers (Basel) 2022; 14:954. [PMID: 35205702 PMCID: PMC8870665 DOI: 10.3390/cancers14040954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the number one cause of cancer-related mortality in women worldwide. Most breast tumors depend on the expression of the estrogen receptor α (ERα) for their growth. For this reason, targeting ERα with antagonists such as tamoxifen is the therapy of choice for most patients. Although initially responsive to tamoxifen, about 40% of the patients will develop resistance and ultimately a recurrence of the disease. Thus, finding new biomarkers and therapeutic approaches to treatment-resistant tumors is of high significance. SPRED2, an inhibitor of the MAPK signal transduction pathway, has been found to be downregulated in various cancers. In the present study, we found that SPRED2 is downregulated in a large proportion of breast-cancer patients. Moreover, the knockdown of SPRED2 significantly increases cell proliferation and leads to tamoxifen resistance of breast-cancer cells that are initially tamoxifen-sensitive. We found that resistance occurs through increased activation of the MAPKs ERK1/ERK2, which enhances the transcriptional activity of ERα. Treatment of SPRED2-deficient breast cancer cells with a combination of the ERK 1/2 inhibitor ulixertinib and 4-hydroxytamoxifen (4-OHT) can inhibit cell growth and proliferation and overcome the induced tamoxifen resistance. Taken together, these results indicate that SPRED2 may also be a tumor suppressor for breast cancer and that it is a key regulator of cellular sensitivity to 4-OHT.
Collapse
Affiliation(s)
- Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| |
Collapse
|
18
|
Gadallah M, Asaad NY, Shabaan M, Elkholy SS, Samara MY, Taie D. Role of SET oncoprotein in hepatocellular carcinoma: An immunohistochemical study. J Immunoassay Immunochem 2022; 43:420-434. [PMID: 35156535 DOI: 10.1080/15321819.2022.2034646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary cancer of the liver and it is the fourth most common cause of cancer related death worldwide. In Egypt, liver cancer constitutes the most common cause of mortality-related cancer. This study aimed to evaluate the immunohistochemical expression of SET oncoprotein in HCC tissues in comparison with its expression in non tumorous liver tissues and to correlate its expression with clinicopathological parameters. This study investigated 100 cases of HCC (including tumorous and non tumorous tissues). One hundred percent of tumorous and non-tumorous tissues were positive for SET expression. The mean and median values of H-score for SET expression were higher in tumorous than non tumorous tissues (P = .03). Higher SET expression was significantly correlated with larger tumor size (P = .012), positive lymphovascular invasion (P = .028), and shorter overall survival (P < .001). SET expression in tumor tissues is the most independent factor to affect the overall survival of HCC patients. SET plays a role in hepatocarcinogenesis proved by the increase of SET expression from non-tumorous to tumorous tissues. Also, SET can be used as a prognostic indicator and a novel target therapy in HCC patients.
Collapse
Affiliation(s)
- Marwa Gadallah
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Nancy Yousef Asaad
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohammed Shabaan
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Saad Elkholy
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Manar Yousef Samara
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Doha Taie
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| |
Collapse
|
19
|
Gouda G, Gupta MK, Donde R, Behera L, Vadde R. Tumor microenvironment in heptocellular carcinoma. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA 2022:109-124. [DOI: 10.1016/b978-0-323-98806-3.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
20
|
Lefeuvre C, Le Guillou-Guillemette H, Ducancelle A. A Pleiotropic Role of the Hepatitis B Virus Core Protein in Hepatocarcinogenesis. Int J Mol Sci 2021; 22:ijms222413651. [PMID: 34948447 PMCID: PMC8707456 DOI: 10.3390/ijms222413651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the most common factors associated with hepatocellular carcinoma (HCC), which is the sixth most prevalent cancer among all cancers worldwide. However, the pathogenesis of HBV-mediated hepatocarcinogenesis is unclear. Evidence currently available suggests that the HBV core protein (HBc) plays a potential role in the development of HCC, such as the HBV X protein. The core protein, which is the structural component of the viral nucleocapsid, contributes to almost every stage of the HBV life cycle and occupies diverse roles in HBV replication and pathogenesis. Recent studies have shown that HBc was able to disrupt various pathways involved in liver carcinogenesis: the signaling pathways implicated in migration and proliferation of hepatoma cells, apoptosis pathways, and cell metabolic pathways inducing the development of HCC; and the immune system, through the expression and production of proinflammatory cytokines. In addition, HBc can modulate normal functions of hepatocytes through disrupting human host gene expression by binding to promoter regions. This HBV protein also promotes HCC metastasis through epigenetic alterations, such as micro-RNA. This review focuses on the molecular pathogenesis of the HBc protein in HBV-induced HCC.
Collapse
Affiliation(s)
- Caroline Lefeuvre
- Laboratoire de Virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France; (H.L.G.-G.); (A.D.)
- HIFIH Laboratory UPRES EA3859, SFR ICAT 4208, Angers University, F-49000 Angers, France
- Correspondence:
| | - Hélène Le Guillou-Guillemette
- Laboratoire de Virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France; (H.L.G.-G.); (A.D.)
- HIFIH Laboratory UPRES EA3859, SFR ICAT 4208, Angers University, F-49000 Angers, France
| | - Alexandra Ducancelle
- Laboratoire de Virologie, Département de Biologie des Agents Infectieux, CHU Angers, F-49000 Angers, France; (H.L.G.-G.); (A.D.)
- HIFIH Laboratory UPRES EA3859, SFR ICAT 4208, Angers University, F-49000 Angers, France
| |
Collapse
|
21
|
Xiaoqian W, Bing Z, Yangwei L, Yafei Z, Tingting Z, Yi W, Qingjun L, Suxia L, Ling Z, Bo W, Peng Z. DEAD-box Helicase 27 Promotes Hepatocellular Carcinoma Progression Through ERK Signaling. Technol Cancer Res Treat 2021; 20:15330338211055953. [PMID: 34855554 PMCID: PMC8649435 DOI: 10.1177/15330338211055953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction: DEAD-box helicase 27 (DDX27) belongs to DEAD-Box nucleic acid helicase family. The function of DDX27 in hepatocellular carcinoma (HCC) remain enigmatic. In light of this, we tried to investigate the regulatory role and underlying mechanism of DDX27 in HCC. Materials and methods: DDX27 expression levels were detected by qRT-PCR, Western blot and immunohistochemistry assays in HCC tissues and cells. Colony formation, CCK-8, growth curve, wound healing and transwell assays were conducted to investigate the effect of DDX27 on the proliferation and metastasis of HCC cells. RNA-sequencing was performed to detect the effect of DDX27 on downstream signaling pathway. The effect of DDX27 on HCC progression was evaluated using in vivo murine xenograft model. Results: we found an increased expression of DDX27 in HCC tissues with comparison to its para-tumor tissues. The high expression levels of DDX27 were associated with poor prognosis in HCC patients. DDX27 upregulation promoted cell metastasis. Mechanistic studies suggested that DDX27 overexpression induces the major vault protein (MVP) expression and enhances the phosphorylation levels of ERK1/2. Inhibition of ERK pathway impaired the cellular metastastic abilities induced by DDX27. The induction of DDX27 in HCC progression was further confirmed from tumors in mouse model. Conclusion: our results disclose a novel mechanism by which DDX27 enhances ERK signaling during HCC progression. DDX27 might be used in targeted therapy for HCC patients.
Collapse
Affiliation(s)
- Wang Xiaoqian
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Bing
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yangwei
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Yafei
- 377327China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zhang Tingting
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Yi
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Qingjun
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luo Suxia
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Ling
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Bo
- 12476Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Zheng Peng
- 12476The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Sim KH, Shu MS, Kim S, Kim JY, Choi BH, Lee YJ. Cilostazol Induces Apoptosis and Inhibits Proliferation of Hepatocellular Carcinoma Cells by Activating AMPK. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0002-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers (Basel) 2021; 13:cancers13205059. [PMID: 34680208 PMCID: PMC8534156 DOI: 10.3390/cancers13205059] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell proliferation, differentiation, and survival. Overexpression and overactivation of members within the signaling cascade have been observed in many solid and blood cancers. Research often focuses on targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction. Finally, we summarized different approaches to targeting the pathway and the associated novel treatments being researched or having recently achieved approval. Abstract The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.
Collapse
|
24
|
Cho KJ, Shin SY, Moon H, Kim BK, Ro SW. Knockdown of Atg7 suppresses Tumorigenesis in a murine model of liver cancer. Transl Oncol 2021; 14:101158. [PMID: 34174688 PMCID: PMC8243000 DOI: 10.1016/j.tranon.2021.101158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is the most common type of primary liver cancer in adults and a leading cause of cancer-related deaths worldwide. Studies have shown that autophagy is significantly involved in carcinogenesis, in particular, driven by activated RAS signaling. Autophagy related 7 (Atg7) is a critical component for the formation of autophagosome and required for autophagy processes. We investigated the role of autophagy in RAS-driven tumorigenesis in the liver, via the knockdown of Atg7 in the model. Transposon vectors encoding short hairpin RNAs targeting Atg7 (Atg7 shRNA) were constructed. Inhibition of autophagy via Atg7 knockdown was tested in Hep3B cells cultured in nutrient-starved medium. Formation of autophagosome was suppressed in nutrient-starved Hep3B cells expressing Atg7 shRNA, demonstrating that it efficiently inhibited autophagy in HCC cells. Transposons encoding Atg7 shRNA were mixed with those expressing HRASG12V and p53 shRNA, and subsequently used for hydrodynamic injection to 5-week-old C57BL/6 mice. Tumorigenesis in livers induced by HRASG12V and p53 shRNA was significantly suppressed by Atg7 knockdown. The inhibition of autophagy led to a decreased proliferation of cancer cells, as determined by Ki-67 staining. Our data indicate that knockdown of Atg7 led to a significant decrease in tumorigenesis in a murine HCC model induced by activated RAS. Inhibition of autophagosome formation is expected to be a therapeutic option for liver cancer.
Collapse
Affiliation(s)
- Kyung Joo Cho
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea; Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sun Yeong Shin
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea; Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hyuk Moon
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Beom Kyung Kim
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Gastroenterology, Yonsei University College of medicine, Seoul, Republic of Korea.
| | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea.
| |
Collapse
|
25
|
Lu Q, Guo Q, Xin M, Lim C, Gamero AM, Gerhard GS, Yang L. LncRNA TP53TG1 Promotes the Growth and Migration of Hepatocellular Carcinoma Cells via Activation of ERK Signaling. Noncoding RNA 2021; 7:ncrna7030052. [PMID: 34564314 PMCID: PMC8482154 DOI: 10.3390/ncrna7030052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNA (lncRNA) TP53 target 1 (TP53TG1) was discovered as a TP53 target gene. TP53TG1 has been reported as having dual roles by exerting tumor-suppressive and oncogenic activities that vary depending on the cancer type. Yet, the role of TP53TG1 in hepatocellular carcinoma (HCC) is not fully understood. In this study, we performed both gain- and loss-of-function studies to determine the biological role of TP53TG1 in HCC. We found that the knockdown of TP53 in HCC cells caused the upregulation of TP53TG1. Furthermore, we found that the knockdown of TP53TG1 not only suppressed HCC cell proliferation and migration, but also reduced intrinsic ERK signaling. In contrast, the overexpression of TP53TG1 increased ERK activation and enhanced HCC proliferation. In conclusion, our study reveals an oncogenic role of TP53TG1 in HCC, which provides a novel insight into the cell-type-specific function of TP53TG1 in HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ling Yang
- Correspondence: ; Tel.: +1-215-707-3779
| |
Collapse
|
26
|
Atwa SM, Odenthal M, El Tayebi HM. Genetic Heterogeneity, Therapeutic Hurdle Confronting Sorafenib and Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:4343. [PMID: 34503153 PMCID: PMC8430643 DOI: 10.3390/cancers13174343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the latest advances in hepatocellular carcinoma (HCC) screening and treatment modalities, HCC is still representing a global burden. Most HCC patients present at later stages to an extent that conventional curative options are ineffective. Hence, systemic therapy represented by the tyrosine kinase inhibitor, sorafenib, in the first-line setting is the main treatment modality for advanced-stage HCC. However, in the two groundbreaking phase III clinical trials, the SHARP and Asia-Pacific trials, sorafenib has demonstrated a modest prolongation of overall survival in almost 30% of HCC patients. As HCC develops in an immune-rich milieu, particular attention has been placed on immune checkpoint inhibitors (ICIs) as a novel therapeutic modality for HCC. Yet, HCC therapy is hampered by the resistance to chemotherapeutic drugs and the subsequent tumor recurrence. HCC is characterized by substantial genomic heterogeneity that has an impact on cellular response to the applied therapy. And hence, this review aims at giving an insight into the therapeutic impact and the different mechanisms of resistance to sorafenib and ICIs as well as, discussing the genomic heterogeneity associated with such mechanisms.
Collapse
Affiliation(s)
- Sara M. Atwa
- Pharmaceutical Biology Department, German University in Cairo, Cairo 11865, Egypt;
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Margarete Odenthal
- Institute for Pathology, University Hospital Cologne, 50924 Cologne, Germany;
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
27
|
Eresen A, Yang J, Scotti A, Cai K, Yaghmai V, Zhang Z. Combination of natural killer cell-based immunotherapy and irreversible electroporation for the treatment of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1089. [PMID: 34423001 PMCID: PMC8339821 DOI: 10.21037/atm-21-539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal cancer types despite great advancement in overall survival of the patients over the last decades. Surgical resection or partial hepatectomy has been approved as the curative treatment for early-stage HCC patients however only up to 30% of them are eligible for the procedures. Natural killer (NK) cells are cytotoxic lymphocytes recognized for killing virally infected cells and improving immune functions for defending the body against malignant cells. Although autologous NK cells failed to demonstrate significant clinical benefit, transfer of allogeneic adoptive NK cells arises as a promising approach for the treatment of solid tumors. The immunosuppressive tumor microenvironment and inadequate homing efficiency of NK cells to tumors can inhibit adoptive transfer immunotherapy (ATI) efficacy. However, potential of the NK cells is challenged by the transfection efficiency. The local ablation techniques that employ thermal or chemical energy have been investigated for the destruction of solid tumors for three decades and demonstrated promising benefits for individuals not eligible for surgical resection or partial hepatectomy. Irreversible electroporation (IRE) is one of the most recent minimally invasive ablation methods that destruct the cell within the targeted region through non-thermal energy. IRE destroys the tumor cell membrane by delivering high-frequency electrical energy in short pulses and overcomes tumor immunosuppression. The previous studies demonstrated that IRE can induce immune changes which can facilitate activation of specific immune responses and improve transfection efficiency. In this review paper, we have discussed the mechanism of NK cell immunotherapy and IRE ablation methods for the treatment of HCC patients and the combinatorial benefits of NK cell immunotherapy and IRE ablation.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Zhao P, Malik S, Xing S. Epigenetic Mechanisms Involved in HCV-Induced Hepatocellular Carcinoma (HCC). Front Oncol 2021; 11:677926. [PMID: 34336665 PMCID: PMC8320331 DOI: 10.3389/fonc.2021.677926] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC), is the third leading cause of cancer-related deaths, which is largely caused by virus infection. About 80% of the virus-infected people develop a chronic infection that eventually leads to liver cirrhosis and hepatocellular carcinoma (HCC). With approximately 71 million HCV chronic infected patients worldwide, they still have a high risk of HCC in the near future. However, the mechanisms of carcinogenesis in chronic HCV infection have not been still fully understood, which involve a complex epigenetic regulation and cellular signaling pathways. Here, we summarize 18 specific gene targets and different signaling pathways involved in recent findings. With these epigenetic alterations requiring histone modifications and DNA hyper or hypo-methylation of these specific genes, the dysregulation of gene expression is also associated with different signaling pathways for the HCV life cycle and HCC. These findings provide a novel insight into a correlation between HCV infection and HCC tumorigenesis, as well as potentially preventable approaches. Hepatitis C virus (HCV) infection largely causes hepatocellular carcinoma (HCC) worldwide with 3 to 4 million newly infected cases diagnosed each year. It is urgent to explore its underlying molecular mechanisms for therapeutic treatment and biomarker discovery. However, the mechanisms of carcinogenesis in chronic HCV infection have not been still fully understood, which involve a complex epigenetic regulation and cellular signaling pathways. Here, we summarize 18 specific gene targets and different signaling pathways involved in recent findings. With these epigenetic alterations requiring histone modifications and DNA hyper or hypo-methylation of these specific genes, the dysregulation of gene expression is also associated with different signaling pathways for the HCV life cycle and HCC. These findings provide a novel insight into a correlation between HCV infection and HCC tumorigenesis, as well as potentially preventable approaches.
Collapse
Affiliation(s)
- Pin Zhao
- Guandong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Samiullah Malik
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen, China
| | - Shaojun Xing
- Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
29
|
Lu X, Li J, Lou H, Cao Z, Fan X. Genome-Wide DNA Methylation Alterations and Potential Risk Induced by Subacute and Subchronic Exposure to Food-Grade Nanosilica in Mice. ACS NANO 2021; 15:8225-8243. [PMID: 33938728 DOI: 10.1021/acsnano.0c07323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The intensive application of nanomaterials in the food industry has raised concerns about their potential risks to human health. However, limited data are available on the biological safety of nanomaterials in food, especially at the epigenetic level. This study examined the implications of two types of synthetic amorphous silica (SAS), food-grade precipitated silica (S200) and fumed silica Aerosil 200F (A200F), which are nanorange food additives. After 28-day continuous and intermittent subacute exposure to these SAS via diet, whole-genome methylation levels in mouse peripheral leukocytes and liver were significantly altered in a dose- and SAS type-dependent manner, with minimal toxicity detected by conventional toxicological assessments, especially at a human-relevant dose (HRD). The 84-day continuous subchronic exposure to all doses of S200 and A200F induced liver steatosis where S200 accumulated in the liver even at HRD. Genome-wide DNA methylation sequencing revealed that the differentially methylated regions induced by both SAS were mainly located in the intron, intergenic, and promoter regions after 84-day high-dose continuous exposure. Bioinformatics analysis of differentially methylated genes indicated that exposure to S200 or A200F may lead to lipid metabolism disorders and cancer development. Pathway validation experiments indicated both SAS types as potentially carcinogenic. While S200 inhibited the p53-mediated apoptotic pathway in mouse liver, A200F activated the HRAS-mediated MAPK signaling pathway, which is a key driver of hepatocarcinogenesis. Thus, caution must be paid to the risk of long-term exposure to food-grade SAS, and epigenetic parameters should be included as end points during the risk assessment of food-grade nanomaterials.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junying Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeya Cao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
| |
Collapse
|
30
|
A novel therapeutic strategy for hepatocellular carcinoma: Immunomodulatory mechanisms of selenium and/or selenoproteins on a shift towards anti-cancer. Int Immunopharmacol 2021; 96:107790. [PMID: 34162153 DOI: 10.1016/j.intimp.2021.107790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is an essential trace chemical element that is widely distributed worldwide. Se exerts its immunomodulatory and nutritional activities in the human body in the form of selenoproteins. Se has increasingly appeared as a potential trace element associated with many human diseases, including hepatocellular carcinoma (HCC). Recently, increasing evidence has suggested that Se and selenoproteins exert their immunomodulatory effects on HCC by regulating the molecules of oxidative stress, inflammation, immune response, cell proliferation and growth, angiogenesis, signaling pathways, apoptosis, and other processes in vitro cell studies and in vivo animal studies. Se concentrations are generally low in tissues of patients with HCC, such as blood, serum, scalp hair, and toenail. However, Se concentrations were higher in HCC patient tissues after Se supplementation than before supplementation. This review summarizes the significant relationship between Se and HCC, and details the role of Se as a novel immunomodulatory or immunotherapeutic approach against HCC.
Collapse
|
31
|
EB2 promotes hepatocellular carcinoma proliferation and metastasis via MAPK/ERK pathway by modulating microtubule dynamics. Clin Sci (Lond) 2021; 135:847-864. [PMID: 33755094 DOI: 10.1042/cs20201500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Metastasis is the main cause of poor postoperative survival of hepatocellular carcinoma (HCC) patients. Cytoskeleton rearrangement is a key event in cancer metastasis. However, the significance of microtubule (MT), one of the core components of cytoskeleton, in this process is only beginning to be revealed. Here, we find that the MT dynamics regulator end-binding protein 2 (EB2) is highly expressed in HCC and predicts poor prognosis of HCC patients. Functional studies show that EB2 overexpression promotes HCC proliferation, invasion and metastasis in vitro and in vivo, while EB2 knockdown has opposite results. Mechanistically, EB2 mediates MTs destabilization, increases Src (Src proto-oncogene non-receptor tyrosine kinase) activity, and thus facilitates extracellular signal-regulated kinase (ERK) signaling activation, which could in turn promote EB2 expression in HCC, eventually resulting in enhanced HCC proliferation, invasion and metastasis. Furthermore, U0126, a specific ERK inhibitor, could effectively inhibit EB2-mediated HCC proliferation and metastasis in vitro and in vivo. In conclusion, EB2 coordinates MT cytoskeleton and intracellular signal transduction, forming an EB2-MT-ERK positive feedback loop, to facilitate HCC proliferation, invasion and metastasis. EB2 could serve as a promising prognostic biomarker and potential therapeutic target for HCC; HCC patients with high EB2 expression may benefit from treatment with ERK inhibitors.
Collapse
|
32
|
Moon H, Ro SW. Ras Mitogen-activated Protein Kinase Signaling and Kinase Suppressor of Ras as Therapeutic Targets for Hepatocellular Carcinoma. JOURNAL OF LIVER CANCER 2021; 21:1-11. [PMID: 37384270 PMCID: PMC10035721 DOI: 10.17998/jlc.21.1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 06/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a high incidence cancer and a major health concern worldwide. Among the many molecular signaling pathways that are dysregulated in HCC, the Ras mitogen-activated protein kinase (Ras/Raf/MAPK) signaling pathway has gained renewed attention from basic and clinical researchers. Mutations in Ras and Raf genes which are known to activate the Ras/Raf/MAPK signaling pathway have been infrequently detected in human HCC; however, the Ras/Raf/MAPK signaling pathway is activated in more than 50% of HCC cases, suggesting an alternative mechanism for the activation of the signaling pathway. Kinase suppressor of Ras acts as a molecular scaffold for facilitating the assembly of Ras/Raf/MAPK signaling pathway components and has been implicated in the regulation of this signaling pathway. In this review, we provide important insights into the cellular and molecular mechanisms involved in the activation of the Ras/Raf/MAPK signaling pathway and discuss potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Hyuk Moon
- Department of Genetic Engineering, Kyung Hee University College of Life Sciences, Yongin, Korea
| | - Simon Weonsang Ro
- Department of Genetic Engineering, Kyung Hee University College of Life Sciences, Yongin, Korea
| |
Collapse
|
33
|
Li S, Shao J, Lou G, Wu C, Liu Y, Zheng M. MiR-144-3p-mediated dysregulation of EIF4G2 contributes to the development of hepatocellular carcinoma through the ERK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:53. [PMID: 33526055 PMCID: PMC7852102 DOI: 10.1186/s13046-021-01853-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers with high incidence and mortality. However, the underlying mechanisms of HCC still remain unclear. Eukaryotic translation initiation factors (eIFs) have a substantial effect on tumor development. In this study, we were aimed to investigate the role of eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) in HCC. Methods Western blot (WB) of 30 paired HCC tissues and tissue microarrays (TMAs) conducted by immunohistochemistry (IHC) in 89 paired HCC samples were performed to assess EIF4G2 expression. Clone formation, real-time cell analysis (RTCA), wound healing and transwell assays were adopted to evaluate the role of EIF4G2 on HCC cell proliferation, migration and invasion abilities. The function of EIF4G2 in HCC tumor growth was assessed in a xenograft nude mouse model in vivo. The regulation of EIF4G2 by miR-144-3p was performed by luciferase reporter assay and WB. Results The EIF4G2 protein was clearly upregulated in HCC tissues, and high EIF4G2 expression was closely related to HCC prognosis. EIF4G2 silencing could inhibit HCC cell growth and metastasis in vitro, and suppress tumorigenesis in vivo by repressing the ERK signaling pathway. The results of luciferase reporter assays, WB and IHC staining verified that EIF4G2 was negatively regulated by miR-144. And re-expression of EIF4G2 could partially reverse the inhibiting effect of miR-144 in HCC. Conclusion In summary, our study revealed the role of EIF4G2 in HCC development via the activation of the ERK pathway. We also found that EIF4G2 could be negatively regulated by the tumor suppressor miR-144. Our investigations indicated that EIF4G2 might be a promising therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01853-6.
Collapse
Affiliation(s)
- Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Chao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
34
|
Zhang C, Wang X, Fang D, Xu P, Mo X, Hu C, Abdelatty A, Wang M, Xu H, Sun Q, Zhou G, She J, Xia J, Hui KM, Xia H. STK39 is a novel kinase contributing to the progression of hepatocellular carcinoma by the PLK1/ERK signaling pathway. Theranostics 2021; 11:2108-2122. [PMID: 33500714 PMCID: PMC7797677 DOI: 10.7150/thno.48112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Protein kinases are critical therapeutic targets for curing hepatocellular carcinoma (HCC). As a serine/threonine kinase, the potential roles of serine/threonine kinase 39 (STK39) in HCC remain to be explored. Methods: The expression of STK39 was examined by RT-qPCR, western blotting and immunohistochemistry. Cell proliferation and apoptosis were detected by CCK8 and TUNEL kit. Cell migration and invasion assays were performed using a transwell system with or without Matrigel. RNA-seq, mass spectrometry and luciferase reporter assays were used to identify STK39 binding proteins. Results: Here, we firstly report that STK39 was highly overexpressed in clinical HCC tissues compared with adjacent tissues, high expression of STK39 was induced by transcription factor SP1 and correlated with poor patient survival. Gain and loss of function assays revealed that overexpression of STK39 promoted HCC cell proliferation, migration and invasion. In contrast, the depletion of STK39 attenuated the growth and metastasis of HCC cells. Moreover, knockdown of STK39 induced the HCC cell cycle arrested in the G2/M phase and promoted apoptosis. In mechanistic studies, RNA-seq revealed that STK39 positively regulated the ERK signaling pathway. Mass spectrometry identified that STK39 bound to PLK1 and STK39 promoted HCC progression and activated ERK signaling pathway dependent on PLK1. Conclusions: Thus, our study uncovers a novel role of STK39/PLK1/ERK signaling axis in the progress of HCC and suggests STK39 as an indicator for prognosis and a potential drug target of HCC.
Collapse
Affiliation(s)
- Chengfei Zhang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Dan Fang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ping Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiao Mo
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chao Hu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Alaa Abdelatty
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mei Wang
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Haojun Xu
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Qi Sun
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
| | - Junjun She
- Department of High Talent & General Surgery & Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
| | - Jinglin Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Kam Man Hui
- Laboratory of Cancer Genomics, National Cancer Centre Singapore & Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, Jiangsu, China
- Department of High Talent & General Surgery & Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
- Laboratory of Cancer Genomics, National Cancer Centre Singapore & Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
35
|
Torin2 overcomes sorafenib resistance via suppressing mTORC2-AKT-BAD pathway in hepatocellular carcinoma cells. Hepatobiliary Pancreat Dis Int 2020; 19:547-554. [PMID: 33051131 DOI: 10.1016/j.hbpd.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Sorafenib is an oral multi-kinase inhibitor that was approved by the US Food and Drug Administration for the treatment of patients with advanced hepatocellular carcinoma (HCC). However, resistance to sorafenib is an urgent problem to be resolved to improve the therapeutic efficacy of sorafenib. As the activation of AKT/mTOR played a pivotal role in sorafenib resistance, we evaluated the effect of a dual mTOR complex 1/2 inhibitor Torin2 on overcoming the sorafenib resistance in HCC cells. METHODS The sorafenib-resistant Huh7 and Hep3B cell lines were established from their parental cell lines. The synergistic effect of sorafenib and Torin2 on these cells was measured by cell viability assay and quantified using the Chou-Talalay method. Apoptosis induced by the combination of sorafenib and Torin2 and the alteration in the specific signaling pathways of interest were detected by Western blotting. RESULTS Sorafenib treatment inversely inhibited AKT in parental but activated AKT in sorafenib-resistant Huh7 and Hep3B HCC cells, which underscores the significance of AKT activation. Torin2 and sorafenib synergistically suppressed the viability of sorafenib-resistant cells via apoptosis induction. Torin2 successfully suppressed the sorafenib-activated mTORC2-AKT axis, leading to the dephosphorylation of Ser136 in BAD protein, and increased the expression of total BAD, which contributed to the apoptosis in sorafenib-resistant HCC cells. CONCLUSIONS In this study, Torin2 and sorafenib showed synergistic cytostatic capacity in sorafenib-resistant HCC cells, via the suppression of mTORC2-AKT-BAD pathway. Our results suggest a novel strategy of drug combination for overcoming sorafenib resistance in HCC.
Collapse
|
36
|
The Role of Autophagy in Liver Cancer: Crosstalk in Signaling Pathways and Potential Therapeutic Targets. Pharmaceuticals (Basel) 2020; 13:ph13120432. [PMID: 33260729 PMCID: PMC7760785 DOI: 10.3390/ph13120432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal-dependent pathway for degrading cytoplasmic proteins, macromolecules, and organelles. Autophagy-related genes (Atgs) are the core molecular machinery in the control of autophagy, and several major functional groups of Atgs coordinate the entire autophagic process. Autophagy plays a dual role in liver cancer development via several critical signaling pathways, including the PI3K-AKT-mTOR, AMPK-mTOR, EGF, MAPK, Wnt/β-catenin, p53, and NF-κB pathways. Here, we review the signaling pathways involved in the cross-talk between autophagy and hepatocellular carcinoma (HCC) and analyze the status of the development of novel HCC therapy by targeting the core molecular machinery of autophagy as well as the key signaling pathways. The induction or the inhibition of autophagy by the modulation of signaling pathways can confer therapeutic benefits to patients. Understanding the molecular mechanisms underlying the cross-link of autophagy and HCC may extend to translational studies that may ultimately lead to novel therapy and regimen formation in HCC treatment.
Collapse
|
37
|
Amaro CP, Tam VC. Management of hepatocellular carcinoma after progression on first-line systemic treatment: defining the optimal sequencing strategy in second line and beyond. ACTA ACUST UNITED AC 2020; 27:S173-S180. [PMID: 33343211 DOI: 10.3747/co.27.7103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (hcc) is one of the most common cancers in the world. It has a high mortality rate, especially when localized treatments fail. For about a decade, the only systemic treatment shown to improve survival was sorafenib. Recently, lenvatinib was found to be noninferior to sorafenib for overall survival, and combination atezolizumab-bevacizumab improved survival compared with sorafenib. Similarly, in the post-sorafenib setting, a number of recent positive clinical trials have been reported, and they indicate that regorafenib, cabozantinib, and ramucirumab are effective and safe in the second-line setting. With so many new options available, including immunotherapy, it is challenging to define the best sequence of systemic treatment for patients with hcc. In the present review, we introduce the current data for second-line systemic treatment and beyond in hcc. A treatment algorithm is also suggested, based on the best available evidence and expert opinion.
Collapse
Affiliation(s)
- C P Amaro
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB
| | - V C Tam
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB
| |
Collapse
|
38
|
Matsuoka K, Bakiri L, Wolff LI, Linder M, Mikels-Vigdal A, Patiño-García A, Lecanda F, Hartmann C, Sibilia M, Wagner EF. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res 2020; 30:885-901. [PMID: 32686768 PMCID: PMC7608146 DOI: 10.1038/s41422-020-0370-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant bone tumor in urgent need of better therapies. Using genetically modified mouse models (GEMMs), we demonstrate that Wnt signaling promotes c-Fos-induced OS formation via the actions of the collagen-modifying enzyme Loxl2. c-Fos/AP-1 directly regulates the expression of the Wnt ligands Wnt7b and Wnt9a in OS cells through promoter binding, and Wnt7b and Wnt9a in turn promote Loxl2 expression in murine and human OS cells through the transcription factors Zeb1 and Zeb2. Concordantly, inhibition of Wnt ligand secretion by inactivating the Wnt-less (Wls) gene in osteoblasts in c-Fos GEMMs either early or in a therapeutic setting reduces Loxl2 expression and progression of OS. Wls-deficient osteosarcomas proliferate less, are less mineralized and are enriched in fibroblastic cells surrounded by collagen fibers. Importantly, Loxl2 inhibition using either the pan-Lox inhibitor BAPN or a specific inducible shRNA reduces OS cell proliferation in vitro and decreases tumor growth and lung colonization in murine and human orthotopic OS transplantation models. Finally, OS development is delayed in c-Fos GEMMs treated with BAPN or with specific Loxl2 blocking antibodies. Congruently, a strong correlation between c-FOS, LOXL2 and WNT7B/WNT9A expression is observed in human OS samples, and c-FOS/LOXL2 co-expression correlates with OS aggressiveness and decreased patient survival. Therefore, therapeutic targeting of Wnt and/or Loxl2 should be considered to potentiate the inadequate current treatments for pediatric, recurrent, and metastatic OS.
Collapse
Affiliation(s)
- Kazuhiko Matsuoka
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, 1090, Austria
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, 1090, Austria
- Genes, Development and Disease Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Lena I Wolff
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, 48149, Germany
| | - Markus Linder
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna (MUV), Vienna, 1090, Austria
| | | | - Ana Patiño-García
- Navarra Institute for Health Research(IdISNA) and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Department of Pediatrics, University Clinic of Navarra, Pamplona, 31008, Spain
| | - Fernando Lecanda
- Navarra Institute for Health Research(IdISNA) and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, 31008, Spain
| | - Christine Hartmann
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, 48149, Germany
| | - Maria Sibilia
- Department of Medicine I, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna (MUV), Vienna, 1090, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, 1090, Austria.
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, 1090, Austria.
| |
Collapse
|
39
|
Li Q, Ren B, Gui Q, Zhao J, Wu M, Shen M, Li D, Li D, Chen K, Tao M, Liang R. Blocking MAPK/ERK pathway sensitizes hepatocellular carcinoma cells to temozolomide via downregulating MGMT expression. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1305. [PMID: 33209885 PMCID: PMC7661899 DOI: 10.21037/atm-20-5478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the fourth most common malignant tumor in China. Temozolomide (TMZ) is a common chemotherapy drug which can effectively kill HCC cells in vitro. However, it is possible that HCC cells possess intrinsic resistance to TMZ. A key mechanism of TMZ resistance is the overexpression of O6-methylguanine-DNA methyltransferase (MGMT). Studies have shown that MAPK may be related to MGMT expression, U0126 is a highly selective inhibitor of MEK1 and MEK2, which were crucial molecule in cascade of mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) pathway. Sorafenib was another widely applicated target drug in HCC which could inhibit multiple kinases including MAPK/ERK. This research was aimed to investigate the efficacy of MAPK/ERK inhibitor U0126 and sorafenib combine with TMZ in the treatment of HCC. Methods In HCC cells, MAPK/ERK signaling pathway was blocked by U0126 and sorafenib. The effect of blocking MAPK/ERK signaling pathway on TMZ-induced cytotoxicity was evaluated by MTT assay, flow cytometry and TUNEL assay. DNA damage protein and the expression of MGMT were detected by Western-blot. After the downregulation of MAPK/ERK signaling pathway, MGMT mRNA expression and the protein expression of MGMT were quantified by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence assay, respectively. HepG2 cells were transfected with an MGMT over expression plasmid. After transfection, the effect of U0126 on TMZ-induced cytotoxicity was evaluated by MTT and Western-Blot in MGMT OE cells. The influence of Sorafenib on TMZ-induced cytotoxicity to HCC cells was also detected by MTT assay. Results U0126 can enhance the chemosensitivity of HCC cells to TMZ. At the same time, we also found that U0126 increases the damage to DNA caused by TMZ in HepG2 cells. Moreover, the results from RT-qPCR and Western blot showed that U0126 downregulated MGMT mRNA and MGMT protein expression via blocking MAPK/ERK pathway. Furthermore, after transfection with an MGMT expression plasmid, overexpression of MGMT restored U0126-induced chemosensitivity to TMZ in HCC cells. Sorafenib can also increase the chemosensitivity of HCC cells to TMZ. Conclusions Our studies suggest great clinical potential for the utilization of combined U0126 and TMZ in patients with advanced HCC.
Collapse
Affiliation(s)
- Qiang Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Chemotherapy, Jiangxi Cancer Hospital, Nanchang, China
| | - Bingjie Ren
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Gui
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Chemotherapy, Jiangxi Cancer Hospital, Nanchang, China
| | - Jing Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengyao Wu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Shen
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dapeng Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daoming Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rongrui Liang
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
40
|
Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis. Acta Pharm Sin B 2020; 10:1397-1413. [PMID: 32963939 PMCID: PMC7488361 DOI: 10.1016/j.apsb.2020.06.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Pyroptosis is a form of programmed cell death, and recently described as a new molecular mechanism of chemotherapy drugs in the treatment of tumors. Miltirone, a derivative of phenanthrene-quinone isolated from the root of Salvia miltiorrhiza Bunge, has been shown to possess anti-cancer activities. Here, we found that miltirone inhibited the cell viability of either HepG2 or Hepa1-6 cells, and induced the proteolytic cleavage of gasdermin E (GSDME) in each hepatocellular carcinoma (HCC) cell line, with concomitant cleavage of caspase 3. Knocking out GSDME switched miltirone-induced cell death from pyroptosis to apoptosis. Additionally, the induction effects of miltirone on GSDME-dependent pyroptosis were attenuated by siRNA-mediated caspase three silencing and the specific caspase three inhibitor Z-DEVD-FMK, respectively. Miltirone effectively elicited intracellular accumulation of reactive oxygen species (ROS), and suppressed phosphorylation of mitogen-activated and extracellular signal-regulated kinase (MEK) and extracellular regulated protein kinases 1/2 (ERK1/2) for pyroptosis induction. Moreover, miltirone significantly inhibited tumor growth and induced pyroptosis in the Hepa1-6 mouse HCC syngeneic model. These results provide a new insight that miltirone is a potential therapeutic agent for the treatment of HCC via GSDME-dependent pyroptosis.
Collapse
Key Words
- 7-AAD, 7-aminoactinomycin D
- AKT, AKT serine/threonine kinase, also known as protein kinase B
- ANOVA, analysis of variance
- BAX, BCL2-associated X
- CCK-8, cell counting kit-8
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cas9, caspase 9
- Cell death
- DCFH-DA, dye 2,7-dichlorofluoresce diacetate
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- ECL, enhanced chemiluminescence
- ERK1/2, extracellular regulated protein kinases 1/2
- FBS, fetal bovine serum
- FITC, fluorescein isothiocyanate
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GSDMD, gasdermin D
- GSDME
- GSDME, gasdermin E
- H&E, hematoxylin and eosin
- HCC, hepatocellular carcinoma
- HRP, horseradish peroxidase
- HepG2
- Hepa1-6
- Hepatocellular carcinoma
- IC50, the half maximal inhibitory concentration
- IgG (H + L), immunoglobulin G (heavy chain + light chain)
- KO, knockout
- LDH, lactic dehydrogenase
- MEK, mitogen-activated and extracellular signal-regulated kinase
- MEM, minimum essential medium
- MMP, mitochondrial membrane potential
- MS, mass spectrum
- Miltirone
- N-GSDME, N-terminal GSDME
- NAC, N-acetyl cysteine
- NC, negative control
- NMR, nuclear magnetic resonance
- NS, no significance
- PARP, poly ADP-ribose polymerase
- PBS, phosphate-based buffer
- PI, propidium iodide
- PI3K, phosphatidylinositol 3-kinase
- Pyroptosis
- RIPA, radioimmunoprecipitation assay
- ROS, reactive oxygen species
- SD, standard deviation
- SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- TBST, Tris-buffered saline with Tween solution
- TCGA, the Cancer Genome Atlas
- VEGF, vascular endothelial growth factor
- gRNA, guide RNA
- i.p., intraperitoneal
- i.v., intravenous
- mTOR, mammalian target of rapamycin
- p-AKT, phosphorylated-AKT
- p-ERK1/2, phosphorylated-ERK1/2
- p-MEK, phosphorylated-MEK
Collapse
|
41
|
Chong YC, Toh TB, Chan Z, Lin QXX, Thng DKH, Hooi L, Ding Z, Shuen T, Toh HC, Dan YY, Bonney GK, Zhou L, Chow P, Wang Y, Benoukraf T, Chow EKH, Han W. Targeted Inhibition of Purine Metabolism Is Effective in Suppressing Hepatocellular Carcinoma Progression. Hepatol Commun 2020; 4:1362-1381. [PMID: 32923839 PMCID: PMC7471427 DOI: 10.1002/hep4.1559] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor‐specific metabolic rewiring, acquired to confer a proliferative and survival advantage over nontransformed cells, represents a renewed focus in cancer therapy development. Hepatocellular carcinoma (HCC), a malignancy that has hitherto been resistant to compounds targeting oncogenic signaling pathways, represents a candidate cancer to investigate the efficacy of selectively antagonizing such adaptive metabolic reprogramming. To this end, we sought to characterize metabolic changes in HCC necessary for tumorigenesis. We analyzed gene expression profiles in three independent large‐scale patient cohorts who had HCC. We identified a commonly deregulated purine metabolic signature in tumors with the extent of purine biosynthetic enzyme up‐regulation correlated with tumor grade and a predictor of clinical outcome. The functional significance of enhanced purine metabolism as a hallmark in human HCC was then validated using a combination of HCC cell lines, patient‐derived xenograft (PDX) organoids, and mouse models. Targeted ablation of purine biosynthesis by knockdown of the rate‐limiting enzyme inosine‐5′‐monophosphate dehydrogenase (IMPDH) or using the drug mycophenolate mofetil (MMF) reduced HCC proliferation in vitro and decreased the tumor burden in vivo. In comparing the sensitivities of PDX tumor organoids to MMF therapy, we found that HCC tumors defined by high levels of IMPDH and guanosine nucleosides were most susceptible to treatment. Mechanistically, a phosphoinositide 3‐kinase (PI3K)–E2F transcription factor 1 (E2F1) axis coordinated purine biosynthetic enzyme expression, deregulation of which altered the activity of mitogen‐activated protein kinase/RAS signaling. Simultaneously abolishing PI3K signaling and IMPDH activity with clinically approved inhibitors resulted in greatest efficacy in reducing tumor growth in a PDX mouse model. Conclusion: Enhanced purine metabolic activity regulated by PI3K pathway‐dependent activation of E2F1 promotes HCC carcinogenesis, suggesting the potential for targeting purine metabolic reprogramming as a precision therapeutic strategy for patients with HCC.
Collapse
Affiliation(s)
- Yong Chun Chong
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health National University of Singapore Singapore Singapore.,Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Zhiling Chan
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Quy Xiao Xuan Lin
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Dexter Kai Hao Thng
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Zhaobing Ding
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| | - Timothy Shuen
- Division of Medical Oncology National Cancer Center Singapore Singapore Singapore
| | - Han Chong Toh
- Division of Medical Oncology National Cancer Center Singapore Singapore Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology National University Health System Singapore Singapore
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary and Liver Transplantation Surgery National University Health System Singapore Singapore
| | - Lei Zhou
- Department of Medicine National University of Singapore Singapore Singapore
| | - Pierce Chow
- Department of Hepatopancreatobiliary and Transplant Surgery Singapore General Hospital Singapore Singapore
| | - Yulan Wang
- Singapore Phenome Center Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore.,Discipline of Genetics Faculty of Medicine Memorial University of Newfoundland St. John's Canada
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore National University of Singapore Singapore Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Agency for Science, Technology, and Research Singapore Singapore
| |
Collapse
|
42
|
Prognostic Value of an m6A RNA Methylation Regulator-Based Signature in Patients with Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2053902. [PMID: 32733931 PMCID: PMC7378627 DOI: 10.1155/2020/2053902] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022]
Abstract
Purposes Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Recent researches have demonstrated that m6A methylation regulators play a key role in various cancers, such as gastric cancer and colon adenocarcinoma. Several m6A methylation regulators are reported to predict the prognosis of HCC. Therefore, there is a need to further identify the predictive value of m6A methylation regulators in HCC. Methods We utilized The Cancer Genome Atlas (TCGA) database to obtain the gene expression profile of m6A RNA methylation regulators and clinical information for patients with HCC. Besides, we identified two clusters of HCC with various clinical factors by consensus clustering analysis. Then the least absolute shrinkage and selection operator (LASSO) and the Cox regression analysis were applied to construct a prognostic signature. Results Except for ZC3H13 and METTL14, a majority of the thirteen m6A RNA methylation regulators were significantly overexpressed in HCC specimens. HCC patients were classified into two groups (cluster 1 and cluster 2). The cluster 1 was with a significantly worse prognosis than cluster 2, and most of the 13 known m6A RNA methylation regulators were upregulated in cluster 1. Besides, we developed a prognostic signature consisting of YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13, which could successfully differentiate high-risk patients. More importantly, univariate and multivariate Cox regression analysis indicated that the signature-based risk score was an independent prognostic factor for patients with HCC. Conclusions Our study showed these five m6A RNA methylation regulators can be used as practical and reliable prognostic tools of HCC, which might have potential value for therapeutic strategies.
Collapse
|
43
|
Mossenta M, Busato D, Dal Bo M, Toffoli G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers (Basel) 2020; 12:E1668. [PMID: 32585931 PMCID: PMC7352479 DOI: 10.3390/cancers12061668] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) metabolism is redirected to glycolysis to enhance the production of metabolic compounds employed by cancer cells to produce proteins, lipids, and nucleotides in order to maintain a high proliferative rate. This mechanism drives towards uncontrolled growth and causes a further increase in reactive oxygen species (ROS), which could lead to cell death. HCC overcomes the problem generated by ROS increase by increasing the antioxidant machinery, in which key mechanisms involve glutathione, nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible transcription factor (HIF-1α). These mechanisms could represent optimal targets for innovative therapies. The tumor microenvironment (TME) exerts a key role in HCC pathogenesis and progression. Various metabolic machineries modulate the activity of immune cells in the TME. The deregulated metabolic activity of tumor cells could impair antitumor response. Lactic acid-lactate, derived from the anaerobic glycolytic rate of tumor cells, as well as adenosine, derived from the catabolism of ATP, have an immunosuppressive activity. Metabolic reprogramming of the TME via targeted therapies could enhance the treatment efficacy of anti-cancer immunotherapy. This review describes the metabolic pathways mainly involved in the HCC pathogenesis and progression. The potential targets for HCC treatment involved in these pathways are also discussed.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano (PN), Italy; (M.M.); (D.B.); (G.T.)
| |
Collapse
|
44
|
The HMGB1-RAGE axis modulates the growth of autophagy-deficient hepatic tumors. Cell Death Dis 2020; 11:333. [PMID: 32382012 PMCID: PMC7206028 DOI: 10.1038/s41419-020-2536-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular lysosomal degradative pathway important for tumor surveillance. Autophagy deficiency can lead to tumorigenesis. Autophagy is also known to be important for the aggressive growth of tumors, yet the mechanism that sustains the growth of autophagy-deficient tumors is not unclear. We previously reported that progression of hepatic tumors developed in autophagy-deficient livers required high mobility group box 1 (HMGB1), which was released from autophagy-deficient hepatocytes. In this study we examined the pathological features of the hepatic tumors and the mechanism of HMGB1-mediated tumorigenesis. We found that in liver-specific autophagy-deficient (Atg7ΔHep) mice the tumors cells were still deficient in autophagy and could also release HMGB1. Histological analysis using cell-specific markers suggested that fibroblast and ductular cells were present only outside the tumor whereas macrophages were present both inside and outside the tumor. Genetic deletion of Hmgb1 or one of its receptors, receptor for advanced glycated end product (Rage), retarded liver tumor development. HMGB1 and RAGE enhanced the proliferation capability of the autophagy-deficient hepatocytes and tumors. However, RAGE expression was only found on ductual cells and Kupffer’s cells but not on hepatoctyes, suggesting that HMGB1 might promote hepatic tumor growth through a paracrine mode, which altered the tumor microenvironment. Finally, RNAseq analysis of the tumors indicated that HMGB1 induced a much broad changes in tumors. In particular, genes related to mitochondrial structures or functions were enriched among those differentially expressed in tumors in the presence or absence of HMGB1, revealing a potentially important role of mitochondria in sustaining the growth of autophagy-deficient liver tumors via HMGB1 stimulation.
Collapse
|
45
|
Liu J, Zhao SY, Jiang Q, Qu Y, Huang X, Du J, Sun W, Ye Q. Long noncoding RNA MYLK-AS1 promotes growth and invasion of hepatocellular carcinoma through the EGFR/HER2-ERK1/2 signaling pathway. Int J Biol Sci 2020; 16:1989-2000. [PMID: 32398965 PMCID: PMC7211179 DOI: 10.7150/ijbs.43062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family members EGFR and HER2 play pivotal roles in oncogenesis and tumor progression. Anticancer drugs targeting EGFR and HER2 have been developed. Long noncoding RNAs (lncRNAs) have been reported to regulate cancer development and progression through signaling pathways. However, lncRNAs that regulate EGFR and HER2 expression remain unknown. Here, we show that lncRNA myosin light chain kinase-antisense RNA 1 (MYLK-AS1) promotes EGFR and HER2 expression and activates their downstream signaling pathway. MYLK-AS1 increases hepatocellular carcinoma (HCC) cell proliferation, migration, and invasion in vitro. Consistently, MYLK-AS1 knockdown hinders tumor growth in vivo. Mechanistically, MYLK-AS1 enhances HCC cell proliferation, migration, and invasion through stimulating the EGFR/HER2-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. In addition, MYLK-AS1 is overexpressed in HCC patients and negatively correlated with HCC prognosis. Thus, MYLK-AS1 is an upstream regulator of EGFR/HER2, and acts as an oncogene, suggesting an additional target for cancer therapeutics.
Collapse
Affiliation(s)
- Juan Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China.,Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Si-Yuan Zhao
- Medical unit, 91638 Troops, PLA, Beijing 102202, China
| | - Qiwei Jiang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| | - Yuanyuan Qu
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Xiaomei Huang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Jundong Du
- Department of Surgery, Hebei Yanda Hospital, Hebei 065201, China
| | - Wanjun Sun
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China
| |
Collapse
|
46
|
Dimri M, Satyanarayana A. Molecular Signaling Pathways and Therapeutic Targets in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12020491. [PMID: 32093152 PMCID: PMC7072513 DOI: 10.3390/cancers12020491] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex biological process and is often diagnosed at advanced stages with no effective treatment options. With advances in tumor biology and molecular genetic profiling, several different signaling pathways and molecular mechanisms have been identified as responsible for initiating and promoting HCC. Targeting these critical pathways, which include the receptor tyrosine kinase pathways, the Ras mitogen-activated protein kinase (Ras/Raf/MAPK), the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), the Wnt/β-catenin signaling pathway, the ubiquitin/proteasome degradation and the hedgehog signaling pathway has led to the identification of novel therapeutics for HCC treatment. In this review, we elaborated on our current understanding of the signaling pathways involved in the development and initiation of HCC and anticipate the potential targets for therapeutic drug development.
Collapse
|
47
|
Stem Cell Therapy for Hepatocellular Carcinoma: Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1237:97-119. [PMID: 31728916 DOI: 10.1007/5584_2019_441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of cancer and results in a high mortality rate worldwide. Unfortunately, most cases of HCC are diagnosed in an advanced stage, resulting in a poor prognosis and ineffective treatment. HCC is often resistant to both radiotherapy and chemotherapy, resulting in a high recurrence rate. Although the use of stem cells is evolving into a potentially effective approach for the treatment of cancer, few studies on stem cell therapy in HCC have been published. The administration of stem cells from bone marrow, adipose tissue, the amnion, and the umbilical cord to experimental animal models of HCC has not yielded consistent responses. However, it is possible to induce the apoptosis of cancer cells, repress angiogenesis, and cause tumor regression by administration of genetically modified stem cells. New alternative approaches to cancer therapy, such as the use of stem cell derivatives, exosomes or stem cell extracts, have been proposed. In this review, we highlight these experimental approaches for the use of stem cells as a vehicle for local drug delivery.
Collapse
|
48
|
Dai Q, Zhang C, Yuan Z, Sun Q, Jiang Y. Current discovery strategies for hepatocellular carcinoma therapeutics. Expert Opin Drug Discov 2020; 15:243-258. [PMID: 31809618 DOI: 10.1080/17460441.2020.1696769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Introduction: The global incidence of hepatocellular carcinoma (HCC) is not expected to decline significantly over the next 30 years. And although the latest gene sequencing studies have established its genetic map, the potentially targetable drivers of HCC are, so far, difficult to identify. To date, only seven drugs have been approved by the FDA for unresectable HCC treatment; thus, effective therapeutic breakthroughs are still needed urgently.Areas covered: In this review, the authors discuss both genetic and epigenetic alterations in HCC and introduce the current progress with some of the representative molecular targeting inhibitors, listing some of the approved drugs for the targets of HCC. The structure-activity relationship of molecules (e.g. thalidomide, bortezomil) used for HCC is also discussed.Expert opinion: Effective therapeutic targets and effective drugs for HCC treatment are an urgent unmet need. Better understanding and characterization of genetic and epigenetic alterations, which are important to hepatocarcinogenesis, may help to understand the molecular pathogenesis of HCC, as well as provide novel therapeutic lead compounds for HCC treatment.
Collapse
Affiliation(s)
- Qiuzi Dai
- Department of Chemistry, Tsinghua University, Beijing, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Cunlong Zhang
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Zigao Yuan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Yuyang Jiang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
49
|
Cyclosporin A activates human hepatocellular carcinoma (HepG2 cells) proliferation: implication of EGFR-mediated ERK1/2 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:897-908. [PMID: 31907582 DOI: 10.1007/s00210-019-01798-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/19/2019] [Indexed: 11/27/2022]
Abstract
One of the most common causes of cancer mortality worldwide is hepatocellular carcinoma (HCC). Extracellular signal-regulated kinase (ERK1/2) pathway has been shown to play an important role in the development and progression of HCC. Here, we demonstrate that the immunosuppressive agent cyclosporin A (CsA) has the ability to increase the cellular growth in HCC (HepG2 cells) via activation of ERK1/2 signaling cascade. It was found that ERK1/2 phosphorylation induced by CsA was highly reduced in the presence of the reactive oxygen species (ROS) scavenger polyethylene glycol-superoxide dismutase (PEG-SOD). Furthermore, it was observed that inhibition of metalloproteinase activity using TAPI-2 prevents ERK1/2 activation by CsA. Moreover, a disintegrin and metalloproteinase domain 17 (ADAM-17) activity was found to be critical for ERK phosphorylation by CsA. In addition, CsA-induced ERK phosphorylation was highly reduced in the presence of either neutralizing anti-heparin-binding-epidermal growth factor (HB-EGF) antibody or UO126 (MEK inhibitor). By using the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, it was found that EGFR is critical for ERK phosphorylation induced by CsA. Furthermore, CsA-induced cell proliferation was strongly reduced in the presence of either PEG-SOD or TAPI-2 or neutralizing anti-ADAM17 antibody or neutralizing anti-HB-EGF antibody or AG1478 or UO126. Collectively, these data demonstrate that CsA has the ability to activate ERK1/2 signaling cascade that could be translated into an increase in HepG2 cell proliferation. Furthermore, these data support the role of ROS, ADAM-17, and EGFR in ERK1/2 signaling activation and subsequent cell proliferation induced by CsA in HepG2 cells.
Collapse
|
50
|
McMillan RR, Agopian VG. The Management of Hepatocellular Carcinoma. THE CRITICALLY ILL CIRRHOTIC PATIENT 2020:237-271. [DOI: 10.1007/978-3-030-24490-3_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|