1
|
Fontana RJ, Li YJ, Vuppalanchi R, Kleiner DE, Gu J, Shroff H, Van Wagner LB, Watkins PB. ERAP-1 and ERAP-2 Variants in Liver Injury After COVID-19 mRNA Vaccination: A US Multicenter Study. Am J Gastroenterol 2024; 119:1496-1505. [PMID: 38314748 PMCID: PMC11296936 DOI: 10.14309/ajg.0000000000002702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION The aim of this study is to describe the presenting features, genetic factors, and outcomes of 23 adults who developed liver injury after coronavirus disease 2019 (COVID-19) mRNA vaccination. METHODS Patients with suspected COVID-19 vaccine hepatitis were enrolled into the Drug-Induced Liver Injury Network. Causality was assessed using the Drug-Induced Liver Injury Network expert opinion score. High-resolution HLA sequencing was undertaken using Illumina platform. RESULTS Amongst the 16 high causality cases, median time to onset was 16 days, median age was 63 years, and 75% were female. The injury was hepatocellular in 75% with a median alanine aminotransferase of 497 U/L, and 37% had jaundice. An antinuclear antibody and smooth muscle antibody were detectable in 27% and 36%, but only 12% had an elevated immunoglobulin G level. During follow-up, 37% received a short course of corticosteroids, and 88% fully recovered by 6 months with no deaths observed. HLA alleles associated with autoimmune hepatitis were not overrepresented compared with controls, but an ERAP-2 variant (rs1263907) and the ERAP-1 Hap6 haplotype were significantly overrepresented in the high causality cases vs controls ( P = 0.026 and 5 × 10 -5 , respectively). DISCUSSION Acute liver injury may arise within 8 weeks of COVID-19 mRNA vaccination that is generally mild and self-limited in most patients. The absence of an association with the AIH HLA alleles combined with the significant ERAP-2 and ERAP-1 Hap6 haplotype associations implicates a unique but very rare host immune response to vaccine-derived antigens in the pathogenesis of COVID-19 vaccine hepatotoxicity.
Collapse
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI
| | - Yi Ju Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Raj Vuppalanchi
- Department of Medicine, Indiana University, Indianapolis, IN
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute (NCI), Bethesda, MD
| | - Jiezhun Gu
- Duke Clinical Research Institute, Duke University, Durham, NC
| | - Hersh Shroff
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Lisa B. Van Wagner
- Division of Digestive Diseases, University of Texas Southwestern Medical Center, Dallas, TX
| | - Paul B Watkins
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
2
|
Sellers RS, Dormitzer PR. Toxicologic Pathology Forum: mRNA Vaccine Safety-Separating Fact From Fiction. Toxicol Pathol 2024; 52:333-342. [PMID: 39254115 PMCID: PMC11528946 DOI: 10.1177/01926233241278298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
SARS-CoV-2 spread rapidly across the globe, contributing to the death of millions of individuals from 2019 to 2023, and has continued to be a major cause of morbidity and mortality after the pandemic. At the start of the pandemic, no vaccines or anti-viral treatments were available to reduce the burden of disease associated with this virus, as it was a novel SARS coronavirus. Because of the tremendous need, the development of vaccines to protect against COVID-19 was critically important. The flexibility and ease of manufacture of nucleic acid-based vaccines, specifically mRNA-based products, allowed the accelerated development of COVID-19 vaccines. Although mRNA-based vaccines and therapeutics had been in clinical trials for over a decade, there were no licensed mRNA vaccines on the market at the start of the pandemic. The rapid development of mRNA-based COVID-19 vaccines reduced serious complications and death from the virus but also engendered significant public concerns, which continue now, years after emergency-use authorization and subsequent licensure of these vaccines. This article summarizes and addresses some of the safety concerns that continue to be expressed about these vaccines and their underlying technology.
Collapse
Affiliation(s)
- Rani S. Sellers
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
3
|
Shroff H. COVID-19 vaccine-induced liver injury. Curr Opin Gastroenterol 2024; 40:119-125. [PMID: 38353234 DOI: 10.1097/mog.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
PURPOSE OF REVIEW The rapid rollout and uptake of novel coronavirus disease 2019 (COVID-19) vaccines has been accompanied by a small yet noticeable accumulation of reports of liver injury occurring after vaccination. This review describes the present evidence surrounding COVID-19 vaccine-induced liver injury (VILI). RECENT FINDINGS Liver injury occurring after the COVID-19 vaccine often presents clinically similar to autoimmune hepatitis, with positive autoantibodies and a portal and lobular inflammatory infiltrate and varying degrees of necrosis on biopsy. The overwhelming majority of patients recover, often spontaneously or with a limited course of immunosuppression. The overall incidence of this phenomenon appears to be exceedingly low. SUMMARY Providers should remain vigilant for ongoing reports of VILI after COVID-19 and yet feel reassured by the low incidence and high likelihood of recovery. Ongoing genetic and histological study, as well as longer-term follow-up of presently identified cases, will shed further light on the clinical entity of VILI.
Collapse
Affiliation(s)
- Hersh Shroff
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Kochhar S, Assis DN, Mack C, Izurieta HS, Muratori L, Munoz A, Nordenberg D, Gidudu JF, Blau EF, Vierling JM. Autoimmune hepatitis: Brighton Collaboration case definition and guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2024; 42:1812-1825. [PMID: 38368225 DOI: 10.1016/j.vaccine.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 02/19/2024]
Abstract
This report introduces a Brighton Collaboration (BC) case definition for autoimmune hepatitis (AIH), which has been classified as a priority adverse event of special interest (AESI), as there were possible cases seen following COVID-19 vaccination. The case definition was developed by a group of subject matter and BC process experts to facilitate safety data comparability across pre- and post-licensure clinical trials, as well as pharmacovigilance activities in multiple settings with diverse resources and healthcare access. The usual BC case definition development process was followed in an expedited manner, and took two months to complete, including finalising the manuscript for publication, instead of the usual 1 year development time. It includes a systematic review of the literature and an expert consensus to define levels of diagnostic certainty for AIH, and provides specific guidelines for data collection and analysis. Histology, serological and biochemical tests and exclusion of alternate diagnosis were considered necessary to define the levels of certainty (definitive, probable and possible). AEFI reports of suspected AIH were independently classified by the WG members to test its useability and these classifications were used to finalise the case definition. The document underwent peer review by external AIH experts and a Reference Group of vaccine safety stakeholders in high-, low- and middle-income countries to ensure case definition useability, applicability, and scientific integrity. The expedited process can be replicated for development of other standardised case definitions for priority AESIs for endemics and epidemics. While applicable to cases reported following immunisation, the case definition is independent of lapsed time following vaccination and, as such, can also be used to determine background incidence for vaccinated and unvaccinated control groups in studies of causal association. While use of this case definition is also appropriate for the study of safety of other products including drugs, it is not meant to guide clinical case management.
Collapse
Affiliation(s)
- Sonali Kochhar
- Department of Global Health, University of Washington, Seattle, WA, USA; Global Healthcare Consulting, New Delhi, India.
| | - David N Assis
- Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA.
| | - Cara Mack
- Medical College of Wisconsin, Children's Wisconsin, Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Milwaukee, WI, USA.
| | | | - Luigi Muratori
- DIMEC Università di Bologna and IRCCS Policlinico di Sant'Orsola, Bologna, Italy.
| | - Alma Munoz
- Instituto de Salud Pública, Santiago, Chile.
| | - Dale Nordenberg
- Thriive, 250 - 25th Street, West Vancouver, BC V7V 4J1, USA.
| | - Jane F Gidudu
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Erin F Blau
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - John M Vierling
- Departments of Medicine and Surgery, Baylor College of Medicine, USA.
| |
Collapse
|
5
|
Michalak A, Lach T, Szczygieł K, Cichoż-Lach H. COVID-19, Possible Hepatic Pathways and Alcohol Abuse-What Do We Know up to 2023? Int J Mol Sci 2024; 25:2212. [PMID: 38396888 PMCID: PMC10888568 DOI: 10.3390/ijms25042212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The pandemic period due to coronavirus disease 2019 (COVID-19) revolutionized all possible areas of global health. Significant consequences were also related to diverse extrapulmonary manifestations of this pathology. The liver was found to be a relatively common organ, beyond the respiratory tract, affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple studies revealed the essential role of chronic liver disease (CLD) in the general outcome of coronavirus infection. Present concerns in this field are related to the direct hepatic consequences caused by COVID-19 and pre-existing liver disorders as risk factors for the severe course of the infection. Which mechanism has a key role in this phenomenon-previously existing hepatic disorder or acute liver failure due to SARS-CoV-2-is still not fully clarified. Alcoholic liver disease (ALD) constitutes another not fully elucidated context of coronavirus infection. Should the toxic effects of ethanol or already developed liver cirrhosis and its consequences be perceived as a causative or triggering factor of hepatic impairment in COVID-19 patients? In the face of these discrepancies, we decided to summarize the role of the liver in the whole picture of coronavirus infection, paying special attention to ALD and focusing on the pathological pathways related to COVID-19, ethanol toxicity and liver cirrhosis.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Karolina Szczygieł
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
6
|
Palmer M, Kleiner DE, Goodman Z, Brunt E, Avigan MI, Regev A, Hayashi PH, Lewis JH, Mehta R, Harrison SA, Siciliano M, McWherter CA, Vuppalanchi R, Behling C, Miller V, Chalasani N, Sanyal AJ. Liver biopsy for assessment of suspected drug-induced liver injury in metabolic dysfunction-associated steatohepatitis clinical trials: Expert consensus from the Liver Forum. Aliment Pharmacol Ther 2024; 59:201-216. [PMID: 37877759 DOI: 10.1111/apt.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/25/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Causality assessment of suspected drug-induced liver injury (DILI) during metabolic dysfunction-associated steatohepatitis (MASH) clinical trials can be challenging, and liver biopsies are not routinely performed as part of this evaluation. While the field is moving away from liver biopsy as a diagnostic and prognostic tool, information not identified by non-invasive testing may be provided on histology. AIM To address the appropriate utilisation of liver biopsy as part of DILI causality assessment in this setting. METHODS From 2020 to 2022, the Liver Forum convened a series of webinars on issues pertaining to liver biopsy during MASH trials. The Histology Working Group was formed to generate a series of consensus documents addressing these challenges. This manuscript focuses on liver biopsy as part of DILI causality assessment. RESULTS Expert opinion, guidance and recommendations on the role of liver biopsy as part of causality assessment of suspected DILI occurring during clinical trials for a drug(s) being developed for MASH are provided. Lessons learned from prior MASH programs are reviewed and gaps identified. CONCLUSIONS Although there are no pathognomonic features, histologic evaluation of suspected DILI during MASH clinical trials may alter patient management, define the pattern and severity of injury, detect findings that favour a diagnosis of DILI versus MASH progression, identify prognostic features, characterise the clinicopathological phenotype of DILI, and/or define lesions that influence decisions about trial discontinuation and further development of the drug.
Collapse
Affiliation(s)
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Zachary Goodman
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Elizabeth Brunt
- Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mark I Avigan
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Paul H Hayashi
- Division of Hepatology and Nutrition, Food and Drug Administration, Silver Spring, Maryland, USA
| | - James H Lewis
- Division of Gastroenterology, Georgetown University Hospital, Washington, District of Columbia, USA
| | - Ruby Mehta
- Center for Drug Evaluation and Research Office of New Drugs, Office of Inflammation and Immunity, Division of Hepatology and Nutrition, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Massimo Siciliano
- Fatebenefratelli Gemelli Isola - Rome, Sacred Heart Catholic Univesity, Rome, Italy
| | - Charles A McWherter
- Research and Development, CymaBay Therapeutics, Inc., Newark, California, USA
| | - Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Veronica Miller
- University of California Berkeley, School of Public Health, Forum for Collaborative Research, Washington, District of Columbia, USA
| | - Naga Chalasani
- Indiana University School of Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
7
|
Jin Z, Wu J, Wang Y, Huang T, Zhao K, Liu J, Wang H, Zhu T, Gou J, Huang H, Wu X, Yin H, Song J, Li R, Zhang J, Li L, Chen J, Li X, Zhang M, Li J, Hou M, Song Y, Wang B, Gao Q, Wu L, Kong Y, Dong R. Safety and immunogenicity of the COVID-19 mRNA vaccine CS-2034: A randomized, double-blind, dose-exploration, placebo-controlled multicenter Phase I clinical trial in healthy Chinese adults. J Infect 2023; 87:556-570. [PMID: 37898410 DOI: 10.1016/j.jinf.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND The novel coronavirus pneumonia (COVID-19) is an infectious disease caused by the infection of a novel coronavirus known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in millions of deaths. We aimed to evaluate the safety and immunogenicity of the COVID-19 mRNA vaccine (CS-2034, CanSino, Shanghai, China) in adults without COVID-19 infection from China. METHOD This is a multicenter Phase I clinical trial with a randomized, double-blinded, dose-exploration, placebo-controlled design. The trial recruited 40 seronegative participants aged 18-59 years who had neither received any COVID-19 vaccine nor been infected before. They were divided into a low-dose group (administered with either the CS-2034 vaccine containing 30 μg of mRNA or a placebo of 0.3 ml type 5 adenovirus vector) and a high-dose group (administered with either the CS-2034 vaccine containing 50 μg of mRNA or a placebo of 0.5 ml type 5 adenovirus vector). Participants were randomly assigned in a 3:1 ratio to receive either the mRNA vaccine or a placebo on days 0 and 21 according to a two-dose immunization schedule. The first six participants in each dosage group were assigned as sentinel subjects. Participants were sequentially enrolled in a dose-escalation manner from low to high dose and from sentinel to non-sentinel subjects. Blood samples were collected from all participants on the day before the first dose (Day 0), the day before the second dose (day 21), 14 days after the second dose (day 35), and 28 days after the second dose (day 49) to evaluate the immunogenicity of the CS-2034 vaccine. Participants were monitored for safety throughout the 28-day follow-up period, including solicited adverse events, unsolicited adverse events, adverse events of special interest (AESI), and medically attended adverse events (MAE). This report focuses solely on the safety and immunogenicity analysis of adult participants aged 18-59 years, while the long-term phase of the study is still ongoing. This study is registered at ClinicalTrials.gov, NCT05373485. FINDINGS During the period from May 17, 2022, to August 8, 2022, a total of 155 participants aged 18-59 years were screened for this study. Among them, 115 participants failed the screening process, and 40 participants were randomly enrolled (15 in the low-dose group, 15 in the high-dose group, and 10 in the placebo group). Throughout the 28-day follow-up period, the overall incidence of adverse reactions (related to vaccine administration) in the low-dose group, high-dose group, and placebo group was 93.33% (14/15), 100.00% (15/15), and 80.00% (8/10), respectively. There was a statistically significant difference in the incidence of local adverse reactions (soreness, pruritus, swelling at the injection site) among the low-dose group, high-dose group, and placebo group (P = 0.002). All adverse reactions were mainly of severity grade 1 (mild) or 2 (moderate), and no adverse events of severity grade 4 or higher occurred. Based on the analysis of Spike protein Receptor Binding Domain (S-RBD) IgG antibodies against the BA.1 strain, the seroconversion rates of antibodies at day 21 after the first dose were 86.67%, 93.33%, and 0.00% in the low-dose group, high-dose group, and placebo group, respectively. The geometric mean titer (GMT) of antibodies was 61.2(95%CI 35.3-106.2), 55.4(95%CI 36.3-84.4), and 15.0(95%CI 15.0-15.0), and the geometric mean fold increase (GMI) was 4.08(95%CI 2.35-7.08), 3.69(95%CI 2.42-5.63), and 1.00(95%CI 1.00-1.00) for each group. At day 28 after the full vaccination, the seroconversion rates of antibodies were 100.00%, 93.33%, and 0.00%, and the GMT of antibodies was 810.0(95%CI 511.4-1283.0), 832.2(95%CI 368.1-1881.6), and 15.0(95%CI 15.0-15.0), and the GMI was 54.00(95%CI 34.09-85.53), 55.48(95%CI 24.54-125.44), and 1.00(95%CI 1.00-1.00) for each group, respectively. Based on the analysis of CD3+/CD4+ cell cytokine response, the percentages of IL-2+, IL-4+, IFN-γ+, and TNF-α+ cells increased after 14 days and 28 days of full vaccination in both the low-dose group and high-dose group. The increase was most pronounced in the high-dose group. INTERPRETATION At day 28 after the full vaccination, both the low-dose and the high-dose CS-2034 vaccine were able to induce the production of high titers of S-RBD IgG antibodies against the BA.1 strain. Adverse reactions in the low-dose and high-dose groups were mainly of severity grade 1 or 2, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine.
Collapse
Affiliation(s)
- Zhili Jin
- Beijing Friendship Hospital, Capital Medical University, China
| | - Jingxuan Wu
- Beijing Friendship Hospital, Capital Medical University, China
| | - Ying Wang
- Beijing Friendship Hospital, Capital Medical University, China
| | - Tao Huang
- Hunan Provincial Center for Disease Control and Prevention, China
| | - Kexin Zhao
- Hebei Petrochina Central Hospital, China
| | - Jian Liu
- CanSino (Shanghai) Biotechnologies Co., Ltd, China; CanSino (Shanghai) Biological Research Co., Ltd, China; CanSino Biologics Inc (Tianjin), China
| | - Haomeng Wang
- CanSino (Shanghai) Biotechnologies Co., Ltd, China; CanSino (Shanghai) Biological Research Co., Ltd, China; CanSino Biologics Inc (Tianjin), China
| | - Tao Zhu
- CanSino (Shanghai) Biological Research Co., Ltd, China; CanSino Biologics Inc (Tianjin), China
| | - Jinbo Gou
- CanSino Biologics Inc (Tianjin), China
| | | | - Xiaofang Wu
- Beijing Friendship Hospital, Capital Medical University, China
| | - Hang Yin
- Beijing Friendship Hospital, Capital Medical University, China
| | - Jian Song
- Beijing Friendship Hospital, Capital Medical University, China
| | - Ran Li
- Beijing Friendship Hospital, Capital Medical University, China
| | - Jianxiong Zhang
- Beijing Friendship Hospital, Capital Medical University, China
| | - Lijun Li
- Beijing Friendship Hospital, Capital Medical University, China
| | - Jingcheng Chen
- Beijing Friendship Hospital, Capital Medical University, China
| | - Xiao Li
- Beijing Friendship Hospital, Capital Medical University, China
| | - Meijuan Zhang
- Beijing Friendship Hospital, Capital Medical University, China
| | - JiangShuo Li
- Beijing Friendship Hospital, Capital Medical University, China
| | - Mengyu Hou
- Beijing Friendship Hospital, Capital Medical University, China
| | - Yuqin Song
- Beijing Friendship Hospital, Capital Medical University, China
| | - Bingyan Wang
- Beijing Friendship Hospital, Capital Medical University, China
| | - Qiannan Gao
- Beijing Friendship Hospital, Capital Medical University, China
| | - Le Wu
- Beijing Friendship Hospital, Capital Medical University, China
| | - Yanhong Kong
- Beijing Friendship Hospital, Capital Medical University, China
| | - Ruihua Dong
- Beijing Friendship Hospital, Capital Medical University, China.
| |
Collapse
|
8
|
Sadat Larijani M, Doroud D, Banifazl M, Karami A, Bavand A, Ashrafian F, Ramezani A. A landscape on disorders following different COVID-19 vaccination: a systematic review of Iranian case reports. Eur J Med Res 2023; 28:542. [PMID: 38008729 PMCID: PMC10676592 DOI: 10.1186/s40001-023-01531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023] Open
Abstract
There have been massive studies to develop an effective vaccine against SARS-CoV-2 which fortunately led to manage the recent pandemic, COVID-19. According to the quite rapidly developed vaccines in a fast window time, large investigations to assess the probable vaccine-related adverse events are crucially required. COVID-19 vaccines are available of different platforms and the primary clinical trials results presented acceptable safety profile of the approved vaccines. Nevertheless, the long-term assessment of the adverse events or rare conditions need to be investigated. The present systematic review, aimed at classification of probable vaccine-related unsolicited adverse events in Iranian population through the data collection of the published case report studies.The related published case reports were explored via PubMed, Web of Science and Google scholar according to the available published data up to 14th Dec, 2022 using PRISMA guideline. Out of 437 explored studies, the relevant data were fully investigated which totally led to 40 studies, including 64 case reports with a new onset of a problem post-vaccination. The cases were then classified according to the various items, such as the type of adverse event and COVID-19 vaccines.The reported COVID-19 vaccines in the studied cases included BBIBP-CorV, ChAdOx1-S, Sputnik V and COVAXIN. The results showed that the adverse events presented in 8 different categories, including cutaneous involvements in 43.7% (n = 28), neurologic problems (n = 16), blood/vessel involvement (n = 6), cardiovascular involvement (n = 5), ocular disorders (n = 4), liver disorder/failure (n = 2), graft rejection (n = 2) and one metabolic disorder. Notably, almost 60% of the cases had no comorbidities. Moreover, the obtained data revealed nearly half of the incidences occurred after the first dose of injection and the median duration of improvement after the symptom was 10 days (range: 2-120). In addition, 73% of all the cases were either significantly improved or fully recovered. Liver failure following ChAdOx1-S vaccination was the most serious vaccine adverse event which led to death in two individuals with no related medical history.Although the advantages of COVID-19 vaccination is undoubtedly significant, individuals including with a history of serious disease, comorbidities and immunodeficiency conditions should be vaccinated with the utmost caution. This study provides a comprehensive overview and clinical implications of possible vaccine-related adverse events which should be considered in further vaccination strategies. Nevertheless, there might be a bias regarding potential under-reporting and missing data of the case reports included in the present study. Although the reported data are not proven to be the direct vaccination outcomes and could be a possible immune response over stimulation, the people the population with a medium/high risk should be monitored after getting vaccinated against COVID-19 of any platforms. This could be achieved by a carefull attention to the subjects ' medical history and also through consulting with healthcare providers before vaccination.
Collapse
Affiliation(s)
- Mona Sadat Larijani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Delaram Doroud
- Quality Control Department, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Banifazl
- Iranian Society for Support of Patients With Infectious Disease, Tehran, Iran
| | - Afsaneh Karami
- Department of Infectious Disease, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Anahita Bavand
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran
| | - Amitis Ramezani
- Clinical Research Department, Pasteur Institute of Iran, No: 69, Pasteur Ave, Tehran, 1316943551, Iran.
| |
Collapse
|
9
|
Tilg H, Adolph TE, Tacke F. Therapeutic modulation of the liver immune microenvironment. Hepatology 2023; 78:1581-1601. [PMID: 37057876 DOI: 10.1097/hep.0000000000000386] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Inflammation is a hallmark of progressive liver diseases such as chronic viral or immune-mediated hepatitis, alcohol-associated liver disease, and NAFLD. Preclinical and clinical studies have provided robust evidence that cytokines and related cellular stress sensors in innate and adaptive immunity orchestrate hepatic disease processes. Unresolved inflammation and liver injury result in hepatic scarring, fibrosis, and cirrhosis, which may culminate in HCC. Liver diseases are accompanied by gut dysbiosis and a bloom of pathobionts, fueling hepatic inflammation. Anti-inflammatory strategies are extensively used to treat human immune-mediated conditions beyond the liver, while evidence for immunomodulatory therapies and cell therapy-based strategies in liver diseases is only emerging. The development and establishment of novel immunomodulatory therapies for chronic liver diseases has been dampened by several clinical challenges, such as invasive monitoring of therapeutic efficacy with liver biopsy in clinical trials and risk of DILI in several studies. Such aspects prevented advancements of novel medical therapies for chronic inflammatory liver diseases. New concepts modulating the liver immune environment are studied and eagerly awaited to improve the management of chronic liver diseases in the future.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
10
|
Sintusek P, Buranapraditkun S, Khunsri S, Thongmee T, Vichaiwattana P, Polsawat W, Poovorawan Y. Safety and Efficacy of a Third Dose of the BNT162b2 Vaccine in Liver-Transplanted and Healthy Adolescents. JPGN REPORTS 2023; 4:e373. [PMID: 38034438 PMCID: PMC10684171 DOI: 10.1097/pg9.0000000000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/09/2023] [Indexed: 12/02/2023]
Abstract
Objectives According to our previous study, the 2-dose-BNT162b2 vaccination is less effective against the Omicron variant. This study aimed to assess the safety and efficacy of a 3-dose-BNT162b2 vaccination in liver-transplanted (LT) and healthy adolescents. Methods LT and healthy adolescents who met the inclusion criteria received a third dose of the BNT162b2 vaccine (30 µg). Antireceptor-binding domain immunoglobulin and T-cell-specific responses to severe acute respiratory syndrome coronavirus 2 spike peptides were assessed 3 months before the third dose (Visit -1) and 0 (Visit 0), 1 (Visit 1), and 2 months (Visit 2) after the third dose. Antinucleocapsid immunoglobulin and neutralizing antibodies were assessed at Visits 0 and 1. Adverse events (AEs) were monitored. Results Eleven LT and 14 healthy adolescents aged 14.64 (13.2, 15.7) years (44.2% male) had antireceptor-binding domain immunoglobulin geometric mean titers of 1412.47 (95% confidence interval [CI], 948.18-2041.11) and 1235.79 (95% CI, 901.07-1705.73) U/mL at Visit -1 but increased to 38 587.76 (95% CI, 24 628.03-60 460.18) and 29 222.38 (95% CI, 16 291.72-52 401.03) U/mL (P < 0.05) at Visit 1, respectively. This was consistent with neutralizing antibodies (42.29% and 95.37% vs 44.65% and 91.68%, P < 0.001) and interferon-γ-secreting cells in LT and healthy adolescents at Visit 0 versus Visit 1, respectively. For serious AEs, an LT girl with autoimmune overlap syndrome died 5 months postvaccination from acute liver failure. Conclusions In both LT and healthy adolescents, humoral and cellular immune responses were high after the 3-dose-BNT162b2 vaccination. However, serious AEs were suspected in LT adolescents with autoimmune diseases.
Collapse
Affiliation(s)
- Palittiya Sintusek
- From the Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Division of Gastroenterology, Department of Pediatrics
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siriporn Khunsri
- From the Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Division of Gastroenterology, Department of Pediatrics
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, The Thai Red Cross Society, Bangkok, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, The Thai Red Cross Society, Bangkok, Thailand
| | - Warunee Polsawat
- Excellent Center for Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
11
|
John N, Ibrahim B, Ebaid M, Saab S. Outcomes in Patients with Liver Dysfunction Post SARS-CoV-2 Infection: What Should We Measure? Hepat Med 2023; 15:185-193. [PMID: 37850074 PMCID: PMC10578169 DOI: 10.2147/hmer.s371507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Aim Since 2019, the COVID-19 pandemic wreaked havoc all over the world. Early in the course of the pandemic, multiple hepatic manifestations of COVID-19 were noted. We aim to categorize hepatic dysfunction and its outcome in COVID-19 infection. Methods This is a review article based on a literature search in PubMed and Medline databases for articles detailing short-term and long-term outcomes of COVID-19 related liver dysfunction. Results The most common hepatic manifestation of COVID-19 was aspartate amino transferase (AST) predominant transaminase elevation. Transaminases improve once the COVID-19 infection resolves. In addition, COVID-19 cholangiopathy, autoimmune hepatitis associated COVID-19, and splanchnic venous thrombosis triggered by COVID-19 are other manifestations. Patients with preexisting liver disease, especially those with cirrhosis, have poor prognosis with COVID-19 infections compared to the general population. Elevations in liver tests were associated with severe COVID-19 infections. Patients with chronic liver disease have a higher risk of morbidity and mortality from COVID-19 infection. Among patients with chronic liver disease, decompensated liver cirrhosis, hepatocellular carcinoma and alcohol-associated liver disease were associated with an increased risk of severity and mortality from COVID-19 infection. Interactions between antiviral therapy for COVID-19 and hepatitis B/hepatitis C medications must be considered in patients with chronic viral hepatitis and COVID-19 infection. COVID-19 vaccination-related hepatic dysfunction has been reported. Conclusion COVID-19 is here to stay. Hepatic dysfunction in COVID-19 signals severe COVID-19 infections. Patients with chronic liver disease have higher mortality from COVID-19 than general population. It is important to remember the lessons learned throughout the covid pandemic to take care of patients with COVID-19 now and in the future. Further studies are needed to document long-term outcomes in patients with COVID-19 who developed hepatic dysfunction.
Collapse
Affiliation(s)
- Nimy John
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Brittney Ibrahim
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Mark Ebaid
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Sammy Saab
- Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Surgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Uzun S, Zinner CP, Beenen AC, Alborelli I, Bartoszek EM, Yeung J, Calgua B, Reinscheid M, Bronsert P, Stalder AK, Haslbauer JD, Vosbeck J, Mazzucchelli L, Hoffmann T, Terracciano LM, Hutter G, Manz M, Panne I, Boettler T, Hofmann M, Bengsch B, Heim MH, Bernsmeier C, Jiang S, Tzankov A, Terziroli Beretta-Piccoli B, Matter MS. Morphologic and molecular analysis of liver injury after SARS-CoV-2 vaccination reveals distinct characteristics. J Hepatol 2023; 79:666-676. [PMID: 37290592 PMCID: PMC10245467 DOI: 10.1016/j.jhep.2023.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND & AIMS Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n = 6) and from patients with an initial diagnosis of AIH (n = 9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence, and immune repertoire sequencing. RESULTS Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways were less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune-like hepatitis. In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor sequencing showed that T and B cell clones were more dominant in VILI than in AIH. In addition, many T cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6, and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS Our analyses support that SARS-CoV-2 VILI is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. Therefore, VILI may be a separate entity, which is distinct from AIH and more closely related to drug-induced autoimmune-like hepatitis. IMPACT AND IMPLICATIONS Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI). Our analysis shows that COVID-19 VILI shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that VILI is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 VILI will recover completely and will not develop long-term autoimmune hepatitis.
Collapse
Affiliation(s)
- Sarp Uzun
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Carl P Zinner
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Amke C Beenen
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Ewelina M Bartoszek
- Microscopy Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jason Yeung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Byron Calgua
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Matthias Reinscheid
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany; Core Facility for Histopathology and Digital Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna K Stalder
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Juerg Vosbeck
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | - Luigi M Terracciano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gregor Hutter
- Brain Tumor Immunotherapy Lab, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Michael Manz
- Gastroenterology and Hepatology, University Centre for Gastrointestinal and Liver Diseases Basel, Switzerland
| | - Isabelle Panne
- Gastroenterology and Hepatology, University Centre for Gastrointestinal and Liver Diseases Basel, Switzerland
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Partner Site Freiburg, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Markus H Heim
- Gastroenterology and Hepatology, University Centre for Gastrointestinal and Liver Diseases Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Christine Bernsmeier
- Gastroenterology and Hepatology, University Centre for Gastrointestinal and Liver Diseases Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Pathology, Dana Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Benedetta Terziroli Beretta-Piccoli
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland; Epatocentro Ticino, Lugano, Switzerland; MowatLabs, Faculty of Life Sciences and Medicine, King's College London, King's College Hospital, London, UK
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Cao H, Huang Y, Zhong C, Liao X, Tan W, Zhao S, Guo L, Fan R. Antibody response and safety of inactivated SARS-CoV-2 vaccines in chronic hepatitis B patients with and without cirrhosis. Front Immunol 2023; 14:1167533. [PMID: 37266421 PMCID: PMC10230951 DOI: 10.3389/fimmu.2023.1167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Background The immune response and safety of inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines among patients with chronic hepatitis B (CHB), especially those with cirrhosis, are not clear. Therefore, this study was conducted to evaluate the efficacy and safety of inactivated SARS-CoV-2 vaccines among CHB patients with and without cirrhosis. Patients and methods A total of 643 CHB patients who received two doses of inactivated SARS-CoV-2 vaccines (BBIBP-CorV and CoronaVac) were enrolled. Serum samples were collected and tested for SARS-CoV-2 S-receptor-binding domain (S-RBD) immunoglobulin G (IgG) at enrollment. Data on adverse events (AEs) within 7 days after the second dose were obtained using a questionnaire. Results A total of 416 non-cirrhotic and 227 cirrhotic patients were included in the analysis. Cirrhotic patients had lower antibody titers than non-cirrhotic patients after adjusting for age, sex, and time interval (2.45 vs. 2.60 ng/ml, p = 0.034). Furthermore, the study revealed that cirrhotic patients demonstrated a slower rate of seropositivity increase, with the highest rate being recorded at week 4 and reaching 94.7%. On the other hand, among non-cirrhotic patients, the seropositivity rate peak was observed at week 2 and reached 96.0%. In addition, cirrhotic patients displayed a more rapid decline in the seropositivity rate, dropping to 54.5% after ≥16 weeks, while non-cirrhotic patients exhibited a decrease to 67.2% after the same time period. The overall incidence of AEs was low (18.4%), and all AEs were mild and self-limiting. In addition, 16.0% of participants had mild liver function abnormalities, and half of them returned to normality within the next 6 months without additional therapy. The participants who experienced liver function abnormalities showed a higher seropositivity rate and antibody titer than those who did not (91.6% vs. 79.5%, p = 0.005; 2.73 vs. 2.41 ng/ml, p < 0.001). Conclusion Cirrhotic CHB patients had lower antibody titers to inactivated SARS-CoV-2 vaccines than non-cirrhotic patients. The vaccines were generally well tolerated in both non-cirrhotic and cirrhotic CHB patient groups. Patients with abnormal liver function may have a better antibody response than those without.
Collapse
Affiliation(s)
- Huanhuan Cao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, China
| | - Yufei Huang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiu Zhong
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingmei Liao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjuan Tan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siru Zhao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liangxu Guo
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Fan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Viral Hepatitis, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Roshanshad R, Roshanshad A, Fereidooni R, Hosseini-Bensenjan M. COVID-19 and liver injury: Pathophysiology, risk factors, outcome and management in special populations. World J Hepatol 2023; 15:441-459. [PMID: 37206656 PMCID: PMC10190688 DOI: 10.4254/wjh.v15.i4.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 is an ongoing health concern. In addition to affecting the respiratory system, COVID-19 can potentially damage other systems in the body, leading to extra-pulmonary manifestations. Hepatic manifestations are among the common consequences of COVID-19. Although the precise mechanism of liver injury is still questionable, several mechanisms have been hypothesized, including direct viral effect, cytokine storm, hypoxic-ischemic injury, hypoxia-reperfusion injury, ferroptosis, and hepatotoxic medications. Risk factors of COVID-19-induced liver injury include severe COVID-19 infection, male gender, advanced age, obesity, and underlying diseases. The presentations of liver involvement comprise abnormalities in liver enzymes and radiologic findings, which can be utilized to predict the prognosis. Increased gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase levels with hypoalbuminemia can indicate severe liver injury and anticipate the need for intensive care units’ hospitalization. In imaging, a lower liver-to-spleen ratio and liver computed tomography attenuation may indicate a more severe illness. Furthermore, chronic liver disease patients are at a higher risk for severe disease and death from COVID-19. Nonalcoholic fatty liver disease had the highest risk of advanced COVID-19 disease and death, followed by metabolic-associated fatty liver disease and cirrhosis. In addition to COVID-19-induced liver injury, the pandemic has also altered the epidemiology and pattern of some hepatic diseases, such as alcoholic liver disease and hepatitis B. Therefore, it warrants special vigilance and awareness by healthcare professionals to screen and treat COVID-19-associated liver injury accordingly.
Collapse
Affiliation(s)
- Romina Roshanshad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7184731443, Iran
| | | | - Reza Fereidooni
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | |
Collapse
|
15
|
Schinas G, Polyzou E, Dimakopoulou V, Tsoupra S, Gogos C, Akinosoglou K. Immune-mediated liver injury following COVID-19 vaccination. World J Virol 2023; 12:100-108. [PMID: 37033146 PMCID: PMC10075055 DOI: 10.5501/wjv.v12.i2.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 03/21/2023] Open
Abstract
Liver injury secondary to vaccination is a rare adverse event that has recently come under attention thanks to the continuous pharmacovigilance following the widespread implementation of coronavirus disease 2019 (COVID-19) vaccination protocols. All three most widely distributed severe acute respiratory syndrome coronavirus 2 vaccine formulations, e.g., BNT162b2, mRNA-1273, and ChAdOx1-S, can induce liver injury that may involve immune-mediated pathways and result in autoimmune hepatitis-like presentation that may require therapeutic intervention in the form of corticosteroid administration. Various mechanisms have been proposed in an attempt to highlight immune checkpoint inhibition and thus establish causality with vaccination. The autoimmune features of such a reaction also prompt an in-depth investigation of the newly employed vaccine technologies. Novel vaccine delivery platforms, e.g., mRNA-containing lipid nanoparticles and adenoviral vectors, contribute to the inflammatory background that leads to an exaggerated immune response, while patterns of molecular mimicry between the spike (S) protein and prominent liver antigens may account for the autoimmune presentation. Immune mediators triggered by vaccination or vaccine ingredients per se, including autoreactive antibodies, cytokines, and cytotoxic T-cell populations, may inflict hepatocellular damage through well-established pathways. We aim to review available data associated with immune-mediated liver injury associated with COVID-19 vaccination and elucidate potential mechanisms underlying its pathogenesis.
Collapse
Affiliation(s)
- Georgios Schinas
- Department of Medicine, University of Patras, Patras 26504, Greece
| | - Eleni Polyzou
- Department of Internal Medicine, University of Patras, Patras 26504, Greece
| | | | - Stamatia Tsoupra
- Department of Internal Medicine, University of Patras, Patras 26504, Greece
| | - Charalambos Gogos
- Department of Internal Medicine, University of Patras, Patras 26504, Greece
| | | |
Collapse
|
16
|
Said ZNA, El Habashy SA, Zaky S. COVID-19-induced transaminitis and hyperbilirubinemia: Presentation and outcomes. World J Gastroenterol 2023; 29:1123-1130. [PMID: 36926664 PMCID: PMC10011958 DOI: 10.3748/wjg.v29.i7.1123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/29/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
The risk of liver injury in patients with coronavirus disease 2019 (COVID-19) infection is quite evident. Furthermore, liver function test abnormalities are still detected in COVID-19 patients despite the development of antivirals and the availability of several types of vaccines. This editorial describes liver involvement during COVID-19 infection in patients with or without preexisting liver injury, such as chronic liver disease, to elucidate COVID-19-induced liver function abnormalities and their severity, pathophysiology, clinical manifestations, and clinical and laboratory outcomes. We also discuss the effect of vaccination against COVID-19 to better understand host factors, such as age, gender, and race, on the incidence and severity of liver dysfunction at initial presentation and during the illness. Finally, we summarize the results of relevant meta-analyses published to date and highlight the importance of adequate liver function monitoring in the current climate of the overwhelming COVID-19 pandemic.
Collapse
Affiliation(s)
- Zeinab Nabil Ahmed Said
- Department of Medical Microbiology and Immunology, Faculty of Medicine (For Girls), Al-Azhar University, Cairo 11754, Nasr City, Egypt
| | | | - Samy Zaky
- Department of Hepato-gastroenterology and Infectious Diseases, Faculty of Medicine (For Girls), Al-Azhar University, Cairo 11754, Egypt
| | | |
Collapse
|
17
|
Gildea DT, Woo SM, O’Connor CE, Rangnekar AS. COVID-19-Associated Liver Injury. Hepat Med 2023; 15:1-9. [PMID: 36852138 PMCID: PMC9960793 DOI: 10.2147/hmer.s384108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/11/2023] [Indexed: 03/01/2023] Open
Abstract
This review analyzes data regarding liver injury associated with COVID-19 infection. We discuss reported effects on the liver from both COVID-19 and COVID-19 treatment as well as pathophysiology, review the potential role of drug-induced liver injury as an etiology of COVID-19-associated liver injury, and touch on other reports of significant outcomes including COVID-19 cholangiopathy and autoimmune hepatitis. Finally, we review the implications of COVID-19 infection in liver transplant recipients.
Collapse
Affiliation(s)
- Daniel T Gildea
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC, USA,Correspondence: Daniel T Gildea, Tel +1 302-985-7777, Email
| | - Stephanie M Woo
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC, USA
| | | | - Amol S Rangnekar
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
18
|
Schinas G, Polyzou E, Mitropetrou F, Pazionis A, Gogos C, Triantos C, Akinosoglou K. COVID-19 Vaccination in Patients with Chronic Liver Disease. Viruses 2022; 14:v14122778. [PMID: 36560782 PMCID: PMC9785164 DOI: 10.3390/v14122778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccination against SARS-CoV-2 has become a central public health issue, primarily for vulnerable populations such as individuals with Chronic Liver Disease (CLD). Increased COVID-19-related mortality and disease severity has been noted in this subgroup of patients. Severe COVID-19 tends to further deregulate liver function in patients with chronic liver failure or cirrhosis and even reactivate hepatitis in people living with HBV or HCV. In addition, impaired hepatic function leads to several limitations in possible therapeutic interventions. Chronic hepatic dysregulation, along with the underlying cirrhosis-associated immune dysfunction (CAID), leads to a decreased immune response to vaccination that, in turn, may result in reduced efficacy rates and lowered lasting protection. According to current guidelines, timely vaccination and frequent booster shot administration are deemed necessary in this context. Vaccination-related adverse events are mostly mild in nature and similar to those reported in the general population, whereas the incidence of liver injury following vaccination is relatively rare. We aimed to review available evidence and recommendations associated with COVID-19 vaccination in patients with chronic liver disease, and provide insight to current issues and future directions.
Collapse
Affiliation(s)
- Georgios Schinas
- Department of Internal Medicine, University General Hospital of Patras, 26504 Rio, Greece
- Department of Medicine, University of Patras, 26504 Rio, Greece
| | - Eleni Polyzou
- Department of Internal Medicine, University General Hospital of Patras, 26504 Rio, Greece
- Department of Medicine, University of Patras, 26504 Rio, Greece
| | | | | | - Charalambos Gogos
- Department of Internal Medicine, University General Hospital of Patras, 26504 Rio, Greece
- Department of Medicine, University of Patras, 26504 Rio, Greece
| | - Christos Triantos
- Department of Medicine, University of Patras, 26504 Rio, Greece
- Division of Gastroenterology, Department of Internal Medicine, University General Hospital of Patras, 26504 Rio, Greece
- Correspondence: or ; Tel.: +30-6972894651
| | - Karolina Akinosoglou
- Department of Internal Medicine, University General Hospital of Patras, 26504 Rio, Greece
- Department of Medicine, University of Patras, 26504 Rio, Greece
| |
Collapse
|
19
|
Vaccine-Related Autoimmune Hepatitis: Emerging Association with SARS-CoV-2 Vaccination or Coincidence? Vaccines (Basel) 2022; 10:vaccines10122073. [PMID: 36560483 PMCID: PMC9783100 DOI: 10.3390/vaccines10122073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND There is an increasing number of liver injury cases resembling autoimmune hepatitis (AIH) following SARS-CoV-2 vaccination; however, an association has not yet been established. METHODS/MATERIALS A literature review was performed to identify articles regarding the association of AIH with vaccination, emphasizing on SARS-CoV-2 vaccines, and the proposed mechanisms. We then performed a literature search for AIH-like cases following SARS-CoV-2 vaccination, and we evaluated the included cases for AIH diagnosis using simplified diagnostic criteria (SDC), and for vaccination causality using the Naranjo score for adverse drug reactions. RESULTS We identified 51 AIH-like cases following SARS-CoV-2 vaccination. Forty cases (80%) were characterized as "probable", "at least probable", or "definite" for AIH diagnosis according to SDC. Forty cases (78.4%) were characterized as "probable", four (7.8%) as "possible", and three (5.8%) as "definite" for vaccine-related AIH according to the Naranjo score. CONCLUSION SARS-CoV-2 vaccine-related AIH carries several phenotypes and, although most cases resolve, immunosuppressive therapy seems to be necessary. Early diagnosis is mandatory and should be considered in any patient with acute or chronic hepatitis after SARS-CoV-2 vaccination, especially in those with pre-existing liver disease.
Collapse
|
20
|
Zheng H, Zhang T, Xu Y, Lu X, Sang X. Autoimmune hepatitis after COVID-19 vaccination. Front Immunol 2022; 13:1035073. [PMID: 36505482 PMCID: PMC9732229 DOI: 10.3389/fimmu.2022.1035073] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Vaccination is one of the most vigorous ways to intervene in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Cases of autoimmune hepatitis (AIH) after coronavirus disease (COVID-19) vaccination have been increasingly reported. Twenty-seven cases of AIH are summarized in this study, providing emerging evidence of autoimmune reactions in response to various COVID-19 vaccines, including in patients with special disease backgrounds such as primary sclerosing cholangitis (PSC), liver transplantation, and previous hepatitis C virus (HCV) treatment. Molecular mimicry, adjuvants, epitope spreading, bystander activation, X chromosome, and sceptical hepatotropism of SARS-CoV-2 may account for, to some extent, such autoimmune phenomena. Immunosuppressive corticosteroids perform well with or without azathioprine in such post-COVID-19-vaccination AIH. However, determination of the exact mechanism and establishment of causality require further confirmation.
Collapse
|
21
|
Sánchez-Zapardiel E, Alós M, Nozal P, González-Muñoz M, Frauca-Remacha E, Gavilán LB, Quiles MJ, Hierro L, López-Granados E. Humoral and cellular immune responses to Pfizer-BioNTech BNT162b2 SARS-CoV-2 vaccine in adolescents with liver transplantation: Single center experience. Front Immunol 2022; 13:1049188. [PMID: 36505469 PMCID: PMC9727154 DOI: 10.3389/fimmu.2022.1049188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Immune responses to vaccines against severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 are variable. In the absence of disease, youngsters are expected to better react to vaccines than adults. Nevertheless, chronic immunosuppression in transplant recipients may impair their capability to generate protection. We aim to explore immune responses after BNT162b2 SARS-CoV-2 vaccination in our cohort of young liver-transplanted patients. Methods A prospective study of adolescent liver-transplanted patients (n=33) in the long-term follow-up was performed. Immune responses after receiving Pfizer-BioNTech BNT162b2 vaccine were analyzed at two time-points: baseline and 30 days after the second dose. Humoral responses were measured by fluoroenzyme-immunoassay and T-cell responses by interferon-γ-release assay. Post-vaccine coronavirus disease (COVID-19) events were recorded by a survey. Results Pre-vaccine SARS-CoV-2-specific antibodies were undetectable in 27/32 (84.4%), negative/indeterminate in 3/32 (9.4%) and positive in 2/32 (6.3%) patients. Cellular responses at baseline were negative in 12/18 (66.6%), positive in 3/18 (16.6%) and indeterminate in 3/18 (16.6%) recipients. None of the baseline positives recalled any symptoms. Post-vaccine antibodies were detected in all patients and 92.6% showed levels >816 BAU/mL. Twenty (71.4%) recipients had positive T-cell responses. Regarding post-vaccine SARS-Cov-2 infection, 10 (30.3%) patients reported COVID-19 without hospitalization and 21 (63.6%) did not notify any infection. Negative and positive cell-response groups after vaccination showed statistically significant differences regarding COVID-19 cases (62.5% vs 22.2%, respectively; p=0.046). Conclusions Adolescents and young adults with liver transplantation responded to SARS-Cov-2 vaccine, generating both humoral and cellular responses. Recipients developing cellular responses after vaccination had a lower incidence of COVID-19.
Collapse
Affiliation(s)
- Elena Sánchez-Zapardiel
- Department of Immunology, La Paz University Hospital, Madrid, Spain,Lymphocyte Pathophysiology in Immunodeficiency Group, La Paz Biomedical Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain,European Reference Network (ERN) Transplant-Child, Madrid, Spain,*Correspondence: Elena Sánchez-Zapardiel,
| | - María Alós
- European Reference Network (ERN) Transplant-Child, Madrid, Spain,Department of Pediatric Hepatology, La Paz University Hospital, Madrid, Spain
| | - Pilar Nozal
- Department of Immunology, La Paz University Hospital, Madrid, Spain,Diagnosis and Treatment of Pathologies Associated with Alterations of the Complement System Group, La Paz Biomedical Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain,Rare Diseases Networking Biomedical Research Centre (CIBERER U754), Madrid, Spain
| | - Miguel González-Muñoz
- Department of Immunology, La Paz University Hospital, Madrid, Spain,Patient Safety and Quality Research Group, La Paz Biomedical Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Esteban Frauca-Remacha
- European Reference Network (ERN) Transplant-Child, Madrid, Spain,Department of Pediatric Hepatology, La Paz University Hospital, Madrid, Spain
| | | | - María José Quiles
- Department of Pediatric Hepatology, La Paz University Hospital, Madrid, Spain
| | - Loreto Hierro
- European Reference Network (ERN) Transplant-Child, Madrid, Spain,Department of Pediatric Hepatology, La Paz University Hospital, Madrid, Spain
| | - Eduardo López-Granados
- Department of Immunology, La Paz University Hospital, Madrid, Spain,Lymphocyte Pathophysiology in Immunodeficiency Group, La Paz Biomedical Research Institute (IdiPAZ), La Paz University Hospital, Madrid, Spain,European Reference Network (ERN) Transplant-Child, Madrid, Spain,Rare Diseases Networking Biomedical Research Centre (CIBERER U767), Madrid, Spain
| |
Collapse
|