1
|
Nguyen D, Wang G, Wafa T, Fitzgerald T, Gu Y. The medial entorhinal cortex encodes multisensory spatial information. Cell Rep 2024; 43:114813. [PMID: 39395171 PMCID: PMC11539853 DOI: 10.1016/j.celrep.2024.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
Animals employ spatial information in multisensory modalities to navigate their natural environments. However, it is unclear whether the brain encodes such information in separate cognitive maps or integrates it all into a single, universal map. We address this question in the microcircuit of the medial entorhinal cortex (MEC), a cognitive map of space. Using cellular-resolution calcium imaging, we examine the MEC of mice navigating virtual reality tracks, where visual and auditory cues provide comparable spatial information. We uncover two cell types: "unimodality cells" and "multimodality cells." The unimodality cells specifically represent either auditory or visual spatial information. They are anatomically intermingled and maintain sensory preferences across multiple tracks and behavioral states. The multimodality cells respond to both sensory modalities, with their responses shaped differentially by auditory or visual information. Thus, the MEC enables accurate spatial encoding during multisensory navigation by computing spatial information in different sensory modalities and generating distinct maps.
Collapse
Affiliation(s)
- Duc Nguyen
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Garret Wang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Talah Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Gu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Reinshagen A. Grid cells: the missing link in understanding Parkinson's disease? Front Neurosci 2024; 18:1276714. [PMID: 38389787 PMCID: PMC10881698 DOI: 10.3389/fnins.2024.1276714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) are complex and not fully understood, and the box-and-arrow model among other current models present significant challenges. This paper explores the potential role of the allocentric brain and especially its grid cells in several PD motor symptoms, including bradykinesia, kinesia paradoxa, freezing of gait, the bottleneck phenomenon, and their dependency on cueing. It is argued that central hubs, like the locus coeruleus and the pedunculopontine nucleus, often narrowly interpreted in the context of PD, play an equally important role in governing the allocentric brain as the basal ganglia. Consequently, the motor and secondary motor (e.g., spatially related) symptoms of PD linked with dopamine depletion may be more closely tied to erroneous computation by grid cells than to the basal ganglia alone. Because grid cells and their associated central hubs introduce both spatial and temporal information to the brain influencing velocity perception they may cause bradykinesia or hyperkinesia as well. In summary, PD motor symptoms may primarily be an allocentric disturbance resulting from virtual faulty computation by grid cells revealed by dopamine depletion in PD.
Collapse
|
3
|
Cheng HY, Overington DW, Jeffery KJ. A configural context signal simultaneously but separably drives positioning and orientation of hippocampal place fields. Hippocampus 2024; 34:73-87. [PMID: 38041644 PMCID: PMC10952416 DOI: 10.1002/hipo.23589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Effective self-localization requires that the brain can resolve ambiguities in incoming sensory information arising from self-similarities (symmetries) in the environment structure. We investigated how place cells use environmental cues to resolve the ambiguity of a rotationally symmetric environment, by recording from hippocampal CA1 in rats exploring a "2-box." This apparatus comprises two adjacent rectangular compartments, identical but with directionally opposed layouts (cue card at one end and central connecting doorway) and distinguished by their odor contexts (lemon vs. vanilla). Despite the structural and visual rotational symmetry of the boxes, no place cells rotated their place fields. The majority changed their firing fields (remapped) between boxes but some repeated them, maintaining a translational symmetry and thus adopting a relationship to the layout that was conditional on the odor. In general, the place field ensemble maintained a stable relationship to environment orientation as defined by the odors, but sometimes the whole ensemble rotated its firing en bloc, decoupling from the odor context cues. While the individual elements of these observations-odor remapping, place field repetition, ensemble rotation, and decoupling from context-have been reported in isolation, the combination in the one experiment is incompletely explained within current models. We redress this by proposing a model in which odor cues enter into a three-way association with layout cues and head direction, creating a configural context signal that facilitates two separate processes: place field orientation and place field positioning. This configuration can subsequently still function in the absence of one of its components, explaining the ensemble decoupling from odor. We speculate that these interactions occur in retrosplenial cortex, because it has previously been implicated in context processing, and all the relevant signals converge here.
Collapse
Affiliation(s)
- Han Yin Cheng
- Institute of Behavioural Neuroscience, Division of Psychology & Language SciencesUniversity College LondonLondonUK
- Present address:
Department of Psychological ScienceUniversity of VermontBurlingtonVermontUSA
| | - Dorothy W. Overington
- Institute of Behavioural Neuroscience, Division of Psychology & Language SciencesUniversity College LondonLondonUK
- Present address:
The Purple AgencyBasingstokeUK
| | - Kate J. Jeffery
- Institute of Behavioural Neuroscience, Division of Psychology & Language SciencesUniversity College LondonLondonUK
- School of Psychology and NeuroscienceCollege of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUK
| |
Collapse
|
4
|
Nguyen D, Wang G, Gu Y. The medial entorhinal cortex encodes multisensory spatial information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574924. [PMID: 38313299 PMCID: PMC10836072 DOI: 10.1101/2024.01.09.574924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Animals employ spatial information in multisensory modalities to navigate their natural environments. However, it is unclear whether the brain encodes such information in separate cognitive maps or integrates all into a single, universal map. We addressed this question in the microcircuit of the medial entorhinal cortex (MEC), a cognitive map of space. Using cellular-resolution calcium imaging, we examined the MEC of mice navigating virtual reality tracks, where visual and auditory cues provided comparable spatial information. We uncovered two cell types: "unimodality cells" and "multimodality cells". The unimodality cells specifically represent either auditory or visual spatial information. They are anatomically intermingled and maintain sensory preferences across multiple tracks and behavioral states. The multimodality cells respond to both sensory modalities with their responses shaped differentially by auditory and visual information. Thus, the MEC enables accurate spatial encoding during multisensory navigation by computing spatial information in different sensory modalities and generating distinct maps.
Collapse
Affiliation(s)
- Duc Nguyen
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Current address: Center of Neural Science, New York University, New York, NY, USA
| | - Garret Wang
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Gu
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Kelley C, Antic SD, Carnevale NT, Kubie JL, Lytton WW. Simulations predict differing phase responses to excitation vs. inhibition in theta-resonant pyramidal neurons. J Neurophysiol 2023; 130:910-924. [PMID: 37609720 PMCID: PMC10648938 DOI: 10.1152/jn.00160.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
Rhythmic activity is ubiquitous in neural systems, with theta-resonant pyramidal neurons integrating rhythmic inputs in many cortical structures. Impedance analysis has been widely used to examine frequency-dependent responses of neuronal membranes to rhythmic inputs, but it assumes that the neuronal membrane is a linear system, requiring the use of small signals to stay in a near-linear regime. However, postsynaptic potentials are often large and trigger nonlinear mechanisms (voltage-gated ion channels). The goals of this work were to 1) develop an analysis method to evaluate membrane responses in this nonlinear domain and 2) explore phase relationships between rhythmic stimuli and subthreshold and spiking membrane potential (Vmemb) responses in models of theta-resonant pyramidal neurons. Responses in these output regimes were asymmetrical, with different phase shifts during hyperpolarizing and depolarizing half-cycles. Suprathreshold theta-rhythmic stimuli produced nonstationary Vmemb responses. Sinusoidal inputs produced "phase retreat": action potentials occurred progressively later in cycles of the input stimulus, resulting from adaptation. Sinusoidal current with increasing amplitude over cycles produced "phase advance": action potentials occurred progressively earlier. Phase retreat, phase advance, and subthreshold phase shifts were modulated by multiple ion channel conductances. Our results suggest differential responses of cortical neurons depending on the frequency of oscillatory input, which will play a role in neuronal responses to shifts in network state. We hypothesize that intrinsic cellular properties complement network properties and contribute to in vivo phase-shift phenomena such as phase precession, seen in place and grid cells, and phase roll, also observed in hippocampal CA1 neurons.NEW & NOTEWORTHY We augmented electrical impedance analysis to characterize phase shifts between large-amplitude current stimuli and nonlinear, asymmetric membrane potential responses. We predict different frequency-dependent phase shifts in response excitation vs. inhibition, as well as shifts in spike timing over multiple input cycles, in theta-resonant pyramidal neurons. We hypothesize that these effects contribute to navigation-related phenomena such as phase precession and phase roll. Our neuron-level hypothesis complements, rather than falsifies, prior network-level explanations of these phenomena.
Collapse
Affiliation(s)
- Craig Kelley
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Srdjan D Antic
- Institute of Systems Genomics, Neuroscience Department, University of Connecticut Health, Farmington, Connecticut, United States
| | - Nicholas T Carnevale
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States
| | - John L Kubie
- The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - William W Lytton
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Neurology, Kings County Hospital Center, Brooklyn, New York, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, United States
| |
Collapse
|
6
|
Saleem AB, Busse L. Interactions between rodent visual and spatial systems during navigation. Nat Rev Neurosci 2023:10.1038/s41583-023-00716-7. [PMID: 37380885 DOI: 10.1038/s41583-023-00716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Many behaviours that are critical for animals to survive and thrive rely on spatial navigation. Spatial navigation, in turn, relies on internal representations about one's spatial location, one's orientation or heading direction and the distance to objects in the environment. Although the importance of vision in guiding such internal representations has long been recognized, emerging evidence suggests that spatial signals can also modulate neural responses in the central visual pathway. Here, we review the bidirectional influences between visual and navigational signals in the rodent brain. Specifically, we discuss reciprocal interactions between vision and the internal representations of spatial position, explore the effects of vision on representations of an animal's heading direction and vice versa, and examine how the visual and navigational systems work together to assess the relative distances of objects and other features. Throughout, we consider how technological advances and novel ethological paradigms that probe rodent visuo-spatial behaviours allow us to advance our understanding of how brain areas of the central visual pathway and the spatial systems interact and enable complex behaviours.
Collapse
Affiliation(s)
- Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Laura Busse
- Division of Neuroscience, Faculty of Biology, LMU Munich, Munich, Germany.
- Bernstein Centre for Computational Neuroscience Munich, Munich, Germany.
| |
Collapse
|
7
|
Dorman R, Bos JJ, Vinck MA, Marchesi P, Fiorilli J, Lorteije JAM, Reiten I, Bjaalie JG, Okun M, Pennartz CMA. Spike-based coupling between single neurons and populations across rat sensory cortices, perirhinal cortex, and hippocampus. Cereb Cortex 2023; 33:8247-8264. [PMID: 37118890 PMCID: PMC10425201 DOI: 10.1093/cercor/bhad111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/30/2023] Open
Abstract
Cortical computations require coordination of neuronal activity within and across multiple areas. We characterized spiking relationships within and between areas by quantifying coupling of single neurons to population firing patterns. Single-neuron population coupling (SNPC) was investigated using ensemble recordings from hippocampal CA1 region and somatosensory, visual, and perirhinal cortices. Within-area coupling was heterogeneous across structures, with area CA1 showing higher levels than neocortical regions. In contrast to known anatomical connectivity, between-area coupling showed strong firing coherence of sensory neocortices with CA1, but less with perirhinal cortex. Cells in sensory neocortices and CA1 showed positive correlations between within- and between-area coupling; these were weaker for perirhinal cortex. All four areas harbored broadcasting cells, connecting to multiple external areas, which was uncorrelated to within-area coupling strength. When examining correlations between SNPC and spatial coding, we found that, if such correlations were significant, they were negative. This result was consistent with an overall preservation of SNPC across different brain states, suggesting a strong dependence on intrinsic network connectivity. Overall, SNPC offers an important window on cell-to-population synchronization in multi-area networks. Instead of pointing to specific information-coding functions, our results indicate a primary function of SNPC in dynamically organizing communication in systems composed of multiple, interconnected areas.
Collapse
Affiliation(s)
- Reinder Dorman
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jeroen J Bos
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Martin A Vinck
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Plank Society, 60528 Frankfurt, Germany
| | - Pietro Marchesi
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Julien Fiorilli
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jeanette A M Lorteije
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Ingrid Reiten
- Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Michael Okun
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Cyriel M A Pennartz
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
A proposed attention-based model for spatial memory formation and retrieval. Cogn Process 2022; 24:199-212. [PMID: 36576704 DOI: 10.1007/s10339-022-01121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Animals use sensory information and memory to build internal representations of space. It has been shown that such representations extend beyond the geometry of an environment and also encode rich sensory experiences usually referred to as context. In mammals, contextual inputs from sensory cortices appear to be converging on the hippocampus as a key area for spatial representations and memory. How metric and external sensory inputs (e.g., visual context) are combined into a coherent and stable place representation is not fully understood. Here, I review the evidence of attentional effects along the ventral visual pathway and in the medial temporal lobe and propose an attention-based model for the integration of visual context in spatial representations. I further suggest that attention-based retrieval of spatial memories supports a feedback mechanism that allows consolidation of old memories and new sensory experiences related to the same place, thereby contributing to the stability of spatial representations. The resulting model has the potential to generate new hypotheses to explain complex responses of spatial cells such as place cells in the hippocampus.
Collapse
|
9
|
Koch C, Baeuchl C, Glöckner F, Riedel P, Petzold J, Smolka MN, Li SC, Schuck NW. L-DOPA enhances neural direction signals in younger and older adults. Neuroimage 2022; 264:119670. [PMID: 36243268 PMCID: PMC9771830 DOI: 10.1016/j.neuroimage.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Previous studies indicate a role of dopamine in spatial navigation. Although neural representations of direction are an important aspect of spatial cognition, it is not well understood whether dopamine directly affects these representations, or only impacts other aspects of spatial brain function. Moreover, both dopamine and spatial cognition decline sharply during age, raising the question which effect dopamine has on directional signals in the brain of older adults. To investigate these questions, we used a double-blind cross-over L-DOPA/Placebo intervention design in which 43 younger and 37 older adults navigated in a virtual spatial environment while undergoing functional magnetic resonance imaging (fMRI). We studied the effect of L-DOPA, a dopamine precursor, on fMRI activation patterns that encode spatial walking directions that have previously been shown to lose specificity with age. This was done in predefined regions of interest, including the early visual cortex, retrosplenial cortex, and hippocampus. Classification of brain activation patterns associated with different walking directions was improved across all regions following L-DOPA administration, suggesting that dopamine broadly enhances neural representations of direction. No evidence for differences between regions was found. In the hippocampus these results were found in both age groups, while in the retrosplenial cortex they were only observed in younger adults. Taken together, our study provides evidence for a link between dopamine and the specificity of neural responses during spatial navigation. SIGNIFICANCE STATEMENT: The sense of direction is an important aspect of spatial navigation, and neural representations of direction can be found throughout a large network of space-related brain regions. But what influences how well these representations track someone's true direction? Using a double-blind cross-over L-DOPA/Placebo intervention design, we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction selective neural representations in the human hippocampus and retrosplenial cortex. Interestingly, the effect of L-DOPA was either equally present or even smaller in older adults, despite the well-known age related decline of dopamine. These results provide novel insights into how dopamine shapes the neural representations that underlie spatial navigation.
Collapse
Affiliation(s)
- Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course, Max Planck Institute for Human Development, Berlin, Germany.
| | - Christian Baeuchl
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Franka Glöckner
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany
| | - Philipp Riedel
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Sikora J, Di Bisceglie Caballero S, Reiss D, Kieffer BL, Paoletti P, Jacob PY, Ouagazzal AM. Zn2+ inhibits spatial memory and hippocampal place cell representation through high-affinity binding to the NMDA receptor GluN2A subunit. iScience 2022; 25:105355. [DOI: 10.1016/j.isci.2022.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/11/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022] Open
|
11
|
Mo F, Xu Z, Yang G, Fan P, Wang Y, Lu B, Liu J, Wang M, Jing L, Xu W, Li M, Shan J, Song Y, Cai X. Single-neuron detection of place cells remapping in short-term memory using motion microelectrode arrays. Biosens Bioelectron 2022; 217:114726. [PMID: 36174358 DOI: 10.1016/j.bios.2022.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Place cells establish rapid mapping relationships between the external environment and themselves in a new context. However, the mapping relationships of environmental cues to place cells in short-term memory is still completely unknown. In this work, we designed a silicon-based motion microelectrode array (mMEA) and an implantation device to record electrophysiological signals of place cells in CA1, CA3, and DG regions in the hippocampus of ten mice in motion, and investigated the corresponding place fields under distal or local cues in just a few minutes. The mMEA can expand the detection area and greatly lower the motion noise. Finding and recording place cells of moving mice in short-term memory is made possible by the mMEA. The place-related cells were found for the first time. Unlike place cells, which only fire in a particular position of the environment, place-related cells fire in numerous areas of the environment. Furthermore, place cells in the CA1 and CA3 have the most stable place memory for time-preferred single cues, and they fire in concert with place-related cells during short-term memory dynamics, whereas place cells in the DG regions have overlapping and unstable place memory in a multi-cue context. These results demonstrate the consistency of place cells in CA1 and CA3 and reflect their different roles in spatial memory processing during familiarization with new environments. The mMEA provides a platform for studying the place cells of short-term memory.
Collapse
Affiliation(s)
- Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Lu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Shan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Del Rio-Bermudez C, Blumberg MS. Sleep as a window on the sensorimotor foundations of the developing hippocampus. Hippocampus 2022; 32:89-97. [PMID: 33945190 PMCID: PMC9118132 DOI: 10.1002/hipo.23334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/21/2021] [Indexed: 02/03/2023]
Abstract
The hippocampal formation plays established roles in learning, memory, and related cognitive functions. Recent findings also suggest that the hippocampus integrates sensory feedback from self-generated movements to modulate ongoing motor responses in a changing environment. Such findings support the view of Bland and Oddie (Behavioural Brain Research, 2001, 127, 119-136) that the hippocampus is a site of sensorimotor integration. In further support of this view, we review neurophysiological evidence in developing rats that hippocampal function is built on a sensorimotor foundation and that this foundation is especially evident early in development. Moreover, at those ages when the hippocampus is first establishing functional connectivity with distant sensory and motor structures, that connectivity is preferentially expressed during periods of active (or REM) sleep. These findings reinforce the notion that sleep, as the predominant state of early infancy, provides a critical context for sensorimotor development, including development of the hippocampus and its associated network.
Collapse
Affiliation(s)
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Impaired remapping of social relationships in older adults. Sci Rep 2021; 11:21910. [PMID: 34753971 PMCID: PMC8578667 DOI: 10.1038/s41598-021-01258-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022] Open
Abstract
Social relationships are a central aspect of our everyday life, yet our ability to change established social relationships is an under-investigated topic. Here, we use the concept of cognitive mapping to investigate the plasticity of social relationships in younger and older adults. We describe social relationships within a 'social space', defined as a two-dimensional grid composed of the axis 'power' and 'affiliation', and investigate it using a 3D virtual environment with interacting avatars. We show that participants remap dimensions in 'social space' when avatars show conflicting behavior compared to consistent behavior and that, while older adults show similar updating behavior than younger adults, they show a distinct reduction in remapping social space. Our data provide first evidence that older adults show more rigid social behavior when avatars change their behavior in the dimensions of power and affiliation, which may explain age-related social behavior differences in everyday life.
Collapse
|
14
|
|
15
|
Radvansky BA, Oh JY, Climer JR, Dombeck DA. Behavior determines the hippocampal spatial mapping of a multisensory environment. Cell Rep 2021; 36:109444. [PMID: 34293330 PMCID: PMC8382043 DOI: 10.1016/j.celrep.2021.109444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/27/2021] [Accepted: 07/01/2021] [Indexed: 12/01/2022] Open
Abstract
Animals behave in multisensory environments guided by various modalities of spatial information. Mammalian navigation engages a cognitive map of space in the hippocampus. Yet it is unknown whether and how this map incorporates multiple modalities of spatial information. Here, we establish two behavioral tasks in which mice navigate the same multisensory virtual environment by either pursuing a visual landmark or tracking an odor gradient. These tasks engage different proportions of visuo-spatial and olfacto-spatial mapping CA1 neurons and different population-level representations of each sensory-spatial coordinate. Switching between tasks results in global remapping. In a third task, mice pursue a target of varying sensory modality, and this engages modality-invariant neurons mapping the abstract behaviorally relevant coordinate irrespective of its physical modality. These findings demonstrate that the hippocampus does not necessarily map space as one coherent physical variable but as a combination of sensory and abstract reference frames determined by the subject's behavioral goal.
Collapse
Affiliation(s)
- Brad A Radvansky
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Jun Young Oh
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Jason R Climer
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
de Deus JL, Amorim MR, Ribeiro AB, Barcellos-Filho PCG, Ceballos CC, Branco LGS, Cunha AOS, Leão RM. Loss of Brain-Derived Neurotrophic Factor Mediates Inhibition of Hippocampal Long-Term Potentiation by High-Intensity Sound. Cell Mol Neurobiol 2021; 41:751-763. [PMID: 32445041 DOI: 10.1007/s10571-020-00881-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/16/2020] [Indexed: 01/15/2023]
Abstract
Exposure to noise produces cognitive and emotional disorders, and recent studies have shown that auditory stimulation or deprivation affects hippocampal function. Previously, we showed that exposure to high-intensity sound (110 dB, 1 min) strongly inhibits Schaffer-CA1 long-term potentiation (LTP). Here we investigated possible mechanisms involved in this effect. We found that exposure to 110 dB sound activates c-fos expression in hippocampal CA1 and CA3 neurons. Although sound stimulation did not affect glutamatergic or GABAergic neurotransmission in CA1, it did depress the level of brain-derived neurotrophic factor (BDNF), which is involved in promoting hippocampal synaptic plasticity. Moreover, perfusion of slices with BDNF rescued LTP in animals exposed to sound stimulation, whereas BDNF did not affect LTP in sham-stimulated rats. Furthermore, LM22A4, a TrkB receptor agonist, also rescued LTP from sound-stimulated animals. Our results indicate that depression of hippocampal BDNF mediates the inhibition of LTP produced by high-intensity sound stimulation.
Collapse
Affiliation(s)
- Júnia L de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Mateus R Amorim
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Aline B Ribeiro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Procópio C G Barcellos-Filho
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - César C Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luiz Guilherme S Branco
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-904, Brazil
| | - Alexandra O S Cunha
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Ricardo M Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
17
|
Wang J, Yan R, Tang H. Multi-Scale Extension in an Entorhinal-Hippocampal Model for Cognitive Map Building. Front Neurorobot 2021; 14:592057. [PMID: 33519410 PMCID: PMC7840836 DOI: 10.3389/fnbot.2020.592057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Neuroscience research shows that, by relying on internal spatial representations provided by the hippocampus and entorhinal cortex, mammals are able to build topological maps of environments and navigate. Taking inspiration from mammals' spatial cognition mechanism, entorhinal-hippocampal cognitive systems have been proposed for robots to build cognitive maps. However, path integration and vision processing are time-consuming, and the existing model of grid cells is hard to achieve in terms of adaptive multi-scale extension for different environments, resulting in the lack of viability for real environments. In this work, an optimized dynamical model of grid cells is built for path integration in which recurrent weight connections between grid cells are parameterized in a more optimized way and the non-linearity of sigmoidal neural transfer function is utilized to enhance grid cell activity packets. Grid firing patterns with specific spatial scales can thus be accurately achieved for the multi-scale extension of grid cells. In addition, a hierarchical vision processing mechanism is proposed for speeding up loop closure detection. Experiment results on the robotic platform demonstrate that our proposed entorhinal-hippocampal model can successfully build cognitive maps, reflecting the robot's spatial experience and environmental topological structures.
Collapse
Affiliation(s)
- Jiru Wang
- College of Computer Science, Sichuan University, Chengdu, China
| | - Rui Yan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Huajin Tang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Seoane LF. Fate of Duplicated Neural Structures. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E928. [PMID: 33286697 PMCID: PMC7597184 DOI: 10.3390/e22090928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/25/2023]
Abstract
Statistical physics determines the abundance of different arrangements of matter depending on cost-benefit balances. Its formalism and phenomenology percolate throughout biological processes and set limits to effective computation. Under specific conditions, self-replicating and computationally complex patterns become favored, yielding life, cognition, and Darwinian evolution. Neurons and neural circuits sit at a crossroads between statistical physics, computation, and (through their role in cognition) natural selection. Can we establish a statistical physics of neural circuits? Such theory would tell what kinds of brains to expect under set energetic, evolutionary, and computational conditions. With this big picture in mind, we focus on the fate of duplicated neural circuits. We look at examples from central nervous systems, with stress on computational thresholds that might prompt this redundancy. We also study a naive cost-benefit balance for duplicated circuits implementing complex phenotypes. From this, we derive phase diagrams and (phase-like) transitions between single and duplicated circuits, which constrain evolutionary paths to complex cognition. Back to the big picture, similar phase diagrams and transitions might constrain I/O and internal connectivity patterns of neural circuits at large. The formalism of statistical physics seems to be a natural framework for this worthy line of research.
Collapse
Affiliation(s)
- Luís F. Seoane
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CNB), CSIC, C/Darwin 3, 28049 Madrid, Spain;
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
19
|
Natale S, Anzilotti S, Petrozziello T, Ciccone R, Serani A, Calabrese L, Severino B, Frecentese F, Secondo A, Pannaccione A, Fiorino F, Cuomo O, Vinciguerra A, D'Esposito L, Sadile AG, Cabib S, Di Renzo G, Annunziato L, Molinaro P. Genetic Up-Regulation or Pharmacological Activation of the Na +/Ca 2+ Exchanger 1 (NCX1) Enhances Hippocampal-Dependent Contextual and Spatial Learning and Memory. Mol Neurobiol 2020; 57:2358-2376. [PMID: 32048166 DOI: 10.1007/s12035-020-01888-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 01/23/2023]
Abstract
The Na+/Ca2+ exchanger 1 (NCX1) participates in the maintenance of neuronal Na+ and Ca2+ homeostasis, and it is highly expressed at synapse level of some brain areas involved in learning and memory processes, including the hippocampus, cortex, and amygdala. Furthermore, NCX1 increases Akt1 phosphorylation and enhances glutamate-mediated Ca2+ influx during depolarization in hippocampal and cortical neurons, two processes involved in learning and memory mechanisms. We investigated whether the modulation of NCX1 expression/activity might influence learning and memory processes. To this aim, we used a knock-in mouse overexpressing NCX1 in hippocampal, cortical, and amygdala neurons (ncx1.4over) and a newly synthesized selective NCX1 stimulating compound, named CN-PYB2. Both ncx1.4over and CN-PYB2-treated mice showed an amelioration in spatial learning performance in Barnes maze task, and in context-dependent memory consolidation after trace fear conditioning. On the other hand, these mice showed no improvement in novel object recognition task which is mainly dependent on non-spatial memory and displayed an increase in the active phosphorylated CaMKIIα levels in the hippocampus. Interestingly, both of these mice showed an increased level of context-dependent anxiety.Altogether, these results demonstrate that neuronal NCX1 participates in spatial-dependent hippocampal learning and memory processes.
Collapse
Affiliation(s)
- Silvia Natale
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Lucrezia Calabrese
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, "Federico II" University of Naples, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | - Lucia D'Esposito
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Simona Cabib
- Department of Psychology and Centro "Daniel Bovet", Sapienza University, 00185, Rome, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy
| | | | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
20
|
França TFA, Monserrat JM. Hippocampal place cells are topographically organized, but physical space has nothing to do with it. Brain Struct Funct 2019; 224:3019-3029. [DOI: 10.1007/s00429-019-01968-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
|
21
|
Hughes S, Celikel T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective. Bioessays 2019; 41:e1900088. [DOI: 10.1002/bies.201900088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samantha Hughes
- HAN BioCentreHAN University of Applied Sciences Nijmegen 6525EM The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain Cognition and BehaviourRadboud University Nijmegen 6525AJ The Netherlands
| |
Collapse
|
22
|
França TFA, Monserrat JM. How the Hippocampus Represents Memories: Making Sense of Memory Allocation Studies. Bioessays 2018; 40:e800068. [PMID: 30176065 DOI: 10.1002/bies.201800068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/15/2018] [Indexed: 01/11/2023]
Abstract
In recent years there has been a wealth of studies investigating how memories are allocated in the hippocampus. Some of those studies showed that it is possible to manipulate the identity of neurons recruited to represent a given memory without affecting the memory's behavioral expression. Those findings raised questions about how the hippocampus represents memories, with some researchers arguing that hippocampal neurons do not represent fixed stimuli. Herein, an alternative hypothesis is argued. Neurons in high-order brain regions can be tuned to multiple dimensions, forming complex, abstract representations. It is argued that such complex receptive fields allow those neurons to show some flexibility in their responses while still representing relatively fixed sets of stimuli. Moreover, it is pointed out that changes induced by artificial manipulation of cell assemblies are not completely redundant-the observed behavioral redundancy does not imply cognitive redundancy, as different, but similar, memories may induce the same behavior.
Collapse
Affiliation(s)
- Thiago F A França
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - José M Monserrat
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
|
24
|
Galloway CR, Ravipati K, Singh S, Lebois EP, Cohen RM, Levey AI, Manns JR. Hippocampal place cell dysfunction and the effects of muscarinic M 1 receptor agonism in a rat model of Alzheimer's disease. Hippocampus 2018; 28:568-585. [PMID: 29742799 DOI: 10.1002/hipo.22961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/02/2018] [Accepted: 05/06/2018] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that disproportionately impacts memory and the hippocampus. However, it is unclear how AD pathology influences the activity of surviving neurons in the hippocampus to contribute to the memory symptoms in AD. One well-understood connection between spatial memory and neuronal activity in healthy brains is the activity of place cells, neurons in the hippocampus that fire preferentially in a specific location of a given environment (the place field of the place cell). In the present study, place cells were recorded from the hippocampus in a recently-developed rat model of AD (Tg-F344 AD) at an age (12-20 months) at which the AD rats showed marked spatial memory deficits. Place cells in the CA2 and CA3 pyramidal regions of the hippocampus in AD rats showed sharply reduced spatial fidelity relative to wild-type (WT) rats. In contrast, spiking activity of place cells recorded in region CA1 in AD rats showed good spatial fidelity that was similar to CA1 place cells in WT rats. Oral administration of the M1 muscarinic acetylcholine receptor agonist VU0364572 impacted place cell firing rates in CA1 and CA2/3 hippocampal regions, but did not improve the spatial fidelity of CA2/3 hippocampal place cells in AD rats. The results indicated that, to the extent the spatial memory impairment in AD rats was attributable to hippocampal dysfunction, the memory impairment was more attributable to dysfunction in hippocampal regions CA2 and CA3 rather than CA1.
Collapse
Affiliation(s)
| | - Kaushik Ravipati
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Georgia
| | - Suyashi Singh
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Georgia
| | - Evan P Lebois
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Robert M Cohen
- Department of Psychiatry, Emory University, Atlanta, Georgia
| | - Allan I Levey
- Department of Neurology, Emory University, Atlanta, Georgia
| | - Joseph R Manns
- Department of Psychology, Emory University, Atlanta, Georgia
| |
Collapse
|
25
|
Abstract
Across three experiments, we examined the cuing properties of metric (distance and direction) and nonmetric (lighting) cues in different tasks. In Experiment 1, rats were trained on a response problem in a T-maze, followed by four reversals. Rats that experienced a change in maze orientation (Direction group) or a change in the length of the start arm (Distance group) across reversals showed facilitation of reversal learning relative to a group that experienced changes in room lighting across reversals. In Experiment 2, rats learned a discrimination task more readily when distance or direction cues were used than when light cues were used as the discriminative stimuli. In Experiment 3, performance on a go/no-go task was equivalent using both direction and lighting cues. The successful use of both metric and nonmetric cues in the go/no-go task indicates that rats are sensitive to both types of cues and that the usefulness of different cues is dependent on the nature of the task.
Collapse
|
26
|
Wang N, Gan X, Liu Y, Xiao Z. Balanced Noise-Evoked Excitation and Inhibition in Awake Mice CA3. Front Physiol 2017; 8:931. [PMID: 29209230 PMCID: PMC5702325 DOI: 10.3389/fphys.2017.00931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/02/2017] [Indexed: 11/13/2022] Open
Abstract
The hippocampus is known as a neuronal structure involved in learning, memory and spatial navigation using multi-sensory cues. However, the basic features of its response to acoustic stimuli without any behavioral tasks (conditioning) remains poorly studied. Here, we investigated the CA3 response to auditory stimuli using in vivo loose-patch recordings in awake and anesthetized C57 mice. Different acoustic stimuli in addition to broadband noise such as click, FM sound and pure tone were applied to test the response of CA3 in awake animals. It was found that the wakefulness of the animal is important for the recorded neurons to respond. The CA3 neurons showed a stronger response to broadband noise rather than the other type of stimuli which suggested that auditory information arrived at CA3 via broadband pathways. Finally, we investigated the excitatory and inhibitory inputs to CA3 neurons by using in vivo whole-cell voltage-clamp techniques with the membrane potential holding at −70 and 0 mV, respectively. In awake animals, the excitatory and inhibitory inputs CA3 neurons receive induced by noise are balanced by showing stable intervals and proportional changes of their latencies and peak amplitudes as a function of the stimulation intensities.
Collapse
Affiliation(s)
- Ningqian Wang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiong Gan
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yun Liu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Grieves RM, Jeffery KJ. The representation of space in the brain. Behav Processes 2017; 135:113-131. [DOI: 10.1016/j.beproc.2016.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022]
|
28
|
Hok V, Poucet B, Duvelle É, Save É, Sargolini F. Spatial cognition in mice and rats: similarities and differences in brain and behavior. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 7:406-421. [PMID: 27582415 DOI: 10.1002/wcs.1411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 01/05/2023]
Abstract
The increasing use of mice models in cognitive tasks that were originally designed for rats raises crucial questions about cross-species comparison in the study of spatial cognition. The present review focuses on the major neuroethological differences existing between mice and rats, with particular attention given to the neurophysiological basis of space coding. While little difference is found in the basic properties of space representation in these two species, it appears that the stability of this representation changes more drastically over time in mice than in rats. We consider several hypotheses dealing with attentional, perceptual, and genetic aspects and offer some directions for future research that might help in deciphering hippocampal function in learning and memory processes. WIREs Cogn Sci 2016, 7:406-421. doi: 10.1002/wcs.1411 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Vincent Hok
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University, Marseille, France.,Fédération 3C, CNRS and Aix-Marseille University, Marseille, France
| | - Bruno Poucet
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University, Marseille, France. , .,Fédération 3C, CNRS and Aix-Marseille University, Marseille, France. ,
| | - Éléonore Duvelle
- Faculty of Brain Sciences, UCL Psychology and Language Sciences, London, UK
| | - Étienne Save
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University, Marseille, France.,Fédération 3C, CNRS and Aix-Marseille University, Marseille, France
| | - Francesca Sargolini
- Laboratory of Cognitive Neuroscience, CNRS and Aix-Marseille University, Marseille, France.,Fédération 3C, CNRS and Aix-Marseille University, Marseille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
29
|
Burt de Perera T, Holbrook RI, Davis V. The Representation of Three-Dimensional Space in Fish. Front Behav Neurosci 2016; 10:40. [PMID: 27014002 PMCID: PMC4781870 DOI: 10.3389/fnbeh.2016.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/22/2016] [Indexed: 11/25/2022] Open
Abstract
In mammals, the so-called “seat of the cognitive map” is located in place cells within the hippocampus. Recent work suggests that the shape of place cell fields might be defined by the animals’ natural movement; in rats the fields appear to be laterally compressed (meaning that the spatial map of the animal is more highly resolved in the horizontal dimensions than in the vertical), whereas the place cell fields of bats are statistically spherical (which should result in a spatial map that is equally resolved in all three dimensions). It follows that navigational error should be equal in the horizontal and vertical dimensions in animals that travel freely through volumes, whereas in surface-bound animals would demonstrate greater vertical error. Here, we describe behavioral experiments on pelagic fish in which we investigated the way that fish encode three-dimensional space and we make inferences about the underlying processing. Our work suggests that fish, like mammals, have a higher order representation of space that assembles incoming sensory information into a neural unit that can be used to determine position and heading in three-dimensions. Further, our results are consistent with this representation being encoded isotropically, as would be expected for animals that move freely through volumes. Definitive evidence for spherical place fields in fish will not only reveal the neural correlates of space to be a deep seated vertebrate trait, but will also help address the questions of the degree to which environment spatial ecology has shaped cognitive processes and their underlying neural mechanisms.
Collapse
|
30
|
Jeffery KJ, Wilson JJ, Casali G, Hayman RM. Neural encoding of large-scale three-dimensional space-properties and constraints. Front Psychol 2015; 6:927. [PMID: 26236246 PMCID: PMC4501222 DOI: 10.3389/fpsyg.2015.00927] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/22/2015] [Indexed: 11/23/2022] Open
Abstract
How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and—for species that can swim or fly—large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems.
Collapse
Affiliation(s)
- Kate J Jeffery
- Institute of Behavioural Neuroscience, Research Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London , London, UK
| | - Jonathan J Wilson
- Institute of Behavioural Neuroscience, Research Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London , London, UK
| | - Giulio Casali
- Institute of Behavioural Neuroscience, Research Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London , London, UK
| | - Robin M Hayman
- Clinical and Experimental Epilepsy, Institute of Neurology, Faculty of Brain Sciences, University College London , London, UK
| |
Collapse
|
31
|
New automated procedure to assess context recognition memory in mice. Psychopharmacology (Berl) 2014; 231:4337-47. [PMID: 24770677 DOI: 10.1007/s00213-014-3577-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/06/2014] [Indexed: 12/13/2022]
Abstract
RATIONALE AND OBJECTIVES Recognition memory is an important aspect of human declarative memory and is one of the routine memory abilities altered in patients with amnestic syndrome and Alzheimer's disease. In rodents, recognition memory has been most widely assessed using the novel object preference paradigm, which exploits the spontaneous preference that animals display for novel objects. Here, we used nose-poke units instead of objects to design a simple automated method for assessing context recognition memory in mice. METHODS In the acquisition trial, mice are exposed for the first time to an operant chamber with one blinking nose-poke unit. In the choice session, a novel nonblinking nose-poke unit is inserted into an empty spatial location and the number of nose poking dedicated to each set of nose-poke unit is used as an index of recognition memory. RESULTS We report that recognition performance varies as a function of the length of the acquisition period and the retention delay and is sensitive to conventional amnestic treatments. By manipulating the features of the operant chamber during a brief retrieval episode (3-min long), we further demonstrate that reconsolidation of the original contextual memory depends on the magnitude and the type of environmental changes introduced into the familiar spatial environment. CONCLUSIONS These results show that the nose-poke recognition task provides a rapid and reliable way for assessing context recognition memory in mice and offers new possibilities for the deciphering of the brain mechanisms governing the reconsolidation process.
Collapse
|
32
|
Abstract
The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system. Spatial navigation is one of the most important functions of animal brains. Multiple regions and cell types encode the current location in mammalian brains, but the underlying interactions between sensory and memory information remain unclear. Recent experimental and theoretical evidence have been found to suggest that the presence of a boundary fundamentally alters the task of navigation. In this paper, evidence is provided that it is possible to determine the location inside any familiar arena with 1-fold rotational symmetry, while completely ignoring sensory cues from the outside world. Surprisingly, the results show that the mere knowledge of the boundary's existence is enough, without requiring direct physical contact. Localization is robust despite the presence of noise modelled from the rodent head direction system, and even inaccuracies in the navigation system's memory of the boundary or internal models of noise. In circular arenas, rotational asymmetry can arise from interior structures such as barriers or voids, also without contact information. This theoretical evidence highlights the need to distinguish arena-based navigation common to most experimental studies, from open field navigation. These findings also point to novel ways to study information fusion in mammalian brains.
Collapse
|
33
|
Abstract
The study of spatial cognition has provided considerable insight into how animals (including humans) navigate on the horizontal plane. However, the real world is three-dimensional, having a complex topography including both horizontal and vertical features, which presents additional challenges for representation and navigation. The present article reviews the emerging behavioral and neurobiological literature on spatial cognition in non-horizontal environments. We suggest that three-dimensional spaces are represented in a quasi-planar fashion, with space in the plane of locomotion being computed separately and represented differently from space in the orthogonal axis - a representational structure we have termed "bicoded." We argue that the mammalian spatial representation in surface-travelling animals comprises a mosaic of these locally planar fragments, rather than a fully integrated volumetric map. More generally, this may be true even for species that can move freely in all three dimensions, such as birds and fish. We outline the evidence supporting this view, together with the adaptive advantages of such a scheme.
Collapse
|
34
|
Furuya Y, Matsumoto J, Hori E, Boas CV, Tran AH, Shimada Y, Ono T, Nishijo H. Place-related neuronal activity in the monkey parahippocampal gyrus and hippocampal formation during virtual navigation. Hippocampus 2013; 24:113-30. [DOI: 10.1002/hipo.22209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Yoichi Furuya
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
- Department of Japanese Oriental Medicine; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Cyrus Villas Boas
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Anh Hai Tran
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Yutaka Shimada
- Department of Japanese Oriental Medicine; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama; Toyama Japan
| |
Collapse
|
35
|
Gener T, Perez-Mendez L, Sanchez-Vives MV. Tactile modulation of hippocampal place fields. Hippocampus 2013; 23:1453-62. [PMID: 23996430 DOI: 10.1002/hipo.22198] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/11/2022]
Abstract
Neural correlates of spatial representation can be found in the activity of the hippocampal place cells. These neurons are characterized by firing whenever the animal is located in a particular area of the space, the place field. Place fields are modulated by sensory cues, such as visual, auditory, or olfactory cues, being the influence of visual inputs the most thoroughly studied. Tactile information gathered by the whiskers has a prominent representation in the rat cerebral cortex. However, the influence of whisker-detected tactile cues on place fields remains an open question. Here we studied place fields in an enriched tactile environment where the remaining sensory cues were occluded. First, place cells were recorded before and after blockade of tactile transmission by means of lidocaine applied on the whisker pad. Following tactile deprivation, the majority of place cells decreased their firing rate and their place fields expanded. We next rotated the tactile cues and 90% of place fields rotated with them. Our results demonstrate that tactile information is integrated into place cells at least in a tactile-enriched arena and when other sensory cues are not available.
Collapse
Affiliation(s)
- Thomas Gener
- Systems Neuroscience, IDIBAPS (Institut de Investigacions Biomèdiques August Pi i Sunyer), 08036, Barcelona, Spain
| | | | | |
Collapse
|
36
|
Guidetti G. The role of cognitive processes in vestibular disorders. HEARING, BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.765085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration. PLoS Comput Biol 2012; 8:e1002651. [PMID: 22916006 PMCID: PMC3420935 DOI: 10.1371/journal.pcbi.1002651] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/21/2012] [Indexed: 11/22/2022] Open
Abstract
Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's “cognitive map”, or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and – we conjecture – necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on their implications and significance for the design, analysis and interpretation of experiments. Do animals need “cognitive maps“? One of the main difficulties in answering this question is finding a definitive scenario where having and not having a “cognitive map“ result in measurably different outcomes. Many key predictions made by models involving some sort of “cognitive map“ can also be replicated by models without a “cognitive map“. Here we consider published data on rodents navigating in darkness inside homogeneous arenas. The head direction system becomes unstable within three minutes in darkness, yet place and grid cells have been reported to fire in the same locations for thirty minutes or longer. We show firstly that it is theoretically implausible for path integration alone to maintain a stable positional representation beyond three minutes, given a drifting head direction system in darkness. Secondly, we prove that even assuming perfect boundary knowledge is insufficient to maintain a stable positional representation. Finally, we show in simulated and real arenas that a nearoptimal combination of path integration and boundary representation is sufficient to produce stable positional representations in darkness consistent with published data. The necessity for fusing path integration and landmark information for accurate localization in darkness is both consistent with, and motivates the existence of, “cognitive maps.“
Collapse
|
38
|
Network, cellular, and molecular mechanisms underlying long-term memory formation. Curr Top Behav Neurosci 2012; 15:73-115. [PMID: 22976275 DOI: 10.1007/7854_2012_229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neural network stores information through activity-dependent synaptic plasticity that occurs in populations of neurons. Persistent forms of synaptic plasticity may account for long-term memory storage, and the most salient forms are the changes in the structure of synapses. The theory proposes that encoding should use a sparse code and evidence suggests that this can be achieved through offline reactivation or by sparse initial recruitment of the network units. This idea implies that in some cases the neurons that underwent structural synaptic plasticity might be a subpopulation of those originally recruited; However, it is not yet clear whether all the neurons recruited during acquisition are the ones that underwent persistent forms of synaptic plasticity and responsible for memory retrieval. To determine which neural units underlie long-term memory storage, we need to characterize which are the persistent forms of synaptic plasticity occurring in these neural ensembles and the best hints so far are the molecular signals underlying structural modifications of the synapses. Structural synaptic plasticity can be achieved by the activity of various signal transduction pathways, including the NMDA-CaMKII and ACh-MAPK. These pathways converge with the Rho family of GTPases and the consequent ERK 1/2 activation, which regulates multiple cellular functions such as protein translation, protein trafficking, and gene transcription. The most detailed explanation may come from models that allow us to determine the contribution of each piece of this fascinating puzzle that is the neuron and the neural network.
Collapse
|
39
|
Rochefort C, Arabo A, André M, Poucet B, Save E, Rondi-Reig L. Cerebellum shapes hippocampal spatial code. Science 2011; 334:385-9. [PMID: 22021859 DOI: 10.1126/science.1207403] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Spatial representation is an active process that requires complex multimodal integration from a large interacting network of cortical and subcortical structures. We sought to determine the role of cerebellar protein kinase C (PKC)-dependent plasticity in spatial navigation by recording the activity of hippocampal place cells in transgenic L7PKCI mice with selective disruption of PKC-dependent plasticity at parallel fiber-Purkinje cell synapses. Place cell properties were exclusively impaired when L7PKCI mice had to rely on self-motion cues. The behavioral consequence of such a deficit is evidenced here by selectively impaired navigation capabilities during a path integration task. Together, these results suggest that cerebellar PKC-dependent mechanisms are involved in processing self-motion signals essential to the shaping of hippocampal spatial representation.
Collapse
Affiliation(s)
- Christelle Rochefort
- Neurobiologie des Processus Adaptatifs (UMR 7102), Navigation, Memory, and Aging (ENMVI) Team, Université Pierre et Marie Curie-Centre National de la Recherche Scientifique (CNRS), F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Hayman R, Verriotis M, Jovalekic A, Fenton A, Jeffery K. Anisotropic encoding of three-dimensional space by place cells and grid cells. Nat Neurosci 2011; 14:1182-8. [PMID: 21822271 PMCID: PMC3166852 DOI: 10.1038/nn.2892] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022]
Abstract
The subjective sense of space may result in part from the combined activity of place cells in the hippocampus and grid cells in posterior cortical regions such as the entorhinal cortex and pre- and parasubiculum. In horizontal planar environments, place cells provide focal positional information, whereas grid cells supply odometric (distance measuring) information. How these cells operate in three dimensions is unknown, even though the real world is three-dimensional. We investigated this issue in rats exploring two different kinds of apparatus: a climbing wall (the 'pegboard') and a helix. Place and grid cell firing fields had normal horizontal characteristics but were elongated vertically, with grid fields forming stripes. It seems that grid cell odometry (and by implication path integration) is impaired or absent in the vertical domain, at least when the rat itself remains horizontal. These findings suggest that the mammalian encoding of three-dimensional space is anisotropic.
Collapse
Affiliation(s)
- R. Hayman
- Institute of Behavioural Neuroscience Dept. of Cognitive, Perceptual and Brain Sciences–Division of Psychology and Language Sciences University College London 26 Bedford Way London WC1H 0AP UK
| | - M. Verriotis
- Institute of Behavioural Neuroscience Dept. of Cognitive, Perceptual and Brain Sciences–Division of Psychology and Language Sciences University College London 26 Bedford Way London WC1H 0AP UK
| | - A. Jovalekic
- Institute of Behavioural Neuroscience Dept. of Cognitive, Perceptual and Brain Sciences–Division of Psychology and Language Sciences University College London 26 Bedford Way London WC1H 0AP UK
| | - A.A. Fenton
- Center for Neural Science New York University 4 Washington Place New York, NY 10003
- Department of Physiology and Pharmacology State University of New York 450 Clarkson Ave Brooklyn, NY New York, NY 11203 USA
| | - K.J. Jeffery
- Institute of Behavioural Neuroscience Dept. of Cognitive, Perceptual and Brain Sciences–Division of Psychology and Language Sciences University College London 26 Bedford Way London WC1H 0AP UK
| |
Collapse
|
41
|
Jeffery KJ. Theoretical accounts of spatial learning: a neurobiological view (commentary on Pearce, 2009). Q J Exp Psychol (Hove) 2010; 63:1683-99. [PMID: 20204918 PMCID: PMC3160474 DOI: 10.1080/17470210903540771] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Theories of learning have historically taken, as their starting point, the assumption that learning processes have universal applicability. This position has been argued on grounds of parsimony, but has received two significant challenges: first, from the observation that some kinds of learning, such as spatial learning, seem to obey different rules from others, and second, that some kinds of learning take place in processing modules that are separate from each other. These challenges arose in the behavioural literature but have since received considerable support from neurobiological studies, particularly single neuron studies of spatial learning, confirming that there are indeed separable (albeit highly intercommunicating) processing modules in the brain, which may not always interact (within or between themselves) according to classic associative principles. On the basis of these neurobiological data, reviewed here, it is argued that rather than assuming universality of associative rules, it is more parsimonious to assume sets of locally operating rules, each specialized for a particular domain. By this view, although almost all learning is associative in one way or another, the behavioural-level characterization of the rules governing learning may vary depending on which neural modules are involved in a given behaviour. Neurobiological studies, in tandem with behavioural studies, can help reveal the nature of these modules and the local rules by which they interact.
Collapse
Affiliation(s)
- Kathryn J Jeffery
- Department of Cognitive, Perceptual and Brain Sciences, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, London, UK.
| |
Collapse
|
42
|
Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010; 65:7-19. [PMID: 20152109 DOI: 10.1016/j.neuron.2009.11.031] [Citation(s) in RCA: 2339] [Impact Index Per Article: 167.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 12/11/2022]
Abstract
One literature treats the hippocampus as a purely cognitive structure involved in memory; another treats it as a regulator of emotion whose dysfunction leads to psychopathology. We review behavioral, anatomical, and gene expression studies that together support a functional segmentation into three hippocampal compartments: dorsal, intermediate, and ventral. The dorsal hippocampus, which corresponds to the posterior hippocampus in primates, performs primarily cognitive functions. The ventral (anterior in primates) relates to stress, emotion, and affect. Strikingly, gene expression in the dorsal hippocampus correlates with cortical regions involved in information processing, while genes expressed in the ventral hippocampus correlate with regions involved in emotion and stress (amygdala and hypothalamus).
Collapse
|
43
|
Gatome CW, Slomianka L, Mwangi DK, Lipp HP, Amrein I. The entorhinal cortex of the Megachiroptera: a comparative study of Wahlberg’s epauletted fruit bat and the straw-coloured fruit bat. Brain Struct Funct 2010; 214:375-93. [DOI: 10.1007/s00429-010-0239-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/09/2010] [Indexed: 10/19/2022]
|
44
|
Samu D, Eros P, Ujfalussy B, Kiss T. Robust path integration in the entorhinal grid cell system with hippocampal feed-back. BIOLOGICAL CYBERNETICS 2009; 101:19-34. [PMID: 19381679 DOI: 10.1007/s00422-009-0311-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 04/01/2009] [Indexed: 05/27/2023]
Abstract
Animals are able to update their knowledge about their current position solely by integrating the speed and the direction of their movement, which is known as path integration. Recent discoveries suggest that grid cells in the medial entorhinal cortex might perform some of the essential underlying computations of path integration. However, a major concern over path integration is that as the measurement of speed and direction is inaccurate, the representation of the position will become increasingly unreliable. In this paper, we study how allothetic inputs can be used to continually correct the accumulating error in the path integrator system. We set up the model of a mobile agent equipped with the entorhinal representation of idiothetic (grid cell) and allothetic (visual cells) information and simulated its place learning in a virtual environment. Due to competitive learning, a robust hippocampal place code emerges rapidly in the model. At the same time, the hippocampo-entorhinal feed-back connections are modified via Hebbian learning in order to allow hippocampal place cells to influence the attractor dynamics in the entorhinal cortex. We show that the continuous feed-back from the integrated hippocampal place representation is able to stabilize the grid cell code.
Collapse
Affiliation(s)
- Dávid Samu
- Department of Biophysics, KFKI Research Institute for Particle and Nuclear Physics, Hungarian Academy of Sciences, 1121 Budapest, Hungary
| | | | | | | |
Collapse
|
45
|
Manaka Y, Sugita Y. Insufficient visual information leads to spontaneous bipedal walking in Japanese monkeys. Behav Processes 2009; 80:104-6. [DOI: 10.1016/j.beproc.2008.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 10/08/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
|
46
|
Mamiya A, Beshel J, Xu C, Zhong Y. Neural representations of airflow in Drosophila mushroom body. PLoS One 2008; 3:e4063. [PMID: 19115002 PMCID: PMC2603598 DOI: 10.1371/journal.pone.0004063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 11/29/2008] [Indexed: 11/18/2022] Open
Abstract
The Drosophila mushroom body (MB) is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3rd antennal segment, suggesting that Johnston's organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types.
Collapse
Affiliation(s)
- Akira Mamiya
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jennifer Beshel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Chunsu Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- SUNY Stony Brook, Stony Brook, New York, United States of America
| | - Yi Zhong
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Cheung A, Zhang S, Stricker C, Srinivasan MV. Animal navigation: general properties of directed walks. BIOLOGICAL CYBERNETICS 2008; 99:197-217. [PMID: 18781320 DOI: 10.1007/s00422-008-0251-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 08/22/2008] [Indexed: 05/26/2023]
Abstract
The ability to locomote is a defining characteristic of all animals. Yet, all but the most trivial forms of navigation are poorly understood. Here we report and discuss the analytical results of an in-depth study of a simple navigation problem. In principle, there are two strategies for navigating a straight course. One is to use an external directional reference and to continually reorient with reference to it. The other is to monitor body rotations from internal sensory information only. We showed previously that, at least for simple representations of locomotion, the first strategy will enable an animal or mobile agent to move arbitrarily far away from its starting point, but the second strategy will not do so, even after an infinite number of steps. This paper extends and generalizes the earlier results by demonstrating that these findings are true even when a very general model of locomotion is used. In this general model, error components within individual steps are not independent, and directional errors may be biased. In the absence of a compass, the expected path of a directed walk in general approximates a logarithmic spiral. Some examples are given to illustrate potential applications of the quantitative results derived here. Motivated by the analytical results developed in this work, a nomenclature for directed walks is proposed and discussed. Issues related to path integration in mammals and robots, and measuring the curvature of a noisy path are also addressed using directed walk theory.
Collapse
Affiliation(s)
- Allen Cheung
- Thinking Systems, Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| | | | | | | |
Collapse
|
48
|
Self-localization and the entorhinal-hippocampal system. Curr Opin Neurobiol 2008; 17:684-91. [PMID: 18249109 DOI: 10.1016/j.conb.2007.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 11/24/2007] [Accepted: 11/26/2007] [Indexed: 11/22/2022]
Abstract
Self-localization requires that information from several sensory modalities and knowledge domains be integrated in order to identify an environment and determine current location and heading. This integration occurs by the convergence of highly processed sensory information onto neural systems in entorhinal cortex and hippocampus. Entorhinal neurons combine angular and linear self-motion information to generate an oriented metric signal that is then 'attached' to each environment using information about landmarks and context. Neurons in hippocampus use this signal to determine the animal's unique position within a particular environment. Elucidating this process illuminates not only spatial processing but also, more generally, how the brain builds knowledge representations from inputs carrying heterogeneous sensory and semantic content.
Collapse
|