1
|
Leeman-Markowski BA, Martin SP, Hardstone R, Tam DM, Devinsky O, Meador KJ. Novelty preference assessed by eye tracking: A sensitive measure of impaired recognition memory in epilepsy. Epilepsy Behav 2024; 155:109749. [PMID: 38636142 DOI: 10.1016/j.yebeh.2024.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Epilepsy patients often report memory deficits despite normal objective testing, suggesting that available measures are insensitive or that non-mnemonic factors are involved. The Visual Paired Comparison Task (VPCT) assesses novelty preference, the tendency to fixate on novel images rather than previously viewed items, requiring recognition memory for the "old" images. As novelty preference is a sensitive measure of hippocampal-dependent memory function, we predicted impaired VPCT performance in epilepsy patients compared to healthy controls. METHODS We assessed 26 healthy adult controls and 31 epilepsy patients (16 focal-onset, 13 generalized-onset, 2 unknown-onset) with the VPCT using delays of 2 or 30 s between encoding and recognition. Fifteen healthy controls and 17 epilepsy patients (10 focal-onset, 5 generalized-onset, 2 unknown-onset) completed the task at 2-, 5-, and 30-minute delays. Subjects also performed standard memory measures, including the Medical College of Georgia (MCG) Paragraph Test, California Verbal Learning Test-Second Edition (CVLT-II), and Brief Visual Memory Test-Revised (BVMT-R). RESULTS The epilepsy group was high functioning, with greater estimated IQ (p = 0.041), greater years of education (p = 0.034), and higher BVMT-R scores (p = 0.024) compared to controls. Both the control group and epilepsy cohort, as well as focal- and generalized-onset subgroups, had intact novelty preference at the 2- and 30-second delays (p-values ≤ 0.001) and declined at 30 min (p-values > 0.05). Only the epilepsy patients had early declines at 2- and 5-minute delays (controls with intact novelty preference at p = 0.003 and p ≤ 0.001, respectively; epilepsy groups' p-values > 0.05). CONCLUSIONS Memory for the "old" items decayed more rapidly in overall, focal-onset, and generalized-onset epilepsy groups. The VPCT detected deficits while standard memory measures were largely intact, suggesting that the VPCT may be a more sensitive measure of temporal lobe memory function than standard neuropsychological batteries.
Collapse
Affiliation(s)
- Beth A Leeman-Markowski
- Neurology Service, VA New York Harbor Healthcare System, 423 E. 23(rd) St., New York, NY 10010, USA; Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34(th) St., New York, NY 10016, USA; Research Service, VA New York Harbor Healthcare System, 423 E. 23(rd) St., New York, NY 10010, USA.
| | - Samantha P Martin
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34(th) St., New York, NY 10016, USA; Research Service, VA New York Harbor Healthcare System, 423 E. 23(rd) St., New York, NY 10010, USA.
| | - Richard Hardstone
- Neuroscience Institute, New York University Langone Health, 550 1st Ave., New York, NY 10016, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA.
| | - Danny M Tam
- Division of Psychology, Mental Health Service, VA New York Harbor Healthcare System, 423 E. 23(rd) St., New York, NY 10010, USA.
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University Langone Health, 223 E. 34(th) St., New York, NY 10016, USA; Neuroscience Institute, New York University Langone Health, 550 1st Ave., New York, NY 10016, USA.
| | - Kimford J Meador
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, MC 5979, Palo Alto, CA 94304, USA.
| |
Collapse
|
2
|
Basile BM, Waters SJ, Murray EA. What does preferential viewing tell us about the neurobiology of recognition memory? Trends Neurosci 2024; 47:326-337. [PMID: 38582659 PMCID: PMC11096050 DOI: 10.1016/j.tins.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The two tests most widely used in nonhuman primates to assess the neurobiology of recognition memory produce conflicting results. Preferential viewing tests (e.g., visual paired comparison) produce robust impairments following hippocampal lesions, whereas matching tests (e.g., delayed nonmatching-to-sample) often show complete sparing. Here, we review the data, the proposed explanations for this discrepancy, and then critically evaluate those explanations. The most likely explanation is that preferential viewing tests are not a process-pure assessment of recognition memory, but also test elements of novelty-seeking, habituation, and motivation. These confounds likely explain the conflicting results. Thus, we propose that memory researchers should prefer explicit matching tests and readers interested in the neural substrates of recognition memory should give explicit matching tests greater interpretive weight.
Collapse
Affiliation(s)
| | - Spencer J Waters
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA; Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Leckey S, Bhagath S, Johnson EG, Ghetti S. Attention to novelty interferes with toddlers' emerging memory decision-making. Child Dev 2024; 95:98-113. [PMID: 37409734 PMCID: PMC10770300 DOI: 10.1111/cdev.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
Memory decision-making in 26- to 32-month-olds was investigated using visual-paired comparison paradigms, requiring toddlers to select familiar stimuli (Active condition) or view familiar and novel stimuli (Passive condition). In Experiment 1 (N = 108, 54.6% female, 62% White; replication N = 98), toddlers with higher accuracy in the Active condition showed reduced novelty preference in that condition, but not in the Passive condition (d = -.11). In Experiment 2 (N = 78; 52.6% female; 70.5% White), a brief 5% increase in target size boosted gaze transitions across conditions (d = .50) and accuracy in the Active condition (d = .53). Overall, evidence suggests that better attentional distribution can support decision-making. Research was conducted between 2014 and 2020 in Northern California.
Collapse
Affiliation(s)
- Sarah Leckey
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
| | - Shefali Bhagath
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
| | | | - Simona Ghetti
- Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of California, Davis
| |
Collapse
|
4
|
Waters SJ, Basile BM, Murray EA. Reevaluating the role of the hippocampus in memory: A meta-analysis of neurotoxic lesion studies in nonhuman primates. Hippocampus 2023; 33:787-807. [PMID: 36649170 PMCID: PMC10213107 DOI: 10.1002/hipo.23499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023]
Abstract
The hippocampus and perirhinal cortex are both broadly implicated in memory; nevertheless, their relative contributions to visual item recognition and location memory remain disputed. Neuropsychological studies in nonhuman primates that examine memory function after selective damage to medial temporal lobe structures report various levels of memory impairment-ranging from minor deficits to profound amnesia. The discrepancies in published findings have complicated efforts to determine the exact magnitude of visual item recognition and location memory impairments following damage to the hippocampus and/or perirhinal cortex. To provide the most accurate estimate to date of the overall effect size, we use meta-analytic techniques on data aggregated from 26 publications that assessed visual item recognition and/or location memory in nonhuman primates with and without selective neurotoxic lesions of the hippocampus or perirhinal cortex. We estimated the overall effect size, evaluated the relation between lesion extent and effect size, and investigated factors that may account for between-study variation. Grouping studies by lesion target and testing method, separate meta-analyses were conducted. One meta-analysis indicated that impairments on tests of visual item recognition were larger after lesions of perirhinal cortex than after lesions of the hippocampus. A separate meta-analysis showed that performance on tests of location memory was severely impaired by lesions of the hippocampus. For the most part, meta-regressions indicated that greater impairment corresponds with greater lesion extent; paradoxically, however, more extensive hippocampal lesions predicted smaller impairments on tests of visual item recognition. We conclude the perirhinal cortex makes a larger contribution than the hippocampus to visual item recognition, and the hippocampus predominately contributes to spatial navigation.
Collapse
Affiliation(s)
- Spencer J. Waters
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, USA
| | - Benjamin M. Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
- Department of Psychology, Dickinson College, Carlisle PA, USA
| | - Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| |
Collapse
|
5
|
Ryan JD, Wynn JS, Shen K, Liu ZX. Aging changes the interactions between the oculomotor and memory systems. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2022; 29:418-442. [PMID: 34856890 DOI: 10.1080/13825585.2021.2007841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The use of multi-modal approaches, particularly in conjunction with multivariate analytic techniques, can enrich models of cognition, brain function, and how they change with age. Recently, multivariate approaches have been applied to the study of eye movements in a manner akin to that of neural activity (i.e., pattern similarity). Here, we review the literature regarding multi-modal and/or multivariate approaches, with specific reference to the use of eyetracking to characterize age-related changes in memory. By applying multi-modal and multivariate approaches to the study of aging, research has shown that aging is characterized by moment-to-moment alterations in the amount and pattern of visual exploration, and by extension, alterations in the activity and function of the hippocampus and broader medial temporal lobe (MTL). These methodological advances suggest that age-related declines in the integrity of the memory system has consequences for oculomotor behavior in the moment, in a reciprocal fashion. Age-related changes in hippocampal and MTL structure and function may lead to an increase in, and change in the patterns of, visual exploration in an effort to upregulate the encoding of information. However, such visual exploration patterns may be non-optimal and actually reduce the amount and/or type of incoming information that is bound into a lasting memory representation. This research indicates that age-related cognitive impairments are considerably broader in scope than previously realized.
Collapse
Affiliation(s)
- Jennifer D Ryan
- Rotman Research Institute at Baycrest Health Sciences, Toronto, ON, Canada
- Departments of Psychology, Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jordana S Wynn
- Department of Psychology, Harvard University, Cambridge MA, USA
| | - Kelly Shen
- Rotman Research Institute at Baycrest Health Sciences, Toronto, ON, Canada
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn MI, USA
| |
Collapse
|
6
|
Sakon JJ, Suzuki WA. Neural evidence for recognition of naturalistic videos in monkey hippocampus. Hippocampus 2021; 31:916-932. [PMID: 34021646 DOI: 10.1002/hipo.23335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/26/2021] [Accepted: 04/17/2021] [Indexed: 11/11/2022]
Abstract
The role of the hippocampus in recognition memory has long been a source of debate. Tasks used to study recognition that typically require an explicit probe, where the participant must make a response to prove they remember, yield mixed results on hippocampal involvement. Here, we tasked monkeys to freely view naturalistic videos, and only tested their memory via looking times for two separate novel versus repeat video conditions on each trial. Notably, a large proportion (>30%) of hippocampal neurons differentiated these videos via changes in firing rates time-locked to the duration of their presentation on screen, and not during the delay period between them as would be expected for working memory. Many of these single neurons (>15%) contributed to both retrieval conditions, and differentiated novel from repeat videos across trials with trial-unique content, suggesting they detect familiarity. The majority of neurons contributing to the classifier showed an enhancement in firing rate on repeat compared with novel videos, a pattern which has not previously been shown in hippocampus. These results suggest the hippocampus contributes to recognition memory via familiarity during free-viewing.
Collapse
Affiliation(s)
- John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wendy A Suzuki
- Center for Neural Science, New York University, New York, New York, USA
| |
Collapse
|
7
|
Ryan JD, Shen K, Liu Z. The intersection between the oculomotor and hippocampal memory systems: empirical developments and clinical implications. Ann N Y Acad Sci 2020; 1464:115-141. [PMID: 31617589 PMCID: PMC7154681 DOI: 10.1111/nyas.14256] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Decades of cognitive neuroscience research has shown that where we look is intimately connected to what we remember. In this article, we review findings from human and nonhuman animals, using behavioral, neuropsychological, neuroimaging, and computational modeling methods, to show that the oculomotor and hippocampal memory systems interact in a reciprocal manner, on a moment-to-moment basis, mediated by a vast structural and functional network. Visual exploration serves to efficiently gather information from the environment for the purpose of creating new memories, updating existing memories, and reconstructing the rich, vivid details from memory. Conversely, memory increases the efficiency of visual exploration. We call for models of oculomotor control to consider the influence of the hippocampal memory system on the cognitive control of eye movements, and for models of hippocampal and broader medial temporal lobe function to consider the influence of the oculomotor system on the development and expression of memory. We describe eye movement-based applications for the detection of neurodegeneration and delivery of therapeutic interventions for mental health disorders for which the hippocampus is implicated and memory dysfunctions are at the forefront.
Collapse
Affiliation(s)
- Jennifer D. Ryan
- Rotman Research InstituteBaycrestTorontoOntarioCanada
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Kelly Shen
- Rotman Research InstituteBaycrestTorontoOntarioCanada
| | - Zhong‐Xu Liu
- Department of Behavioral SciencesUniversity of Michigan‐DearbornDearbornMichigan
| |
Collapse
|
8
|
Nonhuman primate models of hippocampal development and dysfunction. Proc Natl Acad Sci U S A 2019; 116:26210-26216. [PMID: 31871159 DOI: 10.1073/pnas.1902278116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonhuman primates provide highly valuable animal models that have significantly advanced our understanding of numerous behavioral and biological phenomena in humans. Here, we reviewed a series of developmental neuropsychological studies that informed us on the timing of development of the hippocampus and of hippocampal-dependent cognitive functions in primates. Data indicate that, in primates, the emergence of adult-like proficiency on behavioral tasks sensitive to hippocampal dysfunction is a stepwise process and reflects the gradual maturation of different hippocampal circuits and their connections with other neural structures. Profound and persistent memory loss resulting from insult to the hippocampus in infancy was absent in early infancy but became evident later in childhood and persisted in adulthood, indicating very little sparing or recovery of function. Finally, the early hippocampal insult resulted in both adaptive and maladaptive neuroplasticity: i.e., sparing contextual memory, but affecting working memory processes as well as emotional reactivity and hypothalamic-pituitary-adrenal (HPA) axis functioning. The results provide significant information on the emergence of hippocampal-dependent functions in humans, on the time course of memory impairment in human cases with early hippocampal insult, and on the clinical implication of the hippocampus in developmental neuropsychiatric disorders.
Collapse
|
9
|
Brady RJ, Basile BM, Hampton RR. Hippocampal damage attenuates habituation to videos in monkeys. Hippocampus 2019; 29:1121-1126. [PMID: 31509291 DOI: 10.1002/hipo.23155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 11/05/2022]
Abstract
Monkeys with selective damage to the hippocampus are often unimpaired in matching-to-sample tests but are reportedly impaired in visual paired comparison. While both tests assess recognition of previously seen images, delayed matching-to-sample may engage active memory maintenance whereas visual paired comparison may not. Passive memory tests that are not rewarded with food and that do not require extensive training may provide more sensitive measures of hippocampal function. To test this hypothesis, we assessed memory in monkeys with hippocampal damage and matched controls by providing them the opportunity to repeatedly view small sets of videos. Monkeys pressed a button to play each video. The same 10 videos were used for six consecutive days, after which 10 new videos were introduced in each of seven cycles of testing. Our measure of memory was the extent to which monkeys habituated with repeated presentations, watching fewer videos per session over time. Monkeys with hippocampal lesions habituated more slowly than did control monkeys, indicating poorer memory for previous viewings. Both groups dishabituated each time new videos were introduced. These results, like those from preferential viewing, suggest that the hippocampus may be especially important for memory of incidentally encoded events.
Collapse
Affiliation(s)
- Ryan J Brady
- Department of Psychology, Emory University, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| | - Benjamin M Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland
| | - Robert R Hampton
- Department of Psychology, Emory University, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| |
Collapse
|
10
|
Meng Y, Hu X, Zhang X, Bachevalier J. Diffusion tensor imaging reveals microstructural alterations in corpus callosum and associated transcallosal fiber tracts in adult macaques with neonatal hippocampal lesions. Hippocampus 2019; 28:838-845. [PMID: 29978933 DOI: 10.1002/hipo.23006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 01/17/2023]
Abstract
To investigate the effects of neonatal hippocampal lesions on the microstructural integrity of the corpus callosum (CC) in adulthood, macaque monkeys (n = 5) with neonatal bilateral neurotoxic hippocampal lesion (Neo-Hibo) and sham-operated controls (Neo-C, n = 5) were scanned using magnetic resonance diffusion tensor imaging (DTI) technique at 8-10 years old. CC was segmented into seven regionsgrouped into anterior CC (rostrum, genu, rostral body and anterior midbody) and posterior CC (posterior midbody, isthmus and splenium) for data analysis. Associated transcallosal fiber tracts were delineated using probabilistic tractography and evaluated with tract-based spatial statistics (TBSS). Neo-Hibo lesions resulted in significant increased diffusivity indices (mean, axial and radial diffusivity) in CC posterior segments. Also, significant decreased fractional anisotropy (FA) and increased diffusivity indices were seen in the associated transcallosal fiber tracts proximal to motor, posterior parietal and retrosplenial cortices. In Neo-Hibo animals, increased mean diffusivity (MD) in posterior midbody negatively correlated with reduction of CC surface areaand the magnitude of their memory impairments was significantly correlated with FA in transcallosal fiber tracts across splenium. Although no microstructural changes were observed in CC anterior segments, changes in FA values and diffusivity indices were observed in the white matter fibers of the ventromedial prefrontal cortex. Thus, Neo-H lesions resulted in enduring degradation in transcallosal fibers proximal to parietal and retrosplenial cortices, and hemispheric connections through posterior CC. The findings may provide complementary information for understanding the neural substrate of behavioral and cognitive deficits observed in patients with early insult to the hippocampus.
Collapse
Affiliation(s)
- Yuguang Meng
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Xiaoping Hu
- Department of Bioengineering, University of California at Riverside, Riverside, California
| | - Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Jocelyne Bachevalier
- Yerkes National Primate Research Center and Department of Psychology, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Martinos MM, Pujar S, O'Reilly H, de Haan M, Neville BG, Scott RC, Chin RF. Intelligence and memory outcomes within 10 years of childhood convulsive status epilepticus. Epilepsy Behav 2019; 95:18-25. [PMID: 31009825 PMCID: PMC6586081 DOI: 10.1016/j.yebeh.2019.03.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 01/21/2023]
Abstract
Long-term intelligence and memory outcomes of children post convulsive status epilepticus (CSE) have not been systematically investigated despite evidence of short-term impairments in CSE. The present study aimed to describe intelligence and memory outcomes in children within 10 years of CSE and identify potential risk factors for adverse outcomes. In this cohort study, children originally identified by the population-based North London Convulsive Status Epilepticus in Childhood Surveillance Study (NLSTEPSS) were prospectively recruited between July 2009 and February 2013 and invited for neuropsychological assessments and magnetic resonance imaging (MRI) scans. Full-scale intelligence quotients (FSIQs) were measured using the Wechsler Abbreviated Scales of Intelligence (WASI), and global memory scores (GMS) was assessed using the Children's Memory Scale (CMS). The cohort was analyzed as a whole and stratified into a prolonged febrile seizures (PFS) and non-PFS group. Their performance was compared with population norms and controls. Regression models were fitted to identify predictors of outcomes. With a mean of 8.9 years post-CSE, 28.5% of eligible participants were unable to undertake testing because of their severe neurodevelopmental deficits. Children with CSE who undertook formal testing (N = 94) were shown to have significantly lower FSIQ (p = 0.001) and GMS (p = 0.025) from controls; the PFS group (N = 34) had lower FSIQs (p = 0.022) but similar memory quotients (p = 0.88) with controls. Intracranial volume (ICV), developmental delay at baseline, and active epilepsy at follow-up were predictive of long-term outcomes in the non-PFS group. The relationship between ICV and outcomes was absent in the PFS group despite its presence in the control and non-PFS groups. Post-CSE, survivors reveal significant intelligence and memory impairments, but prognosis differs by CSE type; memory scores are uncompromised in the PFS group despite evidence of their lower FSIQ whereas both are compromised in the non-PFS group. Correlations between brain volumes and outcomes differ in the PFS, non-PFS, and control groups and require further investigation.
Collapse
Affiliation(s)
- Marina M. Martinos
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, UK,Corresponding author at: Cognitive Neuroscience and Neuropsychiatry, UCL Institute of Child Health, 30 Guilford Street, WC1N 1EH London, UK.
| | - Suresh Pujar
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, UK
| | - Helen O'Reilly
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, UK
| | - Michelle de Haan
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, UK
| | - Brian G.R. Neville
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, UK
| | - Rod C. Scott
- Department of Neurological Sciences, University of Vermont, VT, USA
| | - Richard F.M. Chin
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Novelty processing and memory impairment in Alzheimer's disease: A review. Neurosci Biobehav Rev 2019; 100:237-249. [DOI: 10.1016/j.neubiorev.2019.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/24/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
|
13
|
Alvarado MC, Murphy KL, Baxter MG. Visual recognition memory is impaired in rhesus monkeys repeatedly exposed to sevoflurane in infancy. Br J Anaesth 2019; 119:517-523. [PMID: 28575197 DOI: 10.1093/bja/aew473] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Experimental studies in animals have shown that exposure to general anaesthesia in infancy can cause loss of cells in the central nervous system and long-term impairments in neurocognitive function. Some human epidemiological studies have shown increased risk of learning disability after repeated anaesthesia exposure in early childhood. Thus, we investigated in a highly translational rhesus monkey model, whether repeated exposure in infancy to the inhalation anaesthetic sevoflurane is associated with impaired visual recognition memory during the first two yr of life. Methods Rhesus monkeys of both sexes were exposed to sevoflurane inhalation anaesthesia on approximately postnatal day 7 and then again 14 and 28 days later, for four h each time. Visual recognition memory was tested using the visual paired comparison task, which measures memory by assessing preference for looking at a new image over a previously-viewed image. Monkeys were tested at 6-10 months of age, again at 12-18 months of age, and again at 24-30 months of age. Results No memory impairment was detected at 6-10 months old, but significant impairment (reduced time looking at the novel image) was observed at 12-18 and 24-30 months old. Conclusions Repeated exposure of infant rhesus monkeys to sevoflurane results in visual recognition memory impairment that emerges after the first yr of life. This is consistent with epidemiological studies that show increased risk of learning disability after repeated exposure to anaesthesia in infancy/early childhood. Moreover, these deficits may emerge at later developmental stages, even when memory performance is unaffected earlier in development.
Collapse
Affiliation(s)
- M C Alvarado
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Centre, Emory University, Atlanta, GA, USA
| | - K L Murphy
- Comparative Biology Centre, Newcastle University, Newcastle, UK
| | - M G Baxter
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Djukic A, Holtzer R, Shinnar S, Muzumdar H, Rose SA, Mowrey W, Galanopoulou AS, Shinnar R, Jankowski JJ, Feldman JF, Pillai S, Moshé SL. Pharmacologic Treatment of Rett Syndrome With Glatiramer Acetate. Pediatr Neurol 2016; 61:51-7. [PMID: 27363291 DOI: 10.1016/j.pediatrneurol.2016.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Rett syndrome (RTT) is a severe neurological disease that primarily affects females. The level of brain derived neurotropic factor (BDNF) expression directly correlates with the severity of RTT related symptoms. Because Glatiramer acetate (GA) stimulates secretion of BDNF in the brain, we conducted the study with the objective to assess its efficacy in improving gait velocity cognition, respiratory function, electroencephalographic findings, and quality of life in patients with RTT. METHODS Phase two, open label, single center trial. INCLUSION CRITERIA ambulatory girls with genetically confirmed RTT, 10 years or older. Pre- and post-treatment measures were compared using the non-parametric Wilcoxon signed rank sum test and paired t-tests. RESULTS Ten patients were enrolled and completed the trial. Gait velocity improved significantly (improvement range 13%-95%, p=0.03 for both tests) and emerged as an especially valuable outcome measure with excellent test- retest reliability of the 2 trials within sessions (intraclass correlation coefficient=0.94). Memory, and the breath holding index also improved significantly (p≤0.03). Epileptiform discharges decreased in all four patients who had them at baseline. There was a trend towards improved quality of life, which did not reach statistical significance. CONCLUSIONS This prospective open-label trial provides important preliminary information related to the efficacy of GA in improving gait velocity in female patients with RTT who are 10 years or older. The results of this trial justify the need for larger scale controlled trials of GA as well as provide a template for assessing the efficacy of other interventions in RTT.
Collapse
Affiliation(s)
- Aleksandra Djukic
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Rett Syndrome Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| | - Roee Holtzer
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Ferkauf Graduate School of Psychology of Yeshiva University, Bronx, New York
| | - Shlomo Shinnar
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Rett Syndrome Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Hiren Muzumdar
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Susan A Rose
- Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Wenzhu Mowrey
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Rett Syndrome Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Ruth Shinnar
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey J Jankowski
- Department of Social Sciences, Queensborough Community College, City University of New York, Bayside, New York
| | - Judith F Feldman
- Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Sophia Pillai
- Department of Pediatrics, Weill Cornell Medical College, New York, New York
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York; Rett Syndrome Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Weiss AR, Bachevalier J. Object and spatial memory after neonatal perirhinal lesions in monkeys. Behav Brain Res 2015; 298:210-7. [PMID: 26593109 DOI: 10.1016/j.bbr.2015.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/19/2022]
Abstract
The contribution of the perirhinal cortex (PRh) to recognition memory is well characterized in adults, yet the same lesions have limited effect on recognition of spatial locations. Here, we assessed whether the same outcomes will follow when perirhinal lesions are performed in infancy. Monkeys with neonatal perirhinal (Neo-PRh) lesions and control animals were tested in three operant recognition tasks as they reached adulthood: Delayed Nonmatching-to-Sample (DNMS) and Object Memory Span (OMS), measuring object recognition, and Spatial Memory Span (SMS), measuring recognition of spatial locations. Although Neo-PRh lesions did not impact acquisition of the DNMS rule, they did impair performance when the delays were extended from 30s to 600s. In contrast, the same neonatal lesions had no impact on either the object or spatial memory span tasks, suggesting that the lesions impacted the maintenance of information across longer delays and not memory capacity. Finally, the magnitude of recognition memory impairment after the Neo-PRh lesions was similar to that previously observed after adult-onset perirhinal lesions, indicating minimal, or no, functional compensation after the early PRh lesions. Overall, the results indicate that the PRh is a cortical structure that is important for the normal development of mechanisms supporting object recognition memory. Its contribution may be relevant to the memory impairment observed with human cases of temporal lobe epilepsy without hippocampal sclerosis, but not to the memory impairment found in developmental amnesia cases.
Collapse
Affiliation(s)
| | - Jocelyne Bachevalier
- Emory University, Georgia; Yerkes National Primate Research Center, Atlanta, Georgia
| |
Collapse
|
16
|
Opris I, Santos LM, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA. Distributed encoding of spatial and object categories in primate hippocampal microcircuits. Front Neurosci 2015; 9:317. [PMID: 26500473 PMCID: PMC4594006 DOI: 10.3389/fnins.2015.00317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022] Open
Abstract
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Lucas M. Santos
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Greg A. Gerhardt
- Department of Anatomy and Neurobiology, University of KentuckyLexington, KY, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Theodore W. Berger
- Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| |
Collapse
|
17
|
The development of object recognition memory in rhesus macaques with neonatal lesions of the perirhinal cortex. Dev Cogn Neurosci 2014; 11:31-41. [PMID: 25096364 PMCID: PMC4302071 DOI: 10.1016/j.dcn.2014.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/04/2023] Open
Abstract
Assessed recognition memory in infant monkeys with neonatal perirhinal lesions using the visual paired comparison task. Performance was assessed at 4 developmental ages. Novelty preference deteriorated with age after neonatal perirhinal lesions. Presence of functional sparing. Memory deficits after perirhinal lesions occurred earlier than after hippocampal lesions.
To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC) task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed an increase in novelty preference between 1.5 and 6 months of age similar to controls, although at these two ages, performance remained significantly poorer than that of control animals. With age, performance in animals with neonatal perirhinal lesions deteriorated as compared to that of controls. In contrast to the lack of novelty preference in monkeys with perirhinal lesions acquired in adulthood, novelty preference in the neonatally operated animals remained above chance at all delays and all ages. The data suggest that, although incidental recognition memory processes can be supported by the perirhinal cortex in early infancy, other temporal cortical areas may support these processes in the absence of a functional perirhinal cortex early in development. The neural substrates mediating incidental recognition memory processes appear to be more widespread in early infancy than in adulthood.
Collapse
|
18
|
Norwood A, Wagner JB, Motley C, Hirch SB, Vogel-Farley VK, Nelson CA. Behavioral and Electrophysiological Indices of Memory in Typically Developing and Hypoxic-Ischemic Injured Infants. INFANCY 2013. [DOI: 10.1111/infa.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Agatha Norwood
- Pediatrix Medical Group of New Mexico; Presbyterian Hospital
| | | | | | | | | | - Charles A. Nelson
- Division of Developmental Medicine; Boston Children's Hospital; Harvard Medical School
| |
Collapse
|
19
|
Zeamer A, Bachevalier J. Long-term effects of neonatal hippocampal lesions on novelty preference in monkeys. Hippocampus 2013; 23:745-50. [PMID: 23640834 PMCID: PMC3775855 DOI: 10.1002/hipo.22139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2013] [Indexed: 01/28/2023]
Abstract
In a recent longitudinal study to assess the development of incidental recognition memory processes in monkeys, we showed that the effects of neonatal hippocampal lesions did alter incidental recognition memory only when the animals reached the juvenile period (Zeamer et al., ). The current follow-up study tested whether this incidental memory loss was long-lasting, i.e., present in adulthood, or only transitory, due to functional compensation with further brain maturation. The same animals with neonatal hippocampal lesions and their sham-operated controls were re-tested in the visual paired-comparison task when they reached adulthood (48 months). The results demonstrated that, at least for easily discriminable color pictures of objects, the involvement of the hippocampus was only transitory, given that when re-tested as adults, animals with neonatal hippocampal lesions performed as well as sham-operated controls at all delays. Yet, significant recognition memory impairment was re-instated when the discriminability of the stimuli was made more difficult (black/white pictures of similar objects). The data demonstrate profound functional remodeling within the hippocampus and its interactions with different medial temporal lobe structures from the juvenile period to adulthood, which is substantiated by a parallel morphological maturation of hippocampal intrinsic circuits (Lavenex et al., ; Jabès et al., ).
Collapse
Affiliation(s)
- Alyson Zeamer
- Yerkes National Primate Research Center and Psychology Department, Emory University, Atlanta, Georgia
| | | |
Collapse
|
20
|
Martinos MM, Yoong M, Patil S, Chin RFM, Neville BG, Scott RC, de Haan M. Recognition memory is impaired in children after prolonged febrile seizures. Brain 2012; 135:3153-64. [PMID: 22945967 PMCID: PMC3470707 DOI: 10.1093/brain/aws213] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/10/2012] [Accepted: 06/17/2012] [Indexed: 11/14/2022] Open
Abstract
Children with a history of a prolonged febrile seizure show signs of acute hippocampal injury on magnetic resonance imaging. In addition, animal studies have shown that adult rats who suffered febrile seizures during development reveal memory impairments. Together, these lines of evidence suggest that memory impairments related to hippocampal injury may be evident in human children after prolonged febrile seizures. The current study addressed this question by investigating memory abilities in 26 children soon after a prolonged febrile seizure (median: 37.5 days) and compared their results to those of 37 normally developing children. Fifteen patients were reassessed at a mean of 12.5 months after their first assessment to determine the transiency of any observed effects. We used the visual paired comparison task to test memory abilities in our group, as this task does not depend on verbal abilities and also because successful performance on the task has been proven to depend on the presence of functional hippocampi. Our findings show that patients perform as well as controls in the absence of a delay between the learning phase and the memory test, suggesting that both groups are able to form representations of the presented stimulus. However, after a 5-min delay, patients' recognition memory is not different from chance, and comparison of patients and controls points to an accelerated forgetting rate in the prolonged febrile seizure group. The patients' performance was not related to the time elapsed from the acute event or the duration of the prolonged febrile seizure, suggesting that the observed effect is not a by-product of the seizure itself or a delayed effect of medication administered to terminate the seizure. By contrast, performance was related to hippocampal size; participants with the smallest mean hippocampal volumes revealed the biggest drop in performance from the immediate to the delayed paradigm. At follow-up, children were still showing deficiencies in recognizing a face after a 5-min delay. Similarly, this suggests that the observed memory impairments are not a transient effect of the prolonged febrile seizures. This is the first report of such impairments in humans, and it is clinically significant given the links between mesial temporal sclerosis and prolonged febrile seizures. The persistence of these impairments a year onwards signals the potential benefits of intervention in these children who run the risk of developing episodic memory deficits in later childhood.
Collapse
Affiliation(s)
- Marina M. Martinos
- 1 Developmental Cognitive Neurosciences Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- 2 Neurosciences Unit, UCL Institute of Child Health, 4-5 Long Yard, London WC1N 3LU, UK
| | - Michael Yoong
- 2 Neurosciences Unit, UCL Institute of Child Health, 4-5 Long Yard, London WC1N 3LU, UK
| | - Shekhar Patil
- 2 Neurosciences Unit, UCL Institute of Child Health, 4-5 Long Yard, London WC1N 3LU, UK
| | - Richard F. M. Chin
- 3 Young Epilepsy, St Piers Lane, Lingfield, Surrey RH7 6PW, UK
- 4 The Muir Maxwell Epilepsy Center, University of Edinburgh, Musselburgh EH21, UK
| | - Brian G. Neville
- 2 Neurosciences Unit, UCL Institute of Child Health, 4-5 Long Yard, London WC1N 3LU, UK
- 3 Young Epilepsy, St Piers Lane, Lingfield, Surrey RH7 6PW, UK
| | - Rod C. Scott
- 2 Neurosciences Unit, UCL Institute of Child Health, 4-5 Long Yard, London WC1N 3LU, UK
- 3 Young Epilepsy, St Piers Lane, Lingfield, Surrey RH7 6PW, UK
- 5 Department of Neurology, Dartmouth Medical School Lebanon, Lebanon NH 03756, USA
| | - Michelle de Haan
- 1 Developmental Cognitive Neurosciences Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
21
|
Paule MG, Green L, Myerson J, Alvarado M, Bachevalier J, Schneider JS, Schantz SL. Behavioral toxicology of cognition: extrapolation from experimental animal models to humans: behavioral toxicology symposium overview. Neurotoxicol Teratol 2012; 34:263-73. [PMID: 22311110 DOI: 10.1016/j.ntt.2012.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 11/17/2022]
Abstract
A variety of behavioral instruments are available for assessing important aspects of cognition in both animals and humans and, in many cases, the same instruments can be used in both. While nonhuman primates are phylogenetically closest to humans, rodents, pigeons and other animals also offer behaviors worthy of note. Delay Discounting procedures are as useful as any in studies of impulsivity and may have utility in shedding light on processes associated with drug abuse. Specific memory tests such as Visual Paired Comparisons tasks (similar to the Fagan test of infant intelligence) can be modified to allow for assessment of different aspects of memory such as spatial memory. Use of these and other specific memory tasks can be used to directly monitor aspects of cognitive development in infant animals, particularly in nonhuman primates such as monkeys, and children and to draw inferences with respect to possible neuroanatomical substrates sub-serving their functions. Tasks for assessing working memory such as Variable Delayed Response (VDR), modified VDR and Spatial Working Memory tasks are now known to be affected in Parkinson's disease (PD). These and other cognitive function tasks are being used in a monkey model of PD to assess the ability of anti-Parkinson's disease therapies to ameliorate these cognitive deficits without diminishing their therapeutic effects on motor dysfunction. Similarly, in a rat model of the cognitive deficits associated with perinatal exposure to polychlorinated biphenyls (PCBs), clear parallels with children can be seen in at least two areas of executive function: cognitive flexibility and response inhibition. In the rat model, discrimination reversal tasks were utilized to assess cognitive flexibility, a function often assessed in humans using the Wisconsin Card Sorting Task. Response inhibition was assessed using performance in a Differential Reinforcement of Low Response Rates (DRL) task. As the data continue to accumulate, it becomes more clear that our attempts to adapt animal-appropriate tasks for the study of important aspects of human cognition have proven to be very fruitful.
Collapse
Affiliation(s)
- Merle G Paule
- Divison of Neurotoxicology, National Center for Toxicological Research, FDA, Jefferson, AR, United States.
| | | | | | | | | | | | | |
Collapse
|