1
|
Heinen R, Bierbrauer A, Wolf OT, Axmacher N. Representational formats of human memory traces. Brain Struct Funct 2024; 229:513-529. [PMID: 37022435 PMCID: PMC10978732 DOI: 10.1007/s00429-023-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
Neural representations are internal brain states that constitute the brain's model of the external world or some of its features. In the presence of sensory input, a representation may reflect various properties of this input. When perceptual information is no longer available, the brain can still activate representations of previously experienced episodes due to the formation of memory traces. In this review, we aim at characterizing the nature of neural memory representations and how they can be assessed with cognitive neuroscience methods, mainly focusing on neuroimaging. We discuss how multivariate analysis techniques such as representational similarity analysis (RSA) and deep neural networks (DNNs) can be leveraged to gain insights into the structure of neural representations and their different representational formats. We provide several examples of recent studies which demonstrate that we are able to not only measure memory representations using RSA but are also able to investigate their multiple formats using DNNs. We demonstrate that in addition to slow generalization during consolidation, memory representations are subject to semantization already during short-term memory, by revealing a shift from visual to semantic format. In addition to perceptual and conceptual formats, we describe the impact of affective evaluations as an additional dimension of episodic memories. Overall, these studies illustrate how the analysis of neural representations may help us gain a deeper understanding of the nature of human memory.
Collapse
Affiliation(s)
- Rebekka Heinen
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Anne Bierbrauer
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Institute for Systems Neuroscience, Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
2
|
Waschke L, Kamp F, van den Elzen E, Krishna S, Lindenberger U, Rutishauser U, Garrett DD. Single-neuron spiking variability in hippocampus dynamically tracks sensory content during memory formation in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.23.529684. [PMID: 36865320 PMCID: PMC9980052 DOI: 10.1101/2023.02.23.529684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
During memory formation, the hippocampus is presumed to represent the content of stimuli, but how it does so is unknown. Using computational modelling and human single-neuron recordings, we show that the more precisely hippocampal spiking variability tracks the composite features of each individual stimulus, the better those stimuli are later remembered. We propose that moment-to-moment spiking variability may provide a new window into how the hippocampus constructs memories from the building blocks of our sensory world.
Collapse
|
3
|
Leger KR, Cowell RA, Gutchess A. Do cultural differences emerge at different levels of representational hierarchy? Mem Cognit 2024; 52:241-253. [PMID: 37735292 DOI: 10.3758/s13421-023-01459-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
In prior research, Eastern and Western culture groups differ in memory specificity for objects. However, these studies used concrete object stimuli, which carry semantic information that may be confounded with culture. Additionally, the perceptual properties of the stimuli were not tightly controlled. Therefore, it cannot be precisely determined whether the observed cross-cultural differences are generalizable across different stimulus types and memory task demands. In prior studies, Americans demonstrated higher memory specificity than East Asians, but this may be due to Americans being more attuned to the low-level features that distinguish studied items from similar lures, rather than general memory differences. To determine whether this pattern of cross-cultural memory differences emerges irrespective of stimulus properties, we tested American and East Asian young adults using a recognition memory task employing abstract stimuli for which attention to conjunctions of features was critical for discrimination. Additionally, in order to more precisely determine the influence of stimulus and task on culture differences, participants also completed a concrete objects memory task identical to the one used in prior research. The results of the abstract objects task mirror the pattern seen in prior studies with concrete objects: Americans showed generally higher levels of recognition memory performance than East Asians for studied abstract items, whether discriminating them from similar or entirely new items. Results from the current concrete object task generally replicated this pattern. This suggests cross-cultural memory differences generalize across stimulus types and task demands, rather than reflecting differential sensitivity to low-level features or higher-level conjunctions.
Collapse
Affiliation(s)
- Krystal R Leger
- Department of Psychology, Brandeis University, Waltham, MA, USA.
| | - Rosemary A Cowell
- Institute for Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Angela Gutchess
- Department of Psychology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
4
|
Henzen NA, Reinhardt J, Blatow M, Kressig RW, Krumm S. Excellent Interrater Reliability for Manual Segmentation of the Medial Perirhinal Cortex. Brain Sci 2023; 13:850. [PMID: 37371329 DOI: 10.3390/brainsci13060850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Objective: Evaluation of interrater reliability for manual segmentation of brain structures that are affected first by neurofibrillary tau pathology in Alzheimer's disease. Method: Medial perirhinal cortex, lateral perirhinal cortex, and entorhinal cortex were manually segmented by two raters on structural magnetic resonance images of 44 adults (20 men; mean age = 69.2 ± 10.4 years). Intraclass correlation coefficients (ICC) of cortical thickness and volumes were calculated. Results: Very high ICC values of manual segmentation for the cortical thickness of all regions (0.953-0.986) and consistently lower ICC values for volume estimates of the medial and lateral perirhinal cortex (0.705-0.874). Conclusions: The applied manual segmentation protocol allows different raters to achieve remarkably similar cortical thickness estimates for regions of the parahippocampal gyrus. In addition, the results suggest a preference for cortical thickness over volume as a reliable measure of atrophy, especially for regions affected by collateral sulcus variability (i.e., medial and lateral perirhinal cortex). The results provide a basis for future automated segmentation and collection of normative data.
Collapse
Affiliation(s)
- Nicolas A Henzen
- University Department of Geriatric Medicine FELIX PLATTER, 4055 Basel, Switzerland
- Faculty of Psychology, University of Basel, 4001 Basel, Switzerland
| | - Julia Reinhardt
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Orthopedic Surgery and Traumatology, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Maria Blatow
- Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Neurocenter, Cantonal Hospital Lucerne, University of Lucerne, 6000 Lucerne, Switzerland
| | - Reto W Kressig
- University Department of Geriatric Medicine FELIX PLATTER, 4055 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Sabine Krumm
- University Department of Geriatric Medicine FELIX PLATTER, 4055 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Gellersen HM, Trelle AN, Farrar BG, Coughlan G, Korkki SM, Henson RN, Simons JS. Medial temporal lobe structure, mnemonic and perceptual discrimination in healthy older adults and those at risk for mild cognitive impairment. Neurobiol Aging 2023; 122:88-106. [PMID: 36516558 DOI: 10.1016/j.neurobiolaging.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Cognitive tests sensitive to the integrity of the medial temporal lobe (MTL), such as mnemonic discrimination of perceptually similar stimuli, may be useful early markers of risk for cognitive decline in older populations. Perceptual discrimination of stimuli with overlapping features also relies on MTL but remains relatively unexplored in this context. We assessed mnemonic discrimination in two test formats (Forced Choice, Yes/No) and perceptual discrimination of objects and scenes in 111 community-dwelling older adults at different risk status for cognitive impairment based on neuropsychological screening. We also investigated associations between performance and MTL sub-region volume and thickness. The at-risk group exhibited reduced entorhinal thickness and impaired perceptual and mnemonic discrimination. Perceptual discrimination impairment partially explained group differences in mnemonic discrimination and correlated with entorhinal thickness. Executive dysfunction accounted for Yes/No deficits in at-risk adults, demonstrating the importance of test format for the interpretation of memory decline. These results suggest that perceptual discrimination tasks may be useful tools for detecting incipient cognitive impairment related to reduced MTL integrity in nonclinical populations.
Collapse
Affiliation(s)
- Helena M Gellersen
- Department of Psychology, University of Cambridge, Cambridge, UK; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | | | | | - Gillian Coughlan
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Saana M Korkki
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Augereau K, Migues PV, Hardt O. Infusing zeta inhibitory peptide into the perirhinal cortex of rats abolishes long-term object recognition memory without affecting novel object location recognition. Front Behav Neurosci 2022; 16:1007748. [PMID: 36560931 PMCID: PMC9763881 DOI: 10.3389/fnbeh.2022.1007748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Infusing the amnesic agent zeta inhibitory peptide (ZIP) into the dorsal hippocampus disrupts established long-term object location recognition memory without affecting object identity recognition, which likely depends on the perirhinal cortex. Here, we tested whether infusing ZIP into the perirhinal cortex can abolish long-term memory supporting object identity recognition, leaving long-term object location recognition memory intact. We infused ZIP into the perirhinal cortex of rats either 1 day or 6 days after exposing them to two identical objects in an open field arena. One day after ZIP infusion, that is, 2 or 7 days after object exposure, we either assessed whether the animals recognized that now one of the two objects was novel or whether they recognized that one of the two familiar objects was at a new location. Our results show for both retention intervals, infusions of ZIP into the perirhinal cortex impaired novel object recognition but spared novel object location recognition. Rats that received a scrambled version of ZIP had no deficit in either test at both retention intervals and expressed stronger novel object recognition compared to rats infused with ZIP. These findings support the view that object recognition depends on dissociable memory representations distributed across different brain areas, with perirhinal cortex maintaining long-term memory for what objects had been encountered, and hippocampus supporting memory for where these objects had been placed.
Collapse
Affiliation(s)
| | | | - Oliver Hardt
- Department of Psychology, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Hippocampal activity during memory and visual perception: The role of representational content. Cortex 2022; 157:14-29. [PMID: 36272329 DOI: 10.1016/j.cortex.2022.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
The functional organisation of the medial temporal lobe (MTL) has long been described on the basis of cognitive processes such as recollection or familiarity. However, this view has recently been challenged, and researchers have proposed decomposing cognitive phenomena into representations and operations. According to the representational view, representations, such as scenes for the hippocampus and objects for the perirhinal cortex, are critical in understanding the role of MTL regions in cognition. In the present study, 51 healthy young participants underwent functional magnetic resonance imaging (fMRI) while completing a visual-discrimination task. Subsequently, half of the participants performed a patch-cue recognition procedure in which "Rec" responses are believed to reflect the operation of pattern completion, whereas the other half performed a whole-item remember/know procedure. We replicated the previously-reported demonstration that hippocampal involvement in pattern completion is preferential for scenes as compared with objects. In contrast, the perirhinal cortex was more recruited for object processing than for scene processing. We further extended these results to the operations of strength-signal memory and visual discrimination. Finally, the modulation of hippocampal engagement in pattern completion by representational content was found to be specific to its anterior segment. This observation is consistent with the proposal that this segment would process broad/global representations, whereas the posterior hippocampus would perform sharp/local representations. Taken together, these results favour the representational view of MTL functional organisation, but support that this specialisation differs along the hippocampal long-axis.
Collapse
|
8
|
Wu Z, Buckley MJ. Prefrontal and Medial Temporal Lobe Cortical Contributions to Visual Short-Term Memory. J Cogn Neurosci 2022; 35:27-43. [PMID: 36306260 DOI: 10.1162/jocn_a_01937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A number of recent studies have indicated that the medial temporal lobe (MTL) plays a critical role in working memory (WM) and perception, but these results have been highly controversial given the traditional association of MTL with long-term memory. We review the research and highlight important factors that need to be considered in determining the role of MTL in WM including set-size of used stimuli and feature complexity and/or feature conjunctions/bindings embedded in those stimuli. These factors relate to hierarchical and, accordingly, domain-specific theories of functional organization within the temporal lobe. In addition, one must consider process-specific theories too, because two key processes commonly understood to contribute recognition memory, namely, recollection and familiarity, also have robust support from neurophysiological and neuroimaging research as to their functional dissociations within MTL. PFC has long been heavily implicated in WM; however, relatively less is known about how the PFC contributes to recollection and familiarity, although dynamic prefrontal coding models in WM may help to explain their neural mechanisms. The MTL and PFC are heavily interconnected and do not operate independently in underlying WM. We propose that investigation of the interactions between these two regions in WM, particularly their coordinated neural activities, and the modeling of such interactions, will be crucial for the advancing understanding of the neural mechanisms of WM.
Collapse
Affiliation(s)
- Zhemeng Wu
- University of Oxford, United Kingdom.,University of Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Chao OY, Nikolaus S, Yang YM, Huston JP. Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 2022; 141:104855. [PMID: 36089106 PMCID: PMC10542956 DOI: 10.1016/j.neubiorev.2022.104855] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Rats and mice are used for studying neuronal circuits underlying recognition memory due to their ability to spontaneously remember the occurrence of an object, its place and an association of the object and place in a particular environment. A joint employment of lesions, pharmacological interventions, optogenetics and chemogenetics is constantly expanding our knowledge of the neural basis for recognition memory of object, place, and their association. In this review, we summarize current studies on recognition memory in rodents with a focus on the novel object preference, novel location preference and object-in-place paradigms. The evidence suggests that the medial prefrontal cortex- and hippocampus-connected circuits contribute to recognition memory for object and place. Under certain conditions, the striatum, medial septum, amygdala, locus coeruleus and cerebellum are also involved. We propose that the neuronal circuitry for recognition memory of object and place is hierarchically connected and constructed by different cortical (perirhinal, entorhinal and retrosplenial cortices), thalamic (nucleus reuniens, mediodorsal and anterior thalamic nuclei) and primeval (hypothalamus and interpeduncular nucleus) modules interacting with the medial prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Susanne Nikolaus
- Department of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
10
|
Castegnaro A, Howett D, Li A, Harding E, Chan D, Burgess N, King J. Assessing mild cognitive impairment using object-location memory in immersive virtual environments. Hippocampus 2022; 32:660-678. [PMID: 35916343 PMCID: PMC9543035 DOI: 10.1002/hipo.23458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 11/12/2022]
Abstract
Pathological changes in the medial temporal lobe (MTL) are found in the early stages of Alzheimer's disease (AD) and aging. The earliest pathological accumulation of tau colocalizes with the areas of the MTL involved in object processing as part of a wider anterolateral network. Here, we sought to assess the diagnostic potential of memory for object locations in iVR environments in individuals at high risk of AD dementia (amnestic mild cognitive impairment [aMCI] n = 23) as compared to age-related cognitive decline. Consistent with our primary hypothesis that early AD would be associated with impaired object location, aMCI patients exhibited impaired spatial feature binding. Compared to both older (n = 24) and younger (n = 53) controls, aMCI patients, recalled object locations with significantly less accuracy (p < .001), with a trend toward an impaired identification of the object's correct context (p = .05). Importantly, these findings were not explained by deficits in object recognition (p = .6). These deficits differentiated aMCI from controls with greater accuracy (AUC = 0.89) than the standard neuropsychological tests. Within the aMCI group, 16 had CSF biomarkers indicative of their likely AD status (MCI+ n = 9 vs. MCI- n = 7). MCI+ showed lower accuracy in the object-context association than MCI- (p = .03) suggesting a selective deficit in object-context binding postulated to be associated with anterior-temporal areas. MRI volumetric analysis across healthy older participants and aMCI revealed that test performance positively correlates with lateral entorhinal cortex volumes (p < .05) and hippocampus volumes (p < .01), consistent with their hypothesized role in binding contextual and spatial information with object identity. Our results indicate that tests relying on the anterolateral object processing stream, and in particular requiring successful binding of an object with spatial information, may aid detection of pre-dementia AD due to the underlying early spread of tau pathology.
Collapse
Affiliation(s)
- Andrea Castegnaro
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - David Howett
- School of Psychological ScienceUniversity of BristolBristolUK
| | - Adrienne Li
- Department of PsychologyYork UniversityTorontoOntarioCanada
| | - Elizabeth Harding
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Dennis Chan
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Neil Burgess
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - John King
- Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| |
Collapse
|
11
|
Ferko KM, Blumenthal A, Martin CB, Proklova D, Minos AN, Saksida LM, Bussey TJ, Khan AR, Köhler S. Activity in perirhinal and entorhinal cortex predicts perceived visual similarities among category exemplars with highest precision. eLife 2022; 11:66884. [PMID: 35311645 PMCID: PMC9020819 DOI: 10.7554/elife.66884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2023] Open
Abstract
Vision neuroscience has made great strides in understanding the hierarchical organization of object representations along the ventral visual stream (VVS). How VVS representations capture fine-grained visual similarities between objects that observers subjectively perceive has received limited examination so far. In the current study, we addressed this question by focussing on perceived visual similarities among subordinate exemplars of real-world categories. We hypothesized that these perceived similarities are reflected with highest fidelity in neural activity patterns downstream from inferotemporal regions, namely in perirhinal (PrC) and anterolateral entorhinal cortex (alErC) in the medial temporal lobe. To address this issue with functional magnetic resonance imaging (fMRI), we administered a modified 1-back task that required discrimination between category exemplars as well as categorization. Further, we obtained observer-specific ratings of perceived visual similarities, which predicted behavioural discrimination performance during scanning. As anticipated, we found that activity patterns in PrC and alErC predicted the structure of perceived visual similarity relationships among category exemplars, including its observer-specific component, with higher precision than any other VVS region. Our findings provide new evidence that subjective aspects of object perception that rely on fine-grained visual differentiation are reflected with highest fidelity in the medial temporal lobe.
Collapse
Affiliation(s)
- Kayla M Ferko
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Robarts Research Institute Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Anna Blumenthal
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Cervo Brain Research Center, University of Laval, Quebec, Canada
| | - Chris B Martin
- Department of Psychology, Florida State University, Tallahassee, United States
| | - Daria Proklova
- Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Alexander N Minos
- Brain and Mind Institute, University of Western Ontario, London, Canada
| | - Lisa M Saksida
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Robarts Research Institute Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Timothy J Bussey
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Robarts Research Institute Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Ali R Khan
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Robarts Research Institute Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,School of Biomedical Engineering, University of Western Ontario, London, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Canada
| | - Stefan Köhler
- Brain and Mind Institute, University of Western Ontario, London, Canada.,Department of Psychology, University of Western Ontario, London, Canada
| |
Collapse
|
12
|
Zaiser AK, Bader R, Meyer P. High feature overlap reveals the importance of anterior and medial temporal lobe structures for learning by means of fast mapping. Cortex 2021; 146:74-88. [PMID: 34839220 DOI: 10.1016/j.cortex.2021.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/03/2022]
Abstract
Contrary to traditional theories of declarative memory, it has recently been shown that novel, arbitrary associations can rapidly and directly be integrated into cortical memory networks by means of a learning procedure called fast mapping (FM), possibly bypassing time-consuming hippocampal-neocortical consolidation processes. In the typical FM paradigm, a picture of a previously unknown item is presented next to a picture of a previously known item and participants answer a question referring to an unfamiliar label, thereby incidentally creating associations between the unknown item and the label. However, contradictory findings have been reported and factors moderating rapid cortical integration through FM yet need to be identified. Previous behavioral results showed that rapid semantic integration through FM was boosted if the unknown and the known item shared many features. In light of this, we propose that the perirhinal cortex might be especially qualified to support the rapid incorporation of these associations into cortical memory networks within the FM paradigm, due to its computational mechanisms during the processing of complex and particularly highly similar objects. We therefore expected that a high degree of feature overlap between the unknown and the known item would trigger strong engagement of the perirhinal cortex at encoding, which in turn might enhance rapid cortical integration of the novel picture-label associations. Within an fMRI experiment, we observed greater subsequent memory effects (i.e., stronger activation for subsequent hits than misses) during encoding in the perirhinal cortex and an associated anterior temporal network if the items shared many features than if they shared few features. This indicates that the perirhinal cortex indeed contributes to the acquisition of novel associations by means of FM if feature overlap is high.
Collapse
Affiliation(s)
- Ann-Kathrin Zaiser
- Experimental Neuropsychology Unit, Department of Psychology, Saarland University, Saarbrücken, Germany; Department of Applied Psychology, SRH University Heidelberg, Germany.
| | - Regine Bader
- Experimental Neuropsychology Unit, Department of Psychology, Saarland University, Saarbrücken, Germany
| | - Patric Meyer
- Department of Applied Psychology, SRH University Heidelberg, Germany; Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Perirhinal and Postrhinal Damage Have Different Consequences on Attention as Assessed in the Five-Choice Serial Reaction Time Task. eNeuro 2021; 8:ENEURO.0210-21.2021. [PMID: 34475265 PMCID: PMC8462067 DOI: 10.1523/eneuro.0210-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
The perirhinal (PER) and postrhinal (POR) cortices, structures in the medial temporal lobe, are implicated in learning and memory. The PER is understood to process object information and the POR to process spatial or contextual information. Whether the medial temporal lobe is dedicated to memory, however, is under debate. In this study, we addressed the hypothesis that the PER and POR are also involved in non-mnemonic cognitive functions. Rats with PER or POR damage and SHAM surgical controls were shaped, trained, and tested on the five-choice serial reaction time (5CSRT) task, which assesses attention and executive function. Rats with PER damage were impaired in acquiring the task and at asymptote, although processing information about objects was not relevant to the task. When confronted with attentional challenges, rats with PER damage showed a pattern consistent with decreased attentional capacity, increased response errors, and increased impulsive behavior. Rats with POR damage showed intact acquisition and normal asymptotic performance. They also exhibited faster latencies in the absence of speed accuracy trade-off suggesting enhanced response readiness. We suggest this increased response readiness results from decreased automatic monitoring of the local environment, which might normally compete with response readiness. Our findings are consistent with a role for PER in controlled attention and a role for POR in stimulus-driven attention providing evidence that the PER and POR cortices have functions that go beyond memory for objects and memory for scenes and contexts, respectively. These findings provide new evidence for functional specialization in the medial temporal lobe.
Collapse
|
14
|
Chu S, Margerison M, Thavabalasingam S, O'Neil EB, Zhao YF, Ito R, Lee ACH. Perirhinal Cortex is Involved in the Resolution of Learned Approach-Avoidance Conflict Associated with Discrete Objects. Cereb Cortex 2021; 31:2701-2719. [PMID: 33429427 DOI: 10.1093/cercor/bhaa384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rodent ventral and primate anterior hippocampus have been implicated in approach-avoidance (AA) conflict processing. It is unclear, however, whether this structure contributes to AA conflict detection and/or resolution, and if its involvement extends to conditions of AA conflict devoid of spatial/contextual information. To investigate this, neurologically healthy human participants first learned to approach or avoid single novel visual objects with the goal of maximizing earned points. Approaching led to point gain and loss for positive and negative objects, respectively, whereas avoidance had no impact on score. Pairs of these objects, each possessing nonconflicting (positive-positive/negative-negative) or conflicting (positive-negative) valences, were then presented during functional magnetic resonance imaging. Participants either made an AA decision to score points (Decision task), indicated whether the objects had identical or differing valences (Memory task), or followed a visual instruction to approach or avoid (Action task). Converging multivariate and univariate results revealed that within the medial temporal lobe, perirhinal cortex, rather than the anterior hippocampus, was predominantly associated with object-based AA conflict resolution. We suggest the anterior hippocampus may not contribute equally to all learned AA conflict scenarios and that stimulus information type may be a critical and overlooked determinant of the neural mechanisms underlying AA conflict behavior.
Collapse
Affiliation(s)
- Sonja Chu
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Margerison
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | | | - Edward B O'Neil
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Yuan-Fang Zhao
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Rutsuko Ito
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Andy C H Lee
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Hakobyan O, Cheng S. Recognition Receiver Operating Characteristic Curves: The Complex Influence of Input Statistics, Memory, and Decision-making. J Cogn Neurosci 2021; 33:1032-1055. [PMID: 33656399 DOI: 10.1162/jocn_a_01697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Receiver operating characteristic (ROC) analysis is the standard tool for studying recognition memory. In particular, the curvilinearity and the y-offset of recognition ROC curves have been interpreted as indicative of either memory strength (single-process models) or different memory processes (dual-process model). The distinction between familiarity and recollection has been widely studied in cognitive neuroscience in a variety of conditions, including lesions of different brain regions. We develop a computational model that explicitly shows how performance in recognition memory is affected by a complex and, as yet, underappreciated interplay of various factors, such as stimulus statistics, memory processing, and decision-making. We demonstrate that (1) the factors in the model affect recognition ROC curves in unexpected ways, (2) fitting R and F parameters according to the dual-process model is not particularly useful for understanding the underlying processes, and (3) the variability of recognition ROC curves and the controversies they have caused might be due to the uncontrolled variability in the contributing factors. Although our model is abstract, its functional components can be mapped onto brain regions, which are involved in corresponding functions. This enables us to reproduce and interpret in a coherent framework the diverse effects on recognition memory that have been reported in patients with frontal and hippocampal lesions. To conclude, our work highlights the importance of the rich interplay of a variety of factors in driving recognition memory performance, which has to be taken into account when interpreting recognition ROC curves.
Collapse
|
16
|
Vranic A, Martincevic M, Borella E. Mental imagery training in older adults: Which are benefits and individual predictors? Int J Geriatr Psychiatry 2021; 36:334-341. [PMID: 32909352 DOI: 10.1002/gps.5428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Strategic memory training involves explicit instructions in mnemonic methods to improve recall. Mental imagery is considered among the most effective encoding strategies. The aim of the present study was to assess the benefits of a strategic memory training based on mental imagery (originally proposed by Carretti et al., 2007) and to further investigate its potentials. The study represents a replication in a new and independent cultural setting and features valuable methodological amendments, while it also examines individual predictors of training efficacy. DESIGN A sample of 91 older volunteers (age 61-88), divided in training and control group, participated in the training. Specific training gain in the immediate word list recall (criterion task), as well as transfer effects on Letter-Number Sequencing (working memory [WM] task), long-term recall and recognition (LTM tasks) were tested at the pretest and at the posttest. RESULTS Analysis of variance showed posttraining effects in immediate word recall and long-term verbal recall, but no effects in WM task and long-term recognition. Regression analysis showed age to be the only significant predictor in one task, the immediate word recall. CONCLUSIONS Overall, proposed training can improve some aspects of memory performance by aiding in strategic use of mental imagery. Transfer to other tasks and contribution of individual predictors to training efficacy results limited, however. It seems that training benefits are evident when task similarity enables transfer-appropriate processing (as evidenced in gains of both recall tasks), while training efficacy relies on individual characteristics which contribute to the execution of some task components.
Collapse
Affiliation(s)
- Andrea Vranic
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Marina Martincevic
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Erika Borella
- Department of General Psychology, University of Padua, Padova, Italy
| |
Collapse
|
17
|
Davis SW, Geib BR, Wing EA, Wang WC, Hovhannisyan M, Monge ZA, Cabeza R. Visual and Semantic Representations Predict Subsequent Memory in Perceptual and Conceptual Memory Tests. Cereb Cortex 2021; 31:974-992. [PMID: 32935833 PMCID: PMC8485078 DOI: 10.1093/cercor/bhaa269] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
It is generally assumed that the encoding of a single event generates multiple memory representations, which contribute differently to subsequent episodic memory. We used functional magnetic resonance imaging (fMRI) and representational similarity analysis to examine how visual and semantic representations predicted subsequent memory for single item encoding (e.g., seeing an orange). Three levels of visual representations corresponding to early, middle, and late visual processing stages were based on a deep neural network. Three levels of semantic representations were based on normative observed ("is round"), taxonomic ("is a fruit"), and encyclopedic features ("is sweet"). We identified brain regions where each representation type predicted later perceptual memory, conceptual memory, or both (general memory). Participants encoded objects during fMRI, and then completed both a word-based conceptual and picture-based perceptual memory test. Visual representations predicted subsequent perceptual memory in visual cortices, but also facilitated conceptual and general memory in more anterior regions. Semantic representations, in turn, predicted perceptual memory in visual cortex, conceptual memory in the perirhinal and inferior prefrontal cortex, and general memory in the angular gyrus. These results suggest that the contribution of visual and semantic representations to subsequent memory effects depends on a complex interaction between representation, test type, and storage location.
Collapse
Affiliation(s)
- Simon W Davis
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Benjamin R Geib
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| | - Erik A Wing
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| | - Wei-Chun Wang
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| | - Mariam Hovhannisyan
- Department of Neurology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Zachary A Monge
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| | - Roberto Cabeza
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
18
|
Distinct FN400/N400 memory effects for perceptually fluent and disfluent words. Brain Cogn 2020; 147:105661. [PMID: 33360780 DOI: 10.1016/j.bandc.2020.105661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/31/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Recognition memory studies have shown that increased perceptual fluency results in more "old" responses and, presumably, increases familiarity. However, the exact neural mechanisms of these effects remain unresolved. We conducted two ERP experiments in which participants encoded words and performed a recognition test where fluency was manipulated by changing clarity of test words (half of them were clear or blurry). In the more demanding Experiment 1, we found a reversed effect of fluency on recognition (more hits for blurry words), which was accompanied by larger N400 and LPC old/new effects for blurry words. For high confidence responses, the topography of N400 shifted towards frontal electrodes (the FN400 for blurry words). In the less demanding Experiment 2, no behavioral differences between clear and blurry words were observed. However, there was a discrepancy in the ERP results, with the frontal FN400 for blurry words and the parietal N400 for clear words, suggesting that distinct neural pathways can support familiarity-based recognition for clear and blurry items. In both experiments, early perceptual fluency ERP effects were also observed. The results indicate that both semantic processing and familiarity can be enhanced by perceptual fluency and contribute to recognition judgments, depending on the interpretations of fluency.
Collapse
|
19
|
Davidson PSR, Vidjen P, Trincao-Batra S, Collin CA. Older Adults' Lure Discrimination Difficulties on the Mnemonic Similarity Task Are Significantly Correlated With Their Visual Perception. J Gerontol B Psychol Sci Soc Sci 2020; 74:1298-1307. [PMID: 30407604 DOI: 10.1093/geronb/gby130] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Pattern separation in memory encoding entails creating and storing distinct, detailed representations to facilitate storage and retrieval. The Mnemonic Similarity Task (MST; Stark, S. M., Yassa, M. A., Lacy, J. W., & Stark, C. E. [2013]. A task to assess behavioral pattern separation [BPS] in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51, 2442-2449) has been used to argue that normal aging leads to pattern separation decline. We sought to replicate previous reports of age-related difficulty on this behavioral pattern separation estimate and to examine its neuropsychological correlates, specifically long-term memory function, executive function, and visual perception. METHODS We administered an object version of the MST to 31 young adults and 38 older adults. It involved a single-probe recognition memory test in which some of the originally studied objects had been replaced with perceptually similar lures, and participants had to identify each as old, a lure, or new. RESULTS Despite their corrected item recognition scores being superior to those of the young adults, the older adults had significantly greater difficulty than the young in discriminating the similar-looking lures from the original items. Interestingly, this lure discrimination difficulty was significantly correlated with visual perception rather than with long-term memory or executive function. DISCUSSION These results suggest that although adult age differences on the MST are reliable, care should be taken to separate perceptual from memory discrimination difficulties as the reason.
Collapse
Affiliation(s)
- Patrick S R Davidson
- School of Psychology, University of Ottawa, Ontario, Canada.,Bruyère Research Institute, University of Ottawa, Ontario, Canada.,Canadian Partnership for Stroke Recovery, University of Ottawa, Ontario, Canada
| | - Petar Vidjen
- School of Psychology, University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
20
|
Cowell RA, Huber DE. Mechanisms of memory: An intermediate level of analysis and organization. Curr Opin Behav Sci 2020; 32:65-71. [PMID: 32851122 PMCID: PMC7444732 DOI: 10.1016/j.cobeha.2020.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Research in the last five years has made great strides toward mechanistic explanations of how the brain enables memory. This progress builds upon decades of research from two complementary strands: a Levels of Analysis approach and a Levels of Organization approach. We review how research in cognitive psychology and cognitive neuroscience under these two approaches has recently converged on mechanistic, brain-based theories, couched at the optimal level for explaining cognitive phenomena - the intermediate level. Furthermore, novel empirical and data analysis techniques are now providing ways to test these theories' predictions, a crucial step in unraveling the mechanisms of memory.
Collapse
Affiliation(s)
- Rosemary A. Cowell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst
| | - David E. Huber
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst
| |
Collapse
|
21
|
Liang JC, Erez J, Zhang F, Cusack R, Barense MD. Experience Transforms Conjunctive Object Representations: Neural Evidence for Unitization After Visual Expertise. Cereb Cortex 2020; 30:2721-2739. [DOI: 10.1093/cercor/bhz250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abstract
Certain transformations must occur within the brain to allow rapid processing of familiar experiences. Complex objects are thought to become unitized, whereby multifeature conjunctions are retrieved as rapidly as a single feature. Behavioral studies strongly support unitization theory, but a compelling neural mechanism is lacking. Here, we examined how unitization transforms conjunctive representations to become more “feature-like” by recruiting posterior regions of the ventral visual stream (VVS) whose architecture is specialized for processing single features. We used functional magnetic resonance imaging to scan humans before and after visual training with novel objects. We implemented a novel multivoxel pattern analysis to measure a conjunctive code, which represented a conjunction of object features above and beyond the sum of the parts. Importantly, a multivoxel searchlight showed that the strength of conjunctive coding in posterior VVS increased posttraining. Furthermore, multidimensional scaling revealed representational separation at the level of individual features in parallel to the changes at the level of feature conjunctions. Finally, functional connectivity between anterior and posterior VVS was higher for novel objects than for trained objects, consistent with early involvement of anterior VVS in unitizing feature conjunctions in response to novelty. These data demonstrate that the brain implements unitization as a mechanism to refine complex object representations over the course of multiple learning experiences.
Collapse
Affiliation(s)
- Jackson C Liang
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Jonathan Erez
- Department of Psychology, Brain and Mind Institute, Western Interdisciplinary Research Building, Western University, London, ON N6A 5B7, Canada
| | - Felicia Zhang
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| | - Rhodri Cusack
- School of Psychology, Trinity College Dublin, Dublin, Ireland amd
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
22
|
Visual working memory impairments for single items following medial temporal lobe damage. Neuropsychologia 2019; 134:107227. [PMID: 31614154 DOI: 10.1016/j.neuropsychologia.2019.107227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/25/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
A growing body of research indicates that the medial temporal lobe (MTL) is essential not only for long-term episodic memory but also for visual working memory (VWM). In particular, recent work has shown that the MTL is especially important for VWM when complex, high-resolution binding is required. However, all of these studies tested VWM for multiple items which invites the possibility that working memory capacity was exceeded and patient impairments instead reflected deficits in long-term memory. Thus, the precise conditions under which the MTL is critical for VWM and the type of working memory processes that are affected by MTL damage are not yet clear. To address these issues, we examined the effects of MTL damage on VWM for a single item (i.e., a square that contained color, location, and orientation information) using confidence-based receiver operating characteristic methods to assess VWM discriminability and to separate perceiving- and sensing-based memory judgments. This approach was motivated by dual-process theories of cognition that posit distinct subprocesses underlie performance across perception, working memory, and long-term memory. The results indicated that MTL patients were significantly impaired in VWM for a single item. Interestingly, the patients were not impaired at making accurate high-confidence judgments that a change had occurred (i.e., perceiving), rather they were impaired at making low-confidence judgments that they sensed whether or not there had been a change in the absence of identifying the exact change. These results demonstrate that the MTL is critical in supporting working memory even for a single item, and that it contributes selectively to sensing-based discriminations.
Collapse
|
23
|
Ross DA, Sadil P, Wilson DM, Cowell RA. Hippocampal Engagement during Recall Depends on Memory Content. Cereb Cortex 2019; 28:2685-2698. [PMID: 28666344 DOI: 10.1093/cercor/bhx147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 01/22/2023] Open
Abstract
The hippocampus is considered pivotal to recall, allowing retrieval of information not available in the immediate environment. In contrast, neocortex is thought to signal familiarity, contributing to recall only when called upon by the hippocampus. However, this view is not compatible with representational accounts of memory, which reject the mapping of cognitive processes onto brain regions. According to representational accounts, the hippocampus is not engaged by recall per se, rather it is engaged whenever hippocampal representations are required. To test whether hippocampus is engaged by recall when hippocampal representations are not required, we used functional imaging and a non-associative recall task, with images (objects, scenes) studied in isolation, and image patches as cues. As predicted by a representational account, hippocampal activation was modulated by the content of the recalled memory, increasing during recall of scenes-which are known to be processed by hippocampus-but not during recall of objects. Object recall instead engaged neocortical regions known to be involved in object-processing. Further supporting the representational account, effective connectivity analyses revealed that changes in functional activation during recall were driven by increased information flow from neocortical sites, rather than by the spreading of recall-related activation from hippocampus back to neocortex.
Collapse
Affiliation(s)
- David A Ross
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - Patrick Sadil
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - D Merika Wilson
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| | - Rosemary A Cowell
- Department of Psychology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
24
|
Cowell RA, Barense MD, Sadil PS. A Roadmap for Understanding Memory: Decomposing Cognitive Processes into Operations and Representations. eNeuro 2019; 6:ENEURO.0122-19.2019. [PMID: 31189554 PMCID: PMC6620388 DOI: 10.1523/eneuro.0122-19.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Thanks to patients Phineas Gage and Henry Molaison, we have long known that behavioral control depends on the frontal lobes, whereas declarative memory depends on the medial temporal lobes (MTL). For decades, cognitive functions-behavioral control, declarative memory-have served as labels for characterizing the division of labor in cortex. This approach has made enormous contributions to understanding how the brain enables the mind, providing a systems-level explanation of brain function that constrains lower-level investigations of neural mechanism. Today, the approach has evolved such that functional labels are often applied to brain networks rather than focal brain regions. Furthermore, the labels have diversified to include both broadly-defined cognitive functions (declarative memory, visual perception) and more circumscribed mental processes (recollection, familiarity, priming). We ask whether a process-a high-level mental phenomenon corresponding to an introspectively-identifiable cognitive event-is the most productive label for dissecting memory. For example, recollection conflates a neurocomputational operation (pattern completion-based retrieval) with a class of representational content (associative, high-dimensional memories). Because a full theory of memory must identify operations and representations separately, and specify how they interact, we argue that processes like recollection constitute inadequate labels for characterizing neural mechanisms. Instead, we advocate considering the component operations and representations of processes like recollection in isolation. For the organization of memory, the evidence suggests that pattern completion is recapitulated widely across the ventral visual stream and MTL, but the division of labor between sites within this pathway can be explained by representational content.
Collapse
Affiliation(s)
- Rosemary A Cowell
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Patrick S Sadil
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
25
|
Sadil P, Potter KW, Huber DE, Cowell RA. Connecting the dots without top-down knowledge: Evidence for rapidly-learned low-level associations that are independent of object identity. J Exp Psychol Gen 2019; 148:1058-1070. [PMID: 31070394 PMCID: PMC6759832 DOI: 10.1037/xge0000607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Knowing the identity of an object can powerfully alter perception. Visual demonstrations of this-such as Gregory's (1970) hidden Dalmatian-affirm the existence of both top-down and bottom-up processing. We consider a third processing pathway: lateral connections between the parts of an object. Lateral associations are assumed by theories of object processing and hierarchical theories of memory, but little evidence attests to them. If they exist, their effects should be observable even in the absence of object identity knowledge. We employed Continuous Flash Suppression (CFS) while participants studied object images, such that visual details were learned without explicit object identification. At test, lateral associations were probed using a part-to-part matching task. We also tested whether part-whole links were facilitated by prior study using a part-naming task, and included another study condition (Word), in which participants saw only an object's written name. The key question was whether CFS study (which provided visual information without identity) would better support part-to-part matching (via lateral associations) whereas Word study (which provided identity without the correct visual form) would better support part-naming (via top-down processing). The predicted dissociation was found and confirmed by state-trace analyses. Thus, lateral part-to-part associations were learned and retrieved independently of object identity representations. This establishes novel links between perception and memory, demonstrating that (a) lateral associations at lower levels of the object identification hierarchy exist and contribute to object processing and (b) these associations are learned via rapid, episodic-like mechanisms previously observed for the high-level, arbitrary relations comprising episodic memories. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Patrick Sadil
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Kevin W. Potter
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - David E. Huber
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosemary A. Cowell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Abstract
Increasing evidence indicates that the subjective experience of recollection is diminished in autism spectrum disorder (ASD) compared to neurotypical individuals. The neurocognitive basis of this difference in how past events are re-experienced has been debated and various theoretical accounts have been proposed to date. Although each existing theory may capture particular features of memory in ASD, recent research questions whether any of these explanations are alone sufficient or indeed fully supported. This review first briefly considers the cognitive neuroscience of how episodic recollection operates in the neurotypical population, informing predictions about the encoding and retrieval mechanisms that might function atypically in ASD. We then review existing research on recollection in ASD, which has often not distinguished between different theoretical explanations. Recent evidence suggests a distinct difficulty engaging recollective retrieval processes, specifically the ability to consciously reconstruct and monitor a past experience, which is likely underpinned by altered functional interactions between neurocognitive systems rather than brain region-specific or process-specific dysfunction. This integrative approach serves to highlight how memory research in ASD may enhance our understanding of memory processes and networks in the typical brain. We make suggestions for future research that are important for further specifying the neurocognitive basis of episodic recollection in ASD and linking such difficulties to social developmental and educational outcomes.
Collapse
|
27
|
Yeung LK, Olsen RK, Hong B, Mihajlovic V, D'Angelo MC, Kacollja A, Ryan JD, Barense MD. Object-in-place Memory Predicted by Anterolateral Entorhinal Cortex and Parahippocampal Cortex Volume in Older Adults. J Cogn Neurosci 2019; 31:711-729. [DOI: 10.1162/jocn_a_01385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The lateral portion of the entorhinal cortex is one of the first brain regions affected by tau pathology, an important biomarker for Alzheimer disease. Improving our understanding of this region's cognitive role may help identify better cognitive tests for early detection of Alzheimer disease. Based on its functional connections, we tested the idea that the human anterolateral entorhinal cortex (alERC) may play a role in integrating spatial information into object representations. We recently demonstrated that the volume of the alERC was related to processing the spatial relationships of the features within an object [Yeung, L. K., Olsen, R. K., Bild-Enkin, H. E. P., D'Angelo, M. C., Kacollja, A., McQuiggan, D. A., et al. Anterolateral entorhinal cortex volume predicted by altered intra-item configural processing. Journal of Neuroscience, 37, 5527–5538, 2017]. In this study, we investigated whether the human alERC might also play a role in processing the spatial relationships between an object and its environment using an eye-tracking task that assessed visual fixations to a critical object within a scene. Guided by rodent work, we measured both object-in-place memory, the association of an object with a given context [Wilson, D. I., Langston, R. F., Schlesiger, M. I., Wagner, M., Watanabe, S., & Ainge, J. A. Lateral entorhinal cortex is critical for novel object-context recognition. Hippocampus, 23, 352–366, 2013], and object-trace memory, the memory for the former location of objects [Tsao, A., Moser, M. B., & Moser, E. I. Traces of experience in the lateral entorhinal cortex. Current Biology, 23, 399–405, 2013]. In a group of older adults with varying stages of brain atrophy and cognitive decline, we found that the volume of the alERC and the volume of the parahippocampal cortex selectively predicted object-in-place memory, but not object-trace memory. These results provide support for the notion that the alERC may integrate spatial information into object representations.
Collapse
Affiliation(s)
| | - Rosanna K. Olsen
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | | | | | | | - Arber Kacollja
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | - Jennifer D. Ryan
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| | - Morgan D. Barense
- University of Toronto
- Rotman Research Institute, Baycrest Health Sciences, Toronto
| |
Collapse
|
28
|
Neural dynamics of visual and semantic object processing. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Robin J, Rai Y, Valli M, Olsen RK. Category specificity in the medial temporal lobe: A systematic review. Hippocampus 2018; 29:313-339. [PMID: 30155943 DOI: 10.1002/hipo.23024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/30/2023]
Abstract
Theoretical accounts of medial temporal lobe (MTL) function ascribe different functions to subregions of the MTL including perirhinal, entorhinal, parahippocampal cortices, and the hippocampus. Some have suggested that the functional roles of these subregions vary in terms of their category specificity, showing preferential coding for certain stimulus types, but the evidence for this functional organization is mixed. In this systematic review, we evaluate existing evidence for regional specialization in the MTL for three categories of visual stimuli: faces, objects, and scenes. We review and synthesize across univariate and multivariate neuroimaging studies, as well as neuropsychological studies of cases with lesions to the MTL. Neuroimaging evidence suggests that faces activate the perirhinal cortex, entorhinal cortex, and the anterior hippocampus, while scenes engage the parahippocampal cortex and both the anterior and posterior hippocampus, depending on the contrast condition. There is some evidence for object-related activity in anterior MTL regions when compared to scenes, and in posterior MTL regions when compared to faces, suggesting that aspects of object representations may share similarities with face and scene representations. While neuroimaging evidence suggests some hippocampal specialization for faces and scenes, neuropsychological evidence shows that hippocampal damage leads to impairments in scene memory and perception, but does not entail equivalent impairments for faces in cases where the perirhinal cortex remains intact. Regional specialization based on stimulus categories has implications for understanding the mechanisms of MTL subregions, and highlights the need for the development of theoretical models of MTL function that can accommodate the differential patterns of specificity observed in the MTL.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Yeshith Rai
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Mikaeel Valli
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Weston CSE. Amygdala Represents Diverse Forms of Intangible Knowledge, That Illuminate Social Processing and Major Clinical Disorders. Front Hum Neurosci 2018; 12:336. [PMID: 30186129 PMCID: PMC6113401 DOI: 10.3389/fnhum.2018.00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023] Open
Abstract
Amygdala is an intensively researched brain structure involved in social processing and multiple major clinical disorders, but its functions are not well understood. The functions of a brain structure are best hypothesized on the basis of neuroanatomical connectivity findings, and of behavioral, neuroimaging, neuropsychological and physiological findings. Among the heaviest neuroanatomical interconnections of amygdala are those with perirhinal cortex (PRC), but these are little considered in the theoretical literature. PRC integrates complex, multimodal, meaningful and fine-grained distributed representations of objects and conspecifics. Consistent with this connectivity, amygdala is hypothesized to contribute meaningful and fine-grained representations of intangible knowledge for integration by PRC. Behavioral, neuroimaging, neuropsychological and physiological findings further support amygdala mediation of a diversity of such representations. These representations include subjective valence, impact, economic value, noxiousness, importance, ingroup membership, social status, popularity, trustworthiness and moral features. Further, the formation of amygdala representations is little understood, and is proposed to be often implemented through embodied cognition mechanisms. The hypothesis builds on earlier work, and makes multiple novel contributions to the literature. It highlights intangible knowledge, which is an influential but insufficiently researched factor in social and other behaviors. It contributes to understanding the heavy but neglected amygdala-PRC interconnections, and the diversity of amygdala-mediated intangible knowledge representations. Amygdala is a social brain region, but it does not represent species-typical social behaviors. A novel proposal to clarify its role is postulated. The hypothesis is also suggested to illuminate amygdala's involvement in several core symptoms of autism spectrum disorder (ASD). Specifically, novel and testable explanations are proposed for the ASD symptoms of disorganized visual scanpaths, apparent social disinterest, preference for concrete cognition, aspects of the disorder's heterogeneity, and impairment in some activities of daily living. Together, the presented hypothesis demonstrates substantial explanatory potential in the neuroscience, social and clinical domains.
Collapse
|
31
|
Clarke A, Devereux BJ, Tyler LK. Oscillatory Dynamics of Perceptual to Conceptual Transformations in the Ventral Visual Pathway. J Cogn Neurosci 2018; 30:1590-1605. [PMID: 30125217 DOI: 10.1162/jocn_a_01325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Object recognition requires dynamic transformations of low-level visual inputs to complex semantic representations. Although this process depends on the ventral visual pathway, we lack an incremental account from low-level inputs to semantic representations and the mechanistic details of these dynamics. Here we combine computational models of vision with semantics and test the output of the incremental model against patterns of neural oscillations recorded with magnetoencephalography in humans. Representational similarity analysis showed visual information was represented in low-frequency activity throughout the ventral visual pathway, and semantic information was represented in theta activity. Furthermore, directed connectivity showed visual information travels through feedforward connections, whereas visual information is transformed into semantic representations through feedforward and feedback activity, centered on the anterior temporal lobe. Our research highlights that the complex transformations between visual and semantic information is driven by feedforward and recurrent dynamics resulting in object-specific semantics.
Collapse
Affiliation(s)
- Alex Clarke
- University of Cambridge.,Anglia Ruskin University, Cambridge, United Kingdom
| | | | | |
Collapse
|
32
|
Miranda M, Bekinschtein P. Plasticity Mechanisms of Memory Consolidation and Reconsolidation in the Perirhinal Cortex. Neuroscience 2018; 370:46-61. [DOI: 10.1016/j.neuroscience.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
|
33
|
Newsome RN, Trelle AN, Fidalgo C, Hong B, Smith VM, Jacob A, Ryan JD, Rosenbaum RS, Cowell RA, Barense MD. Dissociable contributions of thalamic nuclei to recognition memory: novel evidence from a case of medial dorsal thalamic damage. ACTA ACUST UNITED AC 2017; 25:31-44. [PMID: 29246979 PMCID: PMC5733467 DOI: 10.1101/lm.045484.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/02/2018] [Indexed: 12/01/2022]
Abstract
The thalamic nuclei are thought to play a critical role in recognition memory. Specifically, the anterior thalamic nuclei and medial dorsal nuclei may serve as critical output structures in distinct hippocampal and perirhinal cortex systems, respectively. Existing evidence indicates that damage to the anterior thalamic nuclei leads to impairments in hippocampal-dependent tasks. However, evidence for the opposite pattern following medial dorsal nuclei damage has not yet been identified. In the present study, we investigated recognition memory in NC, a patient with relatively selective medial dorsal nuclei damage, using two object recognition tests with similar foils: a yes/no (YN) test that requires the hippocampus, and a forced choice corresponding test (FCC) that is supported by perirhinal cortex. NC performed normally in the YN test, but was impaired in the FCC test. Critically, FCC performance was impaired only when the study-test delay period was filled with interference. We interpret these results in the context of the representational–hierarchical model, which predicts that memory deficits following damage to the perirhinal system arise due to increased vulnerability to interference. These data provide the first evidence for selective deficits in a task that relies on perirhinal output following damage to the medial dorsal nuclei, providing critical evidence for dissociable thalamic contributions to recognition memory.
Collapse
Affiliation(s)
- Rachel N Newsome
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, M6A 2E1, Canada.,Departments of Psychology and Biology, Centre for Vision Research, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Alexandra N Trelle
- Department of Psychology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Celia Fidalgo
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| | - Bryan Hong
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| | - Victoria M Smith
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada.,Departments of Psychology and Biology, Centre for Vision Research, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Alexander Jacob
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| | - Jennifer D Ryan
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, M6A 2E1, Canada
| | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario, M6A 2E1, Canada.,Departments of Psychology and Biology, Centre for Vision Research, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Rosemary A Cowell
- Department of Psychology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, M6A 2E1, Canada
| |
Collapse
|
34
|
Familiarity and recollection vs representational models of medial temporal lobe structures: A single-case study. Neuropsychologia 2017; 104:76-91. [DOI: 10.1016/j.neuropsychologia.2017.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/20/2022]
|
35
|
Richler JJ, Wilmer JB, Gauthier I. General object recognition is specific: Evidence from novel and familiar objects. Cognition 2017; 166:42-55. [DOI: 10.1016/j.cognition.2017.05.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/28/2017] [Accepted: 05/14/2017] [Indexed: 12/12/2022]
|
36
|
The role of the hippocampus in recognition memory. Cortex 2017; 93:155-165. [DOI: 10.1016/j.cortex.2017.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/20/2016] [Accepted: 05/12/2017] [Indexed: 11/20/2022]
|
37
|
Abstract
Memory contains information about individual events (items) and combinations of events (associations). Despite the fundamental importance of this distinction, it remains unclear exactly how these two kinds of information are stored and whether different processes are used to retrieve them. We use both model-independent qualitative properties of response dynamics and quantitative modeling of individuals to address these issues. Item and associative information are not independent and they are retrieved concurrently via interacting processes. During retrieval, matching item and associative information mutually facilitate one another to yield an amplified holistic signal. Modeling of individuals suggests that this kind of facilitation between item and associative retrieval is a ubiquitous feature of human memory.
Collapse
Affiliation(s)
- Gregory E Cox
- Department of Psychology, 430 Huntington Hall, Syracuse University, Syracuse, NY 13244-2340, United States.
| | - Amy H Criss
- Department of Psychology, 430 Huntington Hall, Syracuse University, Syracuse, NY 13244-2340, United States
| |
Collapse
|
38
|
Anterolateral Entorhinal Cortex Volume Predicted by Altered Intra-Item Configural Processing. J Neurosci 2017; 37:5527-5538. [PMID: 28473640 DOI: 10.1523/jneurosci.3664-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/03/2023] Open
Abstract
Recent functional imaging studies have proposed that the human entorhinal cortex (ERC) is subdivided into functionally distinct anterolateral (alERC) and posteromedial (pmERC) subregions. The alERC overlaps with regions that are affected earliest by Alzheimer's disease pathology, yet its cognitive function remains poorly understood. Previous human fMRI studies have focused on its role in object memory, but rodent studies on the putatively homologous lateral entorhinal cortex suggest that it also plays an important role in representing spatial properties of objects. To investigate the cognitive effects of human alERC volume differences, we developed an eye-tracking-based task to evaluate intra-item configural processing (i.e., processing the arrangement of an object's features) and used manual segmentation based on a recently developed protocol to delineate the alERC/pmERC and other medial temporal lobe (MTL) subregions. In a group of older adult men and women at varying stages of brain atrophy and cognitive decline, we found that intra-item configural processing, regardless of an object's novelty, was strongly predicted by alERC volume, but not by the volume of any other MTL subregion. These results provide the first evidence that the human alERC plays a role in supporting a distinct aspect of object processing, namely attending to the arrangement of an object's component features.SIGNIFICANCE STATEMENT Alzheimer's disease pathology appears earliest in brain regions that overlap with the anterolateral entorhinal cortex (alERC). However, the cognitive role of the alERC is poorly understood. Previous human studies treat the alERC as an extension of the neighboring perirhinal cortex, supporting object memory. Animal studies suggest that the alERC may support the spatial properties of objects. In a group of older adult humans at the earliest stages of cognitive decline, we show here that alERC volume selectively predicted configural processing (attention to the spatial arrangement of an object's parts). This is the first study to demonstrate a cognitive role related to alERC volume in humans. This task can be adapted to serve as an early detection method for Alzheimer's disease pathology.
Collapse
|
39
|
Huffman DJ, Stark CEL. Age-related impairment on a forced-choice version of the Mnemonic Similarity Task. Behav Neurosci 2017; 131:55-67. [PMID: 28004951 PMCID: PMC5788023 DOI: 10.1037/bne0000180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies from our lab have indicated that healthy older adults are impaired in their ability to mnemonically discriminate between previously viewed objects and similar lure objects in the Mnemonic Similarity Task (MST). These studies have used either old/similar/new or old/new test formats. The forced-choice test format (e.g., "Did you see object A or object A' during the encoding phase?") relies on different assumptions than the old/new test format (e.g., "Did you see this object during the encoding phase?"); hence, converging evidence from these approaches would bolster the conclusion that healthy aging is accompanied by impaired performance on the MST. Consistent with our hypothesis, healthy older adults exhibited impaired performance on a forced-choice test format that required discriminating between a target and a similar lure. We also tested the hypothesis that age-related impairments on the MST could be modeled within a global matching computational framework. We found that decreasing the probability of successful feature encoding in the models caused changes that were similar to the empirical data in healthy older adults. Collectively, our behavioral results using the forced-choice format extend the finding that healthy aging is accompanied by an impaired ability to discriminate between targets and similar lures, and our modeling results suggest that a diminished probability of encoding stimulus features is a candidate mechanism for memory changes in healthy aging. We also discuss the ability of global matching models to account for findings in other studies that have used variants on mnemonic similarity tasks. (PsycINFO Database Record
Collapse
Affiliation(s)
- Derek J Huffman
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine
| | - Craig E L Stark
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine
| |
Collapse
|
40
|
Duke D, Martin CB, Bowles B, McRae K, Köhler S. Perirhinal cortex tracks degree of recent as well as cumulative lifetime experience with object concepts. Cortex 2017; 89:61-70. [PMID: 28236751 DOI: 10.1016/j.cortex.2017.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/23/2016] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
Evidence from numerous sources indicates that recognition of the prior occurrence of objects requires computations of perirhinal cortex (PrC) in the medial temporal lobe (MTL). Extant research has primarily probed recognition memory based on item exposure in a recent experimental study episode. Outside the laboratory, however, familiarity for objects typically accrues gradually with learning across many different episodic contexts, which can be distributed over a lifetime of experience. It is currently unknown whether PrC also tracks this cumulative lifetime experience with object concepts. To address this issue, we conducted a functional magnetic resonance imaging (fMRI) experiment in healthy individuals in which we compared judgments of the perceived lifetime familiarity with object concepts, a task that has previously been employed in many normative studies on concept knowledge, with frequency judgments for recent laboratory exposure in a study phase. Guided by neurophysiological data showing that neurons in primate PrC signal prior object exposure at multiple time scales, we predicted that PrC responses would track perceived prior experience in both types of judgments. Left PrC and a number of cortical regions that are often co-activated as part of the default-mode network showed an increase in Blood-Oxygen-Level Dependent (BOLD) response in relation to increases in the perceived cumulative lifetime familiarity of object concepts. These regions included the left hippocampus, left mid-lateral temporal cortex, as well as anterior and posterior cortical midline structures. Critically, left PrC was found to be the only region that showed this response in combination with the typically observed decrease in signal for perceived recent exposure in the experimental study phase. These findings provide, to our knowledge, the first evidence that ties signals in human PrC to variations in cumulative lifetime experience with object concepts. They offer a new link between the role of PrC in recognition memory and its broader role in conceptual processing.
Collapse
Affiliation(s)
- Devin Duke
- Brain and Mind Institute and Department of Psychology, Western University, London, Ontario, Canada
| | - Chris B Martin
- Brain and Mind Institute and Department of Psychology, Western University, London, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Ben Bowles
- Brain and Mind Institute and Department of Psychology, Western University, London, Ontario, Canada
| | - Ken McRae
- Brain and Mind Institute and Department of Psychology, Western University, London, Ontario, Canada
| | - Stefan Köhler
- Brain and Mind Institute and Department of Psychology, Western University, London, Ontario, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Canada.
| |
Collapse
|
41
|
van den Honert RN, McCarthy G, Johnson MK. Holistic versus feature-based binding in the medial temporal lobe. Cortex 2017; 91:56-66. [PMID: 28215821 DOI: 10.1016/j.cortex.2017.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/27/2016] [Accepted: 01/16/2017] [Indexed: 11/24/2022]
Abstract
A central question for cognitive neuroscience is how feature-combinations that give rise to episodic/source memories are encoded in the brain. Although there is much evidence that the hippocampus (HIP) is involved in feature binding, and some evidence that other brain regions are as well, there is relatively little evidence about the nature of the resulting representations in different brain regions. We used multivoxel pattern analysis (MVPA) to investigate how feature combinations might be represented, contrasting two possibilities, feature-based versus holistic. Participants viewed stimuli that were composed of three source features - a person (face or body), a scene (indoor or outdoor), and an object (bike or luggage) - which were combined to make eight unique stimulus identities. We reasoned that regions that can classify the eight identities (a multiclass classification) but not the individual features (a binary classification) likely have a holistic representation of each identity. In contrast, regions that can classify the eight identities and can classify each feature are likely to contain feature-based representations of these identities. To further probe the extent of feature-based or holistic classification in each region, we developed and validated a novel approach that directly compares binary and multiclass classification. We found clear evidence for holistic representation in the parahippocampal cortex (PHC), consistent with theories that posit that pattern-separation-like binding mechanisms are not unique to the HIP. Further clarifying the mechanisms of feature binding should benefit from systematic comparisons of multi-feature representations and whether they vary with task, type of stimulus, and/or experience.
Collapse
Affiliation(s)
| | - Gregory McCarthy
- Department of Psychology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Marcia K Johnson
- Department of Psychology, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
42
|
Atherton KE, Nobre AC, Lazar AS, Wulff K, Whittaker RG, Dhawan V, Lazar ZI, Zeman AZ, Butler CR. Slow wave sleep and accelerated forgetting. Cortex 2016; 84:80-89. [PMID: 27710778 PMCID: PMC5084685 DOI: 10.1016/j.cortex.2016.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
We investigated whether the benefit of slow wave sleep (SWS) for memory consolidation typically observed in healthy individuals is disrupted in people with accelerated long-term forgetting (ALF) due to epilepsy. SWS is thought to play an active role in declarative memory in healthy individuals and, furthermore, electrographic epileptiform activity is often more prevalent during SWS than during wakefulness or other sleep stages. We studied the relationship between SWS and the benefit of sleep for memory retention using a word-pair associates task. In both the ALF and the healthy control groups, sleep conferred a memory benefit. However, the relationship between the amount of SWS and sleep-related memory benefits differed significantly between the groups. In healthy participants, the amount of SWS correlated positively with sleep-related memory benefits. In stark contrast, the more SWS, the smaller the sleep-related memory benefit in the ALF group. Therefore, contrary to its role in healthy people, SWS-associated brain activity appears to be deleterious for memory in patients with ALF.
Collapse
Affiliation(s)
- Kathryn E Atherton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Alpar S Lazar
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Katharina Wulff
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Vandana Dhawan
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Zsolt I Lazar
- Department of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Adam Z Zeman
- Cognitive and Behavioural Neurology, Peninsular Medical School, University of Exeter, UK
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Fidalgo CO, Changoor AT, Page-Gould E, Lee ACH, Barense MD. Early cognitive decline in older adults better predicts object than scene recognition performance. Hippocampus 2016; 26:1579-1592. [DOI: 10.1002/hipo.22658] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Celia O. Fidalgo
- Department of Psychology; The University of Toronto; Ontario Canada
| | | | | | - Andy C. H. Lee
- Department of Psychology; The University of Toronto; Ontario Canada
- Department of Psychology; Baycrest Centre for Geriatric Care; Toronto, Ontario Canada
| | - Morgan D. Barense
- Department of Psychology; The University of Toronto; Ontario Canada
- Department of Psychology; Baycrest Centre for Geriatric Care; Toronto, Ontario Canada
| |
Collapse
|
44
|
Bonardi C, Pardon MC, Armstrong P. Deficits in object-in-place but not relative recency performance in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: Implications for object recognition. Behav Brain Res 2016; 313:71-81. [DOI: 10.1016/j.bbr.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|
45
|
Bowles B, Duke D, Rosenbaum RS, McRae K, Köhler S. Impaired assessment of cumulative lifetime familiarity for object concepts after left anterior temporal-lobe resection that includes perirhinal cortex but spares the hippocampus. Neuropsychologia 2016; 90:170-9. [DOI: 10.1016/j.neuropsychologia.2016.06.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 05/16/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023]
|
46
|
Kinnavane L, Amin E, Olarte-Sánchez CM, Aggleton JP. Detecting and discriminating novel objects: The impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 2016; 26:1393-1413. [PMID: 27398938 PMCID: PMC5082501 DOI: 10.1002/hipo.22615] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
Perirhinal cortex provides object‐based information and novelty/familiarity information for the hippocampus. The necessity of these inputs was tested by comparing hippocampal c‐fos expression in rats with or without perirhinal lesions. These rats either discriminated novel from familiar objects (Novel‐Familiar) or explored pairs of novel objects (Novel‐Novel). Despite impairing Novel‐Familiar discriminations, the perirhinal lesions did not affect novelty detection, as measured by overall object exploration levels (Novel‐Novel condition). The perirhinal lesions also largely spared a characteristic network of linked c‐fos expression associated with novel stimuli (entorhinal cortex→CA3→distal CA1→proximal subiculum). The findings show: I) that perirhinal lesions preserve behavioral sensitivity to novelty, whilst still impairing the spontaneous ability to discriminate novel from familiar objects, II) that the distinctive patterns of hippocampal c‐fos activity promoted by novel stimuli do not require perirhinal inputs, III) that entorhinal Fos counts (layers II and III) increase for novelty discriminations, IV) that hippocampal c‐fos networks reflect proximal‐distal connectivity differences, and V) that discriminating novelty creates different pathway interactions from merely detecting novelty, pointing to top‐down effects that help guide object selection. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa Kinnavane
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom.
| | - Eman Amin
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| | | | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, Wales, CF10 3AT, United Kingdom
| |
Collapse
|
47
|
Goodrich RI, Yonelinas AP. The medial temporal lobe supports sensing-based visual working memory. Neuropsychologia 2016; 89:485-494. [PMID: 27417038 DOI: 10.1016/j.neuropsychologia.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/06/2016] [Accepted: 07/10/2016] [Indexed: 01/12/2023]
Abstract
It is well established that the medial temporal lobe (MTL), including the hippocampus, is essential for long-term memory. In addition, recent studies suggest that the MTL may also support visual working memory (VWM), but the conditions under which the MTL plays a critical role are not yet clear. To address this issue, we used a color change detection paradigm to examine the effects of MTL damage on VWM by analyzing the receiver operating characteristics of patients with MTL damage and healthy age- and education-matched controls. Compared to controls, patients with MTL damage demonstrated significant reductions in VWM accuracy. Importantly, the patients were not impaired at making accurate high-confidence judgments that a change had occurred; however, they were impaired when making low-confidence responses indicating that they sensed whether or not there had been a visual change. Moreover, these impairments were observed under conditions that emphasized the retrieval of complex bindings or the retrieval of high-resolution bindings. That is, patients with MTL damage exhibited VWM impairments when they were required to remember either a larger number of low-resolution bindings (i.e., set size of 5 and obvious color changes) or a smaller number of high-resolution bindings (i.e., set size of 3 and subtle color changes). The results indicate that only some VWM processes are dependent on the MTL, and are consistent with the proposal that the MTL plays a critical role in forming complex, high-resolution bindings.
Collapse
Affiliation(s)
- Robin I Goodrich
- Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
48
|
Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11515-016-1406-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Geva S, Cooper JM, Gadian DG, Mishkin M, Vargha-Khadem F. Impairment on a self-ordered working memory task in patients with early-acquired hippocampal atrophy. Dev Cogn Neurosci 2016; 20:12-22. [PMID: 27288821 PMCID: PMC4973808 DOI: 10.1016/j.dcn.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022] Open
Abstract
Patients with early onset hippocampal damage were impaired on a working memory task. Impairment was evident only on those trials when memory load was intermediate. Hippocampal volume correlated with behaviour when memory load was intermediate/high. Patients showed no proactive interference. Patients showed no effect of age at injury on performance.
One of the features of both adult-onset and developmental forms of amnesia resulting from bilateral medial temporal lobe damage, or even from relatively selective damage to the hippocampus, is the sparing of working memory. Recently, however, a number of studies have reported deficits on working memory tasks in patients with damage to the hippocampus and in macaque monkeys with neonatal hippocampal lesions. These studies suggest that successful performance on working memory tasks with high memory load require the contribution of the hippocampus. Here we compared performance on a working memory task (the Self-ordered Pointing Task), between patients with early onset hippocampal damage and a group of healthy controls. Consistent with the findings in the monkeys with neonatal lesions, we found that the patients were impaired on the task, but only on blocks of trials with intermediate memory load. Importantly, only intermediate to high memory load blocks yielded significant correlations between task performance and hippocampal volume. Additionally, we found no evidence of proactive interference in either group, and no evidence of an effect of time since injury on performance. We discuss the role of the hippocampus and its interactions with the prefrontal cortex in serving working memory.
Collapse
Affiliation(s)
- Sharon Geva
- Cognitive Neuroscience and Neuropsychiatry Section, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - Janine M Cooper
- Cognitive Neuroscience and Neuropsychiatry Section, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - David G Gadian
- Developmental Imaging and Biophysics Section, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - Mortimer Mishkin
- Cognitive Neuroscience and Neuropsychiatry Section, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry Section, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| |
Collapse
|
50
|
van den Honert RN, McCarthy G, Johnson MK. Reactivation during encoding supports the later discrimination of similar episodic memories. Hippocampus 2016; 26:1168-78. [PMID: 27082832 DOI: 10.1002/hipo.22598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 11/11/2022]
Abstract
Episodic memory is characterized by remembering events as unique combinations of features. Even when some features of events overlap, we are later often able to discriminate among them. Here we ask whether hippocampally mediated reactivation of an earlier event when a similar one occurs supports subsequent memory that two similar but not identical events occurred (mnemonic discrimination). In two experiments, participants viewed objects (Experiment 1) or scenes (Experiment 2) during functional MRI (fMRI). After scanning, participants had to remember whether repeated items had been identical or similar. In Experiment 2, representational similarity between the 1st and 2nd presentation predicted participants' ability to remember that the presentations were different, suggesting that the first item was reactivated while viewing the second. A similar but weaker result was found in Experiment 1 that did not survive correction for multiple comparisons. Furthermore, both experiments yielded evidence that the hippocampus was involved in reactivation; hippocampal pattern similarity (and, in Experiment 2, hippocampal activity during the 2nd presentation) correlated with pattern similarity in several regions of visual cortex. These results provide the first fMRI evidence that hippocampally mediated reactivation contributes to the later memory that two similar, but different events occurred. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Gregory McCarthy
- Department of Psychology, Yale University, New Haven, Connecticut.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Marcia K Johnson
- Department of Psychology, Yale University, New Haven, Connecticut.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| |
Collapse
|