1
|
Rosario MA, Kern KL, Mumtaz S, Storer TW, Schon K. Cardiorespiratory fitness is associated with cortical thickness of medial temporal brain areas associated with spatial cognition in young but not older adults. Eur J Neurosci 2024; 59:82-100. [PMID: 38056827 PMCID: PMC10979765 DOI: 10.1111/ejn.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Cardiorespiratory fitness has a potent effect on neurocognitive health, especially regarding the hippocampal memory system. However, less is known about the impact of cardiorespiratory fitness on medial temporal lobe extrahippocampal neocortical regions. Specifically, it is unclear how cardiorespiratory fitness modulates these brain regions in young adulthood and if these regions are differentially related to cardiorespiratory fitness in young versus older adults. The primary goal of this study was to investigate if cardiorespiratory fitness predicted medial temporal lobe cortical thickness which, with the hippocampus, are critical for spatial learning and memory. Additionally, given the established role of these cortices in spatial navigation, we sought to determine if cardiorespiratory fitness and medial temporal lobe cortical thickness would predict greater subjective sense of direction in both young and older adults. Cross-sectional data from 56 young adults (20-35 years) and 44 older adults (55-85 years) were included. FreeSurfer 6.0 was used to automatically segment participants' 3T T1-weighted images. Using hierarchical multiple regression analyses, we confirmed significant associations between greater cardiorespiratory fitness and greater left entorhinal, left parahippocampal, and left perirhinal cortical thickness in young, but not older, adults. Left parahippocampal cortical thickness interacted with age group to differentially predict subjective sense of direction in young and older adults. Young adults displayed a positive, and older adults a negative, correlation between left parahippocampal cortical thickness and sense of direction. Our findings extend previous work on the association between cardiorespiratory fitness and hippocampal subfield structure in young adults to left medial temporal lobe neocortical regions.
Collapse
Affiliation(s)
- Michael A. Rosario
- Graduate Program for Neuroscience, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Kathryn L. Kern
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Shiraz Mumtaz
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thomas W. Storer
- Men’s Health, Aging, and Metabolism Unit, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Karin Schon
- Graduate Program for Neuroscience, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
- Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zhu SL, Lakshminarasimhan KJ, Angelaki DE. Computational cross-species views of the hippocampal formation. Hippocampus 2023; 33:586-599. [PMID: 37038890 PMCID: PMC10947336 DOI: 10.1002/hipo.23535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
The discovery of place cells and head direction cells in the hippocampal formation of freely foraging rodents has led to an emphasis of its role in encoding allocentric spatial relationships. In contrast, studies in head-fixed primates have additionally found representations of spatial views. We review recent experiments in freely moving monkeys that expand upon these findings and show that postural variables such as eye/head movements strongly influence neural activity in the hippocampal formation, suggesting that the function of the hippocampus depends on where the animal looks. We interpret these results in the light of recent studies in humans performing challenging navigation tasks which suggest that depending on the context, eye/head movements serve one of two roles-gathering information about the structure of the environment (active sensing) or externalizing the contents of internal beliefs/deliberation (embodied cognition). These findings prompt future experimental investigations into the information carried by signals flowing between the hippocampal formation and the brain regions controlling postural variables, and constitute a basis for updating computational theories of the hippocampal system to accommodate the influence of eye/head movements.
Collapse
Affiliation(s)
- Seren L Zhu
- Center for Neural Science, New York University, New York, New York, USA
| | - Kaushik J Lakshminarasimhan
- Center for Theoretical Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, New York, USA
- Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, New York, USA
| |
Collapse
|
3
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
4
|
Corrigan BW, Gulli RA, Doucet G, Mahmoudian B, Abbass M, Roussy M, Luna R, Sachs AJ, Martinez‐Trujillo JC. View cells in the hippocampus and prefrontal cortex of macaques during virtual navigation. Hippocampus 2023; 33:573-585. [PMID: 37002559 DOI: 10.1002/hipo.23534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Cells selectively activated by a particular view of an environment have been found in the primate hippocampus (HPC). Whether view cells are present in other brain areas, and how view selectivity interacts with other variables such as object features and place remain unclear. Here, we explore these issues by recording the responses of neurons in the HPC and the lateral prefrontal cortex (LPFC) of rhesus macaques performing a task in which they learn new context-object associations while navigating a virtual environment using a joystick. We measured neuronal responses at different locations in a virtual maze where animals freely directed gaze to different regions of the visual scenes. We show that specific views containing task relevant objects selectively activated a proportion of HPC units, and an even higher proportion of LPFC units. Place selectivity was scarce and generally dependent on view. Many view cells were not affected by changing the object color or the context cue, two task relevant features. However, a small proportion of view cells showed selectivity for these two features. Our results show that during navigation in a virtual environment with complex and dynamic visual stimuli, view cells are found in both the HPC and the LPFC. View cells may have developed as a multiarea specialization in diurnal primates to encode the complexities and layouts of the environment through gaze exploration which ultimately enables building cognitive maps of space that guide navigation.
Collapse
Affiliation(s)
- Benjamin W. Corrigan
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
| | - Roberto A. Gulli
- Zuckerman Mind Brain Behavior Institute Columbia University New York New York USA
- Center for Theoretical Neuroscience Columbia University New York New York USA
| | - Guillaume Doucet
- The Ottawa Hospital University of Ottawa Ottawa Ontario Canada
- Realize Medical Ottawa Ontario Canada
| | - Borna Mahmoudian
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
| | - Mohamad Abbass
- Western University Department of Clinical Neurological Sciences, London Health Sciences Centre Western University London Ontario Canada
| | - Megan Roussy
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- National Science and Engineering Research Council Ottawa Ontario Canada
| | - Rogelio Luna
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- Facultad de Medicina y Ciencias Biomédicas Universidad Autónoma de Chihuahua Chihuahua City Mexico
| | - Adam J. Sachs
- The Ottawa Hospital University of Ottawa Ottawa Ontario Canada
| | - Julio C. Martinez‐Trujillo
- Department of Physiology and Pharmacology University of Western Ontario London Ontario Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry University of Western Ontario London Ontario Canada
- Western Institute for Neuroscience University of Western Ontario London Ontario Canada
| |
Collapse
|
5
|
Recent advances in nanowire sensor assembly using laminar flow in open space. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Lee SM, Shin J, Lee I. Significance of visual scene-based learning in the hippocampal systems across mammalian species. Hippocampus 2022; 33:505-521. [PMID: 36458555 DOI: 10.1002/hipo.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
The hippocampus and its associated cortical regions in the medial temporal lobe play essential roles when animals form a cognitive map and use it to achieve their goals. As the nature of map-making involves sampling different local views of the environment and putting them together in a spatially cohesive way, visual scenes are essential ingredients in the formative process of cognitive maps. Visual scenes also serve as important cues during information retrieval from the cognitive map. Research in humans has shown that there are regions in the brain that selectively process scenes and that the hippocampus is involved in scene-based memory tasks. The neurophysiological correlates of scene-based information processing in the hippocampus have been reported as "spatial view cells" in nonhuman primates. Like primates, it is widely accepted that rodents also use visual scenes in their background for spatial navigation and other kinds of problems. However, in rodents, it is not until recently that researchers examined the neural correlates of the hippocampus from the perspective of visual scene-based information processing. With the advent of virtual reality (VR) systems, it has been demonstrated that place cells in the hippocampus exhibit remarkably similar firing correlates in the VR environment compared with that of the real-world environment. Despite some limitations, the new trend of studying hippocampal functions in a visually controlled environment has the potential to allow investigation of the input-output relationships of network functions and experimental testing of traditional computational predictions more rigorously by providing well-defined visual stimuli. As scenes are essential for navigation and episodic memory in humans, further investigation of the rodents' hippocampal systems in scene-based tasks will provide a critical functional link across different mammalian species.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Mao D. Neural Correlates of Spatial Navigation in Primate Hippocampus. Neurosci Bull 2022; 39:315-327. [PMID: 36319893 PMCID: PMC9905402 DOI: 10.1007/s12264-022-00968-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022] Open
Abstract
The hippocampus has been extensively implicated in spatial navigation in rodents and more recently in bats. Numerous studies have revealed that various kinds of spatial information are encoded across hippocampal regions. In contrast, investigations of spatial behavioral correlates in the primate hippocampus are scarce and have been mostly limited to head-restrained subjects during virtual navigation. However, recent advances made in freely-moving primates suggest marked differences in spatial representations from rodents, albeit some similarities. Here, we review empirical studies examining the neural correlates of spatial navigation in the primate (including human) hippocampus at the levels of local field potentials and single units. The lower frequency theta oscillations are often intermittent. Single neuron responses are highly mixed and task-dependent. We also discuss neuronal selectivity in the eye and head coordinates. Finally, we propose that future studies should focus on investigating both intrinsic and extrinsic population activity and examining spatial coding properties in large-scale hippocampal-neocortical networks across tasks.
Collapse
Affiliation(s)
- Dun Mao
- Center for Excellence in Brain Science and Intelligent Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Yu Y, Setogawa T, Matsumoto J, Nishimaru H, Nishijo H. Neural basis of topographical disorientation in the primate posterior cingulate gyrus based on a labeled graph. AIMS Neurosci 2022; 9:373-394. [PMID: 36329903 PMCID: PMC9581735 DOI: 10.3934/neuroscience.2022021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with lesions in the posterior cingulate gyrus (PCG), including the retrosplenial cortex (RSC) and posterior cingulate cortex (PCC), cannot navigate in familiar environments, nor draw routes on a 2D map of the familiar environments. This suggests that the topographical knowledge of the environments (i.e., cognitive map) to find the right route to a goal is represented in the PCG, and the patients lack such knowledge. However, theoretical backgrounds in neuronal levels for these symptoms in primates are unclear. Recent behavioral studies suggest that human spatial knowledge is constructed based on a labeled graph that consists of topological connections (edges) between places (nodes), where local metric information, such as distances between nodes (edge weights) and angles between edges (node labels), are incorporated. We hypothesize that the population neural activity in the PCG may represent such knowledge based on a labeled graph to encode routes in both 3D environments and 2D maps. Since no previous data are available to test the hypothesis, we recorded PCG neuronal activity from a monkey during performance of virtual navigation and map drawing-like tasks. The results indicated that most PCG neurons responded differentially to spatial parameters of the environments, including the place, head direction, and reward delivery at specific reward areas. The labeled graph-based analyses of the data suggest that the population activity of the PCG neurons represents the distance traveled, locations, movement direction, and navigation routes in the 3D and 2D virtual environments. These results support the hypothesis and provide a neuronal basis for the labeled graph-based representation of a familiar environment, consistent with PCG functions inferred from the human clinicopathological studies.
Collapse
Affiliation(s)
- Yang Yu
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Givon S, Pickholtz R, Pickholtz EY, Ben-Shahar O, Kiflawi M, Segev R. Toward Naturalistic Neuroscience of Navigation: Opportunities in Coral Reef Fish. Front Neural Circuits 2022; 16:895381. [PMID: 35874430 PMCID: PMC9298462 DOI: 10.3389/fncir.2022.895381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to navigate in the world is crucial to many species. One of the most fundamental unresolved issues in understanding animal navigation is how the brain represents spatial information. Although navigation has been studied extensively in many taxa, the key efforts to determine the neural basis of navigation have focused on mammals, usually in lab experiments, where the allocated space is typically very small; e.g., up to one order of magnitude the size of the animal, is limited by artificial walls, and contains only a few objects. This type of setting is vastly different from the habitat of animals in the wild, which is open in many cases and is virtually limitless in size compared to its inhabitants. Thus, a fundamental open question in animal navigation is whether small-scale, spatially confined, and artificially crafted lab experiments indeed reveal how navigation is enacted in the real world. This question is difficult to study given the technical problems associated with in vivo electrophysiology in natural settings. Here, we argue that these difficulties can be overcome by implementing state of the art technology when studying the rivulated rabbitfish, Siganus rivulatus as the model animal. As a first step toward this goal, using acoustic tracking of the reef, we demonstrate that individual S. rivulatus have a defined home range of about 200 m in length, from which they seldom venture. They repeatedly visit the same areas and return to the same sleeping grounds, thus providing evidence for their ability to navigate in the reef environment. Using a clustering algorithm to analyze segments of daily trajectories, we found evidence of specific repeating patterns in behavior within the home range of individual fish. Thus, S. rivulatus appears to have the ability to carry out its daily routines and revisit places of interest by employing sophisticated means of navigation while exploring its surroundings. In the future, using novel technologies for wireless recording from single cells of fish brains, S. rivulatus can emerge as an ideal system to study the neural basis of navigation in natural settings and lead to “electrophysiology in the wild.”
Collapse
Affiliation(s)
- Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Renanel Pickholtz
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | | | - Ohad Ben-Shahar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Computer Science, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Kiflawi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Ronen Segev
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
10
|
Mao D, Avila E, Caziot B, Laurens J, Dickman JD, Angelaki DE. Spatial modulation of hippocampal activity in freely moving macaques. Neuron 2021; 109:3521-3534.e6. [PMID: 34644546 DOI: 10.1016/j.neuron.2021.09.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
The hippocampal formation is linked to spatial navigation, but there is little corroboration from freely moving primates with concurrent monitoring of head and gaze stances. We recorded neural activity across hippocampal regions in rhesus macaques during free foraging in an open environment while tracking their head and eye. Theta activity was intermittently present at movement onset and modulated by saccades. Many neurons were phase-locked to theta, with few showing phase precession. Most neurons encoded a mixture of spatial variables beyond place and grid tuning. Spatial representations were dominated by facing location and allocentric direction, mostly in head, rather than gaze, coordinates. Importantly, eye movements strongly modulated neural activity in all regions. These findings reveal that the macaque hippocampal formation represents three-dimensional (3D) space using a multiplexed code, with head orientation and eye movement properties being dominant during free exploration.
Collapse
Affiliation(s)
- Dun Mao
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Eric Avila
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Baptiste Caziot
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jean Laurens
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Tandon School of Engineering, New York University, New York, NY 11201, USA.
| |
Collapse
|
11
|
Rolls ET. Neurons including hippocampal spatial view cells, and navigation in primates including humans. Hippocampus 2021; 31:593-611. [PMID: 33760309 DOI: 10.1002/hipo.23324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 01/11/2023]
Abstract
A new theory is proposed of mechanisms of navigation in primates including humans in which spatial view cells found in the primate hippocampus and parahippocampal gyrus are used to guide the individual from landmark to landmark. The navigation involves approach to each landmark in turn (taxis), using spatial view cells to identify the next landmark in the sequence, and does not require a topological map. Two other cell types found in primates, whole body motion cells, and head direction cells, can be utilized in the spatial view cell navigational mechanism, but are not essential. If the landmarks become obscured, then the spatial view representations can be updated by self-motion (idiothetic) path integration using spatial coordinate transform mechanisms in the primate dorsal visual system to transform from egocentric to allocentric spatial view coordinates. A continuous attractor network or time cells or working memory is used in this approach to navigation to encode and recall the spatial view sequences involved. I also propose how navigation can be performed using a further type of neuron found in primates, allocentric-bearing-to-a-landmark neurons, in which changes of direction are made when a landmark reaches a particular allocentric bearing. This is useful if a landmark cannot be approached. The theories are made explicit in models of navigation, which are then illustrated by computer simulations. These types of navigation are contrasted with triangulation, which requires a topological map. It is proposed that the first strategy utilizing spatial view cells is used frequently in humans, and is relatively simple because primates have spatial view neurons that respond allocentrically to locations in spatial scenes. An advantage of this approach to navigation is that hippocampal spatial view neurons are also useful for episodic memory, and for imagery.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.,Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
12
|
Evensmoen HR, Rimol LM, Winkler AM, Betzel R, Hansen TI, Nili H, Håberg A. Allocentric representation in the human amygdala and ventral visual stream. Cell Rep 2021; 34:108658. [PMID: 33472067 DOI: 10.1016/j.celrep.2020.108658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/01/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
The hippocampus and the entorhinal cortex are considered the main brain structures for allocentric representation of the external environment. Here, we show that the amygdala and the ventral visual stream are involved in allocentric representation. Thirty-one young men explored 35 virtual environments during high-resolution functional magnetic resonance imaging (fMRI) of the medial temporal lobe (MTL) and were subsequently tested on recall of the allocentric pattern of the objects in each environment-in other words, the positions of the objects relative to each other and to the outer perimeter. We find increasingly unique brain activation patterns associated with increasing allocentric accuracy in distinct neural populations in the perirhinal cortex, parahippocampal cortex, fusiform cortex, amygdala, hippocampus, and entorhinal cortex. In contrast to the traditional view of a hierarchical MTL network with the hippocampus at the top, we demonstrate, using recently developed graph analyses, a hierarchical allocentric MTL network without a main connector hub.
Collapse
Affiliation(s)
- Hallvard Røe Evensmoen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway; Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Lars M Rimol
- Department of Psychology, NTNU, 7489 Trondheim, Norway
| | - Anderson M Winkler
- National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Tor Ivar Hansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway
| | - Hamed Nili
- Department of Experimental Psychology, University of Oxford, South Parks Road, OX1 3UD Oxford, UK
| | - Asta Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway; Department of Medical Imaging, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| |
Collapse
|
13
|
Brønnick MK, Økland I, Graugaard C, Brønnick KK. The Effects of Hormonal Contraceptives on the Brain: A Systematic Review of Neuroimaging Studies. Front Psychol 2020; 11:556577. [PMID: 33224053 PMCID: PMC7667464 DOI: 10.3389/fpsyg.2020.556577] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Hormonal contraceptive drugs are being used by adult and adolescent women all over the world. Convergent evidence from animal research indicates that contraceptive substances can alter both structure and function of the brain, yet such effects are not part of the public discourse or clinical decision-making concerning these drugs. We thus conducted a systematic review of the neuroimaging literature to assess the current evidence of hormonal contraceptive influence on the human brain. Methods: The review was registered in PROSPERO and conducted in accordance with the PRISMA criteria for systematic reviews. Structural and functional neuroimaging studies concerning the use of hormonal contraceptives, indexed in Embase, PubMed and/or PsycINFO until February 2020 were included, following a comprehensive and systematic search based on predetermined selection criteria. Results: A total of 33 articles met the inclusion criteria. Ten of these were structural studies, while 23 were functional investigations. Only one study investigated effects on an adolescent sample. The quality of the articles varied as many had methodological challenges as well as partially unfounded theoretical claims. However, most of the included neuroimaging studies found functional and/or structural brain changes associated with the use of hormonal contraceptives. Conclusion: The included studies identified structural and functional changes in areas involved in affective and cognitive processing, such as the amygdala, hippocampus, prefrontal cortex and cingulate gyrus. However, only one study reported primary research on a purely adolescent sample. Thus, there is a need for further investigation of the implications of these findings, especially with regard to adolescent girls.
Collapse
Affiliation(s)
- Marita Kallesten Brønnick
- Center for Clinical Research in Psychosis (TIPS), Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, Center for Sexology Research, Aalborg University, Aalborg, Denmark
| | - Inger Økland
- Department of Obstetrics and Gynecology, Stavanger University Hospital, Stavanger, Norway.,Department for Caring and Ethics, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Christian Graugaard
- Department of Clinical Medicine, Center for Sexology Research, Aalborg University, Aalborg, Denmark
| | - Kolbjørn Kallesten Brønnick
- SESAM, Department of Psychiatry, Stavanger University Hospital, Stavanger, Norway.,Department of Public Health, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| |
Collapse
|
14
|
Rolls ET. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation. Hippocampus 2019; 30:332-353. [PMID: 31697002 DOI: 10.1002/hipo.23171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023]
Abstract
A theory and model of spatial coordinate transforms in the dorsal visual system through the parietal cortex that enable an interface via posterior cingulate and related retrosplenial cortex to allocentric spatial representations in the primate hippocampus is described. First, a new approach to coordinate transform learning in the brain is proposed, in which the traditional gain modulation is complemented by temporal trace rule competitive network learning. It is shown in a computational model that the new approach works much more precisely than gain modulation alone, by enabling neurons to represent the different combinations of signal and gain modulator more accurately. This understanding may have application to many brain areas where coordinate transforms are learned. Second, a set of coordinate transforms is proposed for the dorsal visual system/parietal areas that enables a representation to be formed in allocentric spatial view coordinates. The input stimulus is merely a stimulus at a given position in retinal space, and the gain modulation signals needed are eye position, head direction, and place, all of which are present in the primate brain. Neurons that encode the bearing to a landmark are involved in the coordinate transforms. Part of the importance here is that the coordinates of the allocentric view produced in this model are the same as those of spatial view cells that respond to allocentric view recorded in the primate hippocampus and parahippocampal cortex. The result is that information from the dorsal visual system can be used to update the spatial input to the hippocampus in the appropriate allocentric coordinate frame, including providing for idiothetic update to allow for self-motion. It is further shown how hippocampal spatial view cells could be useful for the transform from hippocampal allocentric coordinates to egocentric coordinates useful for actions in space and for navigation.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.,Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
15
|
Navigation strategy in macaque monkeys: An exploratory experiment in virtual reality. J Neurosci Methods 2019; 326:108336. [PMID: 31276693 DOI: 10.1016/j.jneumeth.2019.108336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Spatial memory and navigation have been widely studied using animal models, most of them were performed with rodents and only few of them with non-human primates. Also, most of these studies were achieved in simple and small-scale mazes. NEW METHOD In order to test navigation strategy in macaque monkeys, we used a double-cross virtual maze in which they could freely move using a joystick and a procedure adapted from previous studies with rodents. The monkeys had first to learn several routes from a specific starting point to reach separate positions, each one containing distinct symbols, and then to associate each route with these symbols. After this phase, the monkeys had to reach these targets from a second starting point positioned at the other end of the maze, requiring the use an allocentric strategy. In order to evaluate monkey's strategy, we analyzed monkey's first choice as a function of the symbol presented. RESULTS The monkeys were able to learn routes and to associate routes with symbols but were not able to use an allocentric strategy. They also did not use the procedural strategy and seemed disoriented or adopted a stereotypical behavior. COMPARISON WITH EXISTING METHOD(S) Contrary to the few studies using small-scale environments, the monkeys seemed unable to solve the allocentric task. The studies using virtual mazes seemed not to specifically analyze monkey's navigation strategy. CONCLUSIONS Supplementary experiments will be necessary to explain the origin of the monkey's inability to use an allocentric strategy. Modified learning conditions could also incite the monkeys to develop an allocentric representation.
Collapse
|
16
|
Bretas RV, Matsumoto J, Nishimaru H, Takamura Y, Hori E, Ono T, Nishijo H. Neural Representation of Overlapping Path Segments and Reward Acquisitions in the Monkey Hippocampus. Front Syst Neurosci 2019; 13:48. [PMID: 31572133 PMCID: PMC6751269 DOI: 10.3389/fnsys.2019.00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Disambiguation of overlapping events is thought to be the hallmark of episodic memory. Recent rodent studies have reported that when navigating overlapping path segments in the different routes place cell activity in the same overlapping path segments were remapped according to different goal locations in different routes. However, it is unknown how hippocampal neurons disambiguate reward delivery in overlapping path segments in different routes. In the present study, we recorded monkey hippocampal neurons during performance of three virtual navigation (VN) tasks in which a monkey alternately navigated two different routes that included overlapping path segments (common central hallway) and acquired rewards in the same locations in overlapping path segments by manipulating a joystick. The results indicated that out of 106 hippocampal neurons, 57 displayed place-related activity (place-related neurons), and 18 neurons showed route-dependent activity in the overlapping path segments, consistent with a hippocampal role in the disambiguation of overlapping path segments. Moreover, 75 neurons showed neural correlates to reward delivery (reward-related neurons), whereas 56 of these 75 reward-related neurons showed route-dependent reward-related activity in the overlapping path segments. The ensemble activity of reward-related neurons represented reward delivery, locations, and routes in the overlapping path segments. In addition, ensemble activity patterns of hippocampal neurons more distinctly represented overlapping path segments than non-overlapping path segments. The present results provide neurophysiological evidence of disambiguation in the monkey hippocampus, consistent with a hippocampal role in episodic memory, and support a recent computational model of "neural differentiation," in which overlapping items are better represented by repeated retrieval with competitive learning.
Collapse
Affiliation(s)
- Rafael Vieira Bretas
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
- Symbolic Cognitive Development, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| |
Collapse
|
17
|
Effects of self-locomotion on the activity of place cells in the hippocampus of a freely behaving monkey. Neurosci Lett 2019; 701:32-37. [PMID: 30738872 DOI: 10.1016/j.neulet.2019.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 02/04/2023]
Abstract
The activity of hippocampal cell assemblies is considered to function as the neural substrate for a cognitive map in various animal species. The firing rate of hippocampal place cells increases when an individual animal reaches a specific location in an environment. Although cumulative views on place cells have been revealed by studies using rodents under free-behavior conditions, few studies have addressed the spatial representation provided by hippocampal neurons in primates. Moreover, although previous work in rats has demonstrated the importance of locomotion velocity and direction in the spatially selective discharge of hippocampal neurons, it remains unknown whether a corresponding phenomenon exists in the primate hippocampus. In the present study, we recorded the activity and investigated the spatial representation of the hippocampal neurons in a freely behaving monkey performing a shuttle-movement task. We observed increased activity in a subset of hippocampal neurons (place cells) when the monkey crossed a particular location. Many of the monkey place cells exhibited sensitivity to locomotion velocity rather than to locomotion direction. These results suggest the existence of primate hippocampal place cells comparable to those in rodents, with the exception that, in primates, velocity information has a stronger impact on place cell activity than directional information.
Collapse
|
18
|
Rolls ET, Wirth S. Spatial representations in the primate hippocampus, and their functions in memory and navigation. Prog Neurobiol 2018; 171:90-113. [DOI: 10.1016/j.pneurobio.2018.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
|
19
|
Abstract
Debate about the function of the hippocampus often pits theories advocating for spatial mapping against those that argue for a central role in memory. This review addresses whether research in the monkey supports the view that processing spatial information is fundamental to the function of the hippocampus. In support of spatial processing theories, neurons in the monkey hippocampal formation have striking spatial tuning, and an intact hippocampus is necessary to effectively utilize allocentric spatial relationships. However, the hippocampus also supports non-spatial processes, as its neurons acutely respond to distinct task events and hippocampal damage disrupts both expedient task acquisition and the monitoring of ongoing events in non-spatial paradigms. The features that are shared between spatial and non-spatial hippocampal-dependent tasks point toward a common mechanism underlying hippocampal function that is independent of processing spatial information. We suggest that spatial information is only one facet of immediate experience represented by the hippocampus. The current data support the idea that the hippocampus tracks many aspects of ongoing experience and the primary role of the hippocampus may be in linking experienced events into unitary episodes.
Collapse
|
20
|
Wirth S, Baraduc P, Planté A, Pinède S, Duhamel JR. Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation. PLoS Biol 2017; 15:e2001045. [PMID: 28241007 PMCID: PMC5328243 DOI: 10.1371/journal.pbio.2001045] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023] Open
Abstract
To elucidate how gaze informs the construction of mental space during wayfinding in visual species like primates, we jointly examined navigation behavior, visual exploration, and hippocampal activity as macaque monkeys searched a virtual reality maze for a reward. Cells sensitive to place also responded to one or more variables like head direction, point of gaze, or task context. Many cells fired at the sight (and in anticipation) of a single landmark in a viewpoint- or task-dependent manner, simultaneously encoding the animal’s logical situation within a set of actions leading to the goal. Overall, hippocampal activity was best fit by a fine-grained state space comprising current position, view, and action contexts. Our findings indicate that counterparts of rodent place cells in primates embody multidimensional, task-situated knowledge pertaining to the target of gaze, therein supporting self-awareness in the construction of space. In the brain of mammalian species, the hippocampus is a key structure for episodic and spatial memory and is home to neurons coding a selective location in space (“place cells”). These neurons have been mostly investigated in the rat. However, species such as rodents and primates have access to different olfactory and visual information, and it is still unclear how their hippocampal cells compare. By analyzing hippocampal activity of nonhuman primates (rhesus macaques) while they searched a virtual environment for a reward, we show that space coding is more complex than a mere position or orientation selectivity. Rather, space is represented as a combination of visually derived information and task-related knowledge. Here, we uncover how this multidimensional representation emerges from gazing at the environment at key moments of the animal’s exploration of space. We show that neurons are active for precise positions and actions related to the landmarks gazed at by the animals. Neurons were even found to anticipate the appearance of landmarks, sometimes responding to a landmark that was not yet visible. Overall, the place fields of primate hippocampal neurons appear as the projection of a multidimensional memory onto physical space.
Collapse
Affiliation(s)
- Sylvia Wirth
- Centre de Neuroscience Cognitive, UMR 5229, CNRS and University of Lyon, Bron, France
- * E-mail:
| | - Pierre Baraduc
- Centre de Neuroscience Cognitive, UMR 5229, CNRS and University of Lyon, Bron, France
- GIPSA-lab, UMR 5216, CNRS and University of Grenoble-Alpes, Saint Martin d'Hères, France
| | - Aurélie Planté
- Centre de Neuroscience Cognitive, UMR 5229, CNRS and University of Lyon, Bron, France
| | - Serge Pinède
- Centre de Neuroscience Cognitive, UMR 5229, CNRS and University of Lyon, Bron, France
| | - Jean-René Duhamel
- Centre de Neuroscience Cognitive, UMR 5229, CNRS and University of Lyon, Bron, France
| |
Collapse
|
21
|
Evidence for an Evolutionarily Conserved Memory Coding Scheme in the Mammalian Hippocampus. J Neurosci 2017; 37:2795-2801. [PMID: 28174334 DOI: 10.1523/jneurosci.3057-16.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.SIGNIFICANCE STATEMENT One primary factor constraining memory capacity is the sparsity of the engram, the proportion of neurons that encode a single experience. Investigating sparsity in humans is hampered by the lack of single-cell resolution and differences in behavioral protocols. Sparsity can be quantified in freely moving rodents, but extrapolating these data to humans assumes that information storage is comparable across species and is robust to restraint-induced reduction in sensory input. Here, we test these assumptions and show that species differences in brain size build memory capacity without altering the structure of the data being stored. Furthermore, sparsity in most of the hippocampus is resilient to reduced sensory information. This information is vital to integrating animal data with human imaging navigation studies.
Collapse
|
22
|
Navigating through digital folders uses the same brain structures as real world navigation. Sci Rep 2015; 5:14719. [PMID: 26423226 PMCID: PMC4589681 DOI: 10.1038/srep14719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/02/2015] [Indexed: 12/04/2022] Open
Abstract
Efficient storage and retrieval of digital data is the focus of much commercial and academic attention. With personal computers, there are two main ways to retrieve files: hierarchical navigation and query-based search. In navigation, users move down their virtual folder hierarchy until they reach the folder in which the target item is stored. When searching, users first generate a query specifying some property of the target file (e.g., a word it contains), and then select the relevant file when the search engine returns a set of results. Despite advances in search technology, users prefer retrieving files using virtual folder navigation, rather than the more flexible query-based search. Using fMRI we provide an explanation for this phenomenon by demonstrating that folder navigation results in activation of the posterior limbic (including the retrosplenial cortex) and parahippocampal regions similar to that previously observed during real-world navigation in both animals and humans. In contrast, search activates the left inferior frontal gyrus, commonly observed in linguistic processing. We suggest that the preference for navigation may be due to the triggering of automatic object finding routines and lower dependence on linguistic processing. We conclude with suggestions for future computer systems design.
Collapse
|
23
|
Röhrich WG, Hardiess G, Mallot HA. View-based organization and interplay of spatial working and long-term memories. PLoS One 2014; 9:e112793. [PMID: 25409437 PMCID: PMC4237361 DOI: 10.1371/journal.pone.0112793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/17/2014] [Indexed: 11/24/2022] Open
Abstract
Space perception provides egocentric, oriented views of the environment from which working and long-term memories are constructed. “Allocentric” (i.e. position-independent) long-term memories may be organized as graphs of recognized places or views but the interaction of such cognitive graphs with egocentric working memories is unclear. Here we present a simple coherent model of view-based working and long-term memories, together with supporting evidence from behavioral experiments. The model predicts that within a given place, memories for some views may be more salient than others, that imagery of a target square should depend on the location where the recall takes place, and that recall favors views of the target square that would be obtained when approaching it from the current recall location. In two separate experiments in an outdoor urban environment, pedestrians were approached at various interview locations and asked to draw sketch maps of one of two well-known squares. Orientations of the sketch map productions depended significantly on distance and direction of the interview location from the target square, i.e. different views were recalled at different locations. Further analysis showed that location-dependent recall is related to the respective approach direction when imagining a walk from the interview location to the target square. The results are consistent with a view-based model of spatial long-term and working memories and their interplay.
Collapse
Affiliation(s)
- Wolfgang G Röhrich
- Cognitive Neuroscience Unit, Department of Biology, University of Tübingen, Tübingen, Germany
| | - Gregor Hardiess
- Cognitive Neuroscience Unit, Department of Biology, University of Tübingen, Tübingen, Germany
| | - Hanspeter A Mallot
- Cognitive Neuroscience Unit, Department of Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Nguyen HM, Matsumoto J, Tran AH, Ono T, Nishijo H. sLORETA current source density analysis of evoked potentials for spatial updating in a virtual navigation task. Front Behav Neurosci 2014; 8:66. [PMID: 24624067 PMCID: PMC3941310 DOI: 10.3389/fnbeh.2014.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/16/2014] [Indexed: 02/04/2023] Open
Abstract
Previous studies have reported that multiple brain regions are activated during spatial navigation. However, it is unclear whether these activated brain regions are specifically associated with spatial updating or whether some regions are recruited for parallel cognitive processes. The present study aimed to localize current sources of event related potentials (ERPs) associated with spatial updating specifically. In the control phase of the experiment, electroencephalograms (EEGs) were recorded while subjects sequentially traced 10 blue checkpoints on the streets of a virtual town, which were sequentially connected by a green line, by manipulating a joystick. In the test phase of the experiment, the checkpoints and green line were not indicated. Instead, a tone was presented when the subjects entered the reference points where they were then required to trace the 10 invisible spatial reference points corresponding to the checkpoints. The vertex-positive ERPs with latencies of approximately 340 ms from the moment when the subjects entered the unmarked reference points were significantly larger in the test than in the control phases. Current source density analysis of the ERPs by standardized low-resolution brain electromagnetic tomography (sLORETA) indicated activation of brain regions in the test phase that are associated with place and landmark recognition (entorhinal cortex/hippocampus, parahippocampal and retrosplenial cortices, fusiform, and lingual gyri), detecting self-motion (posterior cingulate and posterior insular cortices), motor planning (superior frontal gyrus, including the medial frontal cortex), and regions that process spatial attention (inferior parietal lobule). The present results provide the first identification of the current sources of ERPs associated with spatial updating, and suggest that multiple systems are active in parallel during spatial updating.
Collapse
Affiliation(s)
- Hai M Nguyen
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Anh H Tran
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| |
Collapse
|