1
|
Khalil MH. The BDNF-Interactive Model for Sustainable Hippocampal Neurogenesis in Humans: Synergistic Effects of Environmentally-Mediated Physical Activity, Cognitive Stimulation, and Mindfulness. Int J Mol Sci 2024; 25:12924. [PMID: 39684635 DOI: 10.3390/ijms252312924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This paper bridges critical gaps through proposing a novel, environmentally mediated brain-derived neurotrophic factor (BDNF)-interactive model that promises to sustain adult hippocampal neurogenesis in humans. It explains how three environmental enrichment mechanisms (physical activity, cognitive stimulation, and mindfulness) can integratively regulate BDNF and other growth factors and neurotransmitters to support neurogenesis at various stages, and how those mechanisms can be promoted by the physical environment. The approach enables the isolation of specific environmental factors and their molecular effects to promote sustainable BDNF regulation by testing the environment's ability to increase BDNF immediately or shortly before it is consumed for muscle repair or brain update. This model offers a novel, feasible method to research environment enrichment and neurogenesis dynamics in real-world human contexts at the immediate molecular level, overcoming the confounds of complex environment settings and challenges of long-term exposure and structural plasticity changes. The model promises to advance understanding of environmental influences on the hippocampus to enhance brain health and cognition. This work bridges fundamental gaps in methodology and knowledge to facilitate more research on the enrichment-neuroplasticity interplay for humans without methodological limitations.
Collapse
|
2
|
Salmina AB, Alexandrova OP, Averchuk AS, Korsakova SA, Saridis MR, Illarioshkin SN, Yurchenko SO. Current progress and challenges in the development of brain tissue models: How to grow up the changeable brain in vitro? J Tissue Eng 2024; 15:20417314241235527. [PMID: 38516227 PMCID: PMC10956167 DOI: 10.1177/20417314241235527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.
Collapse
Affiliation(s)
- Alla B Salmina
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Olga P Alexandrova
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Anton S Averchuk
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | | | | | | |
Collapse
|
3
|
Lendahl U. 100 plus years of stem cell research-20 years of ISSCR. Stem Cell Reports 2022; 17:1248-1267. [PMID: 35705014 PMCID: PMC9213821 DOI: 10.1016/j.stemcr.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
The International Society for Stem Cell Research (ISSCR) celebrates its 20th anniversary in 2022. This review looks back at some of the key developments in stem cell research as well as the evolution of the ISSCR as part of that field. Important discoveries from stem cell research are described, and how the improved understanding of basic stem cell biology translates into new clinical therapies and insights into disease mechanisms is discussed. Finally, the birth and growth of ISSCR into a leading stem cell society and a respected voice for ethics, advocacy, education and policy in stem cell research are described.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
4
|
Abstract
Neuropathological examination of the temporal lobe provides a better understanding and management of a wide spectrum of diseases. We focused on inflammatory diseases, epilepsy, and neurodegenerative diseases, and highlighted how the temporal lobe is particularly involved in those conditions. Although all these diseases are not specific or restricted to the temporal lobe, the temporal lobe is a key structure to understand their pathophysiology. The main histological lesions, immunohistochemical markers, and molecular alterations relevant for the neuropathological diagnostic reasoning are presented in relation to epidemiology, clinical presentation, and radiological findings. The inflammatory diseases section addressed infectious encephalitides and auto-immune encephalitides. The epilepsy section addressed (i) susceptibility of the temporal lobe to epileptogenesis, (ii) epilepsy-associated hippocampal sclerosis, (iii) malformations of cortical development, (iv) changes secondary to epilepsy, (v) long-term epilepsy-associated tumors, (vi) vascular malformations, and (vii) the absence of histological lesion in some epilepsy surgery samples. The neurodegenerative diseases section addressed (i) Alzheimer's disease, (ii) the spectrum of frontotemporal lobar degeneration, (iii) limbic-predominant age-related TDP-43 encephalopathy, and (iv) α-synucleinopathies. Finally, inflammatory diseases, epilepsy, and neurodegenerative diseases are considered as interdependent as some pathophysiological processes cross the boundaries of this classification.
Collapse
Affiliation(s)
- Susana Boluda
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Danielle Seilhean
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France.
| |
Collapse
|
5
|
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16:80-92. [PMID: 32788451 PMCID: PMC7818886 DOI: 10.4103/1673-5374.286955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-repair in the acute and chronic phases after stroke is minimal; however, promising stem cell-based interventions are emerging that may give substantial and possibly complete recovery of brain function after stroke. Many animal models and clinical trials have demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate neurological repair through nerve regeneration, neuron polarization, axon pruning, neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain networks. Compared with other types of stem cells, NSCs have unique advantages in cell replacement, paracrine action, inflammatory regulation and neuroprotection. Our review summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, then highlights current research findings and clinical evidence for NSC therapy. These results may be helpful to inform the direction of future stroke research and to guide clinical decision-making.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Yu-Wan Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
6
|
Decimo I, Dolci S, Panuccio G, Riva M, Fumagalli G, Bifari F. Meninges: A Widespread Niche of Neural Progenitors for the Brain. Neuroscientist 2020; 27:506-528. [PMID: 32935634 PMCID: PMC8442137 DOI: 10.1177/1073858420954826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence highlights the several roles that meninges play in
relevant brain functions as they are a protective membrane for the
brain, produce and release several trophic factors important for
neural cell migration and survival, control cerebrospinal fluid
dynamics, and embrace numerous immune interactions affecting neural
parenchymal functions. Furthermore, different groups have identified
subsets of neural progenitors residing in the meninges during
development and in the adulthood in different mammalian species,
including humans. Interestingly, these immature neural cells are able
to migrate from the meninges to the neural parenchyma and
differentiate into functional cortical neurons or oligodendrocytes.
Immature neural cells residing in the meninges promptly react to brain
disease. Injury-induced expansion and migration of meningeal neural
progenitors have been observed following experimental demyelination,
traumatic spinal cord and brain injury, amygdala lesion, stroke, and
progressive ataxia. In this review, we summarize data on the function
of meninges as stem cell niche and on the presence of immature neural
cells in the meninges, and discuss their roles in brain health and
disease. Furthermore, we consider the potential exploitation of
meningeal neural progenitors for the regenerative medicine to treat
neurological disorders.
Collapse
Affiliation(s)
- Ilaria Decimo
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sissi Dolci
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Riva
- Unit of Neurosurgery, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Guido Fumagalli
- Laboratory of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Abstract
This review describes developments in epilepsy research during the last 3 to 4 decades that focused on the dentate gyrus (DG) and its role in temporal lobe epilepsy (TLE). The emphasis is on basic research in laboratory animals and is chronological, starting with hypotheses that attracted a lot of attention in the 1980s. Then experiments are described that addressed the questions, as well as new methods that often made the experiments possible. In addition, where new questions arose and the implications for clinical epilepsy are discussed.
Collapse
Affiliation(s)
- Helen E. Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience &
Physiology, and Psychiatry, New York University Langone Health, New York, NY, USA
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric
Research, Orangeburg, NY, USA
| |
Collapse
|
8
|
Beppu M, Nakagomi T, Takagi T, Nakano-Doi A, Sakuma R, Kuramoto Y, Tatebayashi K, Matsuyama T, Yoshimura S. Isolation and Characterization of Cerebellum-Derived Stem Cells in Poststroke Human Brain. Stem Cells Dev 2019; 28:528-542. [PMID: 30767605 DOI: 10.1089/scd.2018.0232] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is compelling evidence that the mature central nervous system (CNS) harbors stem cell populations outside conventional neurogenic regions. We previously demonstrated that brain pericytes (PCs) in both mouse and human exhibit multipotency to differentiate into various neural lineages following cerebral ischemia. PCs are found throughout the CNS, including cerebellum, but it remains unclear whether cerebellar PCs also form ischemia-induced multipotent stem cells (iSCs). In this study, we demonstrate that putative iSCs can be isolated from poststroke human cerebellum (cerebellar iSCs [cl-iSCs]). These cl-iSCs exhibited multipotency and differentiated into electrophysiologically active neurons. Neurogenic potential was also confirmed in single-cell suspensions. DNA microarray analysis revealed highly similar gene expression patterns between PCs and cl-iSCs, suggesting PC origin. Global gene expression comparison with cerebral iSCs revealed general similarity, but cl-iSCs differentially expressed certain cerebellum-specific genes. Thus, putative iSCs are present in poststroke cerebellum and possess region-specific traits, suggesting potential capacity to regenerate functional cerebellar neurons following ischemic stroke.
Collapse
Affiliation(s)
- Mikiya Beppu
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takayuki Nakagomi
- 2 Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan.,3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshinori Takagi
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akiko Nakano-Doi
- 2 Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan.,3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Japan
| | - Rika Sakuma
- 2 Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoji Kuramoto
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kotaro Tatebayashi
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomohiro Matsuyama
- 3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Yoshimura
- 1 Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
9
|
Hickey K, Stabenfeldt SE. Using biomaterials to modulate chemotactic signaling for central nervous system repair. Biomed Mater 2018; 13:044106. [PMID: 29411713 PMCID: PMC5991092 DOI: 10.1088/1748-605x/aaad82] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemotaxis enables cellular communication and movement within the body. This review focuses on exploiting chemotaxis as a tool for repair of the central nervous system (CNS) damaged from injury and/or degenerative diseases. Chemokines and factors alone may initiate repair following CNS injury/disease, but exogenous administration may enhance repair and promote regeneration. This review will discuss critical chemotactic molecules and factors that may promote neural regeneration. Additionally, this review highlights how biomaterials can impact the presentation and delivery of chemokines and growth factors to alter the regenerative response.
Collapse
Affiliation(s)
- Kassondra Hickey
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | | |
Collapse
|
10
|
Liu J, Reeves C, Jacques T, McEvoy A, Miserocchi A, Thompson P, Sisodiya S, Thom M. Nestin-expressing cell types in the temporal lobe and hippocampus: Morphology, differentiation, and proliferative capacity. Glia 2018; 66:62-77. [PMID: 28925561 PMCID: PMC5724502 DOI: 10.1002/glia.23211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/30/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Abstract
Nestin is expressed in immature neuroepithelial and progenitor cell types and transiently upregulated in proliferative neuroglial cells responding to acute brain injury, including following seizures. In 36 temporal lobe (TLobe) specimens from patients with TLobe epilepsy (age range 8-60 years) we studied the number, distribution and morphology of nestin-expressing cells (NEC) in the pes, hippocampus body, parahippocampal gyrus, amygdala, temporal cortex and pole compared with post mortem control tissues from 26 cases (age range 12 gestational weeks to 76 years). The proliferative fraction of NEC was evaluated in selected regions, including recognized niches, using MCM2. Their differentiation was explored with neuronal (DCX, mushashi, βIII tubulin, NeuN) and glial (GFAP, GFAPdelta, glutamine synthetase, aquaporin4, EAAT1) markers, both in sections or following culture. Findings were correlated with clinical parameters. A stereotypical pattern in the distribution and morphologies of NEC was observed, reminiscent of patterns in the developing brain, with increased densities in epilepsy than adult controls (p < .001). Findings included MCM2-positive radial glial-like cells in the periventricular white matter and rows of NEC in the hippocampal fimbria and sulcus. Nestin cells represented 29% of the hippocampal proliferative fraction in epilepsy cases; 20% co-expressed βIII tubulin in culture compared with 28% with GFAP. Significant correlations were noted between age at surgery, memory deficits and nestin populations. TLobe NEC with ongoing proliferative capacity likely represent vestiges of developmental migratory streams and resident reactive cell populations of potential relevance to hippocampal epileptogenesis, TLobe pathology, and co-morbidities, including memory decline.
Collapse
Affiliation(s)
- Joan Liu
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- Divisions of NeuropathologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
- Department of Biomedical SciencesUniversity of WestminsterLondonW1W 6UWUnited Kingdom
| | - Cheryl Reeves
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- Divisions of NeuropathologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
| | - Thomas Jacques
- Department of NeuropathologyUCL Institute of Child Health and Great Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Andrew McEvoy
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- Neurosurgery at the National Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUnited Kingdom
| | - Anna Miserocchi
- Neurosurgery at the National Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUnited Kingdom
| | - Pamela Thompson
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- The Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St PeterBuckinghamshireSL9 0RJUnited Kingdom
- Department of NeuropsychologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
| | - Sanjay Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- The Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St PeterBuckinghamshireSL9 0RJUnited Kingdom
- Department of NeurologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
| | - Maria Thom
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonWC1N 3BGUnited Kingdom
- Divisions of NeuropathologyNational Hospital for Neurology and Neurosurgery, Queen SquareLondonWCN1BGUK
| |
Collapse
|
11
|
Matsue K, Minakawa S, Kashiwagi T, Toda K, Sato T, Shioda S, Seki T. Dentate granule progenitor cell properties are rapidly altered soon after birth. Brain Struct Funct 2017; 223:357-369. [PMID: 28836044 DOI: 10.1007/s00429-017-1499-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
Neurogenesis occurs during the embryonic period and ceases soon after birth in the neocortex, but continues to occur in the hippocampus even in the adult. The embryonic neocortex has radial glia or progenitor cells expressing brain lipid-binding protein (BLBP), whereas the adult hippocampus has radial granule progenitor cells expressing BLBP and glial fibrillary acidic protein (GFAP) in the subgranular zone. We previously found that embryonic hippocampal granule progenitor cells express GFAP, but not BLBP, indicating that these cells are different from both embryonic neocortical and adult granule progenitor cells. In the present study, as the first step towards understanding the mechanism of persistent hippocampal neurogenesis, we aimed to determine the stage at which embryonic-type granule progenitors become adult-type progenitors using mouse Gfap-GFP transgenic mice. During the embryonic stages, Gfap-GFP-positive (Gfap-GFP+) cells were distributed in the entire developing dentate gyrus (DG), whereas BLBP-positive (BLBP+) cells were mainly present in the fimbria and subpial region, and to some extent in the DG. Up to postnatal day 0 (P0), double-positive cells were scarcely detected. However, at P1, one-third of the Gfap-GFP+ cells in the DG suddenly began to weakly express BLBP. Thereafter, Gfap-GFP+/BLBP+ cells rapidly increased in number, and extended their radial processes in the inner granular cell layer. At P14 and in the adult, two-thirds of the Gfap-GFP+ cells in the subgranular zone showed BLBP immunoreactivity. These results suggest that the properties of hippocampal granule progenitor cells are rapidly altered from an embryonic to adult type soon after birth.
Collapse
Affiliation(s)
- Kenta Matsue
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Shiori Minakawa
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Taichi Kashiwagi
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Keiko Toda
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Toru Sato
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Seiji Shioda
- Institute for Advanced Bioscience Research, Hoshi University, Tokyo, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
12
|
Zhu C, Yao WL, Tan W, Zhang CH. SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation. Brain Res 2016; 1657:223-231. [PMID: 27288704 DOI: 10.1016/j.brainres.2016.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/06/2016] [Accepted: 06/07/2016] [Indexed: 12/30/2022]
Abstract
Evidence has shown that stromal cell-derived factor (SDF-1/CXCL12) plays an important role in maintaining adult neural progenitor cells (NPCs). SDF-1 is also known to enhance recovery by recruiting NPCs to damaged regions and recent studies have revealed that SDF-1α exhibits pleiotropism, thereby differentially affecting NPC subpopulations. In this study, we investigated the role of SDF-1 in in vitro NPC self-renewal, proliferation and differentiation, following treatment with different concentrations of SDF-1 or a CXCR4 antagonist, AMD3100. We observed that AMD3100 inhibited the formation of primary neurospheres. However, SDF-1 and AMD3100 exhibited no effect on proliferation upon inclusion of growth factors in the media. Following growth factor withdrawal, AMD3100 and SDF-1 treatment resulted in differential effects on NPC proliferation. SDF-1, at a concentration of 500ng/ml, resulted in an increase in the relative proportion of oligodendrocytes following growth factor withdrawal-induced differentiation. Using CXCR4 knockout mice, we observed that SDF-1 affected NPC proliferation in the sub-ventricular zone (SVZ). We also investigated the occurrence of differential CXCR4 expression at different stages during lineage progression. These results clearly indicate that signaling interactions between SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.
Collapse
Affiliation(s)
- Chang Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wen-Long Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chuan-Han Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
13
|
CXCL12/CXCR4 Axis Improves Migration of Neuroblasts Along Corpus Callosum by Stimulating MMP-2 Secretion After Traumatic Brain Injury in Rats. Neurochem Res 2016; 41:1315-22. [PMID: 26801174 DOI: 10.1007/s11064-016-1831-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/06/2015] [Accepted: 01/06/2016] [Indexed: 01/24/2023]
Abstract
To investigate the effect of CXCL12 on migration of neural precursor cells after traumatic brain injury (TBI). We randomly divided 48 rats into four groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected into the ipsilateral cortex after TBI, and (4) the CXCL12 + AMD3100 group, CXCL12 and AMD3100 were mixed together and injected into the ipsilateral cortex after TBI. At 7 days after TBI, the brain tissues were subjected to immunofluorescent double-labeled staining with the antibodies of CXCR4/DCX, MMP-2/DCX, MMP-2/GFAP, MMP-2/NeuN. Western blot assay was used to measure the protein levels of MMP-2. Compared with the control group, the number of CXCR4/DCX and MMP-2 positive cells around the injured corpus callosum area were significantly increased in the CXCL12 treatment group. The area occupied by these cells expanded and the shape changed from chain distribution to radial. CXCL12 + AMD3100 treatment significantly decreased the number and distribution area of CXCR4/DCX and MMP-2 positive cells compared with the CXCL12 treatment and control group. The DCX positive cells could not form chain or radial distribution. The protein expressions of MMP-2 had the similar change trends as the results of immunofluorescent staining. MMP-2 could be secreted by DCX, GFAP and NeuN positive cells. CXCL12/CXCR4 axis can improve the migration of the neuroblasts along the corpus callosum by stimulating the MMP-2 secretion of different types of cells.
Collapse
|
14
|
Juxtacerebral Tissue Regeneration Potential: Telocytes Contribution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 913:397-402. [PMID: 27796901 DOI: 10.1007/978-981-10-1061-3_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is well proved already that neurogenesis does take place in mammals' brain, including human brain. However, neurogenesis by itself is not able to compensate for brain tissue loss in serious neurological diseases, such as stroke, brain trauma or neurodegenerative disorders. Recent evidences show that neural stem cell niches are present not only in classical locations, such as subventricularor subgranular zones, but in other areas as well, including tissues contiguous to the brain (meninges and choroid plexus).In this chapter we revise the relationship of neural stem cells with interstitial cells (mainly telocytes), which we think is significant, and we describe what is known about the juxtacerebral tissue neurogenesis potential.
Collapse
|
15
|
Bifari F, Berton V, Pino A, Kusalo M, Malpeli G, Di Chio M, Bersan E, Amato E, Scarpa A, Krampera M, Fumagalli G, Decimo I. Meninges harbor cells expressing neural precursor markers during development and adulthood. Front Cell Neurosci 2015; 9:383. [PMID: 26483637 PMCID: PMC4591429 DOI: 10.3389/fncel.2015.00383] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.
Collapse
Affiliation(s)
- Francesco Bifari
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona Verona, Italy
| | - Valeria Berton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Marijana Kusalo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Giorgio Malpeli
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Marzia Di Chio
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Emanuela Bersan
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Eliana Amato
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Aldo Scarpa
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| |
Collapse
|