1
|
Racicot KJ, Guyonnet AEM, Brinkman B, Mehlhorn J, Iwaniuk AN. The olfactory bulbs of homing pigeons are not enlarged compared with other pigeon breeds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025:10.1007/s00359-025-01742-9. [PMID: 40328964 DOI: 10.1007/s00359-025-01742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
The homing pigeon (Columba livia) is one of the best examples of human selection for behaviour among domesticated animals. Several brain regions purportedly differ in size between homing and other pigeons as a result of this selection, one of which is the olfactory bulbs. Olfaction is considered by many to be one of the sensory cues homing pigeons use to orient home. The intense selection for homing could therefore have driven anatomical changes in the olfactory bulbs, the first site of olfactory processing in the brain, in homing pigeons. Here, we compared the size of the olfactory bulbs, as well as size and number of mitral cells, among homing pigeons, feral pigeons, and several sporting and show breeds. Homing pigeons did not differ in absolute of relative olfactory bulb size from wild, feral, or most other pigeon breeds. Only a small show breed (figurita frill) and a meat/show breed (king) differed in absolute and relative olfactory bulb sizes from other pigeon breeds. Similarly, there were no significant differences among breeds in the absolute or relative number of mitral cells or mitral cell soma size. The lack of significant differences among most of the pigeon breeds sampled suggests neither experience nor selection for different behavioural or physical traits affects olfactory bulb size or the number and size of mitral cells. Although the results might indicate that there is not anything special about the olfactory abilities of homing pigeons, we lack data on other aspects of olfactory bulb anatomy and the acuity and sensitivity of the olfactory system across pigeon breeds. The latter knowledge gap could be addressed through genomic and transcriptomic techniques, which would provide new insights to the ongoing debate surrounding the use of olfactory cues in homing.
Collapse
Affiliation(s)
- Kelsey J Racicot
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4, Canada
| | - Audrey E M Guyonnet
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4, Canada
| | - Benjamin Brinkman
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4, Canada
| | - Julia Mehlhorn
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
2
|
Guyonnet AEM, Racicot KJ, Brinkman B, Iwaniuk AN. The quantitative anatomy of the hippocampal formation in homing pigeons and other pigeon breeds: implications for spatial cognition. Brain Struct Funct 2024; 230:9. [PMID: 39688732 DOI: 10.1007/s00429-024-02882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 12/18/2024]
Abstract
Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes. We completed a more systematic test for differences in hippocampal formation anatomy between homing and other pigeon breeds by measuring volumes, neuron numbers and neuron densities in the hippocampal formation and septum across homing pigeons and seven other breeds. Overall, we found few differences in hippocampal formation volume across breeds, but large, significant differences in neuron numbers and densities. More specifically, homing pigeons have significantly more hippocampal neurons and at higher density than most other pigeon breeds, with nearly twice as many neurons as feral pigeons. These findings suggest that neuron numbers may be an important component of homing behaviour in homing pigeons. Our data also provide the first evidence that neuronal density can be modified by artificial selection, which has significant implications for the study of domestication and interbreed variation in anatomy and behaviour.
Collapse
Affiliation(s)
- Audrey E M Guyonnet
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Kelsey J Racicot
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Benjamin Brinkman
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
3
|
Gagliardo A, Bingman VP. The avian olfactory system and hippocampus: Complementary roles in the olfactory and visual guidance of homing pigeon navigation. Curr Opin Neurobiol 2024; 86:102870. [PMID: 38552546 DOI: 10.1016/j.conb.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
The homing pigeon is the foundational model species used to investigate the neural control of avian navigation. The olfactory system is critically involved in implementing the so-called olfactory map, used to locate position relative to home from unfamiliar locations. The hippocampal formation supports a complementary navigational system based on familiar visual landmarks. Insight into the neural control of pigeon navigation has been revolutionised by GPS-tracking technology, which has been crucial for both detailing the critical role of environmental odours for navigation over unfamiliar areas as well as offering unprecedented insight into the role of the hippocampal formation in visual landscape/landmark-based navigation, including a possible, unexpected role in visual-spatial perception.
Collapse
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, 56126 Pisa, Italy.
| | - Verner P Bingman
- Department of Psychology, J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
4
|
Tamta K, Kumar A, Arya H, Arya S, Maurya RC. Neuronal plasticity in hippocampal neurons due to chronic mild stress and after stress removal in postnatal chicks. J Anat 2024; 244:831-860. [PMID: 38153009 PMCID: PMC11021661 DOI: 10.1111/joa.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
The avian dorsomedial surface of the cerebral hemisphere is occupied by the hippocampal complex (HCC), which plays an important role in learning, memory, cognitive functions, and regulating instinctive behavior patterns. The objective of the study was to evaluate the effect of chronic mild stress (CMS) in 4, 6, and 8 weeks and after chronic stress removal (CSR) in 6 and 8 weeks, on neuronal plasticity in HCC neurons of chicks through the Golgi-Cox technique. Further, behavioral study and open field test were conducted to test of exploration or of anxiety. The study revealed that the length of CMS and CSR groups shows a similar pattern as in nonstressed (NS) chicks, while weight shows nonsignificant decrease due to CMS as compared to NS and after CSR. The behavioral test depicts that the CMS group took more time to reach the food as compared to the NS and CSR groups. Due to CMS, the dendritic field of multipolar neurons shows significant decrease in 4 weeks, but in 6- and 8-week-old chicks, the multipolar, pyramidal, and stellate neurons depict significant decrease, whereas after CSR all neurons show significant increase in 8-week-old chicks. In 4- and 8-week-old chicks, all neurons depict significant decrease in their spine number, whereas in 6 weeks only multipolar neurons show significant decrease, but after CSR significant increase in 8-week-old chicks was observed. The study revealed that HCC shows continuous neuronal plasticity, which plays a significant role in normalizing and re-establishing the homeostasis in animals to survive.
Collapse
Affiliation(s)
- Kavita Tamta
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| | - Adarsh Kumar
- Department of Applied Sciences, Dr. K. N. Modi University, Newai-Tonk, India
| | - Hemlata Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| | - Shweta Arya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
| | - Ram Chandra Maurya
- Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University, Almora, India
- Kumaun University Nainital, Uttarakhand, India
| |
Collapse
|
5
|
Coppola VJ, Scribner HR, Barnett C, Flanigan KAS, Riesgo VR, Bingman VP. Age-related reductions in whole brain mass and telencephalon volume in very old white Carneau pigeons (Columba livia). Neurosci Lett 2024; 828:137754. [PMID: 38556244 DOI: 10.1016/j.neulet.2024.137754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
While studies have identified age-related cognitive impairment in pigeons (Columba livia), no study has detected the brain atrophy which typically accompanies cognitive impairment in older mammals. Instead, Coppola and Bingman (Aging is associated with larger brain mass and volume in homing pigeons (Columba livia), Neurosci. Letters 698 (2019) 39-43) reported increased whole brain mass and telencephalon volume in older, compared to younger, homing pigeons. One reason for this unexpected finding might be that the older pigeons studied were not old enough to display age-related brain atrophy. Therefore, the current study repeated Coppola and Bingman, but with a sample of older white Carneau pigeons that were on average 5.34 years older. Brains from young and old homing pigeons were weighed and orthogonal measurements of the telencephalon, cerebellum, and optic tectum were obtained. Despite having a heavier body mass than younger pigeons, older pigeons had a significant reduction in whole brain mass and telencephalon volume, but not cerebellum or optic tectum volume. This study is therefore the first to find that pigeons experience age-related brain atrophy.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA.
| | - Holden R Scribner
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Caillie Barnett
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Kaylyn A S Flanigan
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Victoria R Riesgo
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| |
Collapse
|
6
|
Bingman VP, Gagliardo A. A different perspective on avian hippocampus function: Visual-spatial perception. Learn Behav 2024; 52:60-68. [PMID: 37653225 DOI: 10.3758/s13420-023-00601-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
The behavioral and neural mechanisms that support spatial cognition have been an enduring interest of psychologists, and much of that enduring interest is attributable to the groundbreaking research of Ken Cheng. One manifestation of this interest, inspired by the idea of studying spatial cognition under natural field conditions, has been research carried out to understand the role of the avian hippocampal formation (HF) in supporting homing pigeon navigation. Emerging from that research has been the conclusion that the role of HF in homing pigeon navigation aligns well with the canonical narrative of a hippocampus important for spatial memory and the implementation of such memories to support navigation. However, recently an accumulation of disparate observations has prompted a rethinking of the avian HF as a structure also important in shaping visual-spatial perception or attention antecedent to any memory processing. In this perspective paper, we summarize field observations contrasting the behavior of intact and HF-lesioned homing pigeons from several studies, based primarily on GPS-recorded flight paths, that support a recharacterization of HF's functional profile to include visual-spatial perception. Although admittedly still speculative, we hope the offered perspective will motivate controlled, experimental-laboratory studies to further test the hypothesis of a HF important for visual-perceptual integration, or scene construction, of landscape elements in support of navigation.
Collapse
Affiliation(s)
- Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, 43403, USA.
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | | |
Collapse
|
7
|
Zhu JY, Zhang ZH, Liu G, Wan H. Enhanced Hippocampus-Nidopallium Caudolaterale Interaction in Visual-Spatial Associative Learning of Pigeons. Animals (Basel) 2024; 14:456. [PMID: 38338099 PMCID: PMC10854635 DOI: 10.3390/ani14030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Learning the spatial location associated with visual cues in the environment is crucial for survival. This ability is supported by a distributed interactive network. However, it is not fully understood how the most important task-related brain areas in birds, the hippocampus (Hp) and the nidopallium caudolaterale (NCL), interact in visual-spatial associative learning. To investigate the mechanisms of such coordination, synchrony and causal analysis were applied to the local field potentials of the Hp and NCL of pigeons while performing a visual-spatial associative learning task. The results showed that, over the course of learning, theta-band (4-12 Hz) oscillations in the Hp and NCL became strongly synchronized before the pigeons entered the critical choice platform for turning, with the information flowing preferentially from the Hp to the NCL. The learning process was primarily associated with the increased Hp-NCL interaction of theta rhythm. Meanwhile, the enhanced theta-band Hp-NCL interaction predicted the correct choice, supporting the pigeons' use of visual cues to guide navigation. These findings provide insight into the dynamics of Hp-NCL interaction during visual-spatial associative learning, serving to reveal the mechanisms of Hp and NCL coordination during the encoding and retrieval of visual-spatial associative memory.
Collapse
Affiliation(s)
- Jun-Yao Zhu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.-Y.Z.); (Z.-H.Z.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhi-Heng Zhang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.-Y.Z.); (Z.-H.Z.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Gang Liu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.-Y.Z.); (Z.-H.Z.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Shanghai Key Laboratory of Brain-Machine Intelligence for Information Behavior, Shanghai International Studies University, Shanghai 201613, China
| | - Hong Wan
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.-Y.Z.); (Z.-H.Z.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| |
Collapse
|
8
|
Yang L, Jin F, Yang L, Li J, Li Z, Li M, Shang Z. The Hippocampus in Pigeons Contributes to the Model-Based Valuation and the Relationship between Temporal Context States. Animals (Basel) 2024; 14:431. [PMID: 38338074 PMCID: PMC10854895 DOI: 10.3390/ani14030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Model-based decision-making guides organism behavior by the representation of the relationships between different states. Previous studies have shown that the mammalian hippocampus (Hp) plays a key role in learning the structure of relationships among experiences. However, the hippocampal neural mechanisms of birds for model-based learning have rarely been reported. Here, we trained six pigeons to perform a two-step task and explore whether their Hp contributes to model-based learning. Behavioral performance and hippocampal multi-channel local field potentials (LFPs) were recorded during the task. We estimated the subjective values using a reinforcement learning model dynamically fitted to the pigeon's choice of behavior. The results show that the model-based learner can capture the behavioral choices of pigeons well throughout the learning process. Neural analysis indicated that high-frequency (12-100 Hz) power in Hp represented the temporal context states. Moreover, dynamic correlation and decoding results provided further support for the high-frequency dependence of model-based valuations. In addition, we observed a significant increase in hippocampal neural similarity at the low-frequency band (1-12 Hz) for common temporal context states after learning. Overall, our findings suggest that pigeons use model-based inferences to learn multi-step tasks, and multiple LFP frequency bands collaboratively contribute to model-based learning. Specifically, the high-frequency (12-100 Hz) oscillations represent model-based valuations, while the low-frequency (1-12 Hz) neural similarity is influenced by the relationship between temporal context states. These results contribute to our understanding of the neural mechanisms underlying model-based learning and broaden the scope of hippocampal contributions to avian behavior.
Collapse
Affiliation(s)
- Lifang Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (F.J.); (L.Y.); (J.L.); (Z.L.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Fuli Jin
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (F.J.); (L.Y.); (J.L.); (Z.L.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (F.J.); (L.Y.); (J.L.); (Z.L.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Jiajia Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (F.J.); (L.Y.); (J.L.); (Z.L.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhihui Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (F.J.); (L.Y.); (J.L.); (Z.L.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
| | - Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (F.J.); (L.Y.); (J.L.); (Z.L.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (F.J.); (L.Y.); (J.L.); (Z.L.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Yang L, Chen X, Yang L, Li M, Shang Z. Phase-Amplitude Coupling between Theta Rhythm and High-Frequency Oscillations in the Hippocampus of Pigeons during Navigation. Animals (Basel) 2024; 14:439. [PMID: 38338082 PMCID: PMC10854523 DOI: 10.3390/ani14030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Navigation is a complex task in which the hippocampus (Hp), which plays an important role, may be involved in interactions between different frequency bands. However, little is known whether this cross-frequency interaction exists in the Hp of birds during navigation. Therefore, we examined the electrophysiological characteristics of hippocampal cross-frequency interactions of domestic pigeons (Columba livia domestica) during navigation. Two goal-directed navigation tasks with different locomotor modes were designed, and the local field potentials (LFPs) were recorded for analysis. We found that the amplitudes of high-frequency oscillations in Hp were dynamically modulated by the phase of co-occurring theta-band oscillations both during ground-based maze and outdoor flight navigation. The high-frequency amplitude sub-frequency bands modulated by the hippocampal theta phase were different at different tasks, and this process was independent of the navigation path and goal. These results suggest that phase-amplitude coupling (PAC) in the avian Hp may be more associated with the ongoing cognitive demands of navigational processes. Our findings contribute to the understanding of potential mechanisms of hippocampal PAC on multi-frequency informational interactions in avian navigation and provide valuable insights into cross-species evolution.
Collapse
Affiliation(s)
- Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Xi Chen
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Lifang Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
11
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
12
|
Rook N, Stacho M, Schwarz A, Bingman VP, Güntürkün O. Neuronal circuits within the homing pigeon hippocampal formation. J Comp Neurol 2023; 531:790-813. [PMID: 36808394 DOI: 10.1002/cne.25462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
The current study aimed to reveal in detail patterns of intrahippocampal connectivity in homing pigeons (Columba livia). In light of recent physiological evidence suggesting differences between dorsomedial and ventrolateral hippocampal regions and a hitherto unknown laminar organization along the transverse axis, we also aimed to gain a higher-resolution understanding of the proposed pathway segregation. Both in vivo and high-resolution in vitro tracing techniques were employed and revealed a complex connectivity pattern along the subdivisions of the avian hippocampus. We uncovered connectivity pathways along the transverse axis that started in the dorsolateral hippocampus and continued to the dorsomedial subdivision, from where information was relayed to the triangular region either directly or indirectly via the V-shaped layers. The often-reciprocal connectivity along these subdivisions displayed an intriguing topographical arrangement such that two parallel pathways could be discerned along the ventrolateral (deep) and dorsomedial (superficial) aspects of the avian hippocampus. The segregation along the transverse axis was further supported by expression patterns of the glial fibrillary acidic protein and calbindin. Moreover, we found strong expression of Ca2+ /calmodulin-dependent kinase IIα and doublecortin in the lateral but not medial V-shape layer, indicating a difference between the two V-shaped layers. Overall, our findings provide an unprecedented, detailed description of avian intrahippocampal pathway connectivity, and confirm the recently proposed segregation of the avian hippocampus along the transverse axis. We also provide further support for the hypothesized homology of the lateral V-shape layer and the dorsomedial hippocampus with the dentate gyrus and Ammon's horn of mammals, respectively.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Martin Stacho
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Ariane Schwarz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, Ohio, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, USA
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
13
|
Deconstructing the flight paths of hippocampal-lesioned homing pigeons as they navigate near home offers insight into spatial perception and memory without a hippocampus. Behav Brain Res 2023; 436:114073. [DOI: 10.1016/j.bbr.2022.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
|
14
|
Gagliardo A, Pollonara E, Casini G, Bingman VP. Unilateral hippocampal lesions and the navigational performance of homing pigeons as revealed by GPS-tracking. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2152105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | | | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
15
|
Ben-Tov M, Gutfreund Y. Spatial cognition in birds. Curr Biol 2022; 32:R1085-R1089. [DOI: 10.1016/j.cub.2022.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Morphology, biochemistry and connectivity of Cluster N and the hippocampal formation in a migratory bird. Brain Struct Funct 2022; 227:2731-2749. [DOI: 10.1007/s00429-022-02566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022]
Abstract
AbstractThe exceptional navigational capabilities of migrating birds are based on the perception and integration of a variety of natural orientation cues. The “Wulst” in the forebrain of night-migratory songbirds contains a brain area named “Cluster N”, which is involved in processing directional navigational information derived from the Earth´s magnetic field. Cluster N is medially joined by the hippocampal formation, known to retrieve and utilise navigational information. To investigate the connectivity and neurochemical characteristics of Cluster N and the hippocampal formation of migratory birds, we performed morphological and histochemical analyses based on the expression of calbindin, calretinin, parvalbumin, glutamate receptor type 1 and early growth response protein-1 in the night-migratory Garden warbler (Sylvia borin) and mapped their mutual connections using neuronal tract tracing. The resulting expression patterns revealed regionally restricted neurochemical features, which mapped well onto the hippocampal and hyperpallial substructures known from other avian species. Magnetic field-induced neuronal activation covered caudal parts of the hyperpallium and the medially adjacent hippocampal dorsomedial/dorsolateral subdivisions. Neuronal tract tracings revealed connections between Cluster N and the hippocampal formation with the vast majority originating from the densocellular hyperpallium, either directly or indirectly via the area corticoidea dorsolateralis. Our data indicate that the densocellular hyperpallium could represent a central relay for the transmission of magnetic compass information to the hippocampal formation where it might be integrated with other navigational cues in night-migratory songbirds.
Collapse
|
17
|
Ide K, Takahashi S. A Review of Neurologgers for Extracellular Recording of Neuronal Activity in the Brain of Freely Behaving Wild Animals. MICROMACHINES 2022; 13:1529. [PMID: 36144152 PMCID: PMC9502354 DOI: 10.3390/mi13091529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous monitoring of animal behavior and neuronal activity in the brain enables us to examine the neural underpinnings of behaviors. Conventionally, the neural activity data are buffered, amplified, multiplexed, and then converted from analog to digital in the head-stage amplifier, following which they are transferred to a storage server via a cable. Such tethered recording systems, intended for indoor use, hamper the free movement of animals in three-dimensional (3D) space as well as in large spaces or underwater, making it difficult to target wild animals active under natural conditions; it also presents challenges in realizing its applications to humans, such as the Brain-Machine Interfaces (BMI). Recent advances in micromachine technology have established a wireless logging device called a neurologger, which directly stores neural activity on ultra-compact memory media. The advent of the neurologger has triggered the examination of the neural correlates of 3D flight, underwater swimming of wild animals, and translocation experiments in the wild. Examples of the use of neurologgers will provide an insight into understanding the neural underpinnings of behaviors in the natural environment and contribute to the practical application of BMI. Here we outline the monitoring of the neural underpinnings of flying and swimming behaviors using neurologgers. We then focus on neuroethological findings and end by discussing their future perspectives.
Collapse
|
18
|
Gómez A, Rodríguez-Expósito B, Ocaña FM, Salas C, Rodríguez F. Trace classical conditioning impairment after lesion of the lateral part of the goldfish telencephalic pallium suggests a long ancestry of the episodic memory function of the vertebrate hippocampus. Brain Struct Funct 2022; 227:2879-2890. [PMID: 36006500 DOI: 10.1007/s00429-022-02553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
There is an ongoing debate on the evolutionary origin of the episodic memory function of the hippocampus. A widely accepted hypothesis claims that the hippocampus first evolved as a dedicated system for spatial navigation in ancestral vertebrates, being transformed later in phylogeny to support a broader role in episodic memory with the emergence of mammals. On the contrary, an alternative hypothesis holds that the hippocampus of ancestral vertebrates originally encoded both the spatial and temporal dimensions of relational memories since its evolutionary appearance, thus suggesting that the episodic-like memory function of the hippocampus could be the primitive condition in vertebrate forebrain evolution. The present experiment was aimed at scrutinizing these opposing hypotheses by investigating whether the hippocampal pallium of teleost fish, a vertebrate group that shares with mammals a common ancestor that lived about 400 Mya, is, like the hippocampus of mammals, essential to associate time-discontiguous events. Thus, goldfish with lesions in the ventral part of the dorsolateral pallium (Dlv), a telencephalic region considered homologous to the hippocampal pallium of land vertebrates, were trained in trace versus delay eyeblink-like classical conditioning, two learning procedures that differ only in the temporal relationships between the stimuli to be associated in memory. The results showed that hippocampal pallium lesion in goldfish severely impairs trace conditioning, but spares delay conditioning. This finding challenges the idea that navigation preceded relational memory in evolutionary appearance and suggests the possibility that a relational memory function that associates the experienced events in both the spatial and temporal dimensions could be a primitive feature of the hippocampus that pre-existed in the common ancestor of vertebrates.
Collapse
Affiliation(s)
- A Gómez
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| | | | - F M Ocaña
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| | - C Salas
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain.
| | - F Rodríguez
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
19
|
Mehlhorn J, Niski N, Liu K, Caspers S, Amunts K, Herold C. Regional Patterning of Adult Neurogenesis in the Homing Pigeon’s Brain. Front Psychol 2022; 13:889001. [PMID: 35898980 PMCID: PMC9311432 DOI: 10.3389/fpsyg.2022.889001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
In the avian brain, adult neurogenesis has been reported in the telencephalon of several species, but the functional significance of this trait is still ambiguous. Homing pigeons (Columba livia f.d.) are well-known for their navigational skills. Their brains are functionally adapted to homing with, e.g., larger hippocampi. So far, no comprehensive mapping of adult neuro- and gliogenesis or studies of different developmental neuronal stages in the telencephalon of homing pigeons exists, although comprehensive analyses in various species surely will result in a higher understanding of the functional significance of adult neurogenesis. Here, adult, free flying homing pigeons were treated with 5-bromo-deoxyuridine (BrdU) to label adult newborn cells. Brains were dissected and immunohistochemically processed with several markers (GFAP, Sox2, S100ß, Tbr2, DCX, Prox1, Ki67, NeuN, Calbindin, Calretinin) to study different stages of adult neurogenesis in a quantitative and qualitative way. Therefore, immature and adult newborn neurons and glial cells were analyzed along the anterior–posterior axis. The analysis proved the existence of different neuronal maturation stages and showed that immature cells, migrating neurons and adult newborn neurons and glia were widely and regionally unequally distributed. Double- and triple-labelling with developmental markers allowed a stage classification of adult neurogenesis in the pigeon brain (1: continuity of stem cells/proliferation, 2: fate specification, 3: differentiation/maturation, 4: integration). The most adult newborn neurons and glia were found in the intercalated hyperpallium (HI) and the hippocampal formation (HF). The highest numbers of immature (DCX+) cells were detected in the nidopallium (N). Generally, the number of newborn glial cells exceeded the number of newborn neurons. Individual structures (e.g., HI, N, and HF) showed further variations along the anterior–posterior axis. Our qualitative classification and the distribution of maturing cells in the forebrain support the idea that there is a functional specialization, respectively, that there is a link between brain-structure and function, species-specific requirements and adult neurogenesis. The high number of immature neurons also suggests a high level of plasticity, which points to the ability for rapid adaption to environmental changes through additive mechanisms. Furthermore, we discuss a possible influence of adult neurogenesis on spatial cognition.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Julia Mehlhorn,
| | - Nelson Niski
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ke Liu
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. and O. Vogt-Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Herold C, Ockermann PN, Amunts K. Behavioral Training Related Neurotransmitter Receptor Expression Dynamics in the Nidopallium Caudolaterale and the Hippocampal Formation of Pigeons. Front Physiol 2022; 13:883029. [PMID: 35600306 PMCID: PMC9114877 DOI: 10.3389/fphys.2022.883029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Learning and memory are linked to dynamic changes at the level of synapses in brain areas that are involved in cognitive tasks. For example, changes in neurotransmitter receptors are prerequisite for tuning signals along local circuits and long-range networks. However, it is still unclear how a series of learning events promotes plasticity within the system of neurotransmitter receptors and their subunits to shape information processing at the neuronal level. Therefore, we investigated the expression of different glutamatergic NMDA (GRIN) and AMPA (GRIA) receptor subunits, the GABAergic GABARG2 subunit, dopaminergic DRD1, serotonergic 5HTR1A and noradrenergic ADRA1A receptors in the pigeon's brain. We studied the nidopallium caudolaterale, the avian analogue of the prefrontal cortex, and the hippocampal formation, after training the birds in a rewarded stimulus-response association (SR) task and in a simultaneous-matching-to-sample (SMTS) task. The results show that receptor expression changed differentially after behavioral training compared to an untrained control group. In the nidopallium caudolaterale, GRIN2B, GRIA3, GRIA4, DRD1D, and ADRA1A receptor expression was altered after SR training and remained constantly decreased after the SMTS training protocol, while GRIA2 and DRD1A decreased only under the SR condition. In the hippocampal formation, GRIN2B decreased and GABARG2 receptor expression increased after SR training. After SMTS sessions, GRIN2B remained decreased, GABARG2 remained increased if compared to the control group. None of the investigated receptors differed directly between both conditions, although differentially altered. The changes in both regions mostly occur in favor of the stimulus response task. Thus, the present data provide evidence that neurotransmitter receptor expression dynamics play a role in the avian prefrontal cortex and the hippocampal formation for behavioral training and is uniquely, regionally and functionally associated to cognitive processes including learning and memory.
Collapse
Affiliation(s)
- Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp N. Ockermann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Hospital and Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, Jülich, Germany
| |
Collapse
|
21
|
Hough GE. Neural Substrates of Homing Pigeon Spatial Navigation: Results From Electrophysiology Studies. Front Psychol 2022; 13:867939. [PMID: 35465504 PMCID: PMC9020565 DOI: 10.3389/fpsyg.2022.867939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 12/25/2022] Open
Abstract
Over many centuries, the homing pigeon has been selectively bred for returning home from a distant location. As a result of this strong selective pressure, homing pigeons have developed an excellent spatial navigation system. This system passes through the hippocampal formation (HF), which shares many striking similarities to the mammalian hippocampus; there are a host of shared neuropeptides, interconnections, and its role in the storage and manipulation of spatial maps. There are some notable differences as well: there are unique connectivity patterns and spatial encoding strategies. This review summarizes the comparisons between the avian and mammalian hippocampal systems, and the responses of single neurons in several general categories: (1) location and place cells responding in specific areas, (2) path and goal cells responding between goal locations, (3) context-dependent cells that respond before or during a task, and (4) pattern, grid, and boundary cells that increase firing at stable intervals. Head-direction cells, responding to a specific compass direction, are found in mammals and other birds but not to date in pigeons. By studying an animal that evolved under significant adaptive pressure to quickly develop a complex and efficient spatial memory system, we may better understand the comparative neurology of neurospatial systems, and plot new and potentially fruitful avenues of comparative research in the future.
Collapse
Affiliation(s)
- Gerald E Hough
- Department of Biological Sciences, Rowan University, Glassboro, NJ, United States.,Department of Psychology, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
22
|
Fujita T, Aoki N, Mori C, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. Chick Hippocampal Formation Displays Subdivision- and Layer-Selective Expression Patterns of Serotonin Receptor Subfamily Genes. Front Physiol 2022; 13:882633. [PMID: 35464081 PMCID: PMC9024137 DOI: 10.3389/fphys.2022.882633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
Hippocampal formation (HF) plays a key role in cognitive and emotional processing in mammals. In HF neural circuits, serotonin receptors (5-HTRs) modulate functions related to cognition and emotion. To understand the phylogenetic continuity of the neural basis for cognition and emotion, it is important to identify the neural circuits that regulate cognitive and emotional processing in animals. In birds, HF has been shown to be related to cognitive functions and emotion-related behaviors. However, details regarding the distribution of 5-HTRs in the avian brain are very sparse, and 5-HTRs, which are potentially involved in cognitive functions and emotion-related behaviors, are poorly understood. Previously, we showed that 5-HTR1B and 5-HTR3A were expressed in chick HF. To identify additional 5-HTRs that are potentially involved in cognitive and emotional functions in avian HF, we selected the chick orthologs of 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2B, 5-HTR5A, and 5-HTR7 and performed in situ hybridization in the chick telencephalon. We found that 5-HTR1D, 5-HTR1E, 5-HTR5A, and 5-HTR7 were expressed in the chick HF, especially 5-HTR1D and 5-HTR1E, which showed subdivision- and layer-selective expression patterns, suggesting that the characteristic 5-HT regulation is involved in cognitive functions and emotion-related behaviors in these HF regions. These findings can facilitate the understanding of serotonin regulation in avian HF and the correspondence between the HF subdivisions of birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Eiko Fujita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
- *Correspondence: Shinji Yamaguchi,
| |
Collapse
|
23
|
Takahashi S, Hombe T, Matsumoto S, Ide K, Yoda K. Head direction cells in a migratory bird prefer north. SCIENCE ADVANCES 2022; 8:eabl6848. [PMID: 35119935 PMCID: PMC8816328 DOI: 10.1126/sciadv.abl6848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Animals exhibit remarkable navigation abilities as if they have an internal compass. Head direction (HD) cells encoding the animal's heading azimuth are found in the brain of several animal species; the HD cell signals are dependent on the vestibular nuclei, where magnetic responsive cells are present in birds. However, it is difficult to determine whether HD cell signals drive the compass orientation in animals, as they do not necessarily rely on the magnetic compass under all circumstances. Recording of HD cell activities from the medial pallium of shearwater chicks (Calonectris leucomelas) just before their first migration, during which they strongly rely on compass orientation, revealed that shearwater HD cells prefer a north orientation. The preference remained stable regardless of geolocations and environmental cues, suggesting the existence of a magnetic compass regulated by internally generated HD signals. Our findings provide insight into the integration of the direction and magnetoreception senses.
Collapse
Affiliation(s)
- Susumu Takahashi
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan
| | - Takumi Hombe
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Sakiko Matsumoto
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kaoru Ide
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
24
|
Space, feature, and risk sensitivity in homing pigeons (Columba livia): Broadening the conversation on the role of the avian hippocampus in memory. Learn Behav 2021; 50:99-112. [PMID: 34918206 DOI: 10.3758/s13420-021-00500-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/08/2022]
Abstract
David Sherry has been a pioneer in investigating the avian hippocampal formation (HF) and spatial memory. Following on his work and observations that HF is sensitive to the occurrence of reward (food), we were interested in carrying out an exploratory study to investigate possible HF involvement in the representation goal value and risk. Control sham-lesioned and hippocampal-lesioned pigeons were trained in an open field to locate one food bowl containing a constant two food pellets on all trials, and two variable bowls with one containing five pellets on 75% (High Variable) and another on 25% (Low Variable) of their respective trials (High-Variable and Low-Variable bowls were never presented together). One pairing of pigeons learned bowl locations (space); another bowl colors (feature). Trained to color, hippocampal-lesioned pigeons performed as rational agents in their bowl choices and were indistinguishable from the control pigeons, a result consistent with HF regarded as unimportant for non-spatial memory. By contrast, when trained to location, hippocampal-lesioned pigeons differed from the control pigeons. They made more first-choice errors to bowls that never contained food, consistent with a role of HF in spatial memory. Intriguingly, the hippocampal-lesioned pigeons also made fewer first choices to both variable bowls, suggesting that hippocampal lesions resulted in the pigeons becoming more risk averse. Acknowledging that the results are preliminary and further research is needed, the data nonetheless support the general hypothesis that HF-dependent memory representations of space capture properties of reward value and risk, properties that contribute to decision making when confronted with a choice.
Collapse
|
25
|
Collet J, Sasaki T, Biro D. Pigeons retain partial memories of homing paths years after learning them individually, collectively or culturally. Proc Biol Sci 2021; 288:20212110. [PMID: 34784759 PMCID: PMC8595992 DOI: 10.1098/rspb.2021.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Memory of past experience is central to many animal decisions, but how long specific memories can influence behaviour is poorly understood. Few studies have reported memories retrieved after several years in non-human animals, especially for spatial tasks, and whether the social context during learning could affect long-term memory retention. We investigated homing pigeons' spatial memory by GPS-recording their homing paths from a site 9 km from their loft. We compared solo flights of naive pigeons with those of pigeons that had last homed from this site 3-4 years earlier, having learnt a homing route either alone (individual learning), together with a naive partner (collective learning) or within cultural transmission chains (cultural learning). We used as a control a second release site unfamiliar to all pigeons. Pigeons from all learning treatments outperformed naive birds at the familiar (but not the unfamiliar) site, but the idiosyncratic routes they formerly used several years before were now partially forgotten. Our results show that non-human animals can use their memory to solve a spatial task years after they last performed it, irrespective of the social context during learning. They also suggest that without reinforcement, landmarks and culturally acquired 'route traditions' are gradually forgotten.
Collapse
Affiliation(s)
- Julien Collet
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
26
|
Rodríguez F, Quintero B, Amores L, Madrid D, Salas-Peña C, Salas C. Spatial Cognition in Teleost Fish: Strategies and Mechanisms. Animals (Basel) 2021; 11:2271. [PMID: 34438729 PMCID: PMC8388456 DOI: 10.3390/ani11082271] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023] Open
Abstract
Teleost fish have been traditionally considered primitive vertebrates compared to mammals and birds in regard to brain complexity and behavioral functions. However, an increasing amount of evidence suggests that teleosts show advanced cognitive capabilities including spatial navigation skills that parallel those of land vertebrates. Teleost fish rely on a multiplicity of sensory cues and can use a variety of spatial strategies for navigation, ranging from relatively simple body-centered orientation responses to allocentric or "external world-centered" navigation, likely based on map-like relational memory representations of the environment. These distinct spatial strategies are based on separate brain mechanisms. For example, a crucial brain center for egocentric orientation in teleost fish is the optic tectum, which can be considered an essential hub in a wider brain network responsible for the generation of egocentrically referenced actions in space. In contrast, other brain centers, such as the dorsolateral telencephalic pallium of teleost fish, considered homologue to the hippocampal pallium of land vertebrates, seem to be crucial for allocentric navigation based on map-like spatial memory. Such hypothetical relational memory representations endow fish's spatial behavior with considerable navigational flexibility, allowing them, for example, to perform shortcuts and detours.
Collapse
Affiliation(s)
| | | | | | | | | | - Cosme Salas
- Laboratorio de Psicobiología, Universidad de Sevilla, 41018 Sevilla, Spain; (F.R.); (B.Q.); (L.A.); (D.M.); (C.S.-P.)
| |
Collapse
|
27
|
Li MM, Fan JT, Cheng SG, Yang LF, Yang L, Wang LF, Shang ZG, Wan H. Enhanced Hippocampus-Nidopallium Caudolaterale Connectivity during Route Formation in Goal-Directed Spatial Learning of Pigeons. Animals (Basel) 2021; 11:ani11072003. [PMID: 34359131 PMCID: PMC8300203 DOI: 10.3390/ani11072003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Goal-directed spatial learning is crucial for the survival of animals, in which the formation of the route from the current location to the goal is one of the central problems. A distributed brain network comprising the hippocampus and prefrontal cortex has been shown to support such capacity, yet it is not fully understood how the most similar brain regions in birds, the hippocampus (Hp) and nidopallium caudolaterale (NCL), cooperate during route formation in goal-directed spatial learning. Hence, we examined neural activity in the Hp-NCL network of pigeons and explored the connectivity dynamics during route formation in a goal-directed spatial task. We found that behavioral changes in spatial learning during route formation are accompanied by modifications in neural patterns in the Hp-NCL network. Specifically, as pigeons learned to solve the task, the spectral power in both regions gradually decreased. Meanwhile, elevated hippocampal theta (5 to 12 Hz) connectivity and depressed connectivity in NCL were also observed. Lastly, the interregional functional connectivity was found to increase with learning, specifically in the theta frequency band during route formation. These results provide insight into the dynamics of the Hp-NCL network during spatial learning, serving to reveal the potential mechanism of avian spatial navigation.
Collapse
Affiliation(s)
- Meng-Meng Li
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Jian-Tao Fan
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Shu-Guan Cheng
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Li-Fang Yang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Long Yang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Liao-Feng Wang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhi-Gang Shang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Z.-G.S.); (H.W.); Tel.: +86-0371-67781417 (Z.-G.S.); +86-0371-67781421 (H.W.)
| | - Hong Wan
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (M.-M.L.); (J.-T.F.); (S.-G.C.); (L.-F.Y.); (L.Y.); (L.-F.W.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Correspondence: (Z.-G.S.); (H.W.); Tel.: +86-0371-67781417 (Z.-G.S.); +86-0371-67781421 (H.W.)
| |
Collapse
|
28
|
Gagliardo A, Colombo S, Pollonara E, Casini G, Rossino MG, Wikelski M, Bingman VP. GPS-profiling of retrograde navigational impairments associated with hippocampal lesion in homing pigeons. Behav Brain Res 2021; 412:113408. [PMID: 34111471 DOI: 10.1016/j.bbr.2021.113408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
The avian hippocampal formation (HF) is homologous to the mammalian hippocampus and plays a central role in the control of spatial cognition. In homing pigeons, HF supports navigation by familiar landmarks and landscape features. However, what has remained relatively unexplored is the importance of HF for the retention of previously acquired spatial information. For example, to date, no systematic GPS-tracking studies on the retention of HF-dependent navigational memory in homing pigeons have been performed. Therefore, the current study was designed to compare the pre- and post-surgical navigational performance of sham-lesioned control and HF-lesioned pigeons tracked from three different sites located in different directions with respect to home. The pre- and post-surgical comparison of the pigeons' flight paths near the release sites and before reaching the area surrounding the home loft (4 km radius from the loft) revealed that the control and HF-lesioned pigeons displayed similarly successful retention. By contrast, the HF-lesioned pigeons displayed dramatically and consistently impaired retention in navigating to their home loft during the terminal phase of the homing flight near home, i.e., where navigation is supported by memory for landmark and landscape features. The data demonstrate that HF lesions lead to a dramatic loss of pre-surgically acquired landmark and landscape navigational information while sparing those mechanisms associated with navigation from locations distant from home.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Verner P Bingman
- Department of Psychology, 4Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA; J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
29
|
Ben-Yishay E, Krivoruchko K, Ron S, Ulanovsky N, Derdikman D, Gutfreund Y. Directional tuning in the hippocampal formation of birds. Curr Biol 2021; 31:2592-2602.e4. [PMID: 33974847 DOI: 10.1016/j.cub.2021.04.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Birds strongly rely on spatial memory and navigation. Therefore, it is of utmost interest to reveal how space is represented in the avian brain. Here we used tetrodes to record neurons from the hippocampal formation of Japanese quails-a ground-dwelling species-while the quails roamed in an open-field arena. Whereas spatially modulated cells (place cells, grid cells, border cells) were generally not encountered, the firing rate of about 12% of the neurons was unimodally and significantly modulated by the head azimuth-i.e., these were head-direction cells (HD cells). Typically, HD cells were maximally active at one preferred direction and minimally at the opposite null direction, with preferred directions spanning all 360° across the population. The preferred direction was independent of the animal's position and speed and was stable during the recording session. The HD tuning was broader compared to that of HD cells in rodents, and most cells had non-zero baseline firing in all directions. However, similar to findings in rodents, the HD tuning usually rotated with the rotation of a salient visual cue in the arena. Thus, these findings support the existence of an allocentric HD representation in the quail hippocampal formation and provide the first demonstration of HD cells in birds.
Collapse
Affiliation(s)
- Elhanan Ben-Yishay
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Ksenia Krivoruchko
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Shaked Ron
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dori Derdikman
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel
| | - Yoram Gutfreund
- Department of Neurobiology, Rappaport Research Institute and Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron Street, Haifa 3525422, Israel.
| |
Collapse
|
30
|
Johnston M, Scarf D, Wilson A, Millar J, Bartonicek A, Colombo M. The effects of hippocampal and area parahippocampalis lesions on the processing and retention of serial-order behavior, autoshaping, and spatial behavior in pigeons. Hippocampus 2020; 31:261-280. [PMID: 33274822 DOI: 10.1002/hipo.23287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/17/2020] [Accepted: 11/08/2020] [Indexed: 11/09/2022]
Abstract
We examined the role of the avian hippocampus and area parahippocampalis in serial-order behavior and a variety of other tasks known to be sensitive to hippocampal damage in mammals. Damage to the hippocampus and area parahippocampalis caused impairments in autoshaping and performance on an analogue of a radial-arm maze task, but had no effect on acquisition of 2-item, 3-item, and 4-item serial-order lists. Additionally, the lesions had no effect on the retention of 3-items lists, or on the ability to perform novel derived lists composed of elements from lists they had previously learned. The impairments in autoshaping and spatial behavior are consistent with the findings in mammals. The absence of impairments on the serial-order task may also be consistent once one considers that damage to the hippocampus in mammals seems to affect more internally-organized rather than externally-organized serial-order tasks. Together, the findings support the view that the avian hippocampal complex serves a function very similar to the mammalian hippocampus, a finding that is interesting given that the architecture of the avian hippocampus differs dramatically from that of the mammalian hippocampus.
Collapse
Affiliation(s)
- Melissa Johnston
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Damian Scarf
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Alysha Wilson
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Jessica Millar
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Adam Bartonicek
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Michael Colombo
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Lothmann K, Deitersen J, Zilles K, Amunts K, Herold C. New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities. Hippocampus 2020; 31:56-78. [PMID: 32986281 DOI: 10.1002/hipo.23262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
In rodents, gene-expression, neuronal tuning, connectivity and neurogenesis studies have postulated that the dorsal, the intermediate and the ventral hippocampal formation (HF) are distinct entities. These findings are underpinned by behavioral studies showing a dissociable role of dorsal and ventral HF in learning, memory, stress and emotional processing. However, up to now, the molecular basis of such differences in relation to discrete boundaries is largely unknown. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA, kainate and mGluR2/3 , GABAergic GABAA (including benzodiazepine binding sites), GABAB , dopaminergic D1/5 and noradrenergic α1 and α2 receptors as key modulators for signal transmission in hippocampal functions, using quantitative in vitro receptor autoradiography along the dorsal-ventral axis of the mouse HF. Beside general different receptor profiles of the dentate gyrus (DG) and Cornu Ammonis fields (CA1, CA2, CA3, CA4/hilus), we detected substantial differences between dorsal, intermediate and ventral subdivisions and individual layers for all investigated receptor types, except GABAB . For example, striking higher densities of α2 receptors were detected in the ventral DG, while the dorsal DG possesses higher numbers of kainate, NMDA, GABAA and D1/5 receptors. CA1 dorsal and intermediate subdivisions showed higher AMPA, NMDA, mGluR2/3 , GABAA , D1/5 receptors, while kainate receptors are higher expressed in ventral CA1, and noradrenergic α1 and α2 receptors in the intermediate region of CA1. CA2 dorsal was distinguished by higher kainate, α1 and α2 receptors in the intermediate region, while CA3 showed a more complex dissociation. Our findings resulted not only in a clear segmentation of the mouse hippocampus along the dorsal-ventral axis, but also provides insights into the neurochemical basis and likely associated physiological processes in hippocampal functions. Therein, the presented data has a high impact for future studies modeling and investigating dorsal, intermediate and ventral hippocampal dysfunction in relation to neurodegenerative diseases or psychiatric disorders.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jana Deitersen
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Stacho M, Herold C, Rook N, Wagner H, Axer M, Amunts K, Güntürkün O. A cortex-like canonical circuit in the
avian forebrain. Science 2020; 369:369/6511/eabc5534. [DOI: 10.1126/science.abc5534] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Although the avian pallium seems to lack
an organization akin to that of the cerebral
cortex, birds exhibit extraordinary cognitive
skills that are comparable to those of mammals. We
analyzed the fiber architecture of the avian
pallium with three-dimensional polarized light
imaging and subsequently reconstructed local and
associative pallial circuits with tracing
techniques. We discovered an iteratively repeated,
column-like neuronal circuitry across the
layer-like nuclear boundaries of the hyperpallium
and the sensory dorsal ventricular ridge. These
circuits are connected to neighboring columns and,
via tangential layer-like connections, to higher
associative and motor areas. Our findings indicate
that this avian canonical circuitry is similar to
its mammalian counterpart and might constitute the
structural basis of neuronal computation.
Collapse
Affiliation(s)
- Martin Stacho
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
- Department of Neurophysiology,
Institute of Physiology, Faculty of Medicine,
Ruhr-University Bochum, 44801 Bochum,
Germany
| | - Christina Herold
- Cécile and Oskar Vogt Institute for
Brain Research, Medical Faculty, Heinrich Heine
University of Düsseldorf, 40225 Düsseldorf,
Germany
| | - Noemi Rook
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
| | - Hermann Wagner
- Institute for Biology II, RWTH Aachen
University, 52074 Aachen, Germany
| | - Markus Axer
- Institute of Neuroscience and
Medicine INM-1, Research Center Jülich, 52425
Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for
Brain Research, Medical Faculty, Heinrich Heine
University of Düsseldorf, 40225 Düsseldorf,
Germany
- Institute of Neuroscience and
Medicine INM-1, Research Center Jülich, 52425
Jülich, Germany
| | - Onur Güntürkün
- Department of Biopsychology,
Institute of Cognitive Neuroscience, Faculty of
Psychology, Ruhr-University Bochum, 44801 Bochum,
Germany
| |
Collapse
|
33
|
The Role of Hp-NCL Network in Goal-Directed Routing Information Encoding of Bird: A Review. Brain Sci 2020; 10:brainsci10090617. [PMID: 32906650 PMCID: PMC7563516 DOI: 10.3390/brainsci10090617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Goal-directed navigation is a crucial behavior for the survival of animals, especially for the birds having extraordinary spatial navigation ability. In the studies of the neural mechanism of the goal-directed behavior, especially involving the information encoding mechanism of the route, the hippocampus (Hp) and nidopallium caudalle (NCL) of the avian brain are the famous regions that play important roles. Therefore, they have been widely concerned and a series of studies surrounding them have increased our understandings of the navigation mechanism of birds in recent years. In this paper, we focus on the studies of the information encoding mechanism of the route in the avian goal-directed behavior. We first summarize and introduce the related studies on the role of the Hp and NCL for goal-directed behavior comprehensively. Furthermore, we review the related cooperative interaction studies about the Hp-NCL local network and other relevant brain regions supporting the goal-directed routing information encoding. Finally, we summarize the current situation and prospect the existing important questions in this field. We hope this paper can spark fresh thinking for the following research on routing information encoding mechanism of birds.
Collapse
|
34
|
Gagliardo A, Pollonara E, Casini G, Rossino MG, Wikelski M, Bingman VP. Importance of the hippocampus for the learning of route fidelity in homing pigeons. Biol Lett 2020; 16:20200095. [PMCID: PMC7423047 DOI: 10.1098/rsbl.2020.0095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 09/02/2023] Open
Abstract
The avian hippocampal formation (HF) is thought to regulate map-like memory representations of visual landmarks/landscape features and has more recently been suggested to be similarly important for the perceptual integration of landmarks/landscapes. Aspects of spatial memory and perception likely combine to support the now well-documented ability of homing pigeons to learn to retrace the same route when homing from familiar locations, leading to the prediction that damage to the HF would result in a diminished ability to repeatedly fly a similar route home. HF-lesioned homing pigeons were repeatedly released from three sites to assess the importance of the hippocampus as pigeons gradually learn a familiar route home guided by familiar landmark and landscape features. As expected, control pigeons displayed increasing fidelity to a familiar route home, and by inference, successful perceptual and memory processing of familiar landmarks/landscape features. By contrast, the impoverished route fidelity of the HF-lesioned pigeons indicated an impaired sensitivity to the same landmark/landscape features.
Collapse
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | - Enrica Pollonara
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Via Volta 6, I-56126 Pisa, Italy
| | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behaviour, Am Obstberg 1, 78315 Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
35
|
Henrique EP, Oliveira MA, Paulo DC, Pereira PDC, Dias C, Siqueira LS, Lima CM, Miranda DDA, Rego PS, Araripe J, Melo MAD, Diniz DG, Morais Magalhães NG, Sherry DF, Picanço Diniz CW, Diniz CG. Contrasting migratory journeys and changes in hippocampal astrocyte morphology in shorebirds. Eur J Neurosci 2020; 54:5687-5704. [DOI: 10.1111/ejn.14781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/26/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Marcus Augusto Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Dario Carvalho Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Cleyssian Dias
- Curso de Pós‐Graduação em Zoologia Museu Paraense Emílio Goeldi Universidade Federal do Pará Belém Pará Brazil
| | - Lucas Silva Siqueira
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Camila Mendes Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Diego de Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Péricles Sena Rego
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Pará Brazil
| | - Juliana Araripe
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Pará Brazil
| | - Mauro André Damasceno Melo
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
- Instituto Evandro Chagas Laboratório de Miscroscopia Eletrônica Belém Pará Brazil
| | - Nara Gyzely Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - David Francis Sherry
- Department of Psychology Advanced Facility for Avian Research University of Western Ontario London ON Canada
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| |
Collapse
|
36
|
Herold C, Schlömer P, Mafoppa-Fomat I, Mehlhorn J, Amunts K, Axer M. The hippocampus of birds in a view of evolutionary connectomics. Cortex 2019; 118:165-187. [DOI: 10.1016/j.cortex.2018.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
|
37
|
Abreu CC, Fernandes TN, Henrique EP, Pereira PDC, Marques SB, Herdeiro SLS, Oliveira FRR, Magalhães NGM, Anthony DC, Melo MAD, Guerreiro-Diniz C, Diniz DG, Picanço-Diniz CW. Small-scale environmental enrichment and exercise enhance learning and spatial memory of Carassius auratus, and increase cell proliferation in the telencephalon: an exploratory study. ACTA ACUST UNITED AC 2019; 52:e8026. [PMID: 31038577 PMCID: PMC6487742 DOI: 10.1590/1414-431x20198026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
Carassius auratus is a teleost fish that has been largely used in behavioral studies. However, little is known about potential environmental influences on its performance of learning and memory tasks. Here, we investigated this question in C. auratus, and searched for potential correlation between exercise and visuospatial enrichment with the total number of telencephalic glia and neurons. To that end, males and females were housed for 183 days in either an enriched (EE) or impoverished environment (IE) aquarium. EE contained toys, natural plants, and a 12-hour/day water stream for voluntary exercise, whereas the IE had none of the above. A third plus-maze aquarium was used for spatial and object recognition tests. Different visual clues in 2 of its 4 arms were used to guide fish to reach the criteria to complete the task. The test consisted of 30 sessions and was concluded when each animal performed three consecutive correct choices or seven alternated, each ten trials. Learning rates revealed significant differences between EE and IE fish. The optical fractionator was used to estimate the total number of telencephalic cells that were stained with cresyl violet. On average, the total number of cells in the subjects from EE was higher than those from subjects maintained in IE (P=0.0202). We suggest that environmental enrichment significantly influenced goldfish spatial learning and memory abilities, and this may be associated with an increase in the total number of telencephalic cells.
Collapse
Affiliation(s)
- C C Abreu
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - T N Fernandes
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - E P Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - P D C Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - S B Marques
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - S L S Herdeiro
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - F R R Oliveira
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - N G M Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - D C Anthony
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford, United Kingdom
| | - M A D Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - C Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - D G Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - C W Picanço-Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
38
|
Jung MW, Lee H, Jeong Y, Lee JW, Lee I. Remembering rewarding futures: A simulation-selection model of the hippocampus. Hippocampus 2018; 28:913-930. [PMID: 30155938 PMCID: PMC6587829 DOI: 10.1002/hipo.23023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/06/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
Despite tremendous progress, the neural circuit dynamics underlying hippocampal mnemonic processing remain poorly understood. We propose a new model for hippocampal function-the simulation-selection model-based on recent experimental findings and neuroecological considerations. Under this model, the mammalian hippocampus evolved to simulate and evaluate arbitrary navigation sequences. Specifically, we suggest that CA3 simulates unexperienced navigation sequences in addition to remembering experienced ones, and CA1 selects from among these CA3-generated sequences, reinforcing those that are likely to maximize reward during offline idling states. High-value sequences reinforced in CA1 may allow flexible navigation toward a potential rewarding location during subsequent navigation. We argue that the simulation-selection functions of the hippocampus have evolved in mammals mostly because of the unique navigational needs of land mammals. Our model may account for why the mammalian hippocampus has evolved not only to remember, but also to imagine episodes, and how this might be implemented in its neural circuits.
Collapse
Affiliation(s)
- Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeonSouth Korea
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Hyunjung Lee
- Department of AnatomyKyungpook National University School of MedicineDaeguSouth Korea
| | - Yeongseok Jeong
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeonSouth Korea
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Jong Won Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeonSouth Korea
| | - Inah Lee
- Department of Brain and Cognitive SciencesSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
39
|
Bingman VP. Requiem for a heavyweight – can anything more be learned from homing pigeons about the sensory and spatial-representational basis of avian navigation? J Exp Biol 2018; 221:221/20/jeb163089. [DOI: 10.1242/jeb.163089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The homing pigeon (Columba livia) has long served as a study species to exhaustively investigate the sensory and spatial (map)-representational mechanisms that guide avian navigation. However, several factors have contributed to recent questioning of whether homing pigeons are as valuable as they once were as a general model for the study of the sensory and map-like, spatial-representational mechanisms of avian navigation. These reservations include: the success of this research program in unveiling navigational mechanisms; the burgeoning of new tracking technologies making navigational experiments on long-distance migratory and other wild birds much more accessible; the almost complete loss of the historically dominant, large-scale pigeon loft/research facilities; and prohibitive university per diem costs as well as animal care and use restrictions. Nevertheless, I propose here that there remain good prospects for homing pigeon research that could still profoundly influence how one understands aspects of avian navigation beyond sensory mechanisms and spatial-representational strategies. Indeed, research into neural mechanisms and brain organization, social/personality influences and genetics of navigation all offer opportunities to take advantage of the rich spatial behavior repertoire and experimental convenience of homing pigeons. Importantly, research in these areas would not necessarily require the large number of birds typically used in the past to study the sensory guidance of navigation. For those of us who have had the opportunity to work with this remarkable animal, one research door may be closing, but a window into exciting future opportunities lies ajar.
Collapse
Affiliation(s)
- Verner P. Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
40
|
Open field, panel length discrimination by homing pigeons (Columba livia). LEARNING AND MOTIVATION 2018. [DOI: 10.1016/j.lmot.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Ramadan S, Miyake T, Yamaura J, Inoue-Murayama M. LDHA gene is associated with pigeon survivability during racing competitions. PLoS One 2018; 13:e0195121. [PMID: 29775483 PMCID: PMC5959059 DOI: 10.1371/journal.pone.0195121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/17/2018] [Indexed: 02/05/2023] Open
Abstract
Pigeon racing is a popular sport worldwide. Pigeons are under continuous selection to improve speed, spatial orientation, and endurance during long flights. However, numerous genetic and non-genetic factors affect survivability and homing ability, making such traits difficult for breeders to control. Polymorphisms in the lactate dehydrogenase A gene (LDHA) likely affects pigeon racing and homing abilities, due to its role in physical and mental performance. Additionally, the adenylate cyclase activating polypeptide 1 gene (ADCYAP1) has been associated with physiological and behavioral shifts that occur during avian migration. In this study, we examined the association between LDHA and ADCYAP1 genotypes with pigeon survivability during racing competitions. Survivability was evaluated through the estimated breeding value (EBV) of each individual's total race distances during its athletic life. ADCYAP1 was not polymorphic among our samples, while LDHA genotypes were significantly associated with deviated EBV values of longer total race distance; individuals carrying the S+ genotype had higher EBV (i.e., greater survivability). Thus, the LDHA locus might be useful for marker-assisted selection, empowering breeders and trainers to maximize pigeon quality. Moreover, data obtained from breeding will also improve our understanding of the genetic mechanism underlying navigation and flight for wild migrating bird species.
Collapse
Affiliation(s)
- Sherif Ramadan
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Takeshi Miyake
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Miho Inoue-Murayama
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
42
|
Dheerendra P, Lynch NM, Crutwell J, Cunningham MO, Smulders TV. In vitro characterization of gamma oscillations in the hippocampal formation of the domestic chick. Eur J Neurosci 2018; 48:2807-2815. [PMID: 29120510 PMCID: PMC6220815 DOI: 10.1111/ejn.13773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022]
Abstract
Avian and mammalian brains have evolved independently from each other for about 300 million years. During that time, the hippocampal formation (HF) has diverged in morphology and cytoarchitecture, but seems to have conserved much of its function. It is therefore an open question how seemingly different neural organizations can generate the same function. A prominent feature of the mammalian hippocampus is that it generates different neural oscillations, including the gamma rhythm, which plays an important role in memory processing. In this study, we investigate whether the avian hippocampus also generates gamma oscillations, and whether similar pharmacological mechanisms are involved in this function. We investigated the existence of gamma oscillations in avian HF using in vitro electrophysiology in P0–P12 domestic chick (Gallus gallus domesticus) HF brain slices. Persistent gamma frequency oscillations were induced by the bath application of the cholinergic agonist carbachol, but not by kainate, a glutamate receptor agonist. Similar to other species, carbachol‐evoked gamma oscillations were sensitive to GABAA, AMPA/kainate and muscarinic (M1) receptor antagonism. Therefore, similar to mammalian species, muscarinic receptor‐activated avian HF gamma oscillations may arise via a pyramidal‐interneuron gamma (PING)‐based mechanism. Gamma oscillations are most prominent in the ventromedial area of the hippocampal slices, and gamma power is reduced more laterally and dorsally in the HF. We conclude that similar micro‐circuitry may exist in the avian and mammalian hippocampal formation, and this is likely to relate to the shared function of the two structures.
Collapse
Affiliation(s)
- Pradeep Dheerendra
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicholas M Lynch
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,University of Louisville, Louisville, KY, USA
| | - Joseph Crutwell
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Tom V Smulders
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
Ottinger MA. Functional and Anatomic Correlates of Neural Aging in Birds. Vet Clin North Am Exot Anim Pract 2018; 21:151-158. [PMID: 29146028 DOI: 10.1016/j.cvex.2017.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Avian species show variation in longevity, habitat, physiologic characteristics, and lifetime endocrine patterns. Lifetime reproductive and metabolic function vary. Much is known about the neurobiology of the song system in many altricial birds. Little is known about aging in neural systems in birds. Captive birds often survive beyond the age they would in the wild, providing an opportunity to gain an understanding of the physiologic and neural changes. This paper reviews the available information with the goal of capturing areas of potential investigation into gaps in our understanding of neural aging as reflected in physiologic, endocrine, and cognitive aging.
Collapse
Affiliation(s)
- Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, 4302 University Drive, Room 316, Houston, TX 77204, USA.
| |
Collapse
|
44
|
Food restriction reduces neurogenesis in the avian hippocampal formation. PLoS One 2017; 12:e0189158. [PMID: 29211774 PMCID: PMC5718509 DOI: 10.1371/journal.pone.0189158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7–12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis) in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the hypothesis that the response to stressors in the avian hippocampal formation is homologous to that of the mammalian hippocampus.
Collapse
|
45
|
Herold C, Paulitschek C, Palomero-Gallagher N, Güntürkün O, Zilles K. Transmitter receptors reveal segregation of the arcopallium/amygdala complex in pigeons (Columba livia). J Comp Neurol 2017; 526:439-466. [PMID: 29063593 DOI: 10.1002/cne.24344] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022]
Abstract
At the beginning of the 20th century it was suggested that a complex group of nuclei in the avian posterior ventral telencephalon is comparable to the mammalian amygdala. Subsequent findings, however, revealed that most of these structures share premotor characteristics, while some indeed constitute the avian amygdala. These developments resulted in 2004 in a change of nomenclature of these nuclei, which from then on were named arcopallial or amygdala nuclei and referred to as the arcopallium/amygdala complex. The structural basis for the similarities between avian and mammalian arcopallial and amygdala subregions is poorly understood. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA and kainate, GABAergic GABAA , muscarinic M1 , M2 and nicotinic acetylcholine (nACh; α4 β2 subtype), noradrenergic α1 and α2 , serotonergic 5-HT1A and dopaminergic D1/5 receptors using quantitative in vitro receptor autoradiography combined with a detailed analysis of the cyto- and myelo-architecture. Our approach supports a segregation of the pigeon's arcopallium/amygdala complex into the following subregions: the arcopallium anterius (AA), the arcopallium ventrale (AV), the arcopallium dorsale (AD), the arcopallium intermedium (AI), the arcopallium mediale (AM), the arcopallium posterius (AP), the nucleus posterioris amygdalopallii pars basalis (PoAb) and pars compacta (PoAc), the nucleus taeniae amgygdalae (TnA) and the area subpallialis amygdalae (SpA). Some of these subregions showed further subnuclei and each region of the arcopallium/amygdala complex are characterized by a distinct multi-receptor density expression. Here we provide a new detailed map of the pigeon's arcopallium/amygdala complex and compare the receptor architecture of the subregions to their possible mammalian counterparts.
Collapse
Affiliation(s)
- Christina Herold
- C. and O. Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christina Paulitschek
- C. and O. Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, and JARA - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
46
|
Barkan S, Yom-Tov Y, Barnea A. Exploring the Relationship between Brain Plasticity, Migratory Lifestyle, and Social Structure in Birds. Front Neurosci 2017; 11:139. [PMID: 28396621 PMCID: PMC5367377 DOI: 10.3389/fnins.2017.00139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Studies in Passerines have found that migrating species recruit more new neurons into brain regions that process spatial information, compared with resident species. This was explained by the greater exposure of migrants to spatial information, indicating that this phenomenon enables enhanced navigational abilities. The aim of the current study was to test this hypothesis in another order-the Columbiformes - using two closely-related dove species-the migrant turtle-dove (Streptopelia turtur) and the resident laughing dove (S. senegalensis), during spring, summer, and autumn. Wild birds were caught, treated with BrdU, and sacrificed 5 weeks later. New neurons were recorded in the hyperpallium apicale, hippocampus and nidopallium caudolaterale regions. We found that in doves, unlike passerines, neuronal recruitment was lower in brains of the migratory species compared with the resident one. This might be due to the high sociality of doves, which forage and migrate in flocks, and therefore can rely on communal spatial knowledge that might enable a reduction in individual navigation efforts. This, in turn, might enable reduced levels of neuronal recruitment. Additionally, we found that unlike in passerines, seasonality does not affect neuronal recruitment in doves. This might be due to their non-territorial and explorative behavior, which exposes them to substantial spatial information all year round. Finally, we discuss the differences in neuronal recruitment between Columbiformes and Passeriformes and their possible evolutionary explanations. Our study emphasizes the need to further investigate this phenomenon in other avian orders and in additional species.
Collapse
Affiliation(s)
- Shay Barkan
- Department of Zoology, Tel-Aviv University Tel-Aviv, Israel
| | - Yoram Yom-Tov
- Department of Zoology, Tel-Aviv University Tel-Aviv, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel Ra'anana, Israel
| |
Collapse
|
47
|
The avian hippocampus and the hypothetical maps used by navigating migratory birds (with some reflection on compasses and migratory restlessness). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:465-474. [DOI: 10.1007/s00359-017-1161-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
|
48
|
Lee JW, Jung MW. Separation or binding? Role of the dentate gyrus in hippocampal mnemonic processing. Neurosci Biobehav Rev 2017; 75:183-194. [PMID: 28174077 DOI: 10.1016/j.neubiorev.2017.01.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/26/2016] [Accepted: 01/05/2017] [Indexed: 01/15/2023]
Abstract
As a major component of the hippocampal trisynaptic circuit, the dentate gyrus (DG) relays inputs from the entorhinal cortex to the CA3 subregion. Although the anatomy of the DG is well characterized, its contribution to hippocampal mnemonic processing is still unclear. A currently popular theory proposes that the primary function of the DG is to orthogonalize incoming input patterns into non-overlapping patterns (pattern separation). We critically review the available data and conclude that the theoretical support and empirical evidence for this theory are not strong. We then review an alternative theory that posits a role for the DG in binding together different types of incoming sensory information. We conclude that 'binding' better captures the contribution of the DG to memory encoding than 'pattern separation'.
Collapse
Affiliation(s)
- Jong Won Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
49
|
Sizemore BA, Bingman VP. Time-of-Day Discriminative Learning: Contrasting the Use of Spatial Compared to Feature Information in Homing Pigeons (Columba livia). Ethology 2016. [DOI: 10.1111/eth.12569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Brittany A. Sizemore
- Bowling Green State University; Bowling Green OH USA
- J. P. Scott Center for Neuroscience, Mind, and Behavior; Bowling Green OH USA
| | - Verner P. Bingman
- Bowling Green State University; Bowling Green OH USA
- J. P. Scott Center for Neuroscience, Mind, and Behavior; Bowling Green OH USA
| |
Collapse
|
50
|
LaDage LD. Factors That Modulate Neurogenesis: A Top-Down Approach. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:184-190. [PMID: 27560485 DOI: 10.1159/000446906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although hippocampal neurogenesis in the adult brain has been conserved across the vertebrate lineage, laboratory studies have primarily examined this phenomenon in rodent models. This approach has been successful in elucidating important factors and mechanisms that can modulate rates of hippocampal neurogenesis, including hormones, environmental complexity, learning and memory, motor stimulation, and stress. However, recent studies have found that neurobiological research on neurogenesis in rodents may not easily translate to, or explain, neurogenesis patterns in nonrodent systems, particularly in species examined in the field. This review examines some of the evolutionary and ecological variables that may also modulate neurogenesis patterns. This 'top-down' and more naturalistic approach, which incorporates ecology and natural history, particularly of nonmodel species, may allow for a more comprehensive understanding of the functional significance of neurogenesis.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona, Altoona, Pa., USA
| |
Collapse
|