1
|
Shohayeb B, Sempert K, Wallis TP, Meunier FA, Durisic N, O'Brien EA, Flores C, Cooper HM. BDNF-dependent nano-organization of Neogenin and the WAVE regulatory complex promotes actin remodeling in dendritic spines. iScience 2024; 27:110621. [PMID: 39228790 PMCID: PMC11369513 DOI: 10.1016/j.isci.2024.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM receptor Neogenin is a critical regulator of the WRC, its nanoscale organization may be an important determinant of WRC nanoarchitecture and function. Using super-resolution microscopy, we reveal that Neogenin is highly organized on the spine membrane at the nanoscale level. We show that Neogenin binding to the WRC promotes co-clustering into nanodomains in response to brain-derived neurotrophic factor (BDNF), indicating that nanoclustering occurs in response to synaptic stimulation. Disruption of Neogenin/WRC binding not only prevents BDNF-mediated actin remodeling but also inhibits BDNF-induced calcium signaling. We conclude that the assembly of Neogenin/WRC nanodomains is a prerequisite for BDNF-mediated structural and synaptic plasticity.
Collapse
Affiliation(s)
- Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan P. Wallis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frédéric A. Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A. O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Douglas Mental Health University Institute, Montréal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Canada
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Sempert K, Shohayeb B, Lanoue V, O'Brien EA, Flores C, Cooper HM. RGMa and Neogenin control dendritic spine morphogenesis via WAVE Regulatory Complex-mediated actin remodeling. Front Mol Neurosci 2023; 16:1253801. [PMID: 37928069 PMCID: PMC10620725 DOI: 10.3389/fnmol.2023.1253801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Structural plasticity, the ability of dendritic spines to change their volume in response to synaptic stimulation, is an essential determinant of synaptic strength and long-term potentiation (LTP), the proposed cellular substrate for learning and memory. Branched actin polymerization is a major force driving spine enlargement and sustains structural plasticity. The WAVE Regulatory Complex (WRC), a pivotal branched actin regulator, controls spine morphology and therefore structural plasticity. However, the molecular mechanisms that govern WRC activation during spine enlargement are largely unknown. Here we identify a critical role for Neogenin and its ligand RGMa (Repulsive Guidance Molecule a) in promoting spine enlargement through the activation of WRC-mediated branched actin remodeling. We demonstrate that Neogenin regulates WRC activity by binding to the highly conserved Cyfip/Abi binding pocket within the WRC. We find that after Neogenin or RGMa depletion, the proportions of filopodia and immature thin spines are dramatically increased, and the number of mature mushroom spines concomitantly decreased. Wildtype Neogenin, but not Neogenin bearing mutations in the Cyfip/Abi binding motif, is able to rescue the spine enlargement defect. Furthermore, Neogenin depletion inhibits actin polymerization in the spine head, an effect that is not restored by the mutant. We conclude that RGMa and Neogenin are critical modulators of WRC-mediated branched actin polymerization promoting spine enlargement. This study also provides mechanistic insight into Neogenin's emerging role in LTP induction.
Collapse
Affiliation(s)
- Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa Lanoue
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth A O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
miR-34a regulates silent synapse and synaptic plasticity in mature hippocampus. Prog Neurobiol 2023; 222:102404. [PMID: 36642095 DOI: 10.1016/j.pneurobio.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
AMPAR-lacking silent synapses are prevailed and essential for synaptic refinement and synaptic plasticity in developing brains. In mature brain, they are sparse but could be induced under several pathological conditions. How they are regulated molecularly is far from clear. miR-34a is a highly conserved and brain-enriched microRNA with age-dependent upregulated expression profile. Its neuronal function in mature brain remains to be revealed. Here by analyzing synaptic properties of the heterozygous miR-34a knock out mice (34a_ht), we have discovered that mature but not juvenile 34a_ht mice have more silent synapses in the hippocampus accompanied with enhanced synaptic NMDAR but not AMPAR function and increased spine density. As a result, 34a_ht mice display enhanced long-term potentiation (LTP) in the Schaffer collateral synapses and better spatial learning and memory. We further found that Creb1 is a direct target of miR-34a, whose upregulation and activation may mediate the silent synapse increment in 34a_ht mice. Hence, we reveal a novel physiological role of miR-34a in mature brains and provide a molecular mechanism underlying silent synapse regulation.
Collapse
|
4
|
Wildenberg G, Li H, Kasthuri N. The Development of Synapses in Mouse and Macaque Primary Sensory Cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528564. [PMID: 36824798 PMCID: PMC9949058 DOI: 10.1101/2023.02.15.528564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report that the rate of synapse development in primary sensory cortices of mice and macaques is unrelated to lifespan, as was previously thought. We analyzed 28,084 synapses over multiple developmental time points in both species and find, instead, that net excitatory synapse development of mouse and macaque neurons primarily increased at similar rates in the first few postnatal months, and then decreased over a span of 1-1.5 years of age. The development of inhibitory synapses differed qualitatively across species. In macaques, net inhibitory synapses first increase and then decrease on excitatory soma at similar ages as excitatory synapses. In mice, however, such synapses are added throughout life. These findings contradict the long-held belief that the cycle of synapse formation and pruning occurs earlier in shorter-lived animals. Instead, our results suggest more nuanced rules, with the development of different types of synapses following different timing rules or different trajectories across species.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| | - Hanyu Li
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| |
Collapse
|
5
|
Heuser JE. The Structural Basis of Long-Term Potentiation in Hippocampal Synapses, Revealed by Electron Microscopy Imaging of Lanthanum-Induced Synaptic Vesicle Recycling. Front Cell Neurosci 2022; 16:920360. [PMID: 35978856 PMCID: PMC9376242 DOI: 10.3389/fncel.2022.920360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Hippocampal neurons in dissociated cell cultures were exposed to the trivalent cation lanthanum for short periods (15–30 min) and prepared for electron microscopy (EM), to evaluate the stimulatory effects of this cation on synaptic ultrastructure. Not only were characteristic ultrastructural changes of exaggerated synaptic vesicle turnover seen within the presynapses of these cultures—including synaptic vesicle depletion and proliferation of vesicle-recycling structures—but the overall architecture of a large proportion of the synapses in the cultures was dramatically altered, due to large postsynaptic “bulges” or herniations into the presynapses. Moreover, in most cases, these postsynaptic herniations or protrusions produced by lanthanum were seen by EM to distort or break or “perforate” the so-called postsynaptic densities (PSDs) that harbor receptors and recognition molecules essential for synaptic function. These dramatic EM observations lead us to postulate that such PSD breakages or “perforations” could very possibly create essential substrates or “tags” for synaptic growth, simply by creating fragmented free edges around the PSDs, into which new receptors and recognition molecules could be recruited more easily, and thus, they could represent the physical substrate for the important synaptic growth process known as “long-term potentiation” (LTP). All of this was created simply in hippocampal dissociated cell cultures, and simply by pushing synaptic vesicle recycling way beyond its normal limits with the trivalent cation lanthanum, but we argued in this report that such fundamental changes in synaptic architecture—given that they can occur at all—could also occur at the extremes of normal neuronal activity, which are presumed to lead to learning and memory.
Collapse
|
6
|
Yang Y, Liu JJ. Structural LTP: Signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines. Curr Opin Neurobiol 2022; 74:102534. [DOI: 10.1016/j.conb.2022.102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 01/05/2023]
|
7
|
Mohammadian F, Golitabari N, Abedi A, Saadati H, Milan HS, Salari AA, Amani M. Early life GABA A blockade alters the synaptic plasticity and cognitive functions in male and female rats. Eur J Pharmacol 2022; 925:174992. [PMID: 35513017 DOI: 10.1016/j.ejphar.2022.174992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 11/03/2022]
Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in adults, has a critical contribution to balanced excitatory-inhibitory networks in the brain. Alteration in depolarizing action of GABA during early life is connected to a wide variety of neurodevelopmental disorders. Additionally, the effects of postnatal GABA blockade on neuronal synaptic plasticity are not known and therefore, we set out to determine whether postnatal exposure to bicuculline, a competitive antagonist of GABAA receptors, affects electrophysiologic changes in hippocampal CA1 neurons later on. To this end, male and female Wistar rats received vehicle or bicuculline (300 μg/kg) on postnatal days (PNDs) 7, 9 and 11, and then underwent different behavioral and electrophysiological examinations in adulthood. Postnatal exposure to bicuculline did not affect basic synaptic transmission but led to a pronounced decrease in paired-pulse facilitation (PPF) in CA1 pyramidal neurons. Bicuculline treatment also attenuated the long-term potentiation (LTP) and long-term depression (LTD) of CA1 neurons accompanied by decreased theta-burst responses in male and female adult rats. These electrophysiology findings together with the reduced brain-derived neurotrophic factor (BDNF) levels in the hippocampus and prefrontal cortex reliably explain the disturbance in spatial reference and working memories of bicuculline-treated animals. This study suggests that postnatal GABAA blockade deteriorates short- and long-term synaptic plasticity of hippocampal CA1 neurons and related encoding of spatial memory in adulthood.
Collapse
Affiliation(s)
- Forouzan Mohammadian
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nastaran Golitabari
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Abedi
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Harris KM, Hubbard DD, Kuwajima M, Abraham WC, Bourne JN, Bowden JB, Haessly A, Mendenhall JM, Parker PH, Shi B, Spacek J. Dendritic Spine Density Scales with Microtubule Number in Rat Hippocampal Dendrites. Neuroscience 2022; 489:84-97. [PMID: 35218884 PMCID: PMC9038701 DOI: 10.1016/j.neuroscience.2022.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Microtubules deliver essential resources to and from synapses. Three-dimensional reconstructions in rat hippocampus reveal a sampling bias regarding spine density that needs to be controlled for dendrite caliber and resource delivery based on microtubule number. The strength of this relationship varies across dendritic arbors, as illustrated for area CA1 and dentate gyrus. In both regions, proximal dendrites had more microtubules than distal dendrites. For CA1 pyramidal cells, spine density was greater on thicker than thinner dendrites in stratum radiatum, or on the more uniformly thin terminal dendrites in stratum lacunosum moleculare. In contrast, spine density was constant across the cone shaped arbor of tapering dendrites from dentate granule cells. These differences suggest that thicker dendrites supply microtubules to subsequent dendritic branches and local dendritic spines, whereas microtubules in thinner dendrites need only provide resources to local spines. Most microtubules ran parallel to dendrite length and associated with long, presumably stable mitochondria, which occasionally branched into lateral dendritic branches. Short, presumably mobile, mitochondria were tethered to microtubules that bent and appeared to direct them into a thin lateral branch. Prior work showed that dendritic segments with the same number of microtubules had elevated resources in subregions of their dendritic shafts where spine synapses had enlarged, and spine clusters had formed. Thus, additional microtubules were not required for redistribution of resources locally to growing spines or synapses. These results provide new understanding about the potential for microtubules to regulate resource delivery to and from dendritic branches and locally among dendritic spines.
Collapse
Affiliation(s)
- Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States.
| | - Dusten D Hubbard
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Masaaki Kuwajima
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Wickliffe C Abraham
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Jennifer N Bourne
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Jared B Bowden
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Andrea Haessly
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - John M Mendenhall
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Patrick H Parker
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Bitao Shi
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| | - Josef Spacek
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
9
|
Jiang W, Liu F, Li H, Wang K, Cao X, Xu X, Zhou Y, Zou J, Zhang X, Cui X. TREM2 ameliorates anesthesia and surgery-induced cognitive impairment by regulating mitophagy and NLRP3 inflammasome in aged C57/BL6 mice. Neurotoxicology 2022; 90:216-227. [PMID: 35447280 DOI: 10.1016/j.neuro.2022.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a major postoperative complication. Triggering receptor expressed on myeloid cells 2 (TREM2) exerts a neuroprotective function against neuro-inflammatory responses. The present study investigated the role of TREM2 in anesthesia and surgery-induced cognitive impairment and the potential related mechanism. Our results revealed that TREM2 was downregulated, coupled with activation of the NLRP3 inflammasome and subsequent IL-1β expression on postoperative day 3. A corresponding decline in PSD-95 and BDNF was found at the same time point. The key regulator of mitophagy PINK1 and Parkin protein levels were significantly decreased following surgery and anesthesia. TREM2 overexpression partially reversed postoperative cognitive impairment and enhanced PSD-95 and BDNF expression. TREM2 overexpression also improved mitophagy function and inhibited activation of the NLRP3 inflammasome and associated production of IL-1β. Our findings demonstrate that TREM2 rescues anesthesia and surgery-induced spatial learning and memory impairment and neuro-inflammation in aged C57/BL6 mice, which may be at least partially mediated through the activation of mitophagy and subsequent inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Liu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongqing Li
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kexin Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuezhao Cao
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaohan Xu
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongjian Zhou
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Zou
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Zhang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
WANG LM, SUN XY, YE S, WU MR, JIANG YH, XU W, WANG HX. Molecular mechanism of polyunsaturated fatty acids improving spatial learning and memory in developmental rat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.44222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | | | - Wei XU
- Wuhan Polytechnic University, China
| | | |
Collapse
|
11
|
Sun Y, Smirnov M, Kamasawa N, Yasuda R. Rapid Ultrastructural Changes in the PSD and Surrounding Membrane after Induction of Structural LTP in Single Dendritic Spines. J Neurosci 2021; 41:7003-7014. [PMID: 34266899 PMCID: PMC8372018 DOI: 10.1523/jneurosci.1964-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
The structural plasticity of dendritic spines is considered to be an important basis of synaptic plasticity, learning, and memory. Here, we induced input-specific structural LTP (sLTP) in single dendritic spines in organotypic hippocampal slices from mice of either sex and performed ultrastructural analyses of the spines using efficient correlative light and electron microscopy. We observed reorganization of the PSD nanostructure, such as perforation and segmentation, at 2-3, 20, and 120 min after sLTP induction. In addition, PSD and nonsynaptic axon-spine interface (nsASI) membrane expanded unevenly during sLTP. Specifically, the PSD area showed a transient increase at 2-3 min after sLTP induction. The PSD growth was to a degree less than spine volume growth at 2-3 min and 20 min after sLTP induction but became similar at 120 min. On the other hand, the nsASI area showed a profound and lasting expansion, to a degree similar to spine volume growth throughout the process. These rapid ultrastructural changes in PSD and surrounding membrane may contribute to rapid electrophysiological plasticity during sLTP.SIGNIFICANCE STATEMENT To understand the ultrastructural changes during synaptic plasticity, it is desired to efficiently image single dendritic spines that underwent structural plasticity in electron microscopy. We induced structural long-term potentiation (sLTP) in single dendritic spines by two-photon glutamate uncaging. We then identified the same spines at different phases of sLTP and performed ultrastructural analysis by using an efficient correlative light and electron microscopy method. We found that postsynaptic density undergoes dramatic modification in its structural complexity immediately after sLTP induction. Meanwhile, the nonsynaptic axon-spine interface area shows a rapid and sustained increase throughout sLTP. Our results indicate that the uneven modification of synaptic and nonsynaptic postsynaptic membrane might contribute to rapid electrophysiological plasticity during sLTP.
Collapse
Affiliation(s)
- Ye Sun
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, Florida 33458
- International Max Planck Research School for Brain and Behavior, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Michael Smirnov
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
- International Max Planck Research School for Brain and Behavior, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
- Integrative Biology and Neuroscience Graduate Program, Florida Atlantic University, Jupiter, Florida 33458
- International Max Planck Research School for Brain and Behavior, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| |
Collapse
|
12
|
Zhu Y, Uytiepo M, Bushong E, Haberl M, Beutter E, Scheiwe F, Zhang W, Chang L, Luu D, Chui B, Ellisman M, Maximov A. Nanoscale 3D EM reconstructions reveal intrinsic mechanisms of structural diversity of chemical synapses. Cell Rep 2021; 35:108953. [PMID: 33826888 PMCID: PMC8354523 DOI: 10.1016/j.celrep.2021.108953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 10/25/2022] Open
Abstract
Chemical synapses of shared cellular origins have remarkably heterogeneous structures, but how this diversity is generated is unclear. Here, we use three-dimensional (3D) electron microscopy and artificial intelligence algorithms for image processing to reconstruct functional excitatory microcircuits in the mouse hippocampus and microcircuits in which neurotransmitter signaling is permanently suppressed with genetic tools throughout the lifespan. These nanoscale analyses reveal that experience is dispensable for morphogenesis of synapses with different geometric shapes and contents of membrane organelles and that arrangement of morphologically distinct connections in local networks is stochastic. Moreover, loss of activity increases the variability in sizes of opposed pre- and postsynaptic structures without disrupting their alignments, suggesting that inherently variable weights of naive connections become progressively matched with repetitive use. These results demonstrate that mechanisms for the structural diversity of neuronal synapses are intrinsic and provide insights into how circuits essential for memory storage assemble and integrate information.
Collapse
Affiliation(s)
- Yongchuan Zhu
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marco Uytiepo
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92037, USA; Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Matthias Haberl
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92037, USA; Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - Elizabeth Beutter
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Frederieke Scheiwe
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Weiheng Zhang
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lyanne Chang
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Danielle Luu
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brandon Chui
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92037, USA; Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92037, USA.
| | - Anton Maximov
- Department of Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Liu Q, Sun YM, Huang H, Chen C, Wan J, Ma LH, Sun YY, Miao HH, Wu YQ. Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation. J Neuroinflammation 2021; 18:41. [PMID: 33541361 PMCID: PMC7863360 DOI: 10.1186/s12974-021-02089-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. METHODS SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. RESULTS Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1β and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. CONCLUSION The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.
Collapse
Affiliation(s)
- Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Yin-Ying Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China
| | - Hui-Hui Miao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P.R. China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, P.R. China.
| |
Collapse
|
14
|
Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Sci Rep 2020; 10:16899. [PMID: 33037263 PMCID: PMC7547119 DOI: 10.1038/s41598-020-73050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.
Collapse
|
15
|
Gilbert ME, O'Shaughnessy KL, Axelstad M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020; 161:bqaa106. [PMID: 32615585 PMCID: PMC8650774 DOI: 10.1210/endocr/bqaa106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Licznerski P, Park HA, Rolyan H, Chen R, Mnatsakanyan N, Miranda P, Graham M, Wu J, Cruz-Reyes N, Mehta N, Sohail S, Salcedo J, Song E, Effman C, Effman S, Brandao L, Xu GN, Braker A, Gribkoff VK, Levy RJ, Jonas EA. ATP Synthase c-Subunit Leak Causes Aberrant Cellular Metabolism in Fragile X Syndrome. Cell 2020; 182:1170-1185.e9. [PMID: 32795412 DOI: 10.1016/j.cell.2020.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
Abstract
Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase β subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.
Collapse
Affiliation(s)
- Pawel Licznerski
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Han-A Park
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Harshvardhan Rolyan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Rongmin Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Paige Miranda
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jing Wu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Nikita Mehta
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sana Sohail
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Jorge Salcedo
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Erin Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Samuel Effman
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Lucas Brandao
- Department of Biology, Clark University, Worcester, MA 01610, USA
| | - Gulan N Xu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Amber Braker
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Valentin K Gribkoff
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
17
|
Harris KM. Structural LTP: from synaptogenesis to regulated synapse enlargement and clustering. Curr Opin Neurobiol 2020; 63:189-197. [PMID: 32659458 DOI: 10.1016/j.conb.2020.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/30/2020] [Indexed: 02/09/2023]
Abstract
Nature teaches us that form precedes function, yet structure and function are intertwined. Such is the case with synapse structure, function, and plasticity underlying learning, especially in the hippocampus, a crucial brain region for memory formation. As the hippocampus matures, enduring changes in synapse structure produced by long-term potentiation (LTP) shift from synaptogenesis to synapse enlargement that is homeostatically balanced by stalled spine outgrowth and local spine clustering. Production of LTP leads to silent spine outgrowth at P15, and silent synapse enlargement in adult hippocampus at 2hours, but not at 5 or 30min following induction. Here we consider structural LTP in the context of developmental stage and variation in the availability of local resources of endosomes, smooth endoplasmic reticulum and polyribosomes. The emerging evidence supports a need for more nuanced analysis of synaptic plasticity in the context of subcellular resource availability and developmental stage.
Collapse
|
18
|
Abstract
Sleep-dependent synaptic plasticity is crucial for optimal cognition. However, establishing the direction of synaptic plasticity during sleep has been particularly challenging since data in support of both synaptic potentiation and depotentiation have been reported. This review focuses on structural synaptic plasticity across sleep and wake and summarizes recent developments in the use of 3-dimensional electron microscopy as applied to this field.
Collapse
Affiliation(s)
- Michele Bellesi
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD Bristol, UK
| | - Luisa de Vivo
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD Bristol, UK
| |
Collapse
|
19
|
Martínez-Moreno CG, Arámburo C. Growth hormone (GH) and synaptogenesis. VITAMINS AND HORMONES 2020; 114:91-123. [PMID: 32723552 DOI: 10.1016/bs.vh.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is known to exert several roles during development and function of the nervous system. Initially, GH was exclusively considered a pituitary hormone that regulates body growth and metabolism, but now its alternative extrapituitary production and pleiotropic functions are widely accepted. Through excess and deficit models, the critical role of GH in nervous system development and adult brain function has been extensively demonstrated. Moreover, neurotrophic actions of GH in neural tissues include pro-survival effects, neuroprotection, axonal growth, synaptogenesis, neurogenesis and neuroregeneration. The positive effects of GH upon memory, behavior, mood, sensorimotor function and quality of life, clearly implicate a beneficial action in synaptic physiology. Experimental and clinical evidence about GH actions in synaptic function modulation, protection and restoration are revised in this chapter.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| |
Collapse
|
20
|
Griffiths KK, Wang A, Wang L, Tracey M, Kleiner G, Quinzii CM, Sun L, Yang G, Perez-Zoghbi JF, Licznerski P, Yang M, Jonas EA, Levy RJ. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J 2020; 34:7404-7426. [PMID: 32307754 DOI: 10.1096/fj.202000283rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
Abstract
Fragile X syndrome (FXS) is the leading known inherited intellectual disability and the most common genetic cause of autism. The full mutation results in transcriptional silencing of the Fmr1 gene and loss of fragile X mental retardation protein (FMRP) expression. Defects in neuroenergetic capacity are known to cause a variety of neurodevelopmental disorders. Thus, we explored the integrity of forebrain mitochondria in Fmr1 knockout mice during the peak of synaptogenesis. We found inefficient thermogenic respiration due to futile proton leak in Fmr1 KO mitochondria caused by coenzyme Q (CoQ) deficiency and an open cyclosporine-sensitive channel. Repletion of mitochondrial CoQ within the Fmr1 KO forebrain closed the channel, blocked the pathological proton leak, restored rates of protein synthesis during synaptogenesis, and normalized the key phenotypic features later in life. The findings demonstrate that FMRP deficiency results in inefficient oxidative phosphorylation during the neurodevelopment and suggest that dysfunctional mitochondria may contribute to the FXS phenotype.
Collapse
Affiliation(s)
- Keren K Griffiths
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Aili Wang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Lifei Wang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Matthew Tracey
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Licznerski
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mu Yang
- Institute of Genomic Medicine and Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Elizabeth A Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
21
|
Affiliation(s)
- Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
22
|
Katano M, Kajimoto K, Iinuma M, Azuma K, Kubo KY. Tooth loss early in life induces hippocampal morphology remodeling in senescence-accelerated mouse prone 8 (SAMP8) mice. Int J Med Sci 2020; 17:517-524. [PMID: 32174782 PMCID: PMC7053313 DOI: 10.7150/ijms.40241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/15/2020] [Indexed: 11/05/2022] Open
Abstract
Long-term tooth loss is associated with the suppression of hippocampal neurogenesis and impairment of hippocampus-dependent cognition with aging. The morphologic basis of the hippocampal alterations, however, remains unclear. In the present study, we investigated whether tooth loss early in life affects the hippocampal ultrastructure in senescence-accelerated mouse prone 8 (SAMP8) mice, using transmission electron microscopy. Male SAMP8 mice were randomized into control or tooth-loss groups. All maxillary molar teeth were removed at 1 month of age. Hippocampal morphologic alterations were evaluated at 9 months of age. Tooth loss early in life induced mitochondrial damage and lipofuscin accumulation in the hippocampal neurons. A thinner myelin sheath and decreased postsynaptic density length were also observed. Our results revealed that tooth loss early in life may lead to hippocampal ultrastructure remodeling and subsequent hippocampus-dependent cognitive impairment in SAMP8 mice with aging.
Collapse
Affiliation(s)
- Masahisa Katano
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kyoko Kajimoto
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8610, Japan
| |
Collapse
|
23
|
Behuet S, Cremer JN, Cremer M, Palomero-Gallagher N, Zilles K, Amunts K. Developmental Changes of Glutamate and GABA Receptor Densities in Wistar Rats. Front Neuroanat 2019; 13:100. [PMID: 31920569 PMCID: PMC6933313 DOI: 10.3389/fnana.2019.00100] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
Neurotransmitters and their receptors are key molecules of signal transduction and subject to various changes during pre- and postnatal development. Previous studies addressed ontogeny at the level of neurotransmitters and expression of neurotransmitter receptor subunits. However, developmental changes in receptor densities to this day are not well understood. Here, we analyzed developmental changes in excitatory glutamate and inhibitory γ-aminobutyric acid (GABA) receptors in adjacent sections of the rat brain by means of quantitative in vitro receptor autoradiography. Receptor densities of the ionotropic glutamatergic receptors α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) as well as of the ionotropic GABAA and metabotropic GABAB receptors were investigated using specific high-affinity ligands. For each receptor binding site, significant density differences were demonstrated in the investigated regions of interest [olfactory bulb, striatum, hippocampus, and cerebellum] and developmental stages [postnatal day (P) 0, 10, 20, 30 and 90]. In particular, we showed that the glutamatergic and GABAergic receptor densities were already present between P0 and P10 in all regions of interest, which may indicate the early relevance of these receptors for brain development. A transient increase of glutamatergic receptor densities in the hippocampus was found, indicating their possible involvement in synaptic plasticity. We demonstrated a decline of NMDA receptor densities in the striatum and hippocampus from P30 to P90, which could be due to synapse elimination, a process that redefines neuronal networks in postnatal brains. Furthermore, the highest increase in GABAA receptor densities from P10 to P20 coincides with the developmental shift from excitatory to inhibitory GABA transmission. Moreover, the increase from P10 to P20 in GABAA receptor densities in the cerebellum corresponds to a point in time when functional GABAergic synapses are formed. Taken together, the present data reveal differential changes in glutamate and GABA receptor densities during postnatal rat brain development, which may contribute to their specific functions during ontogenesis, thus providing a deeper understanding of brain ontogenesis and receptor function.
Collapse
Affiliation(s)
- Sabrina Behuet
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | | | - Markus Cremer
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Jülich Research Centre, Jülich, Germany.,Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
24
|
Kulik YD, Watson DJ, Cao G, Kuwajima M, Harris KM. Structural plasticity of dendritic secretory compartments during LTP-induced synaptogenesis. eLife 2019; 8:e46356. [PMID: 31433297 PMCID: PMC6728136 DOI: 10.7554/elife.46356] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022] Open
Abstract
Long-term potentiation (LTP), an increase in synaptic efficacy following high-frequency stimulation, is widely considered a mechanism of learning. LTP involves local remodeling of dendritic spines and synapses. Smooth endoplasmic reticulum (SER) and endosomal compartments could provide local stores of membrane and proteins, bypassing the distant Golgi apparatus. To test this hypothesis, effects of LTP were compared to control stimulation in rat hippocampal area CA1 at postnatal day 15 (P15). By two hours, small spines lacking SER increased after LTP, whereas large spines did not change in frequency, size, or SER content. Total SER volume decreased after LTP consistent with transfer of membrane to the added spines. Shaft SER remained more abundant in spiny than aspiny dendritic regions, apparently supporting the added spines. Recycling endosomes were elevated specifically in small spines after LTP. These findings suggest local secretory trafficking contributes to LTP-induced synaptogenesis and primes the new spines for future plasticity.
Collapse
Affiliation(s)
- Yelena D Kulik
- Center for Learning and Memory, Department of NeuroscienceThe University of Texas at AustinAustinUnited States
| | - Deborah J Watson
- Center for Learning and Memory, Department of NeuroscienceThe University of Texas at AustinAustinUnited States
| | - Guan Cao
- Center for Learning and Memory, Department of NeuroscienceThe University of Texas at AustinAustinUnited States
| | - Masaaki Kuwajima
- Center for Learning and Memory, Department of NeuroscienceThe University of Texas at AustinAustinUnited States
| | - Kristen M Harris
- Center for Learning and Memory, Department of NeuroscienceThe University of Texas at AustinAustinUnited States
| |
Collapse
|
25
|
Chirillo MA, Waters MS, Lindsey LF, Bourne JN, Harris KM. Local resources of polyribosomes and SER promote synapse enlargement and spine clustering after long-term potentiation in adult rat hippocampus. Sci Rep 2019; 9:3861. [PMID: 30846859 PMCID: PMC6405867 DOI: 10.1038/s41598-019-40520-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Synapse clustering facilitates circuit integration, learning, and memory. Long-term potentiation (LTP) of mature neurons produces synapse enlargement balanced by fewer spines, raising the question of how clusters form despite this homeostatic regulation of total synaptic weight. Three-dimensional reconstruction from serial section electron microscopy (3DEM) revealed the shapes and distributions of smooth endoplasmic reticulum (SER) and polyribosomes, subcellular resources important for synapse enlargement and spine outgrowth. Compared to control stimulation, synapses were enlarged two hours after LTP on resource-rich spines containing polyribosomes (4% larger than control) or SER (15% larger). SER in spines shifted from a single tubule to complex spine apparatus after LTP. Negligible synapse enlargement (0.6%) occurred on resource-poor spines lacking SER and polyribosomes. Dendrites were divided into discrete synaptic clusters surrounded by asynaptic segments. Spine density was lowest in clusters having only resource-poor spines, especially following LTP. In contrast, resource-rich spines preserved neighboring resource-poor spines and formed larger clusters with elevated total synaptic weight following LTP. These clusters also had more shaft SER branches, which could sequester cargo locally to support synapse growth and spinogenesis. Thus, resources appear to be redistributed to synaptic clusters with LTP-related synapse enlargement while homeostatic regulation suppressed spine outgrowth in resource-poor synaptic clusters.
Collapse
Affiliation(s)
- Michael A Chirillo
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Fulbright U.S. Scholar Program, University of Belgrade, Studentski trg 1, Belgrade, 11000, Serbia
| | - Mikayla S Waters
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,McGovern Medical School in Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Laurence F Lindsey
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Google Seattle, Seattle, Washington, 98103, USA
| | - Jennifer N Bourne
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.,Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Kristen M Harris
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
26
|
Borczyk M, Śliwińska MA, Caly A, Bernas T, Radwanska K. Neuronal plasticity affects correlation between the size of dendritic spine and its postsynaptic density. Sci Rep 2019; 9:1693. [PMID: 30737431 PMCID: PMC6368589 DOI: 10.1038/s41598-018-38412-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
Structural plasticity of dendritic spines is thought to underlie memory formation. Size of a dendritic spine is considered proportional to the size of its postsynaptic density (PSD), number of glutamate receptors and synaptic strength. However, whether this correlation is true for all dendritic spine volumes, and remains stable during synaptic plasticity, is largely unknown. In this study, we take advantage of 3D electron microscopy and reconstruct dendritic spines and cores of PSDs from the stratum radiatum of the area CA1 of organotypic hippocampal slices. We observe that approximately 1/3 of dendritic spines, in a range of medium sizes, fail to reach significant correlation between dendritic spine volume and PSD surface area or PSD-core volume. During NMDA receptor-dependent chemical long-term potentiation (NMDAR-cLTP) dendritic spines and their PSD not only grow, but also PSD area and PSD-core volume to spine volume ratio is increased, and the correlation between the sizes of these two is tightened. Further analysis specified that only spines that contain smooth endoplasmic reticulum (SER) grow during cLTP, while PSD-cores grow irrespectively of the presence of SER in the spine. Dendritic spines with SER also show higher correlation of the volumetric parameters than spines without SER, and this correlation is further increased during cLTP only in the spines that contain SER. Overall, we found that correlation between PSD surface area and spine volume is not consistent across all spine volumes, is modified and tightened during synaptic plasticity and regulated by SER.
Collapse
Affiliation(s)
- Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland.,Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland
| | - Anna Caly
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland
| | - Tytus Bernas
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, ul. L. Pasteura 3, Warsaw, 02-093, Poland.
| |
Collapse
|
27
|
Yoon MS, Koh CS, Lee J, Shin J, Kong C, Jung HH, Chang JW. Injecting NMDA and Ro 25-6981 in insular cortex induce neuroplastic changes and neuropathic pain-like behaviour. Eur J Pain 2018; 22:1691-1700. [PMID: 29862605 DOI: 10.1002/ejp.1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuropathic pain is associated with abnormal sensitivity of the central nervous system. Although the mechanism underlying the development of sensitization remains to be fully elucidated, recent studies have reported that neuroplastic changes in the pain circuitry may be involved in hypersensitivity associated with neuropathic pain. However, it is difficult to investigate such phenomena in existing animal pain model. Therefore, in this study, we developed a novel animal model - the circuit plasticity reconstruction (CPR) model - to mimic central sensitization associated with neuroplastic changes. METHOD NMDA and Ro 25-6981 were injected into the right insular cortex of Sprague-Dawley rats, while electrical stimulation was delivered to the contralateral hind paw. Mechanical allodynia was tested by von Frey test with up-down method, and neuroplastic changes were confirmed by PSA-NCAM-positive immunostaining. RESULT The mechanical withdrawal threshold of the left hind paw decreased beginning 1 day after CPR modelling and persisted until day 21 comparing to the modified CPR 1 (mod-CPR 1) group (CPR: 91.68 ± 1.8%, mod-CPR 1: 42.71 ± 3.4%, p < 0.001). In contrast, mod-CPR 2 surgery without electrical stimulation did not induce mechanical allodynia. Immunostaining for PSA-NCAM also revealed that neuroplastic changes had occurred in the CPR group. CONCLUSION Our results demonstrated that CPR modelling induced neuroplasticity within the insular cortex, leading to alterations in the neural circuitry and central sensitization. SIGNIFICANCE This article represents that the CPR model can mimic the neuropathic pain derived by neuroplastic changes. Our findings indicate that the CPR model may aid the development of novel therapeutic strategies for neuropathic pain and in elucidating the mechanisms underlying pain induced by central sensitization and neuroplastic changes.
Collapse
Affiliation(s)
- M S Yoon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - C S Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - J Lee
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - C Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - H H Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J W Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Ostroff LE, Watson DJ, Cao G, Parker PH, Smith H, Harris KM. Shifting patterns of polyribosome accumulation at synapses over the course of hippocampal long-term potentiation. Hippocampus 2018; 28:416-430. [PMID: 29575288 DOI: 10.1002/hipo.22841] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 11/09/2022]
Abstract
Hippocampal long-term potentiation (LTP) is a cellular memory mechanism. For LTP to endure, new protein synthesis is required immediately after induction and some of these proteins must be delivered to specific, presumably potentiated, synapses. Local synthesis in dendrites could rapidly provide new proteins to synapses, but the spatial distribution of translation following induction of LTP is not known. Here, we quantified polyribosomes, the sites of local protein synthesis, in CA1 stratum radiatum dendrites and spines from postnatal day 15 rats. Hippocampal slices were rapidly fixed at 5, 30, or 120 min after LTP induction by theta-burst stimulation (TBS). Dendrites were reconstructed through serial section electron microscopy from comparable regions near the TBS or control electrodes in the same slice, and in unstimulated hippocampus that was perfusion-fixed in vivo. At 5 min after induction of LTP, polyribosomes were elevated in dendritic shafts and spines, especially near spine bases and in spine heads. At 30 min, polyribosomes remained elevated only in spine bases. At 120 min, both spine bases and spine necks had elevated polyribosomes. Polyribosomes accumulated in spines with larger synapses at 5 and 30 min, but not at 120 min. Small spines, meanwhile, proliferated dramatically by 120 min, but these largely lacked polyribosomes. The number of ribosomes per polyribosome is variable and may reflect differences in translation regulation. In dendritic spines, but not shafts, there were fewer ribosomes per polyribosome in the slice conditions relative to in vivo, but this recovered transiently in the 5 min LTP condition. Overall, our data show that LTP induces a rapid, transient upregulation of large polyribosomes in larger spines, and a persistent upregulation of small polyribosomes in the bases and necks of small spines. This is consistent with local translation supporting enlargement of potentiated synapses within minutes of LTP induction.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Deborah J Watson
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Patrick H Parker
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Heather Smith
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| |
Collapse
|
29
|
Ozcan AS. Filopodia: A Rapid Structural Plasticity Substrate for Fast Learning. Front Synaptic Neurosci 2017; 9:12. [PMID: 28676753 PMCID: PMC5476769 DOI: 10.3389/fnsyn.2017.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/06/2017] [Indexed: 11/17/2022] Open
Abstract
Formation of new synapses between neurons is an essential mechanism for learning and encoding memories. The vast majority of excitatory synapses occur on dendritic spines, therefore, the growth dynamics of spines is strongly related to the plasticity timescales. Especially in the early stages of the developing brain, there is an abundant number of long, thin and motile protrusions (i.e., filopodia), which develop in timescales of seconds and minutes. Because of their unique morphology and motility, it has been suggested that filopodia can have a dual role in both spinogenesis and environmental sampling of potential axonal partners. I propose that filopodia can lower the threshold and reduce the time to form new dendritic spines and synapses, providing a substrate for fast learning. Based on this proposition, the functional role of filopodia during brain development is discussed in relation to learning and memory. Specifically, it is hypothesized that the postnatal brain starts with a single-stage memory system with filopodia playing a significant role in rapid structural plasticity along with the stability provided by the mushroom-shaped spines. Following the maturation of the hippocampus, this highly-plastic unitary system transitions to a two-stage memory system, which consists of a plastic temporary store and a long-term stable store. In alignment with these architectural changes, it is posited that after brain maturation, filopodia-based structural plasticity will be preserved in specific areas, which are involved in fast learning (e.g., hippocampus in relation to episodic memory). These propositions aim to introduce a unifying framework for a diversity of phenomena in the brain such as synaptogenesis, pruning and memory consolidation.
Collapse
Affiliation(s)
- Ahmet S Ozcan
- Machine Intelligence Laboratory, IBM Almaden Research CenterSan Jose, CA, United States
| |
Collapse
|
30
|
Pinar C, Fontaine CJ, Triviño-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR. Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 2017. [PMID: 28624435 DOI: 10.1016/j.neubiorev.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synaptic plasticity is widely regarded as a putative biological substrate for learning and memory processes. While both decreases and increases in synaptic strength are seen as playing a role in learning and memory, long-term depression (LTD) of synaptic efficacy has received far less attention than its counterpart long-term potentiation (LTP). Never-the-less, LTD at synapses can play an important role in increasing computational flexibility in neural networks. In addition, like learning and memory processes, the magnitude of LTD can be modulated by factors that include stress and sex hormones, neurotrophic support, learning environments, and age. Examining how these factors modulate hippocampal LTD can provide the means to better elucidate the molecular underpinnings of learning and memory processes. This is in turn will enhance our appreciation of how both increases and decreases in synaptic plasticity can play a role in different neurodevelopmental and neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristina Pinar
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Triviño-Paredes
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Carina P Lottenberg
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Faculty of Medical Sciences of Santa Casa de São Paulo, Sao Paulo, SP, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
31
|
GRASP1 Regulates Synaptic Plasticity and Learning through Endosomal Recycling of AMPA Receptors. Neuron 2017; 93:1405-1419.e8. [PMID: 28285821 PMCID: PMC5382714 DOI: 10.1016/j.neuron.2017.02.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/13/2016] [Accepted: 02/16/2017] [Indexed: 11/23/2022]
Abstract
Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity, and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescued spine loss in hippocampal CA1 neurons in Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders.
Collapse
|
32
|
Smith HL, Bourne JN, Cao G, Chirillo MA, Ostroff LE, Watson DJ, Harris KM. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. eLife 2016; 5. [PMID: 27991850 PMCID: PMC5235352 DOI: 10.7554/elife.15275] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day 15 (P15) and adult rat hippocampus that had undergone theta-burst stimulation to produce long-term potentiation (TBS-LTP) and compared them to control or no stimulation. At 30 and 120 min after TBS-LTP, vesicles were decreased only in presynaptic boutons that contained mitochondria at P15, and vesicle decrement was greatest in adult boutons containing mitochondria. Presynaptic mitochondrial cristae were widened, suggesting a sustained energy demand. Thus, mitochondrial proximity reflected enhanced vesicle mobilization well after potentiation reached asymptote, in parallel with the apparently silent addition of new dendritic spines at P15 or the silent enlargement of synapses in adults. DOI:http://dx.doi.org/10.7554/eLife.15275.001
Collapse
Affiliation(s)
- Heather L Smith
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus, Aurora, United States
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Michael A Chirillo
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Linnaea E Ostroff
- Center for Neural Science, New York University, Washington, New York
| | - Deborah J Watson
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, United States
| |
Collapse
|
33
|
Radin DP, Zhong S, Purcell R, Lippa A. Acute ampakine treatment ameliorates age-related deficits in long-term potentiation. Biomed Pharmacother 2016; 84:806-809. [DOI: 10.1016/j.biopha.2016.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 01/24/2023] Open
|
34
|
Gipson CD, Olive MF. Structural and functional plasticity of dendritic spines - root or result of behavior? GENES BRAIN AND BEHAVIOR 2016; 16:101-117. [PMID: 27561549 DOI: 10.1111/gbb.12324] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Dendritic spines are multifunctional integrative units of the nervous system and are highly diverse and dynamic in nature. Both internal and external stimuli influence dendritic spine density and morphology on the order of minutes. It is clear that the structural plasticity of dendritic spines is related to changes in synaptic efficacy, learning and memory and other cognitive processes. However, it is currently unclear whether structural changes in dendritic spines are primary instigators of changes in specific behaviors, a consequence of behavioral changes, or both. In this review, we first examine the basic structure and function of dendritic spines in the brain, as well as laboratory methods to characterize and quantify morphological changes in dendritic spines. We then discuss the existing literature on the temporal and functional relationship between changes in dendritic spines in specific brain regions and changes in specific behaviors mediated by those regions. Although technological advancements have allowed us to better understand the functional relevance of structural changes in dendritic spines that are influenced by environmental stimuli, the role of spine dynamics as an underlying driver or consequence of behavior still remains elusive. We conclude that while it is likely that structural changes in dendritic spines are both instigators and results of behavioral changes, improved research tools and methods are needed to experimentally and directly manipulate spine dynamics in order to more empirically delineate the relationship between spine structure and behavior.
Collapse
Affiliation(s)
- C D Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - M F Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
35
|
Bourne JN, Schoppa NE. Three-dimensional synaptic analyses of mitral cell and external tufted cell dendrites in rat olfactory bulb glomeruli. J Comp Neurol 2016; 525:592-609. [PMID: 27490056 DOI: 10.1002/cne.24089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/13/2016] [Accepted: 07/28/2016] [Indexed: 11/07/2022]
Abstract
Recent studies have suggested that the two excitatory cell classes of the mammalian olfactory bulb, the mitral cells (MCs) and tufted cells (TCs), differ markedly in physiological responses. For example, TCs are more sensitive and broadly tuned to odors than MCs and also are much more sensitive to stimulation of olfactory sensory neurons (OSNs) in bulb slices. To examine the morphological bases for these differences, we performed quantitative ultrastructural analyses of glomeruli in rat olfactory bulb under conditions in which specific cells were labeled with biocytin and 3,3'-diaminobenzidine. Comparisons were made between MCs and external TCs (eTCs), which are a TC subtype in the glomerular layer with large, direct OSN signals and capable of mediating feedforward excitation of MCs. Three-dimensional analysis of labeled apical dendrites under an electron microscope revealed that MCs and eTCs in fact have similar densities of several chemical synapse types, including OSN inputs. OSN synapses also were distributed similarly, favoring a distal localization on both cells. Analysis of unlabeled putative MC dendrites further revealed gap junctions distributed uniformly along the apical dendrite and, on average, proximally with respect to OSN synapses. Our results suggest that the greater sensitivity of eTCs vs. MCs is due not to OSN synapse number or absolute location but rather to a conductance in the MC dendrite that is well positioned to attenuate excitatory signals passing to the cell soma. Functionally, such a mechanism could allow rapid and dynamic control of OSN-driven action potential firing in MCs through changes in gap junction properties. J. Comp. Neurol. 525:592-609, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, 80045
| | - Nathan E Schoppa
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, 80045.,Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado, 80045
| |
Collapse
|
36
|
Sartini S, Lattanzi D, Ambrogini P, Di Palma M, Galati C, Savelli D, Polidori E, Calcabrini C, Rocchi MBL, Sestili P, Cuppini R. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring. Neuroscience 2015; 312:120-9. [PMID: 26592720 DOI: 10.1016/j.neuroscience.2015.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/28/2022]
Abstract
Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans.
Collapse
Affiliation(s)
- S Sartini
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy.
| | - D Lattanzi
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - P Ambrogini
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - M Di Palma
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - C Galati
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - D Savelli
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| | - E Polidori
- University of Urbino Carlo Bo, Dept. of Biomolecular Sciences, via I Maggetti, 26, 61029 Urbino, Italy
| | - C Calcabrini
- University of Urbino Carlo Bo, Dept. of Biomolecular Sciences, via I Maggetti, 26, 61029 Urbino, Italy
| | - M B L Rocchi
- University of Urbino Carlo Bo, Dept. of Biomolecular Sciences, via I Maggetti, 26, 61029 Urbino, Italy
| | - P Sestili
- University of Urbino Carlo Bo, Dept. of Biomolecular Sciences, via I Maggetti, 26, 61029 Urbino, Italy
| | - R Cuppini
- University of Urbino Carlo Bo, Dept. of Earth, Life and Environmental Sciences, Campus Scientifico "Enrico Mattei", via Ca' le Suore, 2, 61029 Urbino, Italy
| |
Collapse
|