1
|
Cheng S. Distinct mechanisms and functions of episodic memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230411. [PMID: 39278239 PMCID: PMC11482257 DOI: 10.1098/rstb.2023.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024] Open
Abstract
The concept of episodic memory (EM) faces significant challenges by two claims: EM might not be a distinct memory system, and EM might be an epiphenomenon of a more general capacity for mental time travel (MTT). Nevertheless, the observations leading to these arguments do not preclude the existence of a mechanically and functionally distinct EM system. First, modular systems, like cognition, can have distinct subsystems that may not be distinguishable in the system's final output. EM could be such a subsystem, even though its effects may be difficult to distinguish from those of other subsystems. Second, EM could have a distinct and consistent low-level function, which is used in diverse high-level functions such as MTT. This article introduces the scenario construction framework, proposing that EM crucially rests on memory traces containing the gist of an episodic experience. During retrieval, EM traces trigger the reconstruction of semantic representations, which were active during the remembered episode, and are further enriched with semantic information, to generate a scenario of the past experience. This conceptualization of EM is consistent with studies on the neural basis of EM and resolves the two challenges while retaining the key properties associated with EM. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Sen Cheng
- Institute for Neural Computation Faculty of Computer Science, Ruhr University Bochum, Bochum44780, Germany
| |
Collapse
|
2
|
Narvaiz DA, Blandin KJ, Sullens DG, Womble PD, Pilcher JB, O'Neill G, Wiley TA, Kwok EM, Chilukuri SV, Lugo JN. NS-Pten knockout mice exhibit sex and hippocampal subregion-specific increases in microglia/macrophage density. Epilepsy Res 2024; 206:107440. [PMID: 39213710 DOI: 10.1016/j.eplepsyres.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, USA; Department of Biology, USA; Institute of Biomedical Studies, USA; Baylor University, Baylor Center for Developmental Disabilities, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
3
|
Sekeres MJ, Schomaker J, Nadel L, Tse D. To update or to create? The influence of novelty and prior knowledge on memory networks. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230238. [PMID: 38853571 PMCID: PMC11343309 DOI: 10.1098/rstb.2023.0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 06/11/2024] Open
Abstract
Schemas are foundational mental structures shaped by experience. They influence behaviour, guide the encoding of new memories and are shaped by associated information. The adaptability of memory schemas facilitates the integration of new information that aligns with existing knowledge structures. First, we discuss how novel information consistent with an existing schema can be swiftly assimilated when presented. This cognitive updating is facilitated by the interaction between the hippocampus and the prefrontal cortex. Second, when novel information is inconsistent with the schema, it likely engages the hippocampus to encode the information as part of an episodic memory trace. Third, novelty may enhance hippocampal dopamine through either the locus coeruleus or ventral tegmental area pathways, with the pathway involved potentially depending on the type of novelty encountered. We propose a gradient theory of schema and novelty to elucidate the neural processes by which schema updating or novel memory traces are formed. It is likely that experiences vary along a familiarity-novelty continuum, and the degree to which new experiences are increasingly novel will guide whether memory for a new experience either integrates into an existing schema or prompts the creation of a new cognitive framework. This article is part of the theme issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Melanie J. Sekeres
- School of Psychology, University of Ottawa, Ottawa, OntarioK1N 6N5, Canada
| | - Judith Schomaker
- Health, Medical & Neuropsychology, Leiden University, Leiden2333 AK, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Lynn Nadel
- Department of Psychology, University of Arizona, Tucson, AZ85721, USA
| | - Dorothy Tse
- Department of Psychology, Edge Hill University, OrmskirkL39 4QP, UK
| |
Collapse
|
4
|
Viard A, Allen AP, Doyle CM, Naveau M, Bokde ALW, Platel H, Eustache F, Commins S, Roche RAP. Autobiographical Cerebral Network Activation in Older Adults Before and After Reminiscence Therapy: A Preliminary Report. Biol Res Nurs 2024; 26:257-269. [PMID: 37907265 DOI: 10.1177/10998004231210982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Reminiscence therapy (RT), which engages individuals to evoke positive memories, has been shown to be effective in improving psychological well-being in older adults suffering from PTSD, depression, and anxiety. However, its impact on brain function has yet to be determined. This paper presents functional magnetic resonance imaging (fMRI) data to describe changes in autobiographical memory networks (AMN) in community-dwelling older adults. METHODS This pilot study used a within-subject design to measure changes in AMN activation in 11 older adults who underwent 6 weeks of RT. In the scanner, participants retrieved autobiographical memories which were either recent or remote, rehearsed or unrehearsed. Participants also underwent a clinical interview to assess changes in memory, quality of life, mental health, and affect. FINDINGS Compared to pretreatment, anxiety decreased (z = -2.014, p = .040) and activated significant areas within the AMN, including bilateral medial prefrontal cortex, left precuneus, right occipital cortex, and left anterior hippocampus. CONCLUSION Although RT had subtle effects on psychological function in this sample with no evidence of impairments, including depression at baseline, the fMRI data support current thinking of the effect RT has on the AMN. Increased activation of right posterior hippocampus following RT is compatible with the Multiple Trace Theory Theory (Nadel & Moscovitch, 1997).
Collapse
Affiliation(s)
- Armelle Viard
- INSERM, U1077, EPHE, Université de Caen Normandie, PSL Research University, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Andrew P Allen
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | | | - Mikaël Naveau
- UNICAEN, CNRS, CEA, INSERM, UAR3408 CYCERON, Normandie University, Caen, France
| | - Arun L W Bokde
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Hervé Platel
- INSERM, U1077, EPHE, Université de Caen Normandie, PSL Research University, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Francis Eustache
- INSERM, U1077, EPHE, Université de Caen Normandie, PSL Research University, GIP Cyceron, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine (NIMH), Caen, France
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | | |
Collapse
|
5
|
Siefert E, Uppuluri S, Mu. J, Tandoc M, Antony J, Schapiro A. Memory reactivation during sleep does not act holistically on object memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.14.571683. [PMID: 38168451 PMCID: PMC10760132 DOI: 10.1101/2023.12.14.571683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation process where some features are enhanced over others.
Collapse
Affiliation(s)
- E.M. Siefert
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - S. Uppuluri
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J. Mu.
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - M.C. Tandoc
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - A.C. Schapiro
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Tallman CW, Luo Z, Smith CN. Human brain activity and functional connectivity associated with verbal long-term memory consolidation across 1 month. Front Hum Neurosci 2024; 18:1342552. [PMID: 38450223 PMCID: PMC10915245 DOI: 10.3389/fnhum.2024.1342552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Declarative memories are initially dependent on the hippocampus and become stabilized through the neural reorganization of connections between the medial temporal lobe and neocortex. The exact time-course of these neural changes is not well established, although time-dependent changes in retrieval-related brain function can be detected across relatively short time periods in humans (e.g., hours to months). Methods In a study involving older adults with normal cognition (N = 24), we investigated changes in brain activity and functional connectivity associated with the long-term memory consolidation of verbal material over one month. Participants studied fact-like, three-word sentences at 1-month, 1-week, 1-day, and 1-hour intervals before a recognition memory test inside an MRI scanner. Old/new recognition with confidence ratings and response times were recorded. We examined whole-brain changes in retrieval-related brain activity, as well as functional connectivity of the hippocampus and ventromedial prefrontal cortex (vmPFC), as memories aged from 1 hour to 1 month. Secondary analyses minimized the effect of confounding factors affected by memory age (i.e., changes in confidence and response time or re-encoding of targets). Results Memory accuracy, confidence ratings, and response times changed with memory age. A memory age network was identified where retrieval-related brain activity in cortical regions increased or decreased as a function of memory age. Hippocampal brain activity in an anatomical region of interest decreased with memory age. Importantly, these changes in retrieval-related activity were not confounded with changes in activity related to concomitant changes in behavior or encoding. Exploratory analyses of vmPFC functional connectivity as a function of memory age revealed increased connectivity with the posterior parietal cortex, as well as with the vmPFC itself. In contrast, hippocampal functional connectivity with the vmPFC and orbitofrontal cortex decreased with memory age. Discussion The observed changes in retrieval-related brain activity and functional connectivity align with the predictions of standard systems consolidation theory. These results suggest that processes consistent with long-term memory consolidation can be identified over short time periods using fMRI, particularly for verbal material.
Collapse
Affiliation(s)
- Catherine W. Tallman
- Department of Psychology, University of California, San Diego, San Diego, CA, United States
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
| | - Zhishang Luo
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
- Halıcıoğlu Data Science Institute, University of California, San Diego, San Diego, CA, United States
| | - Christine N. Smith
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Barnett AJ, Nguyen M, Spargo J, Yadav R, Cohn-Sheehy BI, Ranganath C. Hippocampal-cortical interactions during event boundaries support retention of complex narrative events. Neuron 2024; 112:319-330.e7. [PMID: 37944517 DOI: 10.1016/j.neuron.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
According to most memory theories, encoding involves continuous communication between the hippocampus and neocortex, but recent work has shown that key moments at the end of an event, called event boundaries, may be especially critical for memory formation. We sought to determine how communication between the hippocampus and neocortical regions during the encoding of naturalistic events related to subsequent retrieval of those events and whether this was particularly important at event boundaries. Participants encoded and recalled two cartoon movies during fMRI scanning. Higher functional connectivity between the hippocampus and the posterior medial network (PMN) at an event's offset is related to the subsequent successful recall of that event. Furthermore, hippocampal-PMN offset connectivity also predicted the amount of detail retrieved after a 2-day delay. These data demonstrate that the relationship between memory encoding and hippocampal-neocortical interaction is dynamic and biased toward boundaries.
Collapse
Affiliation(s)
| | - Mitchell Nguyen
- University of California, Davis, Center for Neuroscience, Davis, CA, USA
| | - James Spargo
- University of California, Davis, Department of Psychology, Davis, CA, USA
| | - Reesha Yadav
- University of California, Davis, Department of Psychology, Davis, CA, USA
| | | | - Charan Ranganath
- University of California, Davis, Center for Neuroscience, Davis, CA, USA; University of California, Davis, Department of Psychology, Davis, CA, USA
| |
Collapse
|
8
|
Sullens DG, Nguyen P, Gilley K, Wiffler MB, Sekeres MJ. Hippocampal motor memory network reorganization depends on familiarity, not time. Learn Mem 2023; 30:320-324. [PMID: 38056901 PMCID: PMC10750863 DOI: 10.1101/lm.053792.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
There is debate as to whether a time-dependent transformation of the episodic-like memory network is observed for nonepisodic tasks, including procedural motor memory. To determine how motor memory networks reorganize with time and practice, mice performed a motor task in a straight alley maze for 1 d (recent), 20 d of continuous training (continuous), or testing 20 d after the original training (remote), and then regional c-Fos expression was assessed. Elevated hippocampal c-Fos accompanied remote, but not continuous, motor task retrieval after 20 d, suggesting that the hippocampus remains engaged for nonhabitual remote motor memory retrieval.
Collapse
Affiliation(s)
- D Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Phuoc Nguyen
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA
| | - Kayla Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia 24515, USA
| | - Madison B Wiffler
- Department of Biology, Baylor University, Waco, Texas 76798, USA
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Melanie J Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
9
|
Siestrup S, Schubotz RI. Minor Changes Change Memories: Functional Magnetic Resonance Imaging and Behavioral Reflections of Episodic Prediction Errors. J Cogn Neurosci 2023; 35:1823-1845. [PMID: 37677059 DOI: 10.1162/jocn_a_02047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Episodic memories can be modified, a process that is potentially driven by mnemonic prediction errors. In the present study, we used modified cues to induce prediction errors of different episodic relevance. Participants encoded episodes in the form of short toy stories and then returned for an fMRI session on the subsequent day. Here, participants were presented either original episodes or slightly modified versions thereof. Modifications consisted of replacing a single object within the episode and either challenged the gist of an episode (gist modifications) or left it intact (surface modifications). On the next day, participants completed a post-fMRI memory test that probed memories for originally encoded episodes. Both types of modifications triggered brain activation in regions we previously found to be involved in the processing of content-based mnemonic prediction errors (i.e., the exchange of an object). Specifically, these were ventrolateral pFC, intraparietal cortex, and lateral occipitotemporal cortex. In addition, gist modifications triggered pronounced brain responses, whereas those for surface modification were only significant in the right inferior frontal sulcus. Processing of gist modifications also involved the posterior temporal cortex and the precuneus. Interestingly, our findings confirmed the posterior hippocampal role of detail processing in episodic memory, as evidenced by increased posterior hippocampal activity for surface modifications compared with gist modifications. In the post-fMRI memory test, previous experience with surface modified, but not gist-modified episodes, increased erroneous acceptance of the same modified versions as originally encoded. Whereas surface-level prediction errors might increase uncertainty and facilitate confusion of alternative episode representations, gist-level prediction errors seem to trigger the clear distinction of independent episodes.
Collapse
Affiliation(s)
- Sophie Siestrup
- University of Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Ricarda I Schubotz
- University of Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| |
Collapse
|
10
|
Lin YR, Chi CH, Chang YL. Differential decay of gist and detail memory in older adults with amnestic mild cognitive impairment. Cortex 2023; 164:112-128. [PMID: 37207409 DOI: 10.1016/j.cortex.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/19/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) has been identified as a risk factor for dementia due to Alzheimer's disease. The medial temporal structures, which are crucial for memory processing, are the earliest affected regions in the brains of patients with aMCI, and episodic memory performance has been identified as a reliable way to discriminate between patients with aMCI and cognitively normal older adults. However, whether the detail and gist memory of patients with aMCI and cognitively normal older adults decay differently remains unclear. In this study, we hypothesized that detail and gist memory would be retrieved differentially, with a larger group performance gap in detail memory than in gist memory. In addition, we explored whether an increasing group performance gap between detail memory and gist memory groups would be observed over a 14-day period. Furthermore, we hypothesized that unisensory (audio-only) and multisensory (audiovisual) encoding would lead to differences in retrievals, with the multisensory condition reducing between and within-group performance gaps observed under the unisensory condition. The analyses conducted were analyses of covariance controlling for age, sex, and education and correlational analyses to examine behavioral performance and the association between behavioral data and brain variables. Compared with cognitively normal older adults, the patients with aMCI performed poorly on both detail and gist memory tests, and this performance gap persisted over time. Moreover, the memory performance of the patients with aMCI was enhanced by the provision of multisensory information, and bimodal input was significantly associated with medial temporal structure variables. Overall, our findings suggest that detail and gist memory decay differently, with a longer lasting group gap in gist memory than in detail memory. Multisensory encoding effectively reduced or overcame the between- and within-group gaps between time intervals, especially for gist memory, compared with unisensory encoding.
Collapse
Affiliation(s)
- Yu-Ruei Lin
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsing Chi
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Auguste A, Fourcaud-Trocmé N, Meunier D, Gros A, Garcia S, Messaoudi B, Thevenet M, Ravel N, Veyrac A. Distinct brain networks for remote episodic memory depending on content and emotional experience. Prog Neurobiol 2023; 223:102422. [PMID: 36796748 DOI: 10.1016/j.pneurobio.2023.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Memories of life episodes are the heart of individual stories. However, modelling episodic memory is a major challenge in both humans and animals when considering all its characteristics. As a consequence, the mechanisms that underlie the storage of old nontraumatic episodic memories remain enigmatic. Here, using a new task in rodents that models human episodic memory including odour/place/context components and applying advances behavioural and computational analyses, we show that rats form and recollect integrated remote episodic memories of two occasionally encountered complex episodes occurring in their daily life. Similar to humans, the information content and accuracy of memories vary across individuals and depend on the emotional relationship with odours experienced during the very first episode. We used cellular brain imaging and functional connectivity analyses, to find out the engrams of remote episodic memories for the first time. Activated brain networks completely reflect the nature and content of episodic memories, with a larger cortico-hippocampal network when the recollection is complete and with an emotional brain network related to odours that is critical in maintaining accurate and vivid memories. The engrams of remote episodic memories remain highly dynamic since synaptic plasticity processes occur during recall related to memory updates and reinforcement.
Collapse
Affiliation(s)
- Anne Auguste
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nicolas Fourcaud-Trocmé
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - David Meunier
- University Aix Marseille, Insitut des Neurosciences de la Timone, Marseille, France
| | - Alexandra Gros
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Samuel Garcia
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Belkacem Messaoudi
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Marc Thevenet
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Nadine Ravel
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France
| | - Alexandra Veyrac
- UMR 5292 CNRS, INSERM U1028, University Lyon1, Olfaction: From coding to Memory Team, Lyon Neuroscience Research Center, F-69366 Lyon, France.
| |
Collapse
|
12
|
Moscovitch M, Gilboa A. Has the concept of systems consolidation outlived its usefulness? Identification and evaluation of premises underlying systems consolidation. Fac Rev 2022; 11:33. [PMID: 36532709 PMCID: PMC9720899 DOI: 10.12703/r/11-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Systems consolidation has mostly been treated as a neural construct defined by the time-dependent change in memory representation from the hippocampus (HPC) to other structures, primarily the neocortex. Here, we identify and evaluate the explicit and implicit premises that underlie traditional or standard models and theories of systems consolidation based on evidence from research on humans and other animals. We use the principle that changes in neural representation over time and experience are accompanied by corresponding changes in psychological representations, and vice versa, to argue that each of the premises underlying traditional or standard models and theories of systems consolidation is found wanting. One solution is to modify or abandon the premises or theories and models. This is reflected in moderated models of systems consolidation that emphasize the early role of the HPC in training neocortical memories until they stabilize. The fault, however, may lie in the very concept of systems consolidation and its defining feature. We propose that the concept be replaced by one of memory systems reorganization, which does not carry the theoretical baggage of systems consolidation and is flexible enough to capture the dynamic nature of memory from inception to very long-term retention and retrieval at a psychological and neural level. The term "memory system reorganization" implies that memory traces are not fixed, even after they are presumably consolidated. Memories can continue to change as a result of experience and interactions among memory systems across the lifetime. As will become clear, hippocampal training of neocortical memories is only one type of such interaction, and not always the most important one, even at inception. We end by suggesting some principles of memory reorganization that can help guide research on dynamic memory processes that capture corresponding changes in memory at the psychological and neural levels.
Collapse
Affiliation(s)
- Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Asaf Gilboa
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
13
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
14
|
Audrain S, McAndrews MP. Schemas provide a scaffold for neocortical integration of new memories over time. Nat Commun 2022; 13:5795. [PMID: 36184668 PMCID: PMC9527246 DOI: 10.1038/s41467-022-33517-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
Memory transformation is increasingly acknowledged in theoretical accounts of systems consolidation, yet how memory quality and neural representation change over time and how schemas influence this process remains unclear. We examined the behavioral quality and neural representation of schema-congruent and incongruent object-scene pairs retrieved across 10-minutes and 72-hours using fMRI. When a congruent schema was available, memory became coarser over time, aided by post-encoding coupling between the anterior hippocampus and medial prefrontal cortex (mPFC). Only schema-congruent representations were integrated in the mPFC over time, and were organized according to schematic context. In the hippocampus, pattern similarity changed across 72-hours such that the posterior hippocampus represented specific details and the anterior hippocampus represented the general context of specific memories, irrespective of congruency. Our findings suggest schemas are used as a scaffold to facilitate neocortical integration of congruent information, and illustrate evolution in hippocampal organization of detailed contextual memory over time.
Collapse
Affiliation(s)
- Sam Audrain
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada.
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| |
Collapse
|
15
|
Bradley-Garcia M, Winocur G, Sekeres MJ. Episodic Memory and Recollection Network Disruptions Following Chemotherapy Treatment in Breast Cancer Survivors: A Review of Neuroimaging Findings. Cancers (Basel) 2022; 14:4752. [PMID: 36230678 PMCID: PMC9563268 DOI: 10.3390/cancers14194752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term memory disturbances are amongst the most common and disruptive cognitive symptoms experienced by breast cancer survivors following chemotherapy. To date, most clinical assessments of long-term memory dysfunction in breast cancer survivors have utilized basic verbal and visual memory tasks that do not capture the complexities of everyday event memories. Complex event memories, including episodic memory and autobiographical memory, critically rely on hippocampal processing for encoding and retrieval. Systemic chemotherapy treatments used in breast cancer commonly cause neurotoxicity within the hippocampus, thereby creating a vulnerability to memory impairment. We review structural and functional neuroimaging studies that have identified disruptions in the recollection network and related episodic memory impairments in chemotherapy-treated breast cancer survivors, and argue for the need to better characterize hippocampally mediated memory dysfunction following chemotherapy treatments. Given the importance of autobiographical memory for a person's sense of identity, ability to plan for the future, and general functioning, under-appreciation of how this type of memory is impacted by cancer treatment can lead to overlooking or minimizing the negative experiences of breast cancer survivors, and neglecting a cognitive domain that may benefit from intervention strategies.
Collapse
Affiliation(s)
| | - Gordon Winocur
- Rotman Research Institute, Baycrest Centre, Toronto, ON M6A 2E1, Canada
- Department of Psychology, Department of Psychiatry, University of Toronto, Toronto, ON M5S 3G3, Canada
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Melanie J Sekeres
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
16
|
The Distinctive Pattern of Declarative Memories in Autism Spectrum Disorder: Further Evidence of Episodic Memory Constraints. J Autism Dev Disord 2022:10.1007/s10803-022-05579-y. [PMID: 35616819 DOI: 10.1007/s10803-022-05579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
This study examines declarative memory retrieval in ASD depending on the availability and access to stored conceptual knowledge. Fifteen autistic participants and a matched control group of 18 typically-developed (TD) volunteers completed a Remember-Know paradigm manipulated by encoding-type (categorical, perceptual) and item-typicality (high-typical, low-typical). The autistic group showed worse and slower recognition and less recollection but equivalent familiarity-based memories compared to TDs. Notably, low-typical items did not improve their memories as they did for TDs, likely due to difficulties in matching low-fit information to the stored schema. Results suggest that memory decline in ASD may derive from the episodic system and its dynamics with the semantic system. These findings may inform interventional strategies for enhancing learning abilities in ASD.
Collapse
|
17
|
Santangelo V. On the contribution of the ventromedial prefrontal cortex to the neural representation of past memories. Cogn Neurosci 2022; 13:154-155. [PMID: 35579493 DOI: 10.1080/17588928.2022.2076072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tallman and colleagues (this issue) showed that memory consolidation of laboratory materials produces, even at short intervals, changes in cortical activity within a widespread network of brain regions. These changes, however, do not encompass a core memory region, namely the ventromedial prefrontal cortex (vmPFC). Here, I discuss research showing that the neural activity of the vmPFC is sensitive to the remoteness of memories, especially using tasks that involve autobiographical recollection. Taken together, these findings appear to highlight a differential contribution of the vmPFC according to the nature of the to-be-remembered material (laboratory vs. autobiographical) that might be further investigated by future research.
Collapse
Affiliation(s)
- Valerio Santangelo
- Department of Philosophy, Social Sciences & Education, University of Perugia, Italy.,Functional Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, Rome, Italy
| |
Collapse
|
18
|
Tallman CW, Clark RE, Smith CN. Human brain activity and functional connectivity as memories age from one hour to one month. Cogn Neurosci 2022; 13:115-133. [DOI: 10.1080/17588928.2021.2021164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Catherine W. Tallman
- Department of Psychology, UCSD, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Robert E. Clark
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, UCI, San Diego, CA, USA
| | - Christine N. Smith
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, UCI, San Diego, CA, USA
| |
Collapse
|
19
|
Gisquet-Verrier P, Riccio DC. Revisiting systems consolidation and the concept of consolidation. Neurosci Biobehav Rev 2021; 132:420-432. [PMID: 34875279 DOI: 10.1016/j.neubiorev.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
For more than 50 years, knowledge of memory processes has been based on the consolidation hypothesis, which postulates that new memories require time to become stabilized. Two forms of the consolidation model exist. The Cellular Consolidation concept is based upon retrograde amnesia induced by amnesic treatments, the severity of which decreases as the learning to treatment increases over minutes or hours. In contrast, The Systems Consolidation model is based on post-training hippocampal lesions, which produce more severe retrograde amnesia when induced after days than after weeks. Except for the temporal parameters, Cellular and Systems Consolidation show many similarities. Here we propose that Systems consolidation, much as Cellular Consolidation (see Gisquet- Verrier and Riccio, 2018), can be explained in terms of a form of state-dependency. Accordingly, lesions of the hippocampus induce a change in the internal state of the animal, which disrupts retrieval processes. But the effect of contextual change is known to decrease with the length of the retention intervals, consistent with time-dependent retrograde amnesia. We provide evidence supporting this new view.
Collapse
Affiliation(s)
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
20
|
Lehmann H, Stykel MG, Glenn MJ. Overtraining Strengthens the Visual Discrimination Memory Trace Outside the Hippocampus in Male Rats. Front Behav Neurosci 2021; 15:768552. [PMID: 34867230 PMCID: PMC8634582 DOI: 10.3389/fnbeh.2021.768552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The hippocampus (HPC) may compete with other memory systems when establishing a representation, a process termed overshadowing. However, this overshadowing may be mitigated by repeated learning episodes, making a memory resistant to post-training hippocampal damage. In the current study, we examined this overshadowing process for a hippocampal-dependent visual discrimination memory in rats. In Experiment 1, male rats were trained to criterion (80% accuracy on two consecutive days) on a visual discrimination and then given 50 additional trials distributed over 5 days or 10 weeks. Regardless of this additional learning, extensive damage to the HPC caused retrograde amnesia for the visual discrimination, suggesting that the memory remained hippocampal-dependent. In Experiment 2, rats received hippocampal damage before learning and required approximately twice as many trials to acquire the visual discrimination as control rats, suggesting that, when the overshadowing or competition is removed, the non-hippocampal memory systems only slowly acquires the discrimination. In Experiment 3, increasing the additional learning beyond criterion by 230 trials, the amount needed in Experiment 2 to train the non-hippocampal systems in absence of competition, successfully prevented the retrograde amnesic effects of post-training hippocampal damage. Combined, the findings suggest that a visual discrimination memory trace can be strengthened in non-hippocampal systems with overtraining and become independent of the HPC.
Collapse
Affiliation(s)
- Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Morgan G. Stykel
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Melissa J. Glenn
- Department of Psychology, Colby College, Waterville, MA, United States
| |
Collapse
|
21
|
Shepherd EH, Fournier NM, Sutherland RJ, Lehmann H. Distributed learning episodes create a context fear memory outside the hippocampus that depends on perirhinal and anterior cingulate cortices. Learn Mem 2021; 28:405-413. [PMID: 34663693 PMCID: PMC8525424 DOI: 10.1101/lm.053396.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
Damage to the hippocampus (HPC) typically causes retrograde amnesia for contextual fear conditioning. Repeating the conditioning over several sessions, however, can eliminate the retrograde amnesic effects. This form of reinstatement thus permits modifications to networks that can support context memory retrieval in the absence of the HPC. The present study aims to identify cortical regions that support the nonHPC context memory. Specifically, the contribution of the perirhinal cortex (PRH) and the anterior cingulate cortex (ACC) were examined because of their established importance to context memory. The findings show that context memories established through distributed reinstatement survive damage limited only to the HPC, PRH, or ACC. Combined lesions of the HPC and PRH, as well as the HPC and ACC, caused retrograde amnesia, suggesting that network modifications in the PRH and ACC enable context fear memories to become resistant to HPC damage.
Collapse
Affiliation(s)
| | - Neil M Fournier
- Psychology Department, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, The University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hugo Lehmann
- Psychology Department, Trent University, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
22
|
Baena D, Cantero JL, Atienza M. Stability of neural encoding moderates the contribution of sleep and repeated testing to memory consolidation. Neurobiol Learn Mem 2021; 185:107529. [PMID: 34597816 DOI: 10.1016/j.nlm.2021.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
There is evidence suggesting that online consolidation during retrieval-mediated learning interacts with offline consolidation during subsequent sleep to transform memory. Here we investigate whether this interaction persists when retrieval-mediated learning follows post-training sleep and whether the direction of this interaction is conditioned by the quality of encoding resulting from manipulation of the amount of sleep on the previous night. The quality of encoding was determined by computing the degree of similarity between EEG-activity patterns across restudy of face pairs in two groups of young participants, one who slept the last 4 h of the pre-training night, and another who slept 8 h. The offline consolidation was assessed by computing the degree of coupling between slow oscillations (SOs) and spindles (SPs) during post-training sleep, while the online consolidation was evaluated by determining the degree of similarity between EEG-activity patterns recorded during the study phase and during repeated recognition of either the same face pair (i.e., specific similarity) or face pairs sharing sex and profession (i.e., categorical similarity) to evaluate differentiation and generalization, respectively. The study and recognition phases were separated by a night of normal sleep duration. Mixed-effects models revealed that the stability of neural encoding moderated the relationship between sleep- and retrieval-mediated consolidation processes over left frontal regions. For memories showing lower encoding stability, the enhanced SO-SP coupling was associated with increased reinstatement of category-specific encoding-related activity at the expense of content-specific activity, whilst the opposite occurred for memories showing greater encoding stability. Overall, these results suggest that offline consolidation during post-training sleep interacts with online consolidation during retrieval the next day to favor the reorganization of memory contents, by increasing specificity of stronger memories and generalization of the weaker ones.
Collapse
Affiliation(s)
- Daniel Baena
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Universidad Pablo de Olavide, Seville 41013, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain.
| |
Collapse
|
23
|
Cowan ET, Liu AA, Henin S, Kothare S, Devinsky O, Davachi L. Time-dependent transformations of memory representations differ along the long axis of the hippocampus. Learn Mem 2021; 28:329-340. [PMID: 34400534 PMCID: PMC8372564 DOI: 10.1101/lm.053438.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Research has shown that sleep is beneficial for the long-term retention of memories. According to theories of memory consolidation, memories are gradually reorganized, becoming supported by widespread, distributed cortical networks, particularly during postencoding periods of sleep. However, the effects of sleep on the organization of memories in the hippocampus itself remains less clear. In a 3-d study, participants encoded separate lists of word-image pairs differing in their opportunity for sleep-dependent consolidation. Pairs were initially studied either before or after an overnight sleep period, and were then restudied in a functional magnetic resonance imaging (fMRI) scan session. We used multivariate pattern similarity analyses to examine fine-grained effects of consolidation on memory representations in the hippocampus. We provide evidence for a dissociation along the long axis of the hippocampus that emerges with consolidation, such that representational patterns for object-word memories initially formed prior to sleep become differentiated in anterior hippocampus and more similar, or overlapping, in posterior hippocampus. Differentiation in anterior hippocampal representations correlated with subsequent behavioral performance. Furthermore, representational overlap in posterior hippocampus correlated with the duration of intervening slow wave sleep. Together, these results demonstrate that sleep-dependent consolidation promotes the reorganization of memory traces along the long axis of the hippocampus.
Collapse
Affiliation(s)
- Emily T Cowan
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Anli A Liu
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Simon Henin
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Sanjeev Kothare
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Lila Davachi
- Psychology Department, Columbia University, New York, New York 10027, USA
- Nathan Kline Institute, Orangeburg, New York 10962, USA
| |
Collapse
|
24
|
Conceptual knowledge modulates memory recognition of common items: The selective role of item-typicality. Mem Cognit 2021; 50:77-94. [PMID: 34363197 DOI: 10.3758/s13421-021-01213-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 11/08/2022]
Abstract
This work examines the influence of stored conceptual knowledge (i.e., schema and item-typicality) on conscious memory processes. Specifically, we tested whether item-typicality selectively modulates recollection and familiarity-based memories as a function of the availability of a categorical schema during encoding. Experiment 1 manipulated both encoding type (categorical vs. perceptual) and item-typicality (typical vs. atypical) in a single Remember-Know paradigm. Experiment 2 replicated and extended the previous study with a complementary source-memory task. In both experiments, we observed that typical items led to more Guess responses, while atypical items led to more Remember responses. These findings support the idea that the activation of a congruent categorical schema selectively enhances familiarity-based memories, likely due to the bypassing of the activated mechanisms for novel information. In contrast, atypical items improved recollective-based memories only, suggesting that their lesser fit with the stored prototype might have triggered those novelty processing mechanisms. Moreover, atypical items enhanced memory in the categorical condition for both item recognition and recollection memories only, suggesting an episodic gain due to inconsistency/novelty. The source memory results gave further credence to the argument that "Remember" judgments were based on truly recollective experiences and presented the same interaction between encoding type and item-typicality observed in recollective-based memories. Overall, the results suggest that the supposedly opposite conceptual knowledge effects actually coexist and interact, albeit selectively, in the modulation of recollection and familiarity processes.
Collapse
|
25
|
Gilboa A, Moscovitch M. No consolidation without representation: Correspondence between neural and psychological representations in recent and remote memory. Neuron 2021; 109:2239-2255. [PMID: 34015252 DOI: 10.1016/j.neuron.2021.04.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Memory systems consolidation is often conceived as the linear, time-dependent, neurobiological shift of memory from hippocampal-cortical to cortico-cortical dependency. We argue that contrary to this unidirectional view of memory reorganization, information about events may be retained in multiple forms (e.g., event-specific sensory-near episodic memory, event-specific gist information, event-general schematic information, or abstract semantic memory). These representations can all form at the time of the event and may continue to coexist for long durations. Their relative strength, composition, and dominance of expression change with time and experience, with task demands, and through their dynamic interaction with one another. These different psychological mnemonic representations depend on distinct functional and structural neurobiological substrates such that there is a neural-psychological representation correspondence (NPRC) among them. We discuss how the dynamics of psychological memory representations are reflected in multiple levels of neurobiological markers and their interactions. By this view, there are only variations of synaptic consolidation and memory dynamics without assuming a distinct systems consolidation process.
Collapse
Affiliation(s)
- Asaf Gilboa
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
26
|
Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. Biochem Pharmacol 2020; 191:114369. [PMID: 33338474 DOI: 10.1016/j.bcp.2020.114369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Neuroplasticity refers to the fact that our brain can partially modify both structure and function to adequately respond to novel environmental stimulations. Neuroplasticity mechanisms are not only operating during the acquisition of novel information (i.e., online) but also during the offline periods that take place after the end of the actual learning episode. Structural brain changes as a consequence of learning have been consistently demonstrated on the long term using non-invasive neuroimaging methods, but short-term changes remained more elusive. Fortunately, the swift development of advanced MR methods over the last decade now allows tracking fine-grained cerebral changes on short timescales beyond gross volumetric modifications stretching over several days or weeks. Besides a mere effect of time, post-learning sleep mechanisms have been shown to play an important role in memory consolidation and promote long-lasting changes in neural networks. Sleep was shown to contribute to structural modifications over weeks of prolonged training, but studies evidencing more rapid post-training sleep structural effects linked to memory consolidation are still scarce in human. On the other hand, animal studies convincingly show how sleep might modulate synaptic microstructure. We aim here at reviewing the literature establishing a link between different types of training/learning and the resulting structural changes, with an emphasis on the role of post-training sleep and time in tuning these modifications. Open questions are raised such as the role of post-learning sleep in macrostructural changes, the links between different MR structural measurement-related modifications and the underlying microstructural brain processes, and bidirectional influences between structural and functional brain changes.
Collapse
|
27
|
Integration and differentiation of hippocampal memory traces. Neurosci Biobehav Rev 2020; 118:196-208. [DOI: 10.1016/j.neubiorev.2020.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
|
28
|
McCormick C, Barry DN, Jafarian A, Barnes GR, Maguire EA. vmPFC Drives Hippocampal Processing during Autobiographical Memory Recall Regardless of Remoteness. Cereb Cortex 2020; 30:5972-5987. [PMID: 32572443 PMCID: PMC7899055 DOI: 10.1093/cercor/bhaa172] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/25/2022] Open
Abstract
Our ability to recall past experiences, autobiographical memories (AMs), is crucial to cognition, endowing us with a sense of self and underwriting our capacity for autonomy. Traditional views assume that the hippocampus orchestrates event recall, whereas recent accounts propose that the ventromedial prefrontal cortex (vmPFC) instigates and coordinates hippocampal-dependent processes. Here we sought to characterize the dynamic interplay between the hippocampus and vmPFC during AM recall to adjudicate between these perspectives. Leveraging the high temporal resolution of magnetoencephalography, we found that the left hippocampus and the vmPFC showed the greatest power changes during AM retrieval. Moreover, responses in the vmPFC preceded activity in the hippocampus during initiation of AM recall, except during retrieval of the most recent AMs. The vmPFC drove hippocampal activity during recall initiation and also as AMs unfolded over subsequent seconds, and this effect was evident regardless of AM age. These results recast the positions of the hippocampus and the vmPFC in the AM retrieval hierarchy, with implications for theoretical accounts of memory processing and systems-level consolidation.
Collapse
Affiliation(s)
- Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Daniel N Barry
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Amirhossein Jafarian
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
29
|
Sekeres MJ, Moscovitch M, Winocur G, Pishdadian S, Nichol D, Grady CL. Reminders activate the prefrontal-medial temporal cortex and attenuate forgetting of event memory. Hippocampus 2020; 31:28-45. [PMID: 32965760 DOI: 10.1002/hipo.23260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 01/03/2023]
Abstract
Replicas of an aspect of an experienced event can serve as effective reminders, yet little is known about the neural basis of such reminding effects. Here we examined the neural activity underlying the memory-enhancing effect of reminders 1 week after encoding of naturalistic film clip events. We used fMRI to determine differences in network activity associated with recently reactivated memories relative to comparably aged, non-reactivated memories. Reminders were effective in facilitating overall retrieval of memory for film clips, in an all-or-none fashion. Prefrontal cortex and hippocampus were activated during both reminders and retrieval. Peak activation in ventro-lateral prefrontal cortex (vPFC) preceded peak activation in the right hippocampus during the reminders. For film clips that were successfully retrieved after 7 days, pre-retrieval reminders did not enhance the quality of the retrieved memory or the number of details retrieved, nor did they more strongly engage regions of the recollection network than did successful retrieval of a non-reminded film clip. These results suggest that reminders prior to retrieval are an effective means of boosting retrieval of otherwise inaccessible episodic events, and that the inability to recall certain events after a delay of a week largely reflects a retrieval deficit, rather than a storage deficit for this information. The results extend other evidence that vPFC drives activation of the hippocampus to facilitate memory retrieval and scene construction, and show that this facilitation also occurs when reminder cues precede successful retrieval attempts. The time course of vPFC-hippocampal activity during the reminder suggests that reminders may first engage schematic information meditated by vPFC followed by a recollection process mediated by the hippocampus.
Collapse
Affiliation(s)
- Melanie J Sekeres
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Gordon Winocur
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, Trent University, Peterborough, Ontario, Canada
| | - Sara Pishdadian
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Dan Nichol
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Cheryl L Grady
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Allene C, Kalalou K, Durand F, Thomas F, Januel D. Acute and Post-Traumatic Stress Disorders: A biased nervous system. Rev Neurol (Paris) 2020; 177:23-38. [PMID: 32800536 DOI: 10.1016/j.neurol.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 11/24/2022]
Abstract
Acute stress disorder and post-traumatic stress disorder are generally triggered by an exceptionally intense threat. The consequences of this traumatogenic situation are explored here in chronological order, from exposure to the threat to development of symptoms. Such a situation may disrupt the equilibrium between two fundamental brain circuits, referred to as the "defensive" and "cognitive". The defensive circuit triggers the stress response as well as the formation of implicit memory. The cognitive circuit triggers the voluntary response and the formation of explicit autobiographical memory. During a traumatogenic situation, the defensive circuit could be over-activated while cognitive circuit is under-activated. In the most severe cases, overactivation of the defensive circuit may cause its brutal deactivation, resulting in dissociation. Here, we address the underlying neurobiological mechanisms at every scale: from neurons to behaviors, providing a detailed explanatory model of trauma.
Collapse
Affiliation(s)
- C Allene
- Unité de recherche clinique, établissement public de santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne, France; Centre de psychothérapie, établissement public de santé Ville-Evrard, 5, rue du Docteur-Delafontaine, 93200 Saint-Denis, France.
| | - K Kalalou
- Unité de recherche clinique, établissement public de santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne, France; Centre de psychothérapie, établissement public de santé Ville-Evrard, 5, rue du Docteur-Delafontaine, 93200 Saint-Denis, France.
| | - F Durand
- Unité de recherche clinique, établissement public de santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne, France; Centre de psychothérapie, établissement public de santé Ville-Evrard, 5, rue du Docteur-Delafontaine, 93200 Saint-Denis, France.
| | - F Thomas
- Unité de recherche clinique, établissement public de santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne, France.
| | - D Januel
- Unité de recherche clinique, établissement public de santé Ville-Evrard, 202, avenue Jean-Jaurès, 93332 Neuilly-sur-Marne, France.
| |
Collapse
|
31
|
St-Laurent M, Buchsbaum BR. How Multiple Retrievals Affect Neural Reactivation in Young and Older Adults. J Gerontol B Psychol Sci Soc Sci 2020; 74:1086-1100. [PMID: 31155678 DOI: 10.1093/geronb/gbz075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Aging can reduce the specificity with which memory episodes are represented as distributed patterns of brain activity. It remains unclear, however, whether repeated encoding and retrieval of stimuli modulate this decline. Memory repetition is thought to promote semanticization, a transformative process during which episodic memory becomes gradually decontextualized and abstracted. Because semantic memory is considered more resilient to aging than context-rich episodic memory, we hypothesized that repeated retrieval would affect cortical reinstatement differently in young versus older adults. METHODS We reanalyzed data from young and older adults undergoing functional magnetic resonance imaging while repeatedly viewing and recalling short videos. We derived trial-unique multivariate measures of similarity between video-specific brain activity patterns elicited at perception and at recall, which we compared between age groups at each repetition. RESULTS With repetition, memory representation became gradually more distinct from perception in young adults, as reinstatement specificity converged downward toward levels observed in the older group. In older adults, alternative representations that were item-specific but orthogonal to patterns elicited at perception became more salient with repetition. DISCUSSION Repetition transformed dominant patterns of memory representation away and orthogonally from perception in young and older adults, respectively. Although distinct, both changes are consistent with repetition-induced semanticization.
Collapse
Affiliation(s)
- Marie St-Laurent
- Research Institute of the McGill University Health Centre, Montreal, Quebec
| | - Bradley R Buchsbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario.,Department of Psychology, University of Toronto, Ontario, Canada
| |
Collapse
|
32
|
|
33
|
St-Laurent M, Rosenbaum RS, Olsen RK, Buchsbaum BR. Representation of viewed and recalled film clips in patterns of brain activity in a person with developmental amnesia. Neuropsychologia 2020; 142:107436. [PMID: 32194085 DOI: 10.1016/j.neuropsychologia.2020.107436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/03/2020] [Accepted: 03/10/2020] [Indexed: 01/29/2023]
Abstract
As clear memories transport us back into the past, the brain also revives prior patterns of neural activity, a phenomenon known as neural reactivation. While growing evidence indicates a link between neural reactivation and typical variations in memory performance in healthy individuals, it is unclear how and to what extent reactivation is disrupted by a memory disorder. The current study characterizes neural reactivation in a case of amnesia using Multivoxel Pattern Analysis (MVPA). We tested NC, an individual with developmental amnesia linked to a diencephalic stroke, and 19 young adult controls on a functional magnetic resonance imaging (fMRI) task during which participants viewed and recalled short videos multiple times. An encoding classifier trained and tested to identify videos based on brain activity patterns elicited at perception revealed superior classification in NC. The enhanced consistency in stimulus representation we observed in NC at encoding was accompanied by an absence of multivariate repetition suppression, which occurred over repeated viewing in the controls. Another recall classifier trained and tested to identify videos during mental replay indicated normal levels of classification in NC, despite his poor memory for stimulus content. However, a cross-condition classifier trained on perception trials and tested on mental replay trials-a strict test of reactivation-revealed significantly poorer classification in NC. Thus, while NC's brain activity was consistent and stimulus-specific during mental replay, this specificity did not reflect the reactivation of patterns elicited at perception to the same extent as controls. Fittingly, we identified brain regions for which activity supported stimulus representation during mental replay to a greater extent in NC than in controls. This activity was not modeled on perception, suggesting that compensatory patterns of representation based on generic knowledge can support consistent mental constructs when memory is faulty. Our results reveal several ways in which amnesia impacts distributed patterns of stimulus representation during encoding and retrieval.
Collapse
Affiliation(s)
- Marie St-Laurent
- Rotman Research Institute at Baycrest, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada.
| | - R Shayna Rosenbaum
- Rotman Research Institute at Baycrest, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada; Department of Psychology, York University, Faculty of Health, Behavioural Sciences Building, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Rosanna K Olsen
- Rotman Research Institute at Baycrest, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St.George Street, 4th Floor, Toronto, ON, M5S 3G3, Canada
| | - Bradley R Buchsbaum
- Rotman Research Institute at Baycrest, 3560 Bathurst Street, Toronto, Ontario, M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St.George Street, 4th Floor, Toronto, ON, M5S 3G3, Canada
| |
Collapse
|
34
|
Sleep Spindles Promote the Restructuring of Memory Representations in Ventromedial Prefrontal Cortex through Enhanced Hippocampal-Cortical Functional Connectivity. J Neurosci 2020; 40:1909-1919. [PMID: 31959699 DOI: 10.1523/jneurosci.1946-19.2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/21/2022] Open
Abstract
Memory consolidation is hypothesized to involve the distribution and restructuring of memory representations across hippocampal and cortical regions. Theories suggest that, through extended hippocampal-cortical interactions, cortical ensembles come to represent more integrated, or overlapping, memory traces that prioritize commonalities across related memories. Sleep processes, particularly fast sleep spindles, are thought to support consolidation, but evidence for this relationship has been mostly limited to memory retention benefits. Whether fast spindles provide a mechanism for neural changes hypothesized to support consolidation, including the strengthening of hippocampal-cortical networks and integration across memory representations, remains unclear, as does the specificity of regions involved. Using functional connectivity analyses of human fMRI data (both sexes), we show that fast spindle density during overnight sleep is related to enhanced hippocampal-cortical functional connectivity the next day, when restudying information learned before sleep. Spindle density modulated connectivity in distinct hippocampal-cortical networks depending on the category of the consolidated stimuli. Specifically, spindle density correlated with functional connectivity between anterior hippocampus and ventromedial prefrontal cortex (vmPFC) for object-word pairs, and posterior hippocampus and posteromedial cortex for scene-word pairs. Using multivariate pattern analyses, we also show that fast spindle density during postlearning sleep is associated with greater pattern similarity, or representational overlap, across individual object-word memories in vmPFC the next day. Further, the relationship between fast spindle density and representational overlap in vmPFC was mediated by the degree of anterior hippocampal-vmPFC functional connectivity. Together, these results suggest that fast spindles support the network distribution of memory traces, potentially restructuring memory representations in vmPFC.SIGNIFICANCE STATEMENT How new experiences are transformed into long-term memories remains a fundamental question for neuroscience research. Theories suggest that memories are stabilized as they are reorganized in the brain, a process thought to be supported by sleep oscillations, particularly sleep spindles. Although sleep spindles have been associated with benefits in memory retention, it is not well understood how spindles modify neural memory traces. This study found that spindles during overnight sleep correlate with changes in neural memory traces, including enhanced functional connectivity in distinct hippocampal-cortical networks and increased pattern similarity among memories in the cortex. The results provide critical evidence that spindles during overnight sleep may act as a physiological mechanism for the restructuring of neural memory traces.
Collapse
|
35
|
Sekeres MJ, Moscovitch M, Grady CL, Sullens DG, Winocur G. Reminders reinstate context-specificity to generalized remote memories in rats: relation to activity in the hippocampus and aCC. ACTA ACUST UNITED AC 2019; 27:1-5. [PMID: 31843976 PMCID: PMC6919192 DOI: 10.1101/lm.050161.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/15/2019] [Indexed: 01/23/2023]
Abstract
Conditioned fear memories that are context-specific shortly after conditioning generalize over time. We exposed rats to a context reminder 30 d after conditioning, which served to reinstate context-specificity, and investigated how this reminder alters retrieval-induced activity in the hippocampus and anterior cingulate cortex (aCC) relative to a no reminder condition. c-Fos expression in dorsal CA1 was observed following retrieval in the original context, but not in a novel context, whether or not the memory was reactivated, suggesting that dCA1 retains the context-specific representation. c-Fos was highly expressed in aCC following remote memory testing in both contexts, regardless of reminder condition, indicating that aCC develops generalized representations that are insensitive to memory reactivation.
Collapse
Affiliation(s)
- Melanie J Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, Baycrest, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Cheryl L Grady
- Rotman Research Institute, Baycrest, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - D Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Gordon Winocur
- Rotman Research Institute, Baycrest, Toronto, Ontario M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 3G3, Canada.,Department of Psychology, Trent University, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
36
|
Renoult L, Irish M, Moscovitch M, Rugg MD. From Knowing to Remembering: The Semantic–Episodic Distinction. Trends Cogn Sci 2019; 23:1041-1057. [DOI: 10.1016/j.tics.2019.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023]
|
37
|
Du X, Zhan L, Chen G, Guo D, Li C, Moscovitch M, Yang J. Differential activation of the medial temporal lobe during item and associative memory across time. Neuropsychologia 2019; 135:107252. [PMID: 31698009 DOI: 10.1016/j.neuropsychologia.2019.107252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/26/2019] [Accepted: 11/01/2019] [Indexed: 11/26/2022]
Abstract
Studies have shown that the hippocampus plays a crucial role in associative memory. One central issue is whether the involvement of the hippocampus in associative memory remains stable or declines with the passage of time. In the majority of studies, memory performance declines with delay, confounding attempts at interpreting differences in hippocampal activation over time. To address this issue, we tried to equate behavioral performance as much as possible across time for memory of items and associations separately. After encoding words and word pairs, participants were tested for item and associative memories at four time intervals: 20-min, 1-day, 1-week, and 1-month. The results revealed that MTL activation differed over time for associative and item memories. For associative memory, the activation of the anterior hippocampus decreased from 20-min to 1-day then remained stable, whereas in the posterior hippocampus, the activation was comparable for different time intervals when old pairs were correctly retrieved. The hippocampal activation also remained stable when recombined pairs were correctly rejected. As this condition controls for familiarity of the individual items, correct performance depends only on associative memory. For item memory, hippocampal activation declined progressively from 20-min to 1-week and remained stable afterwards. By contrast, the activation in the perirhinal/entorhinal cortex increased over time irrespective of item and associative memories. Drawing on Tulving's distinction between recollection and familiarity, we interpret this pattern of results in accordance with Trace Transformation Theory, which states that as memories are transformed with time and experience, the neural structures mediating item and associative memories will vary according to the underlying representations to which the memories have been transformed.
Collapse
Affiliation(s)
- Xiaoya Du
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China
| | - Lexia Zhan
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH/NIH, Bethesda, MD, USA
| | - Dingrong Guo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China
| | - Cuihong Li
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Canada.
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, PR China.
| |
Collapse
|
38
|
Sadeh T, Pertzov Y. Scale-invariant Characteristics of Forgetting: Toward a Unifying Account of Hippocampal Forgetting across Short and Long Timescales. J Cogn Neurosci 2019; 32:386-402. [PMID: 31659923 DOI: 10.1162/jocn_a_01491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
After over 100 years of relative silence in the cognitive literature, recent advances in the study of the neural underpinnings of memory-specifically, the hippocampus-have led to a resurgence of interest in the topic of forgetting. This review draws a theoretically driven picture of the effects of time on forgetting of hippocampus-dependent memories. We review evidence indicating that time-dependent forgetting across short and long timescales is reflected in progressive degradation of hippocampal-dependent relational information. This evidence provides an important extension to a growing body of research accumulated in recent years, showing that-in contrast to the once prevailing view that the hippocampus is exclusively involved in memory and forgetting over long timescales-the role of the hippocampus also extends to memory and forgetting over short timescales. Thus, we maintain that similar rules govern not only remembering but also forgetting of hippocampus-dependent information over short and long timescales.
Collapse
|
39
|
Sutherland RJ, Lee JQ, McDonald RJ, Lehmann H. Has multiple trace theory been refuted? Hippocampus 2019; 30:842-850. [PMID: 31584226 DOI: 10.1002/hipo.23162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 11/06/2022]
Abstract
Multiple trace theory (Nadel & Moscovitch, Current Opinion in Neurobiology, 1997, 7, 217-227) has proven to be one of the most novel and influential recent memory theories, and played an essential role in shifting perspective on systems-level memory consolidation. Here, we briefly review its impact and testable predictions and focus our discussion primarily on nonhuman animal experiments. Perhaps, the most often supported claim is that episodic memory tasks should exhibit comparable severity of retrograde amnesia (RA) for recent and remote memories after extensive damage to the hippocampus (HPC). By contrast, there appears to be little or no experimental support for other core predictions, such as temporally limited RA after extensive HPC damage in semantic memory tasks, temporally limited RA for episodic memories after partial HPC damage, or the existence of storage of multiple HPC traces with repeated reactivations. Despite these shortcomings, it continues to be a highly cited HPC memory theory.
Collapse
Affiliation(s)
- Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Q Lee
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert J McDonald
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
40
|
Patai EZ, Javadi AH, Ozubko JD, O’Callaghan A, Ji S, Robin J, Grady C, Winocur G, Rosenbaum RS, Moscovitch M, Spiers HJ. Hippocampal and Retrosplenial Goal Distance Coding After Long-term Consolidation of a Real-World Environment. Cereb Cortex 2019; 29:2748-2758. [PMID: 30916744 PMCID: PMC6519689 DOI: 10.1093/cercor/bhz044] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Recent research indicates the hippocampus may code the distance to the goal during navigation of newly learned environments. It is unclear however, whether this also pertains to highly familiar environments where extensive systems-level consolidation is thought to have transformed mnemonic representations. Here we recorded fMRI while University College London and Imperial College London students navigated virtual simulations of their own familiar campus (>2 years of exposure) and the other campus learned days before scanning. Posterior hippocampal activity tracked the distance to the goal in the newly learned campus, as well as in familiar environments when the future route contained many turns. By contrast retrosplenial cortex only tracked the distance to the goal in the familiar campus. All of these responses were abolished when participants were guided to their goal by external cues. These results open new avenues of research on navigation and consolidation of spatial information and underscore the notion that the hippocampus continues to play a role in navigation when detailed processing of the environment is needed for navigation.
Collapse
Affiliation(s)
- E Zita Patai
- Institute of Behavioural Neuroscience, University College London, London, UK
| | - Amir-Homayoun Javadi
- Institute of Behavioural Neuroscience, University College London, London, UK
- School of Psychology, University of Kent, Canterbury, UK
| | - Jason D Ozubko
- Department of Psychology, SUNY Geneseo, Geneseo New York, NY, USA
| | - Andrew O’Callaghan
- Institute of Behavioural Neuroscience, University College London, London, UK
| | - Shuman Ji
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Jessica Robin
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Cheryl Grady
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Centre, University of Toronto, Toronto, Canada
- Department of Psychology, Trent University, Peterborough, Canada
| | - Gordon Winocur
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Centre, University of Toronto, Toronto, Canada
- Department of Psychology, Trent University, Peterborough, Canada
| | | | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Centre, University of Toronto, Toronto, Canada
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, University College London, London, UK
| |
Collapse
|
41
|
Robin J, Garzon L, Moscovitch M. Spontaneous memory retrieval varies based on familiarity with a spatial context. Cognition 2019; 190:81-92. [PMID: 31034970 DOI: 10.1016/j.cognition.2019.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 10/26/2022]
Abstract
Spatial context can serve as a powerful cue for episodic memory. In daily life, we encounter locations varying in familiarity that may trigger different forms of memory retrieval. While previous research on autobiographical memory suggests that more familiar landmarks cue more detailed memories, theories such as cue overload predict that less familiar cues will more reliably trigger specific memory retrieval. It is therefore possible that more and less familiar cues will differentially elicit more generalized and specific memories, respectively. In this series of studies, we develop a novel paradigm for eliciting spontaneous memory retrieval based on real-world spatial contexts varying in familiarity. We found evidence that more familiar contexts generally lead to higher rates of spontaneous memory retrieval for semantic and generalized memories, but that episodic memories are more frequently retrieved for less familiar cues. These patterns demonstrate how related memories lead to the formation of more generalized representations over time, while memories with fewer associates remain episodic. We discuss these findings in relation to those obtained in a version of the study in which participants were instructed to retrieve thoughts. Together these findings provide novel insight into the dynamics of context familiarity and memory retrieval in a naturalistic autobiographical memory paradigm.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada.
| | - Luisa Garzon
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Department of Psychology, Baycrest Health Sciences, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada
| |
Collapse
|