1
|
Du KX, Wu YF, Hua W, Duan ZW, Gao R, Liang JH, Li Y, Yin H, Wu JZ, Shen HR, Wang L, Shao Y, Li JY, Liang JH, Xu W. Identify truly high-risk TP53-mutated diffuse large B cell lymphoma patients and explore the underlying biological mechanisms. Cell Commun Signal 2024; 22:401. [PMID: 39148095 PMCID: PMC11325619 DOI: 10.1186/s12964-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
TP53 mutation (TP53-mut) correlates with inferior survival in many cancers, whereas its prognostic role in diffuse large B-cell lymphoma (DLBCL) is still in controversy. Therefore, more precise risk stratification needs to be further explored for TP53-mut DLBCL patients. A set of 2637 DLBCL cases from multiple cohorts, was enrolled in our analysis. Among the 2637 DLBCL patients, 14.0% patients (370/2637) had TP53-mut. Since missense mutations account for the vast majority of TP53-mut DLBCL patients, and most non-missense mutations affect the function of the P53 protein, leading to worse survival rates, we distinguished patients with missense mutations. A TP53 missense mutation risk model was constructed based on a 150-combination machine learning computational framework, demonstrating excellent performance in predicting prognosis. Further analysis revealed that patients with high-risk missense mutations are significantly associated with early progression and exhibit dysregulation of multiple immune and metabolic pathways at the transcriptional level. Additionally, the high-risk group showed an absolutely suppressed immune microenvironment. To stratify the entire cohort of TP53-mut DLBCL, we combined clinical characteristics and ultimately constructed the TP53 Prognostic Index (TP53PI) model. In summary, we identified the truly high-risk TP53-mut DLBCL patients and explained this difference at the mutation and transcriptional levels.
Collapse
Affiliation(s)
- Kai-Xin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi-Fan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Hua
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Zi-Wen Duan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Rui Gao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jun-Heng Liang
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hao-Rui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jin-Hua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
2
|
Xu M, Fu J, Pei Y, Li M, Kan W, Yan R, Xia C, Ma J, Wang P, Zhang Y, Gao Y, Yang Y, Zhou Y, Li J, Zhou B. Discovery of a Highly Potent, Selective and Efficacious USP7 Degrader for the Treatment of Acute Lymphoblastic Leukemia. J Med Chem 2024. [PMID: 39028938 DOI: 10.1021/acs.jmedchem.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
USP7 is an attractive therapeutic target for cancers, especially for acute lymphoblastic leukemia (ALL) with wild-type p53. Herein, we report the discovery of XM-U-14 as a highly potent, selective and efficacious USP7 proteolysis-targeting chimera degrader. XM-U-14 achieves DC50 values of 0.74 nM and Dmax of 93% in inducing USP7 degradation in RS4;11 cell lines, and also significantly inhibits ALL cell growth. XM-U-14 even at 5 mg/kg dosed daily effectively inhibits RS4;11 tumor growth with 64.7% tumor regressions and causes no signs of toxicity in mice. XM-U-14 is a promising USP7 degrader for further optimization for ALL treatment.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jingfeng Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuan Pei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Mengna Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Ruyu Yan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chaoyue Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jingkun Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan, Guangdong 528400, China
| | - Peipei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yue Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan, Guangdong 528400, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Tsuihang New District, Zhongshan, Guangdong 528400, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
3
|
Negara I, Tomuleasa C, Buruiana S, Efremov DG. Molecular Subtypes and the Role of TP53 in Diffuse Large B-Cell Lymphoma and Richter Syndrome. Cancers (Basel) 2024; 16:2170. [PMID: 38927876 PMCID: PMC11201917 DOI: 10.3390/cancers16122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy and a heterogeneous entity comprised of several biologically distinct subtypes. Recently, novel genetic classifications of DLBCL have been resolved based on common mutational patterns indicative of distinct pathways of transformation. However, the complicated and costly nature of the novel classifiers has precluded their inclusion into routine practice. In view of this, the status of the TP53 gene, which is mutated or deleted in 20-30% of the cases, has emerged as an important prognostic factor for DLBCL patients, setting itself apart from other predictors. TP53 genetic lesions are particularly enriched in a genetic subtype of DLBCL that shares genomic features with Richter Syndrome, highlighting the possibility of a subset of DLBCL arising from the transformation of an occult chronic lymphocytic leukemia-like malignancy, such as monoclonal B-cell lymphocytosis. Patients with TP53-mutated DLBCL, including those with Richter Syndrome, have a particularly poor prognosis and display inferior responses to standard chemoimmunotherapy regimens. The data presented in this manuscript argue for the need for improved and more practical risk-stratification models for patients with DLBCL and show the potential for the use of TP53 mutational status for prognostication and, in prospect, treatment stratification in DLBCL.
Collapse
Affiliation(s)
- Ivan Negara
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Department of Internal Medicine, Hematology, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Sanda Buruiana
- Department of Internal Medicine, Hematology, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Dimitar G. Efremov
- Molecular Hematology Unit, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
- Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia
| |
Collapse
|
4
|
Zhang L, Chen K, Li Y, Chen Q, Shi W, Ji T, Tao H, He Z, Wang C, Yu L. Clinical outcomes and characteristics of patients with TP53-mutated myelodysplastic syndromes. Hematology 2023; 28:2181773. [PMID: 36892252 DOI: 10.1080/16078454.2023.2181773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE To explore the clinical outcomes and characteristics of TP53-mutated primary myelodysplastic syndromes (MDS). METHODS A total of 74 de novo primary MDS patients who were diagnosed and treated in the Department of Hematology of our hospital from January 2018 and September 2021 were analyzed retrospectively. All patients had evaluable blood cell counts, mean corpuscular volume (MCV), lactate dehydrogenase (LDH), bone marrow (BM) morphology, biopsy, and MDS-related 20-gene mutations sequencing. In addition, 69 of 74 patients had complete cytogenetic analysis through conventional chromosome analysis and fluorescence in-situ hybridization. RESULTS Patients were divided into two cohorts, the TP53-mutated type (TP53Mut) group (n = 19) and TP53 wild type (TP53WT) group (n = 55). Compared with the TP53WT group, patients in the TP53Mut group had higher ratios of cytogenetic abnormalities (82.4% vs. 30.8%, P < 0.001), with 5q- karyotype (64.70% vs. 38.5%, P < 0.001), complex karyotype(CK) (64.70% vs. 38.5%, P < 0.001), HR-MDS (94.7% vs. 61.8%, P = 0.008), and acute myelogenous leukemia (AML) transformation (26.3% vs. 12.7%, P < 0.001). Interestingly, patients in the TP53Mut group had lower median MCV than the TP53WT group (94.40 fl vs. 101.90 fl, P = 0.008). Furthermore, MCV = 100 fl as cutoff, and found that MCV ≤ 100 fl was more common in the TP53Mut group (73.7% vs. 38.2%, P < 0.001). After 1-4 courses of HMA ± chemotherapy, the overall response rate of the TP53Mut group was higher than the TP53WT group (83.3% vs. 71.4%, P = 0.012). With the median follow-up 12.0 months (1-46 months), the results show that the median OS and leukemia-free survival (LFS) of TP53Mut group was significantly shorter than the TP53WT group (P = 0.0018; P = 0.0310). Results of multivariate Cox proportional hazard analyses show TP53 mutation was an independent prognostic factor for the OS (HR 2.724, 95%CI 1.099-6.750, P = 0.030). CONCLUSION TP53-mutated primary MDS patients were associated with higher frequency of cytogenetic abnormalities, with 5q- karyotype, CK, AML transformation, higher risk IPSS-R, lower MCV and sensitive to HMA treatment, but worse survival.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kankan Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingying Li
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiuni Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Wenting Shi
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Tingting Ji
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hong Tao
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhengmei He
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Li X, Luo D, Zhang L, Li Q, Fan J, Zhang J, Huang B, Yang M, Nie X, Chang X, Pan H. Accurate interpretation of p53 immunohistochemical patterns is a surrogate biomarker for TP53 alterations in large B-cell lymphoma. BMC Cancer 2023; 23:1008. [PMID: 37858047 PMCID: PMC10588220 DOI: 10.1186/s12885-023-11513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND To clarify the relationship between p53 immunohistochemistry (IHC) staining and TP53 alterations (including mutations and deletions) in large B-cell lymphomas (LBCLs) and to explore the possibility of p53 IHC expression patterns as surrogate markers for TP53 alterations. METHODS A total of 95 patients diagnosed with LBCLs were selected, and paraffin samples were taken for TP53 gene sequencing, fluorescence in situ hybridization and p53 IHC staining. The results were interpreted by experienced pathologists and molecular pathologists. RESULTS Forty-three nonsynonymous TP53 mutations and p53 deletions were detected in 40 cases, whereas the remaining 55 cases had wild-type TP53 genes. The majority of TP53 mutations (34/43, 79.1%) occurred in exons 4-8, and R248Q was the most common mutation codon (4/43, 9.3%). The highest frequency single nucleotide variant was C > T (43.6%). p53 expression was interpreted as follows: Pattern A: p53 staining was positive in 0%-3% of tumor cells, Pattern B: p53 staining was positive in 4-65% of tumor cells, Pattern C: more than 65% of tumor cells were stained positive for p53. The p53 IHC expression patterns were associated with TP53 alterations. Gain of function variants and wild-type TP53 tended to exhibit type C and B p53 expression patterns, but loss of function variants were exclusively seen in type A cases. Additionally, interpretation of the staining by various observers produced significant reproducibility. CONCLUSIONS The p53 IHC expression patterns can be used to predict TP53 alterations and are reliable for diverse alteration types, making them possible surrogate biomarkers for TP53 alterations in LBCLs.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiuhui Li
- Cancer Center, Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Huaxiong Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Xie X, Su M, Ren K, Ma X, Lv Z, Li Z, Mei Y, Ji P. Clonal hematopoiesis and bone marrow inflammation. Transl Res 2023; 255:159-170. [PMID: 36347490 DOI: 10.1016/j.trsl.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
Collapse
Affiliation(s)
- Xinshu Xie
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Xuezhen Ma
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhaofeng Li
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yang Mei
- School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China.
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
7
|
Ueda K. Review: MDMX plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Exp Hematol 2023:S0301-472X(23)00161-3. [PMID: 37086813 DOI: 10.1016/j.exphem.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Acute myeloid leukemia (AML) is a fatal disease resulting from preleukemic hematopoietic conditions including asymptomatic clonal hematopoiesis. The accumulation of genetic changes is one of the causes of leukemic transformation. However, nongenetic factors including the overexpression of specific genes also contribute to preleukemic to leukemic transition. Among them, the p53 inhibitor Murine Double Minute X (MDMX) plays crucial roles especially in leukemia initiation. MDMX is broadly overexpressed in vast majority of AML cases, including in hematopoietic stem/progenitor cell (HSPC) level. Recently, high expression of MDMX in HSPC has been shown to be associated with leukemic transformation in patients with myelodysplastic syndromes, and preclinical studies demonstrated that MDMX overexpression accelerates the transformation of preleukemic murine models, including models of clonal hematopoiesis. MDMX inhibition, through activation of cell-intrinsic p53 activity, shows antileukemic effects. However, the molecular mechanisms of MDMX in provoking leukemic transformation are complicated. Both p53-dependent and independent mechanisms are involved in the progression of the disease. This review discusses the canonical and noncanonical functions of MDMX and how these functions are involved in the maintenance, expansion, and progression to malignancy of preleukemic stem cells. Moreover, strategies on how leukemic transformation could possibly be prevented by targeting MDMX in preleukemic stem cells are discussed.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima 9601295, Japan; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
8
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
9
|
Hong Y, Ren T, Wang X, Liu X, Fei Y, Meng S, Han X, Sun C, Shen H, Li L, Qiu L, Qian Z, Zhou S, Zhang H, Wang X. APR-246 triggers ferritinophagy and ferroptosis of diffuse large B-cell lymphoma cells with distinct TP53 mutations. Leukemia 2022; 36:2269-2280. [PMID: 35835991 DOI: 10.1038/s41375-022-01634-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
TP53 mutations correlate with inferior survival in many cancers. APR-246 is a compound to shift mutant p53 and exhibits anti-cancer effects. Among its effects, APR-246 facilitates the binding of restored p53 mutants to target genes and their transcription. A set of 2464 DLBCL cases from multiple cohorts including our center, was integrated to identify the type and localization of TP53 mutations and clinical impacts. APR-246 was applied in TP53-mutated DLBCL cells and xenograft mouse models to explore the anti-tumor effect. TP53 mutations frequency was 16% and TP53 mutations correlated with poor overall survival (OS) and progression-free survival (PFS) in all cases, especially in germinal center B-cell-like (GCB) and unclassified (UNC) subtypes. Notably, TP53 single mutations in the DNA binding domain (DBD) led to poor OS and PFS. Specifically, mutations in exon 7 correlated with poorer OS, while mutations in exons 5 and 6 associated with inferior PFS. APR-246 induces p53-dependent ferritinophagy of DLBCL cells with TP53 missense mutation on exon 7 and ferroptosis of DLBCL cells harboring wild-type TP53 and other TP53 mutations. TP53 mutations on exons 5, 6 and 7 are predictors of progression and survival. Targeting mutant p53 by APR-246 is a promising therapeutic approach for DLBCL patients.
Collapse
Affiliation(s)
- Yuheng Hong
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Tianyuan Ren
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Xiaoxuan Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Xia Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Yue Fei
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Shen Meng
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Xu Han
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695-7555, USA
| | - Cong Sun
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Hongru Shen
- Department of Epidemiology and Biostatistics, Tianjin Cancer Institute, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, CN, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China.
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, 300060, CN, China.
| |
Collapse
|
10
|
Ilic VK, Egorova O, Tsang E, Gatto M, Wen Y, Zhao Y, Sheng Y. Hinokiflavone Inhibits MDM2 Activity by Targeting the MDM2-MDMX RING Domain. Biomolecules 2022; 12:biom12050643. [PMID: 35625571 PMCID: PMC9138535 DOI: 10.3390/biom12050643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The proto-oncogene MDM2 is frequently amplified in many human cancers and its overexpression is clinically associated with a poor prognosis. The oncogenic activity of MDM2 is demonstrated by its negative regulation of tumor suppressor p53 and the substrate proteins involved in DNA repair, cell cycle control, and apoptosis pathways. Thus, inhibition of MDM2 activity has been pursued as an attractive direction for the development of anti-cancer therapeutics. Virtual screening was performed using the crystal structure of the MDM2-MDMX RING domain dimer against a natural product library and identified a biflavonoid Hinokiflavone as a promising candidate compound targeting MDM2. Hinokiflavone was shown to bind the MDM2-MDMX RING domain and inhibit MDM2-mediated ubiquitination in vitro. Hinokiflavone treatment resulted in the downregulation of MDM2 and MDMX and induction of apoptosis in various cancer cell lines. Hinokiflavone demonstrated p53-dependent and -independent tumor-suppressive activity. This report provides biochemical and cellular evidence demonstrating the anti-cancer effects of Hinokiflavone through targeting the MDM2-MDMX RING domain.
Collapse
Affiliation(s)
- Viktoria K. Ilic
- Department of Biology, York University, Room 327B Life Science Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (V.K.I.); (O.E.); (E.T.); (M.G.); (Y.W.)
| | - Olga Egorova
- Department of Biology, York University, Room 327B Life Science Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (V.K.I.); (O.E.); (E.T.); (M.G.); (Y.W.)
| | - Ernest Tsang
- Department of Biology, York University, Room 327B Life Science Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (V.K.I.); (O.E.); (E.T.); (M.G.); (Y.W.)
| | - Milena Gatto
- Department of Biology, York University, Room 327B Life Science Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (V.K.I.); (O.E.); (E.T.); (M.G.); (Y.W.)
| | - Yi Wen
- Department of Biology, York University, Room 327B Life Science Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (V.K.I.); (O.E.); (E.T.); (M.G.); (Y.W.)
| | - Yong Zhao
- Beijing Computing Center, Beijing Academy of Science and Technology, Beijing, 100094, China;
| | - Yi Sheng
- Department of Biology, York University, Room 327B Life Science Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (V.K.I.); (O.E.); (E.T.); (M.G.); (Y.W.)
- Correspondence: ; Tel.: 1-416-7362100 (ext. 33521)
| |
Collapse
|
11
|
TP53 Expression and Mutational Analysis in Hematological Malignancy in Jeddah, Saudi Arabia. Diagnostics (Basel) 2022; 12:diagnostics12030724. [PMID: 35328276 PMCID: PMC8946951 DOI: 10.3390/diagnostics12030724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Tumor protein 53 (TP53) is a tumor-suppressor gene and plays an essential role in apoptosis, cell cycle arrest, genomic stability, and DNA repair. Although it is the most often mutated gene in human cancer, it has respectively low frequency in hematological malignancy but is significantly linked with complex karyotype, poor prognosis, and chemotherapeutic response. Nevertheless, the prevalence and prognostic role of TP53 mutations in hematological malignancy in Saudi patients are not well reported. We, therefore, aim to assess the frequency of TP53 mutations in hematological malignancies in Saudi Arabia. Method: 20 different hematological malignancy samples were tested using fluorescence in situ hybridization (FISH) technique for TP53 deletion detection and next-generation sequencing (NGS) targeted panel was applied on 10 samples for mutations identification specifically TP53 mutation. Results: TP53 deletion was detected in 6 of 20 samples by FISH. Most of the 6 patients with TP53 deletion had acute lymphoblastic leukemia (ALL), and majority of them were child. NGS result revealed one heterozygous missense mutation in exon 5 of the TP53 gene (c. G9963A, p.H175R). Conclusion: To the best of our knowledge, the TP53 mutation is novel variant, and the first time we are reporting their association with myelodysplastic syndromic individual with complex karyotype. This study recommends further analysis of genomic mutations on bigger cohorts, utilizing high throughput technologies.
Collapse
|
12
|
Targeting Apoptosis Pathways With BCL2 and MDM2 Inhibitors in Adult B-cell Acute Lymphoblastic Leukemia. Hemasphere 2022; 6:e701. [PMID: 35233509 PMCID: PMC8878725 DOI: 10.1097/hs9.0000000000000701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
In adult patients, the treatment outcome of acute lymphoblastic leukemia (ALL) remains suboptimal. Here, we used an ex vivo drug testing platform and comprehensive molecular profiling to discover new drug candidates for B-ALL. We analyzed sensitivity of 18 primary B-ALL adult patient samples to 64 drugs in a physiological concentration range. Whole-transcriptome sequencing and publicly available expression data were used to examine gene expression biomarkers for observed drug responses. Apoptotic modulators targeting BCL2 and MDM2 were highly effective. Philadelphia chromosome–negative (Ph–) samples were sensitive to both BCL2/BCL-W/BCL-XL-targeting agent navitoclax and BCL2-selective venetoclax, whereas Ph-positive (Ph+) samples were more sensitive to navitoclax. Expression of BCL2 was downregulated and BCL-W and BCL-XL upregulated in Ph+ ALL compared with Ph– samples, providing elucidation for the observed difference in drug responses. A majority of the samples were sensitive to MDM2 inhibitor idasanutlin. The regulatory protein MDM2 suppresses the function of tumor suppressor p53, leading to impaired apoptosis. In B-ALL, the expression of MDM2 was increased compared with other hematological malignancies. In B-ALL cell lines, a combination of BCL2 and MDM2 inhibitor was synergistic. In summary, antiapoptotic proteins including BCL2 and MDM2 comprise promising targets for future drug studies in B-ALL.
Collapse
|
13
|
Shabashvili DE, Feng Y, Kaur P, Venugopal K, Guryanova OA. Combination strategies to promote sensitivity to cytarabine-induced replication stress in acute myeloid leukemia with and without DNMT3A mutations. Exp Hematol 2022; 110:20-27. [DOI: 10.1016/j.exphem.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
|
14
|
Svoronos AA, Campbell SG, Engelman DM. MicroRNA function can be reversed by altering target gene expression levels. iScience 2021; 24:103208. [PMID: 34755085 PMCID: PMC8560630 DOI: 10.1016/j.isci.2021.103208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Paradoxically, many microRNAs appear to exhibit entirely opposite functions when placed in different contexts. For example, miR-125b has been shown to be pro-apoptotic in some studies, but anti-apoptotic in others. To investigate this phenomenon, we combine computational modeling with experimental approaches to examine how the function of miR-125b in apoptosis varies with respect to the expression levels of its pro-apoptotic and anti-apoptotic targets. In doing so, we elucidate a general trend that miR-125b is more pro-apoptotic when its anti-apoptotic targets are overexpressed, whereas it is more anti-apoptotic when its pro-apoptotic targets are overexpressed. We show that it is possible to completely reverse miR-125b′s function in apoptosis by modifying the expression levels of its target genes. Furthermore, miR-125b′s function may also be altered by the presence of anticancer drugs. These results suggest that the function of a microRNA can vary substantially and is dependent on its target gene expression levels. Many miRNAs exhibit entirely opposite functions when placed in different contexts miR-125b can be pro- or anti-apoptotic depending on target gene expression levels The function of a miRNA can be reversed by altering target gene expression levels The presence of anticancer drugs can also alter a miRNA's function
Collapse
Affiliation(s)
- Alexander A Svoronos
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Av., P.O. Box 208114, New Haven, CT 06520, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Av., P.O. Box 208114, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Chen X, Yuan L, Zhou J, Wang F, Zhang Y, Ma X, Cao P, Fang J, Chen J, Zhou X, Wu Q, Liu M, Liu H. Sustained remission after ruxolitinib and chimeric antigen receptor T-cell therapy bridged to a second allogeneic hematopoietic stem cell transplantation for relapsed Philadelphia chromosome-like B-cell precursor acute lymphoblastic leukemia with novel NPHP3-JAK2 fusion. Genes Chromosomes Cancer 2021; 61:55-58. [PMID: 34418218 DOI: 10.1002/gcc.22995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xue Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Lili Yuan
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jiarui Zhou
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Fang Wang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yang Zhang
- Molecular Medicine Research Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Xiaoli Ma
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Panxiang Cao
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jiancheng Fang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jiaqi Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xiaosu Zhou
- Molecular Medicine Research Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Qisheng Wu
- Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Ming Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Hongxing Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China.,Molecular Medicine Research Center, Beijing Lu Daopei Institute of Hematology, Beijing, China.,Division of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| |
Collapse
|
16
|
Ueda K, Kumari R, Schwenger E, Wheat JC, Bohorquez O, Narayanagari SR, Taylor SJ, Carvajal LA, Pradhan K, Bartholdy B, Todorova TI, Goto H, Sun D, Chen J, Shan J, Song Y, Montagna C, Xiong S, Lozano G, Pellagatti A, Boultwood J, Verma A, Steidl U. MDMX acts as a pervasive preleukemic-to-acute myeloid leukemia transition mechanism. Cancer Cell 2021; 39:529-547.e7. [PMID: 33667384 PMCID: PMC8575661 DOI: 10.1016/j.ccell.2021.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
MDMX is overexpressed in the vast majority of patients with acute myeloid leukemia (AML). We report that MDMX overexpression increases preleukemic stem cell (pre-LSC) number and competitive advantage. Utilizing five newly generated murine models, we found that MDMX overexpression triggers progression of multiple chronic/asymptomatic preleukemic conditions to overt AML. Transcriptomic and proteomic studies revealed that MDMX overexpression exerts this function, unexpectedly, through activation of Wnt/β-Catenin signaling in pre-LSCs. Mechanistically, MDMX binds CK1α and leads to accumulation of β-Catenin in a p53-independent manner. Wnt/β-Catenin inhibitors reverse MDMX-induced pre-LSC properties, and synergize with MDMX-p53 inhibitors. Wnt/β-Catenin signaling correlates with MDMX expression in patients with preleukemic myelodysplastic syndromes and is associated with increased risk of progression to AML. Our work identifies MDMX overexpression as a pervasive preleukemic-to-AML transition mechanism in different genetically driven disease subtypes, and reveals Wnt/β-Catenin as a non-canonical MDMX-driven pathway with therapeutic potential for progression prevention and cancer interception.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emily Schwenger
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Justin C Wheat
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Oliver Bohorquez
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swathi-Rao Narayanagari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Stem Cell Isolation and Xenotransplantation Facility, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Samuel J Taylor
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Luis A Carvajal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kith Pradhan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tihomira I Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hiroki Goto
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Stem Cell Isolation and Xenotransplantation Facility, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jidong Shan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yinghui Song
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shunbin Xiong
- Department of Genetics, Division of Basic Science Research, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermina Lozano
- Department of Genetics, Division of Basic Science Research, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY 10461, USA; Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY 10461, USA; Blood Cancer Institute, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatroodi SA, Alsahli MA, Rahmani AH, Almatroudi A, Dev K. Autophagy Paradox of Cancer: Role, Regulation, and Duality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8832541. [PMID: 33628386 PMCID: PMC7892237 DOI: 10.1155/2021/8832541] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Autophagy, a catabolic process, degrades damaged and defective cellular materials through lysosomes, thus working as a recycling mechanism of the cell. It is an evolutionarily conserved and highly regulated process that plays an important role in maintaining cellular homeostasis. Autophagy is constitutively active at the basal level; however, it gets enhanced to meet cellular needs in various stress conditions. The process involves various autophagy-related genes that ultimately lead to the degradation of targeted cytosolic substrates. Many factors modulate both upstream and downstream autophagy pathways like nutritional status, energy level, growth factors, hypoxic conditions, and localization of p53. Any problem in executing autophagy can lead to various pathological conditions including neurodegeneration, aging, and cancer. In cancer, autophagy plays a contradictory role; it inhibits the formation of tumors, whereas, during advanced stages, autophagy promotes tumor progression. Besides, autophagy protects the tumor from various therapies by providing recycled nutrition and energy to the tumor cells. Autophagy is stimulated by tumor suppressor proteins, whereas it gets inhibited by oncogenes. Due to its dynamic and dual role in the pathogenesis of cancer, autophagy provides promising opportunities in developing novel and effective cancer therapies along with managing chemoresistant cancers. In this article, we summarize different strategies that can modulate autophagy in cancer to overcome the major obstacle, i.e., resistance developed in cancer to anticancer therapies.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institutes of Medical Sciences, New Delhi, India
| | - Sanjeev Ranjan
- Institute of Biomedicine, Cell and Tissue Imaging Unit, Finland
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Ernst P, Heidel FH. Molecular Mechanisms of Senescence and Implications for the Treatment of Myeloid Malignancies. Cancers (Basel) 2021; 13:612. [PMID: 33557090 PMCID: PMC7913823 DOI: 10.3390/cancers13040612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Senescence is a cellular state that is involved in aging-associated diseases but may also prohibit the development of pre-cancerous lesions and tumor growth. Senescent cells are actively secreting chemo- and cytokines, and this senescence-associated secretory phenotype (SASP) can contribute to both early anti-tumorigenic and long-term pro-tumorigenic effects. Recently, complex mechanisms of cellular senescence and their influence on cellular processes have been defined in more detail and, therefore, facilitate translational development of targeted therapies. In this review, we aim to discuss major molecular pathways involved in cellular senescence and potential therapeutic strategies, with a specific focus on myeloid malignancies.
Collapse
Affiliation(s)
- Philipp Ernst
- Internal Medicine 2, Hematology and Oncology, Jena University Hospital, 07747 Jena, Germany;
- Research Program “Else Kröner-Forschungskolleg AntiAge“, Jena University Hospital, 07747 Jena, Germany
| | - Florian H. Heidel
- Internal Medicine C, Hematology and Oncology, Stem Cell Transplantation and Palliative Care, Greifswald University Medicine, 17475 Greifswald, Germany
- Leibniz Institute on Aging, Fritz-Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and occurs when a single mutant hematopoietic stem cell (HSC) contributes to a significant clonal proportion of mature blood lineages. Somatic mutations in the TP53 gene, which encodes the tumor suppressor protein p53, rank in the top five among genes that were mutated in CHIP. This review focuses on mechanisms by which mutant p53 promotes CHIP progression and drives the pathogenesis of hematological malignancies, including myelodysplastic syndromes, and acute myeloid leukemia. RECENT FINDINGS TP53 was frequently mutated in individuals with CHIP. Although clinical studies suggest that expansion of HSCs with TP53 mutations predisposes the elderly to hematological neoplasms, there is a significant gap in knowledge regarding the mechanisms by which TP53 mutations promote HSC expansion. Recent findings suggest that several cellular stressors, including hematopoietic transplantation, genotoxic stress, and inflammation, promote the expansion of HSCs with TP53 mutations. Further, TP53 mutations identified in CHIP cooperate with genetic and/or epigenetic changes in leukemogenesis. SUMMARY TP53 mutations identified in CHIP are associated with increased risks of de novo and therapy-related hematological neoplasms. Thus, targeting mutant p53 and related pathways holds great potential in preventing CHIP progression and treating hematological malignancies.
Collapse
|
20
|
Mester JL, Jackson SA, Postula K, Stettner A, Solomon S, Bissonnette J, Murphy PD, Klein RT, Hruska KS. Apparently Heterozygous TP53 Pathogenic Variants May Be Blood Limited in Patients Undergoing Hereditary Cancer Panel Testing. J Mol Diagn 2020; 22:396-404. [DOI: 10.1016/j.jmoldx.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
|
21
|
Chen S, Wang Q, Yu H, Capitano ML, Vemula S, Nabinger SC, Gao R, Yao C, Kobayashi M, Geng Z, Fahey A, Henley D, Liu SZ, Barajas S, Cai W, Wolf ER, Ramdas B, Cai Z, Gao H, Luo N, Sun Y, Wong TN, Link DC, Liu Y, Boswell HS, Mayo LD, Huang G, Kapur R, Yoder MC, Broxmeyer HE, Gao Z, Liu Y. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat Commun 2019; 10:5649. [PMID: 31827082 PMCID: PMC6906427 DOI: 10.1038/s41467-019-13542-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/11/2019] [Indexed: 01/16/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hao Yu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University, Indianapolis, IN, 46202, USA
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Chonghua Yao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Aidan Fahey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Danielle Henley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Stephen Z Liu
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Sergio Barajas
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Wenjie Cai
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Eric R Wolf
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhigang Cai
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Na Luo
- Department of Ophthalmology, Indiana University, Indianapolis, IN, 46202, USA
| | - Yang Sun
- Department of Ophthalmology, Indiana University, Indianapolis, IN, 46202, USA
| | - Terrence N Wong
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Daniel C Link
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Yunlong Liu
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - H Scott Boswell
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Gang Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Mervin C Yoder
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA.
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Yu L, Yu TT, Young KH. Cross-talk between Myc and p53 in B-cell lymphomas. Chronic Dis Transl Med 2019; 5:139-154. [PMID: 31891126 PMCID: PMC6926120 DOI: 10.1016/j.cdtm.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 02/07/2023] Open
Abstract
Myc and p53 proteins are closely associated with many physiological cellular functions, including immune response and lymphocyte survival, and are expressed in the lymphoid organs, which are sites for the development and activation of B-cell malignancies. Genetic alterations and other mechanisms resulting in constitutive activation, rearrangement, or mutation of MYC and TP53 contribute to the development of lymphomas, progression and therapy resistance by gene dysregulation, activation of downstream anti-apoptotic pathways, and unfavorable microenvironment interactions. The cross-talk between the Myc and p53 proteins contributes to the inferior prognosis in many types of B-cell lymphomas. In this review, we present the physiological roles of Myc and p53 proteins, and recent advances in understanding the pathological roles of Myc, p53, and their cross-talk in lymphoid neoplasms. In addition, we highlight clinical trials of novel agents that directly or indirectly inhibit Myc and/or p53 protein functions and their signaling pathways. Although, to date, these trials have failed to overcome drug resistance, the new results have highlighted the clinical efficiency of targeting diverse mechanisms of action with the goal of optimizing novel therapeutic opportunities to eradicate lymphoma cells.
Collapse
Affiliation(s)
- Li Yu
- Department of Hematology, The Second Affiliated Hospital to Nanchang University, Nanchang, Jiangxi 330006, China
- Hematopathology Division and Pathology Department, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tian-Tian Yu
- Department of Hematology, The Second Affiliated Hospital to Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ken H. Young
- Hematopathology Division and Pathology Department, Duke University School of Medicine, Durham, NC 27710, USA
- Duke University Medical Center and Cancer Institute, Durham, NC 27710, USA
- Corresponding author. Hematopathology Division and Pathology Department, Duke University School of Medicine, Duke University Medical Center and Cancer Institute, Durham, NC 27710, USA. Fax: +1-919-681-8868.
| |
Collapse
|
23
|
Carvajal LA, Neriah DB, Senecal A, Benard L, Thiruthuvanathan V, Yatsenko T, Narayanagari SR, Wheat JC, Todorova TI, Mitchell K, Kenworthy C, Guerlavais V, Annis DA, Bartholdy B, Will B, Anampa JD, Mantzaris I, Aivado M, Singer RH, Coleman RA, Verma A, Steidl U. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med 2019; 10:10/436/eaao3003. [PMID: 29643228 DOI: 10.1126/scitranslmed.aao3003] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/12/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022]
Abstract
The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell-enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.
Collapse
Affiliation(s)
- Luis A Carvajal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daniela Ben Neriah
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adrien Senecal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lumie Benard
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tatyana Yatsenko
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swathi-Rao Narayanagari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Justin C Wheat
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tihomira I Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles Kenworthy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jesus D Anampa
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ioannis Mantzaris
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. .,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
24
|
Harrod R. Silencers of HTLV-1 and HTLV-2: the pX-encoded latency-maintenance factors. Retrovirology 2019; 16:25. [PMID: 31492165 PMCID: PMC6731619 DOI: 10.1186/s12977-019-0487-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
Of the members of the primate T cell lymphotropic virus (PTLV) family, only the human T-cell leukemia virus type-1 (HTLV-1) causes disease in humans—as the etiological agent of adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other auto-inflammatory disorders. Despite having significant genomic organizational and structural similarities, the closely related human T-cell lymphotropic virus type-2 (HTLV-2) is considered apathogenic and has been linked with benign lymphoproliferation and mild neurological symptoms in certain infected patients. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infections in vivo. The conserved pX sequences of HTLV-1 and HTLV-2 encode several ancillary factors which have been shown to negatively regulate proviral gene expression, while simultaneously activating host cellular proliferative and pro-survival pathways. In particular, the ORF-II proteins, HTLV-1 p30II and HTLV-2 p28II, suppress Tax-dependent transactivation from the viral promoter—whereas p30II also inhibits PU.1-mediated inflammatory-signaling, differentially augments the expression of p53-regulated metabolic/pro-survival genes, and induces lymphoproliferation which could promote mitotic proviral replication. The ubiquitinated form of the HTLV-1 p13II protein localizes to nuclear speckles and interferes with recruitment of the p300 coactivator by the viral transactivator Tax. Further, the antisense-encoded HTLV-1 HBZ and HTLV-2 APH-2 proteins and mRNAs negatively regulate Tax-dependent proviral gene expression and activate inflammatory signaling associated with enhanced T-cell lymphoproliferation. This review will summarize our current understanding of the pX latency-maintenance factors of HTLV-1 and HTLV-2 and discuss how these products may contribute to the differences in pathogenicity between the human PTLVs.
Collapse
Affiliation(s)
- Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX, 75275-0376, USA.
| |
Collapse
|
25
|
Mattsson K, Honkaniemi E, Ramme K, Barbany G, Sander BM, Gustafsson BM. Strong expression of p53 protein in bone marrow samples after hematopoietic stem cell transplantation indicates risk of relapse in pediatric acute lymphoblastic leukemia patients. Pediatr Transplant 2019; 23:e13408. [PMID: 30955249 DOI: 10.1111/petr.13408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/12/2019] [Accepted: 03/02/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND For pediatric ALL patients that relapse or respond poorly to conventional chemotherapy treatment, HSCT is one treatment option. Still, relapse occurs in 30% of the children after HSCT. Mutations in the tumor suppressor gene TP53 which can lead to an altered p53 protein expression are rare at time of diagnosis of ALL, yet occur more frequent at relapse indicating a more aggressive disease. Our aim was to evaluate if alterations in the expression of the tumor suppressor protein p53 signaled a relapse in pediatric ALL patients post-HSCT and could guide for preemptive immunotherapy. PROCEDURE Paraffin-embedded bone marrow samples from 46 children diagnosed with ALL between 1997 and 2010, and transplanted at Karolinska University Hospital, were analyzed for p53 by IHC. Samples were analyzed independently at diagnosis, before HSCT, and after HSCT 0-3 months, 3-6 months, and 6-12 months. RESULT Strong expression of p53 in the bone marrow at 0-3-months after HSCT was associated with increased risk of relapse, odds ratio 2.63 (confidence interval 1.08-6.40) P = 0.033. CONCLUSION Evaluation of p53 protein expression in bone marrow from pediatric ALL patients that undergo HSCT may be a potential, additional prognostic marker for predicting relapse after HSCT.
Collapse
Affiliation(s)
- Kristin Mattsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, CLINTEC, Stockholm, Sweden
| | - Emma Honkaniemi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, CLINTEC, Stockholm, Sweden
| | - Kim Ramme
- Department of Pediatric Hematology, Immunology and Stem Cell Transplantation, Astrid Lindgren`s Childrens Hospital, Karolinska University Hospital-Huddinge, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta M Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Britt M Gustafsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, CLINTEC, Stockholm, Sweden
| |
Collapse
|
26
|
Metabolic stress controls mutant p53 R248Q stability in acute myeloid leukemia cells. Sci Rep 2019; 9:5637. [PMID: 30948782 PMCID: PMC6449403 DOI: 10.1038/s41598-019-42220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/26/2019] [Indexed: 01/03/2023] Open
Abstract
Eliminating mutant p53 (mt p53) protein could be a useful strategy to treat mt p53 tumors and potentially improve the prognosis of cancer patients. In this study, we unveil different mechanisms that eliminate p53-R248Q, one of the most frequent mutants found in human cancers. We show that the Hsp90 inhibitor 17-AAG eliminates R248Q by stimulating macroautophagy under normal growth conditions. Metabolic stress induced by the pyruvate dehydrogenase kinase-1 (PDK1) inhibitor dichloroacetate (DCA) inhibits the macroautophagy pathway. This induces the accumulation of R248Q, which in addition further inhibits macroautophagy. Combination of DCA and 17-AAG further decreases the autophagy flux compared to DCA alone. Despite this, this co-treatment strongly decreases R248Q levels. In this situation of metabolic stress, 17-AAG induces the binding of p53-R248Q to Hsc70 and the activation of Chaperone-Mediated Autophagy (CMA), leading to higher R248Q degradation than in non-stress conditions. Thus, different metabolic contexts induce diverse autophagy mechanisms that degrade p53-R248Q, and under metabolic stress, its degradation is CMA-mediated. Hence, we present different strategies to eliminate this mutant and provide new evidence of the crosstalk between macroautophagy and CMA and their potential use to target mutant p53.
Collapse
|
27
|
Abstract
Background The knowledge about specific mechanisms generating TP53 dysfunction in diffuse large B-cell lymphoma is limited. The aim of the current study was to comprehensively explore TP53 gene variability resulting from somatic mutations, promoter methylation, and allelic imbalance in tumorous tissue of diffuse large B-cell lymphoma (DLBCL). Methods DNA samples from 74 patients with DLBCL were used. Genomic DNA was isolated from paraffin blocks of lymph nodes or from extranodal biopsies of tumors by the phenol–chloroform extraction method with guanidine. Analysis of coding sequences of the TP53 gene was based on Sanger’s direct sequencing method. The methylation status of the TP53 promoter was analyzed using by methylation-specific PCR on bisulfite-converted DNA. Assessment of the detected mutations was carried out in the IARC TP53 Database and the TP53 UMD mutation database of human cancer. Results The mutations in regions coding for the DNA-binding domain were prevalent (95%). In the analyzed sample of patients, codons 275, 155, 272, and 212 were hotspots of mutations in the TP53 gene. In addition, functionally significant intron mutations (IVS6-36G > C and IVS5 + 43G > T) were detected. Instances of TP53 promoter methylation were observed only in a few samples of diffuse large B-cell lymphoma tissue. Furthermore, loss of heterozygosity was revealed only in the subgroup of patients with altered status of the gene (mutations were detected in five patients and promoter methylation in one case). Conclusions Thus, the results suggest that there are two sequential events in the formation of diffuse large B-cell lymphoma in at least some cases. The first event is mutation or methylation of the TP53 promoter, leading to appearance of a cell with increased risk of malignant transformation. The second event is the loss of an intact allele of the gene; this change is necessary for tumorigenesis. We identified TP53 mutation patterns in a Russian cohort of patients with de novo DLBCL who were treated with R-CHOP and R-CHOP-like regimens and confirmed that TP53 mutation status is a valuable prognostic biomarker.
Collapse
|
28
|
Zhao Y, Ding L, Wang D, Ye Z, He Y, Ma L, Zhu R, Pan Y, Wu Q, Pang K, Hou X, Weroha SJ, Han C, Coleman R, Coleman I, Karnes RJ, Zhang J, Nelson PS, Wang L, Huang H. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J 2019; 38:e99599. [PMID: 30723117 PMCID: PMC6396169 DOI: 10.15252/embj.201899599] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
In light of the increasing number of identified cancer-driven gain-of-function (GOF) mutants of p53, it is important to define a common mechanism to systematically target several mutants, rather than developing strategies tailored to inhibit each mutant individually. Here, using RNA immunoprecipitation-sequencing (RIP-seq), we identified the Polycomb-group histone methyltransferase EZH2 as a p53 mRNA-binding protein. EZH2 bound to an internal ribosome entry site (IRES) in the 5'UTR of p53 mRNA and enhanced p53 protein translation in a methyltransferase-independent manner. EZH2 augmented p53 GOF mutant-mediated cancer growth and metastasis by increasing protein levels of mutant p53. EZH2 overexpression was associated with worsened outcome selectively in patients with p53-mutated cancer. Depletion of EZH2 by antisense oligonucleotides inhibited p53 GOF mutant-mediated cancer growth. Our findings reveal a non-methyltransferase function of EZH2 that controls protein translation of p53 GOF mutants, inhibition of which causes synthetic lethality in cancer cells expressing p53 GOF mutants.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Liya Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenqing Ye
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Linlin Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Runzhi Zhu
- Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Qiang Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Pang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Roger Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - R Jeffery Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Liguo Wang
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
29
|
Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, Hopf TA, Marks DS, Oren M, Segal E. A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Mol Cell 2019; 71:178-190.e8. [PMID: 29979965 DOI: 10.1016/j.molcel.2018.06.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
The TP53 gene is frequently mutated in human cancer. Research has focused predominantly on six major "hotspot" codons, which account for only ∼30% of cancer-associated p53 mutations. To comprehensively characterize the consequences of the p53 mutation spectrum, we created a synthetically designed library and measured the functional impact of ∼10,000 DNA-binding domain (DBD) p53 variants in human cells in culture and in vivo. Our results highlight the differential outcome of distinct p53 mutations in human patients and elucidate the selective pressure driving p53 conservation throughout evolution. Furthermore, while loss of anti-proliferative functionality largely correlates with the occurrence of cancer-associated p53 mutations, we observe that selective gain-of-function may further favor particular mutants in vivo. Finally, when combined with additional acquired p53 mutations, seemingly neutral TP53 SNPs may modulate phenotypic outcome and, presumably, tumor progression.
Collapse
Affiliation(s)
- Eran Kotler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Odem Shani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Guy Goldfeld
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Tarcic
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas A Hopf
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
30
|
Catherwood MA, Gonzalez D, Donaldson D, Clifford R, Mills K, Thornton P. Relevance of TP53 for CLL diagnostics. J Clin Pathol 2019; 72:343-346. [PMID: 30712002 DOI: 10.1136/jclinpath-2018-205622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
TP53 disruption in chronic lymphocytic leukaemia (CLL) is a well-established prognostic marker and informs on the appropriate course of treatment for patients. TP53 status is commonly assessed by fluorescence in situ hybridisation for del(17 p) and Sanger sequencing for TP53 mutations. At present, current screening methods for TP53 mutations fail to detect diagnostically relevant mutations potentially leading to inappropriate treatment decisions. In addition, low levels of mutations that are proving to be clinically relevant may not be discovered with current less sensitive techniques. This review describes the structure, function and regulation of the TP53 protein, the mutations found in cancer and CLL, the relevance of TP53 disruption in CLL and the current screening methods for TP53 mutations including next-generation sequencing.
Collapse
Affiliation(s)
- Mark A Catherwood
- Haematology Department, Belfast Health and Social Care Trust, Belfast, UK
| | - David Gonzalez
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - David Donaldson
- Haematology Department, Belfast Health and Social Care Trust, Belfast, UK
| | - Ruth Clifford
- Department of Haematology, University Hospital Limerick, Ireland
| | - Ken Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
31
|
Hu Q, Xie Y, Ge Y, Nie X, Tao J, Zhao Y. Resting T cells are hypersensitive to DNA damage due to defective DNA repair pathway. Cell Death Dis 2018; 9:662. [PMID: 29855463 PMCID: PMC5981309 DOI: 10.1038/s41419-018-0649-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
Blood cells are challenged by intrinsic and exogenous stress that may result in many types of damage to DNA. As a major participant in cell-mediated immunity in blood, T lymphocytes are maintained in their quiescent (resting) state for most of their lives and switch to the proliferating state once stimulated. How resting and stimulated T cells address DNA damage remains largely unknown. Here, we report that while different types of DNA damage are efficiently repaired in stimulated T cells, they result in massive apoptosis of resting T cells. Mechanistically, DNA damage in resting T cells activates the ATM/ATR/DNA-PKcs signaling pathway but fails to induce the formation of γH2AX and 53BP1 foci, leading to unrepaired DNA damage that activates apoptosis in a p53-independent but JNK/p73-dependent manner. Mice challenged with high DNA damage stress display far fewer T cells in peripheral blood, lymph nodes, and spleens. Collectively, these results reveal that resting T cells are hypersensitive to DNA damage due to defects in DNA damage repair mechanisms. These findings provide new insight into T-cell function and maintenance of immunity under highly stressed conditions.
Collapse
Affiliation(s)
- Qian Hu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, People’s Republic of China
| | - Yujie Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, People’s Republic of China
| | - Yuanlong Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, People’s Republic of China
| | - Xin Nie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, People’s Republic of China
| | - Jun Tao
- Key Laboratory on Assisted Circulation, Ministry of Health, Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, 410080 Guangzhou, People’s Republic of China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, 510006 Guangzhou, People’s Republic of China
| |
Collapse
|
32
|
Romeo M, Hutchison T, Malu A, White A, Kim J, Gardner R, Smith K, Nelson K, Bergeson R, McKee R, Harrod C, Ratner L, Lüscher B, Martinez E, Harrod R. The human T-cell leukemia virus type-1 p30 II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis. Virology 2018; 518:103-115. [PMID: 29462755 DOI: 10.1016/j.virol.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/23/2018] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30II, associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors.
Collapse
Affiliation(s)
- Megan Romeo
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Tetiana Hutchison
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Aditi Malu
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Averi White
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Janice Kim
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Rachel Gardner
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Katie Smith
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Katherine Nelson
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Rachel Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Ryan McKee
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Carolyn Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Lee Ratner
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Bernhard Lüscher
- Institute of Biochemistry, Klinikum, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States.
| |
Collapse
|
33
|
Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells. Sci Rep 2017; 7:16604. [PMID: 29192243 PMCID: PMC5709397 DOI: 10.1038/s41598-017-16799-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-β (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.
Collapse
|
34
|
Abstract
Acute lymphoblastic leukemia (ALL) is characterized by a great biological and clinical heterogeneity. Despite most adult patients enter complete hematologic remission after induction therapy only 40% survive five or more years. Over the last 20 years, the definition of an accurate biologic leukemia profile and the minimal residual disease evaluation in addition to conventional risk criteria led to a significant improvement for the risk stratification. The alterations of the oncosuppressor gene TP53, including deletions, sequence mutations and defect in its expression due to regulatory defects, define a new important predictor of adverse outcome. More recently, new drugs have been developed with the aim of targeting p53 protein itself or its regulatory molecules, such as Mdm2, and restoring the pathway functionality. Therefore, TP53 alterations should be considered in the diagnostic work-up to identify high risk ALL patients in need of intensive treatment strategies or eligible for new innovative targeted therapies.
Collapse
Affiliation(s)
- Silvia Salmoiraghi
- a Hematology and Bone Marrow Transplant Unit of Azienda Ospedaliera Papa Giovanni XXIII , Bergamo , Italy
| | - Alessandro Rambaldi
- a Hematology and Bone Marrow Transplant Unit of Azienda Ospedaliera Papa Giovanni XXIII , Bergamo , Italy.,b Department of Hematology-Oncology , University of Milan , Milan , Italy
| | - Orietta Spinelli
- a Hematology and Bone Marrow Transplant Unit of Azienda Ospedaliera Papa Giovanni XXIII , Bergamo , Italy
| |
Collapse
|
35
|
Molchadsky A, Rotter V. p53 and its mutants on the slippery road from stemness to carcinogenesis. Carcinogenesis 2017; 38:347-358. [PMID: 28334334 DOI: 10.1093/carcin/bgw092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022] Open
Abstract
Normal development, tissue homeostasis and regeneration following injury rely on the proper functions of wide repertoire of stem cells (SCs) persisting during embryonic period and throughout the adult life. Therefore, SCs employ robust mechanisms to preserve their genomic integrity and avoid heritage of mutations to their daughter cells. Importantly, propagation of SCs with faulty DNA as well as dedifferentiation of genomically altered somatic cells may result in derivation of cancer SCs, which are considered to be the driving force of the tumorigenic process. Multiple experimental evidence suggest that p53, the central tumor suppressor gene, plays a critical regulatory role in determination of SCs destiny, thereby eliminating damaged SCs from the general SC population. Notably, mutant p53 proteins do not only lose the tumor suppressive function, but rather gain new oncogenic function that markedly promotes various aspects of carcinogenesis. In this review, we elaborate on the role of wild type and mutant p53 proteins in the various SCs types that appear under homeostatic conditions as well as in cancer. It is plausible that the growing understanding of the mechanisms underlying cancer SC phenotype and p53 malfunction will allow future optimization of cancer therapeutics in the context of precision medicine.
Collapse
Affiliation(s)
- Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
36
|
Abramowitz J, Neuman T, Perlman R, Ben-Yehuda D. Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia. BMC Med Genomics 2017; 10:18. [PMID: 28340577 PMCID: PMC5423421 DOI: 10.1186/s12920-017-0249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Mechanisms that inactivate the p53 pathway in Acute Myeloid Leukemia (AML), other than rare mutations, are still not well understood. Methods We performed a bioinformatics study of the p53 pathway function at the gene expression level on our collection of 1153 p53-pathway related genes. Publically available Affymetrix data of 607 de-novo AML patients at diagnosis were analyzed according to the patients cytogenetic, FAB and molecular mutations subtypes. We further investigated the functional status of the p53 pathway in cytogenetically normal AML (CN-AML) and Acute Promyelocytic Leukemia (APL) patients using bioinformatics, Real-Time PCR and immunohistochemistry. Results We revealed significant and differential alterations of p53 pathway-related gene expression in most of the AML subtypes. We found that p53 pathway-related gene expression was not correlated with the accepted grouping of AML subtypes such as by cytogenetically-based prognosis, morphological stage or by the type of molecular mutation. Our bioinformatic analysis revealed that p53 is not functional in CN-AML and APL blasts at inducing its most important functional outcomes: cell cycle arrest, apoptosis, DNA repair and oxidative stress defense. We revealed transcriptional downregulation of important p53 acetyltransferases in both CN-AML and APL, accompanied by increased Mdmx protein expression and inadequate Chk2 protein activation. Conclusions Our bioinformatic analysis demonstrated that p53 pathway is differentially inactivated in different AML subtypes. Focused gene and protein analysis of p53 pathway in CN-AML and APL patients imply that functional inactivation of p53 protein can be attributed to its impaired acetylation. Our analysis indicates the need in further accurate evaluation of p53 pathway functioning and regulation in distinct subtypes of AML. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Abramowitz
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel.
| | - Tzahi Neuman
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riki Perlman
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| |
Collapse
|
37
|
Alexandrova EM, Xu S, Moll UM. Ganetespib synergizes with cyclophosphamide to improve survival of mice with autochthonous tumors in a mutant p53-dependent manner. Cell Death Dis 2017; 8:e2683. [PMID: 28300840 PMCID: PMC5386516 DOI: 10.1038/cddis.2017.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/11/2023]
Abstract
The DNA-alkylating cytotoxic agent cyclophosphamide (CTX) is commonly used in the clinic to treat hematological malignancies like lymphomas and leukemias as well as solid tumors, but shows dose-dependent potentially life-threatening toxicities and can induce secondary malignancies. Thus, the clinical utility of CTX would be improved if a companion drug could be identified that allows lowering the CTX dose, while maintaining or even increasing its antineoplastic therapeutic efficacy. In mouse models, high-dose CTX (300 mg/kg) is effective in treating T-lymphomas, while low dose (defined here as 100 mg/kg) is ineffective. We previously showed that the HSP90 inhibitor ganetespib potently suppresses T-lymphoma initiation and progression and extends overall survival (OS) in hotspot knockin mice expressing the p53 gain-of-function mutants R175H and R248Q (mutp53) by 30–59%. Here we asked whether ganetespib could potentiate the effect of low-dose CTX (100 mg/kg) in the autochthonous T-lymphoma-bearing mutp53 R248Q mouse model. Indeed, combinatorial CTX/ganetespib synergistically suppresses growth of autochthonous T-lymphomas in R248Q (p53Q/−) but not p53−/− control mice by reducing mutp53 levels and triggering apoptosis. Combinatorial treatment extends progression-free (PFS) and OS in p53Q/− mice significantly longer than in p53−/− mice. Specifically, PFS of p53Q/− mice improves 8.9-fold over CTX alone versus 3.6-fold in p53−/− mice. Likewise, OS of R248Q/− mice improves 3.6-fold, but worsens in p53−/− mice (0.85-fold) over CTX alone. Moreover, half of the p53Q/− mice on combinatorial treatment lived over 60 days, and one animal reached 121 days. In contrast, p53Q/− mice on single-drug treatment and p53−/− mice on any treatment lived less than 24 days. In sum, ganetespib synergizes with a sub-effective dose of CTX in mutp53 T-lymphomas by suppressing tumor growth and extending survival. Our results provide a potential strategy to reduce the effective clinical dose of CTX in mutant p53-bearing malignancies and attenuate CTX toxicity.
Collapse
Affiliation(s)
| | - Sulan Xu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
38
|
Voropaeva EN, Pospelova TI, Voevoda MI, Maksimov VN. Frequency, spectrum, and functional significance of TP53 mutations in patients with diffuse large B-cell lymphoma. Mol Biol 2017. [DOI: 10.1134/s0026893316060224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. Int J Mol Sci 2017; 18:ijms18020442. [PMID: 28218667 PMCID: PMC5343976 DOI: 10.3390/ijms18020442] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The ubiquitination pathway and proteasomal degradation machinery dominantly regulate p53 tumor suppressor protein stability, localization, and functions in both normal and cancerous cells. Selective E3 ubiquitin ligases dominantly regulate protein levels and activities of p53 in a large range of physiological conditions and in response to cellular changes induced by exogenous and endogenous stresses. The regulation of p53’s functions by E3 ubiquitin ligases is a complex process that can lead to positive or negative regulation of p53 protein in a context- and cell type-dependent manner. Accessory proteins bind and modulate E3 ubiquitin ligases, adding yet another layer of regulatory control for p53 and its downstream functions. This review provides a comprehensive understanding of p53 regulation by selective E3 ubiquitin ligases and their potential to be considered as a new class of biomarkers and therapeutic targets in diverse types of cancers.
Collapse
|
40
|
Keshavarz R, Bakhshinejad B, Babashah S, Baghi N, Sadeghizadeh M. Dendrosomal nanocurcumin and p53 overexpression synergistically trigger apoptosis in glioblastoma cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 19:1353-1362. [PMID: 28096969 PMCID: PMC5220242 DOI: 10.22038/ijbms.2016.7923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective(s): Glioblastoma is the most lethal tumor of the central nervous system. Here, we aimed to evaluate the effects of exogenous delivery of p53 and a nanoformulation of curcumin called dendrosomal curcumin (DNC), alone and in combination, on glioblastoma tumor cells. Materials and Methods: MTT assay was exploited to measure the viability of U87-MG cells against DNC treatment. Cells were separately subjected to DNC treatment and transfected with p53-containing vector and then were co-exposed to DNC and p53 overexpression[A GA1][B2]. Annexin-V-FLUOS staining followed by flow cytometry and real-time PCR were applied to examine apoptosis and analyze the expression levels of the genes involved in cell cycle and oncogenesis, respectively. Results: The results of cell viability assay through MTT indicated that DNC inhibits the proliferation of U87-MG cells in a time- and dose-dependent manner. Apoptosis evaluation revealed that p53 overexpression accompanied by DNC treatment can act in a synergistic manner to significantly enhance the number of apoptotic cells (90%) compared with their application alone (15% and 38% for p53 overexpression and DNC, respectively). Also, real-time PCR data showed that the concomitant exposure of cells to both DNC and p53 overexpression leads to an enhanced expression of GADD45 and a reduced expression of NF-κB and c-Myc. Conclusion: The findings of the current study suggest that our combination strategy, which merges two detached gene (p53) and drug (curcumin) delivery systems into an integrated platform, may represent huge potential as a novel and efficient modality for glioblastoma treatment.
Collapse
Affiliation(s)
- Reihaneh Keshavarz
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Baghi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
41
|
Tsuruta-Kishino T, Koya J, Kataoka K, Narukawa K, Sumitomo Y, Kobayashi H, Sato T, Kurokawa M. Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera. Oncogene 2017; 36:3300-3311. [PMID: 28068330 DOI: 10.1038/onc.2016.478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023]
Abstract
As leukemic transformation of myeloproliferative neoplasms (MPNs) worsens the clinical outcome, reducing the inherent risk of the critical event in MPN cases could be beneficial. Among genetic alterations concerning the transformation, the frequent one is TP53 mutation. Here we show that retroviral overexpression of Jak2 V617F mutant into wild-type p53 murine bone marrow cells induced polycythemia vera (PV) in the recipient mice, whereas Jak2 V617F-transduced p53-null mice developed lethal leukemia after the preceding PV phase. The leukemic mice had severe anemia, hepatosplenomegaly, pulmonary hemorrhage and expansion of dysplastic erythroid progenitors. Primitive leukemia cells (c-kit+Sca1+Lin- (KSL) and CD34-CD16/32-c-kit+Sca1-Lin- (megakaryocyte-erythroid progenitor; MEP)) and erythroid progenitors (CD71+) from Jak2 V617F-transduced p53-null leukemic mice had leukemia-initiating capacity, however, myeloid differentiated populations (Mac-1+) could not recapitulate the disease. Interestingly, recipients transplanted with CD71+ cells rapidly developed erythroid leukemia, which was in sharp contrast to leukemic KSL cells to cause lethal leukemia after the polycythemic state. The leukemic CD71+ cells were more sensitive to INCB18424, a potent JAK inhibitor, than KSL cells. p53 restoration could ameliorate Jak2 V617F-transduced p53-null erythroleukemia. Taken together, our results show that p53 loss is sufficient for inducing leukemic transformation in Jak2 V617F-positive MPN.
Collapse
Affiliation(s)
- T Tsuruta-Kishino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - J Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K Narukawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Y Sumitomo
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Oncology Research Laboratories, Kyowa Hakko Kirin Co., Machida, Tokyo, Japan
| | - H Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - T Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - M Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Cell Therapy and Transplantation, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
42
|
Mutational analysis of TP53 gene in Tunisian familial hematological malignancies and sporadic acute leukemia cases. Fam Cancer 2016; 16:153-157. [DOI: 10.1007/s10689-016-9931-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Nishiwaki S, Ito M, Watarai R, Okuno S, Harada Y, Yamamoto S, Suzuki K, Kurahashi S, Iwasaki T, Sugiura I. A new prognostic index to make short-term prognoses in MDS patients treated with azacitidine: A combination of p53 expression and cytogenetics. Leuk Res 2016; 41:21-6. [DOI: 10.1016/j.leukres.2015.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/11/2015] [Accepted: 11/22/2015] [Indexed: 01/13/2023]
|
44
|
Narang P, Dhapola P, Chowdhury S. BreCAN-DB: a repository cum browser of personalized DNA breakpoint profiles of cancer genomes. Nucleic Acids Res 2016; 44:D952-8. [PMID: 26586806 PMCID: PMC4702892 DOI: 10.1093/nar/gkv1264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022] Open
Abstract
BreCAN-DB (http://brecandb.igib.res.in) is a repository cum browser of whole genome somatic DNA breakpoint profiles of cancer genomes, mapped at single nucleotide resolution using deep sequencing data. These breakpoints are associated with deletions, insertions, inversions, tandem duplications, translocations and a combination of these structural genomic alterations. The current release of BreCAN-DB features breakpoint profiles from 99 cancer-normal pairs, comprising five cancer types. We identified DNA breakpoints across genomes using high-coverage next-generation sequencing data obtained from TCGA and dbGaP. Further, in these cancer genomes, we methodically identified breakpoint hotspots which were significantly enriched with somatic structural alterations. To visualize the breakpoint profiles, a next-generation genome browser was integrated with BreCAN-DB. Moreover, we also included previously reported breakpoint profiles from 138 cancer-normal pairs, spanning 10 cancer types into the browser. Additionally, BreCAN-DB allows one to identify breakpoint hotspots in user uploaded data set. We have also included a functionality to query overlap of any breakpoint profile with regions of user's interest. Users can download breakpoint profiles from the database or may submit their data to be integrated in BreCAN-DB. We believe that BreCAN-DB will be useful resource for genomics scientific community and is a step towards personalized cancer genomics.
Collapse
Affiliation(s)
- Pankaj Narang
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Parashar Dhapola
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Shantanu Chowdhury
- GNR Center for Genome Informatics, Institute of Genomics and Integrative Biology, CSIR, Delhi, India Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| |
Collapse
|
45
|
Horvilleur E, Wilson LA, Bastide A, Piñeiro D, Pöyry TAA, Willis AE. Cap-Independent Translation in Hematological Malignancies. Front Oncol 2015; 5:293. [PMID: 26734574 PMCID: PMC4685420 DOI: 10.3389/fonc.2015.00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
Abstract
Hematological malignancies are a heterogeneous group of diseases deriving from blood cells progenitors. Although many genes involved in blood cancers contain internal ribosome entry sites (IRESes), there has been only few studies focusing on the role of cap-independent translation in leukemia and lymphomas. Expression of IRES trans-acting factors can also be altered, and interestingly, BCL-ABL1 fusion protein expressed from “Philadelphia” chromosome, found in some types of leukemia, regulates several of them. A mechanism involving c-Myc IRES and cap-independent translation and leading to resistance to chemotherapy in multiple myeloma emphasize the contribution of cap-independent translation in blood cancers and the need for more work to be done to clarify the roles of known IRESes in pathology and response to chemotherapeutics.
Collapse
Affiliation(s)
| | | | | | - David Piñeiro
- Medical Research Council Toxicology Unit , Leicester , UK
| | | | - Anne E Willis
- Medical Research Council Toxicology Unit , Leicester , UK
| |
Collapse
|
46
|
Zhao Y, Wei C, Wu Y, Ma P, Ding S, Yuan J, Shen D, Yang X. Formaldehyde-induced paxillin-tyrosine phosphorylation and paxillin and P53 downexpression in Hela cells. Toxicol Mech Methods 2015; 26:75-81. [PMID: 26400731 DOI: 10.3109/15376516.2015.1082001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Formaldehyde (FA) is an environmental pollutant and an endogenous product believed to be involved in tumorigenesis. However, the underlying mechanism of observed FA effects has not been clearly defined. Paxillin is a focal adhesion protein that may play an important role in several signaling pathways. Many paxillin-interacting proteins are involved in the regulation of actin cytoskeleton organization, which is necessary for cell motility events associated with diverse biological responses, such as embryonic development, wound repair and tumor metastasis. P53 is important in multicellular organisms, where it regulates the cell cycle and thus functions as a tumor suppressor that is involved in preventing cancer. In this study, we investigated the effects of FA on paxillin-tyrosine phosphorylation and P53 expression in Hela cells by Western blot and immunofluorescence. Western blot analysis revealed that nonlethal concentrations of FA (0.5, 1.0 and 2.0 mM, with the exposure time for 0.5, 1.0 and 2.0 h, respectively) had downregulated paxillin and wild-type p53 genes expression while upregulated paxillin-tyrosine phosphorylation significantly. At the same time, phosphotyrosine at the focal adhesion sites detected by immunofluorescence assay obviously increased in Hela cells incubated with 2.0 mM FA for 2 h. The results suggested that paxillin and p53 genes expression may be involved in FA-related adverse effects and the mechanism may be involved in paxillin-tyrosine phosphorylation.
Collapse
Affiliation(s)
- Yun Zhao
- a Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University , Wuhan , China
| | - Chenxi Wei
- b Key Laboratory of Ecological Safety Monitoring and Evaluation, College of Life Sciences, Hunan Normal University , Changsha , China , and
| | - Yang Wu
- c College of Basic Medical Sciences, Hubei University of Science and Technology , Xianning , China
| | - Ping Ma
- c College of Basic Medical Sciences, Hubei University of Science and Technology , Xianning , China
| | - Shumao Ding
- a Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University , Wuhan , China
| | - Junlin Yuan
- a Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University , Wuhan , China
| | - Dingwen Shen
- c College of Basic Medical Sciences, Hubei University of Science and Technology , Xianning , China
| | - Xu Yang
- a Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University , Wuhan , China
| |
Collapse
|
47
|
Sunaoshi M, Amasaki Y, Hirano-Sakairi S, Blyth BJ, Morioka T, Kaminishi M, Shang Y, Nishimura M, Shimada Y, Tachibana A, Kakinuma S. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas. Mutat Res 2015; 779:58-67. [PMID: 26141385 DOI: 10.1016/j.mrfmmm.2015.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/15/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2a and Ikaros are a prominent feature of young adult irradiation-induced T-cell lymphoma, tumors arising after irradiation from infancy suffer a second hit in Pten by mis-segregation or recombination. This is the first report showing an influence of age-at-exposure on genomic alterations of tumor suppressor genes and their relative involvement in radiation-induced T-cell lymphoma. These data are important for considering the risks associated with childhood exposure to radiation.
Collapse
Affiliation(s)
- Masaaki Sunaoshi
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Yoshiko Amasaki
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shinobu Hirano-Sakairi
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Benjamin J Blyth
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takamitsu Morioka
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mutsumi Kaminishi
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yi Shang
- Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshiya Shimada
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Tachibana
- Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Shizuko Kakinuma
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
48
|
Abstract
Extensive studies have characterized mutational disruption of p53 signaling in human cancers. However, the mechanism for bypass of p53 function in tumors retaining wild-type p53 has remained ambiguous. Recent studies suggest that PRMT5, which is frequently elevated in human cancers, cooperates with oncogenic cyclin D1 and leaves marks on p53 by way of arginine methylation, promoting the bypass of wild-type p53, and in doing so, evade apoptosis.
Collapse
|
49
|
Annooz AF, Melconian AK, Abdul-Majeed BA, Jawad AM. Detection p53 gene deletion in hematological malignancies using fluorescence in situ hybridization: a pilot study. . Pak J Biol Sci 2015; 17:891-7. [PMID: 26035937 DOI: 10.3923/pjbs.2014.891.897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
P53 as a tumor suppressor gene plays a major role in cancer development, it is essential for cell growth regulation and apoptosis. The deletion of p53 is known to be associated with aggressive diseases in several hematological malignancies. The evidence indicated that p53 deletions can be acquired as a result of chemotherapy. Therefore, a follow-up study for p53 gene deletion by fluorescence in situ hybridization technique (FISH) was carried out for the patients group who affected with different hematological malignancies before and after chemotherapy. The main goals from screening of p53 deletion were to assess the correlation between p53 deletion and chemotherapy resistance, overall median survival and chromosomal abnormalities. It is concluded from the present study that p53 deletion has a cardinal effect on the clinical outcome (chemotherapy resistance, overall median survival) and outcome of chromosomal abnormalities (quality and quantity of chromosomal abnormalities) of the patients who were affected with hematological malignancies before and after chemotherapy.
Collapse
|
50
|
Li Y, Chitnis N, Nakagawa H, Kita Y, Natsugoe S, Yang Y, Li Z, Wasik M, Klein-Szanto AJP, Rustgi AK, Diehl JA. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov 2015; 5:288-303. [PMID: 25582697 DOI: 10.1158/2159-8290.cd-14-0625] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Protein arginine methyltransferase 5 (PRMT5) has been implicated as a key modulator of lymphomagenesis. Whether PRMT5 has overt oncogenic function in the context of leukemia/lymphoma and whether it represents a therapeutic target remains to be established. We demonstrate that inactivation of PRMT5 inhibits colony-forming activity by multiple oncogenic drivers, including cyclin D1, c-MYC, NOTCH1, and MLL-AF9. Furthermore, we demonstrate that PRMT5 overexpression specifically cooperates with cyclin D1 to drive lymphomagenesis in a mouse model, revealing inherent neoplastic activity. Molecular analysis of lymphomas revealed that arginine methylation of p53 selectively suppresses expression of crucial proapoptotic and antiproliferative target genes, thereby sustaining tumor cell self-renewal and proliferation and bypassing the need for the acquisition of inactivating p53 mutations. Critically, analysis of human tumor specimens reveals a strong correlation between cyclin D1 overexpression and p53 methylation, supporting the biomedical relevance of this pathway. SIGNIFICANCE We have identified and functionally validated a crucial role for PRMT5 for the inhibition of p53-dependent tumor suppression in response to oncogenic insults. The requisite role for PRMT5 in the context of multiple lymphoma/leukemia oncogenic drivers suggests a molecular rationale for therapeutic development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Substitution
- Animals
- Apoptosis/genetics
- Arginine/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cluster Analysis
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Enzyme Activation
- Gene Expression Profiling
- Humans
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/metabolism
- Leukemia, T-Cell/pathology
- Lymphoma/genetics
- Lymphoma/pathology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Methylation
- Mice
- Mutation
- Oncogenes
- Phosphorylation
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Yan Li
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nilesh Chitnis
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Departments of Medicine and Genetics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yoshiaki Kita
- Department of Digestive Surgery, and Breast and Thyroid Surgery, Kagoshima University School of Medicine, Sakuragaoka, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, and Breast and Thyroid Surgery, Kagoshima University School of Medicine, Sakuragaoka, Kagoshima, Japan
| | - Yi Yang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mariusz Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, Pennsylvania
| | | | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, Pennsylvania
| | - J Alan Diehl
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|