1
|
Maya-González C, Delgado-Vega AM, Taylan F, Lagerstedt Robinson K, Hansson L, Pal N, Fagman H, Puls F, Wessman S, Stenman J, Georgantzi K, Fransson S, Díaz De Ståhl T, Ek T, Palmer R, Tesi B, Kogner P, Martinsson T, Nordgren A. Occurrence of cancer in Marfan syndrome: Report of two patients with neuroblastoma and review of the literature. Am J Med Genet A 2024; 194:e63812. [PMID: 38990105 DOI: 10.1002/ajmg.a.63812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by pathogenic variants in FBN1, with a hitherto unknown association with cancer. Here, we present two females with MFS who developed pediatric neuroblastoma. Patient 1 presented with neonatal MFS and developed an adrenal neuroblastoma with unfavorable tumor genetics at 10 months of age. Whole genome sequencing revealed a germline de novo missense FBN1 variant (NP_000129.3:p.(Asp1322Asn)), resulting in intron 32 inclusion and exon 32 retention. Patient 2 was diagnosed with classic MFS, caused by a germline de novo frameshift variant in FBN1 (NP_000129.3:p.(Cys805Ter)). At 18 years, she developed high-risk neuroblastoma with a somatic ALK pathogenic variant (NP_004295.2:p.(Arg1275Gln)). We identified 32 reported cases of MFS with cancer in PubMed, yet none with neuroblastoma. Among patients, we observed an early cancer onset and high frequency of MFS complications. We also queried cancer databases for somatic FBN1 variants, finding 49 alterations reported in PeCan, and variants in 2% of patients in cBioPortal. In conclusion, we report the first two patients with MFS and neuroblastoma and highlight an early age at cancer diagnosis in reported patients with MFS. Further epidemiological and functional studies are needed to clarify the growing evidence linking MFS and cancer.
Collapse
Affiliation(s)
- Carolina Maya-González
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Angelica Maria Delgado-Vega
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Hansson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Pal
- Department of Pediatric Oncology, Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian Puls
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Stenman
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Kleopatra Georgantzi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Teresita Díaz De Ståhl
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Torben Ek
- Children Cancer Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Ruth Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Carrera IA, Amor-Salamanca A, Isidro EM, Pérez-Barbeito M, Sacristán ARB, Ochoa JP. Double somatic mosaicism in Marfan syndrome. Am J Med Genet A 2024; 194:e63831. [PMID: 39149856 DOI: 10.1002/ajmg.a.63831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Marfan syndrome (MFS) is a hereditary systemic connective tissue disorder with great clinical variability. It is caused by heterozygous pathogenic variants in the FBN1 gene. Cardinal manifestations involve the cardiovascular, ocular, and skeletal systems. Clinical diagnosis is based on the revised Ghent nosology. We present the case of a child with a Marfan systemic score of 9 whose genetic study revealed two pathogenic mosaic frameshift variants in the FBN1 gene. Mosaicism is very rare in patients diagnosed with MFS, and this is the first description of a patient with two pathogenic mosaic variants in the FBN1 gene. Both variants are present in cells derived from ectodermal (buccal swab) and mesodermal (leukocyte) tissues, suggesting a mutation prior to gastrulation. We propose a defective repair of the de novo variant in the complementary strand as the mechanism that led this individual to be a carrier of two different populations of mutant cells carrying adjacent variants.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Pablo Ochoa
- Cardiology Department, Health in Code S. L., A Coruña, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart), Madrid, Spain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
3
|
Rocha Ferreira J, Passarelli Pereira J, Arpini Botelho AP, do Nascimento Aprijo D, Machado Melo M, Cramer Veiga Rey H, Monteiro Dias G. Genetic insights from a Brazilian cohort of aortopathies through targeted next-generation sequencing and FBN1 direct sequencing. Sci Rep 2024; 14:27172. [PMID: 39511342 DOI: 10.1038/s41598-024-78788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Thoracic aortic diseases (or aortopathies) result from complex interactions between genetic and hemodynamic factors. Often clinically silent, these diseases can lead to lethal complications such as aortic dissection or rupture. This study focused on a Brazilian cohort of 79 individuals with thoracic aortic diseases and explored genetic factors through targeted next-generation sequencing (tNGS) of 15 priority genes and FBN1 direct sequencing. The majority of individuals had nonsyndromic aortopathy, with eight diagnosed with Marfan syndrome (MFS). Pathogenic or likely pathogenic variants (PV/LPV) were found in five genes, namely, FBN1, ACTA2, TGFBR2, MYLK, and SMAD3. Notably, novel variants in FBN1 were identified that contributed to Marfan-like phenotypes. The diagnostic yield for isolated aortopathies was 7.1%, which increased to 55.5% for syndromic cases. Variants of uncertain significance (VUS) were identified, emphasizing the need for further research and familial investigations to refine variant classifications. This study provides valuable insights into the genetic landscape of aortopathies in Brazil, aiding early diagnosis and personalized management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Glauber Monteiro Dias
- Cellular and Tissue Biology Laboratory, State University of Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
4
|
Galante N, Bedeschi MF, Beltrami B, Bailo P, Silva Palomino LA, Piccinini A. Reviewing hereditary connective tissue disorders: Proposals of harmonic medicolegal assessments. Int J Legal Med 2024; 138:2507-2522. [PMID: 39008115 PMCID: PMC11490457 DOI: 10.1007/s00414-024-03290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Hereditary connective tissue disorders (HCTDs) are a heterogeneous group of inherited diseases. These disorders show genetic mutations with loss of function of primary components of connective tissue, such as collagen and elastic fibers. There are more than 200 conditions that involve hereditary connective tissue disorders, while the most known are Marfan syndrome, Osteogenesis Imperfecta, and Ehlers-Danlos syndromes. These disorders need continuous updates, multidisciplinary skills, and specific methodologic evaluations sharing many medicolegal issues. Marfan syndrome and Ehlers-Danlos syndromes show a high risk of early sudden death. As a consequence of this, postmortem genetic testing can identify novel genotype-phenotype correlations which help the clinicians to assess personalized cardiovascular screening programs among the ill subjects. Genetic testing is also essential to identify children suffering from Osteogenesis Imperfecta, especially when a physical abuse is clinically suspected. However, this is a well-known clinical problem even though there are still challenges to interpret genetic data and variants of unknown significance due to the current extensive use of new genetic/genomic techniques. Additionally, the more significant applications and complexities of genomic testing raise novel responsibilities on the clinicians, geneticists, and forensic practitioners as well, increasing potential liability and medical malpractice claims. This systematic review provides a detailed overview on how multidisciplinary skills belonging to clinicians, medicolegal consultants, radiologists, and geneticists can cooperate to manage HCTDs from autopsy or clinical findings to genetic testing. Thus, technical aspects need to be addressed to the medicolegal community since there is no consensus works or guidelines which specifically discuss these issues.
Collapse
Affiliation(s)
- Nicola Galante
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy.
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy.
| | | | - Benedetta Beltrami
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Medical Genetic Unit, Milan, Italy
| | - Paolo Bailo
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| | | | - Andrea Piccinini
- Section of Legal Medicine of Milan, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 37, 20133, Milan, Italy
| |
Collapse
|
5
|
García S A, Costa M, Perez A, Pastor O. CardioGraph: a platform to study variations associated with familiar cardiopathies. BMC Med Inform Decis Mak 2024; 23:303. [PMID: 39434095 PMCID: PMC11494761 DOI: 10.1186/s12911-024-02700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Familiar cardiopathies are genetic disorders that affect the heart. Cardiologists face a significant problem when treating patients suffering from these disorders: most DNA variations are novel (i.e., they have not been classified before). To facilitate the analysis of novel variations, we present CardioGraph, a platform specially designed to support the analysis of novel variations and help determine whether they are relevant for diagnosis. To do this, CardioGraph identifies and annotates the consequence of variations and provides contextual information regarding which heart structures, pathways, and biological processes are potentially affected by those variations. METHODS We conducted our work through three steps. First, we define a data model to support the representation of the heterogeneous information. Second, we instantiate this data model to integrate and represent all the genomics knowledge available for familiar cardiopathies. In this step, we consider genomic data sources and the scientific literature. Third, the design and implementation of the CardioGraph platform. A three-tier structure was used: the database, the backend, and the frontend. RESULTS Three main results were obtained: the data model, the knowledge base generated with the instantiation of the data model, and the platform itself. The platform code has been included as supplemental material in this manuscript. Besides, an instance is publicly available in the following link: https://genomics-hub.pros.dsic.upv.es:3090 . CONCLUSION CardioGraph is a platform that supports the analysis of novel variations. Future work will expand the body of knowledge about familiar cardiopathies and include new information about hotspots, functional studies, and previously reported variations.
Collapse
Affiliation(s)
- Alberto García S
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain.
| | - Mireia Costa
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| | - Ana Perez
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| | - Oscar Pastor
- PROS Research Center, VRAIN Research Institute, Universitat Politècnica de València, Camino de Vera, Valencia, Spain
| |
Collapse
|
6
|
Butnariu LI, Russu G, Luca AC, Sandu C, Trandafir LM, Vasiliu I, Popa S, Ghiga G, Bălănescu L, Țarcă E. Identification of Genetic Variants Associated with Hereditary Thoracic Aortic Diseases (HTADs) Using Next Generation Sequencing (NGS) Technology and Genotype-Phenotype Correlations. Int J Mol Sci 2024; 25:11173. [PMID: 39456956 PMCID: PMC11508433 DOI: 10.3390/ijms252011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Hereditary thoracic aorta diseases (HTADs) are a heterogeneous group of rare disorders whose major manifestation is represented by aneurysm and/or dissection frequently located at the level of the ascending thoracic aorta. The diseases have an insidious evolution and can be encountered as an isolated manifestation or can also be associated with systemic, extra-aortic manifestations (syndromic HTADs). Along with the development of molecular testing technologies, important progress has been made in deciphering the heterogeneous etiology of HTADs. The aim of this study is to identify the genetic variants associated with a group of patients who presented clinical signs suggestive of a syndromic form of HTAD. Genetic testing based on next-generation sequencing (NGS) technology was performed using a gene panel (Illumina TruSight Cardio Sequencing Panel) or whole exome sequencing (WES). In the majority of cases (8/10), de novo mutations in the FBN1 gene were detected and correlated with the Marfan syndrome phenotype. In another case, a known mutation in the TGFBR2 gene associated with Loeys-Dietz syndrome was detected. Two other pathogenic heterozygous variants (one de novo and the other a known mutation) in the SLC2A10 gene (compound heterozygous genotype) were identified in a patient diagnosed with arterial tortuosity syndrome (ATORS). We presented the genotype-phenotype correlations, especially related to the clinical evolution, highlighting the particularities of each patient in a family context. We also emphasized the importance of genetic testing and patient monitoring to avoid acute aortic events.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Georgiana Russu
- Departament of Cardiology, Saint Mary’s Emergency Children Hospital, 700309 Iași, Romania; (G.R.); (A.-C.L.)
| | - Alina-Costina Luca
- Departament of Cardiology, Saint Mary’s Emergency Children Hospital, 700309 Iași, Romania; (G.R.); (A.-C.L.)
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Constantin Sandu
- Department of Medical Abilities, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Ioana Vasiliu
- Department of Morphofunctional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Gabriela Ghiga
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Laura Bălănescu
- Department of Pediatric Surgery and Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| |
Collapse
|
7
|
Zhang F, Yao K, Liu Y, Zhou M, Zhang Y, Hong S, Wu J, Zhang C. Complement C3a/C3aR inhibition alleviates the formation of aortic aneurysm in Marfan syndrome mice. BMC Cardiovasc Disord 2024; 24:417. [PMID: 39127656 PMCID: PMC11316375 DOI: 10.1186/s12872-024-04077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Mutations in fibrillin 1 (FBN1) is the main cause of Marfan syndrome (MFS) with thoracic aortic aneurysm (TAA) as the main complication. Activation of the complement system plays a key role in the formation of thoracic and abdominal aortic aneurysms. However, the role of the complement system in MFS-associated aortic aneurysms remains unclear. In this study, we observed increased levels of complement C3a and C5a in the plasma of MFS patients and mouse, and the increased deposition of the activated complement system product C3b/iC3b was also observed in the elastic fiber rupture zone of 3-month-old MFS mice. The expression of C3a receptor (C3aR) was increased in MFS aortas, and recombinant C3a promoted the expression of cytokines in macrophages. The administration of a C3aR antagonist (C3aRA) attenuated the development of thoracic aortic aneurysms in MFS mice. The increased inflammation response and matrix metalloproteinases activities were also attenuated by C3aRA treatment in MFS mice. Therefore, these findings indicate that the complement C3a/C3aR inhibition alleviates the formation of aortic aneurysm in Marfan syndrome mice.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Kexin Yao
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Jian Wu
- Section of Physiology and Biochemistry of Sports, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Congcong Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
8
|
Zimmermann EA, DeVet T, Cilla M, Albiol L, Kavaseri K, Andrea C, Julien C, Tiedemann K, Panahifar A, Alidokht SA, Chromik R, Komarova SV, Reinhardt DP, Zaslansky P, Willie BM. Tissue material properties, whole-bone morphology and mechanical behavior in the Fbn1 C1041G/+ mouse model of Marfan syndrome. Matrix Biol Plus 2024; 23:100155. [PMID: 39049903 PMCID: PMC11267061 DOI: 10.1016/j.mbplus.2024.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by pathogenic mutations in FBN1. In bone, the protein fibrillin-1 is found in the extracellular matrix where it provides structural support of elastic fiber formation, stability for basement membrane, and regulates the bioavailability of growth factors. Individuals with MFS exhibit a range of skeletal complications including low bone mineral density and long bone overgrowth. However, it remains unknown if the bone phenotype is caused by alteration of fibrillin-1's structural function or distortion of its interactions with bone cells. To assess the structural effects of the fibrillin-1 mutation, we characterized bone curvature, microarchitecture, composition, porosity, and mechanical behavior in the Fbn1 C1041G/+ mouse model of MFS. Tibiae of 10, 26, and 52-week-old female Fbn1 C1041G/+ and littermate control (LC) mice were analyzed. Mechanical behavior was assessed via in vivo strain gauging, finite element analysis, ex vivo three-point bending, and nanoindentation. Tibial bone morphology and curvature were assessed with micro computed tomography (μCT). Bone composition was measured with Fourier transform infrared (FTIR) imaging. Vascular and osteocyte lacunar porosity were assessed by synchrotron computed tomography. Fbn1 C1041G/+ mice exhibited long bone overgrowth and osteopenia consistent with the MFS phenotype. Trabecular thickness was lower in Fbn1 C1041G/+ mice but cortical bone microarchitecture was similar in Fbn1 C1041G/+ and LC mice. Whole bone curvature was straighter below the tibio-fibular junction in the medial-lateral direction and more curved above in LC compared to Fbn1 C1041G/+ mice. The bone matrix crystallinity was 4 % lower in Fbn1 C1041G/+ mice compared to LC, implying that mineral platelets in LCs have greater crystal size and perfection than Fbn1 C1041G/+ mice. Structural and mechanical properties were similar between genotypes. Cortical diaphyseal lacunar porosity was lower in Fbn1 C1041G/+ mice compared to LC; this was a result of the average volume of an individual osteocyte lacunae being smaller. These data provide valuable insights into the bone phenotype and its contribution to fracture risk in this commonly used mouse model of MFS.
Collapse
Affiliation(s)
- Elizabeth A. Zimmermann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Taylor DeVet
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Laia Albiol
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kyle Kavaseri
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Christine Andrea
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Catherine Julien
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Kerstin Tiedemann
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Arash Panahifar
- BioMedical Imaging and Therapy Beamline, Canadian Light Source, Saskatoon, Canada
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada
| | - Sima A. Alidokht
- Department of Mechanical Engineering, Memorial University of Newfoundland, St. John’s, Canada
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Richard Chromik
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Svetlana V. Komarova
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Dieter P. Reinhardt
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, CC3 -Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Karaoglan M, Nacarkahya G, Aytac EH, Keskin M. Genotype and clinical phenotype of children with Marfan syndrome in Southeastern Anatolia. Eur J Pediatr 2024; 183:3219-3232. [PMID: 38700693 PMCID: PMC11263224 DOI: 10.1007/s00431-024-05579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 07/23/2024]
Abstract
The cardinal phenotypic hallmarks of Marfan syndrome (MFS) include cardiac, ocular, and skeletal abnormalities. Since the clinical phenotype of MFS is highly heterogeneous, with certain symptoms appearing as children age, the diagnostic process and establishing a genotype-phenotype association in childhood MFS can be challenging. The lack of sufficient childhood studies also makes it difficult to interpret the subject. This study aims to evaluate the relationship between clinical symptoms used as diagnostic criteria and FBN1 variations in children with MFS. This study investigated the relationships between genotypes and phenotypes in 131 children suspected of having Marfan syndrome (MFS). Diagnosis of MFS was made according to the revised Ghent nosology. FBN1 variants were categorized based on exon regions, type of variant, and pathogenicity classes. These FBN1 variants were then correlated with the clinical manifestations including cardiovascular, ocular, facial, and skeletal abnormalities. Out of the children, 43 were diagnosed with MFS. FBN1 variant was identified in 32 (74.4%) of the MFS children. MFS diagnosis could not be made in five (15.6%) FBN1 variant-positive children. The most common cardinal finding is cardiac anomalies n = 38 (88.3%). The most common FBN1 pathogenic variant was c.1786 T > C/p.Cys596Arg n = 4 (12.5%). The distribution of pathogenic variants was as follows: 29 (90.6%) missense, 2 (6.3%) frameshift, and 1 (3.1%) nonsense. The numbers of AD and EL of the variant-positive children were 16 (50%) and 14 (43.7%), respectively. Ocular abnormalities were more common in children with FBN1-positive MFS (p = 0.009). There was no difference in the number of cardiac abnormalities between FBN1-positive and FBN1-negative MFS patients (p = 0.139). Conclusion: This study examines the relationship between FBN1 variants and clinical features used as diagnostic criteria in MFS children. The findings emphasize the importance of long-term monitoring of heterogeneous clinical phenotypes and bioinformatic reanalysis in determining the genotype-phenotype relationship in children, as MFS symptoms can vary with age. What is Known: • Marfan syndrome has highly variable phenotypic heterogeneity. • The genotype-phenotype relationship in childhood Marfan syndrome is not clear enough due to the variation in the time of onset of the findings. What is New: • This article provides regional data for the field of research on genotype-phenotype relationships in childhood Marfan syndrome. • Long-term follow-up of clinical findings and bioinformatics reanalysis is an important requirement for a well-established genotype-phenotype relationship in childhood Marfan syndrome.
Collapse
Affiliation(s)
- Murat Karaoglan
- Faculty of Medicine, Department of Pediatric Endocrinology, Gaziantep University, Gaziantep, Turkey.
| | - Gulper Nacarkahya
- Department of Molecular Biology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Emel Hatun Aytac
- Faculty of Medicine, Department of Pediatric Endocrinology, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Keskin
- Faculty of Medicine, Department of Pediatric Endocrinology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
10
|
Arnaud P, Mougin Z, Baujat G, Drouin-Garraud V, El Chehadeh S, Gouya L, Odent S, Jondeau G, Boileau C, Hanna N, Le Goff C. Pathogenic variants affecting the TB5 domain of the fibrillin-1 protein: not only in geleophysic/acromicric dysplasias but also in Marfan syndrome. J Med Genet 2024; 61:469-476. [PMID: 38458756 DOI: 10.1136/jmg-2023-109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Marfan syndrome (MFS) is a multisystem disease with a unique combination of skeletal, cardiovascular and ocular features. Geleophysic/acromicric dysplasias (GPHYSD/ACMICD), characterised by short stature and extremities, are described as 'the mirror image' of MFS. The numerous FBN1 pathogenic variants identified in MFS are located all along the gene and lead to the same final pathogenic sequence. Conversely, in GPHYSD/ACMICD, the 28 known heterozygous FBN1 pathogenic variants all affect exons 41-42 encoding TGFβ-binding protein-like domain 5 (TB5). METHODS Since 1996, more than 5000 consecutive probands have been referred nationwide to our laboratory for molecular diagnosis of suspected MFS. RESULTS We identified five MFS probands carrying distinct heterozygous pathogenic in-frame variants affecting the TB5 domain of FBN1. The clinical data showed that the probands displayed a classical form of MFS. Strikingly, one missense variant affects an amino acid that was previously involved in GPHYSD. CONCLUSION Surprisingly, pathogenic variants in the TB5 domain of FBN1 can lead to two opposite phenotypes: GPHYSD/ACMICD and MFS, suggesting the existence of different pathogenic sequences with the involvement of tissue specificity. Further functional studies are ongoing to determine the precise role of this domain in the physiopathology of each disease.
Collapse
Affiliation(s)
- Pauline Arnaud
- Département de Génétique, Assistance Publique - Hopitaux de Paris, Paris, France
- U1148 LVTS, INSERM, Paris, Île-de-France, France
- Centre de Référence Maladies Rares Syndrome de Marfan et apparentés, Hôpital Bichat, APHP, Paris, Île-de-France, France
| | | | - Genevieve Baujat
- Département de Génétique, AP-HP, Hôpital Necker-Enfants malades, AP-HP, Paris, Île-de-France, France
| | | | - Salima El Chehadeh
- Service de Génétique Médicale, Hôpital de Hautepierre, CHU de Strasbourg, Strasbourg, Grand Est, France
| | - Laurent Gouya
- Centre de Référence Maladies Rares Syndrome de Marfan et apparentés, Hôpital Bichat, APHP, Paris, Île-de-France, France
| | - Sylvie Odent
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Rennes, Bretagne, France
- UMR 6290, IGDR, Rennes, Bretagne, France
| | - Guillaume Jondeau
- U1148 LVTS, INSERM, Paris, Île-de-France, France
- Centre de Référence Maladies Rares Syndrome de Marfan et apparentés, Hôpital Bichat, APHP, Paris, Île-de-France, France
| | - Catherine Boileau
- Département de Génétique, Assistance Publique - Hopitaux de Paris, Paris, France
- U1148 LVTS, INSERM, Paris, Île-de-France, France
| | - Nadine Hanna
- Département de Génétique, Assistance Publique - Hopitaux de Paris, Paris, France
- U1148 LVTS, INSERM, Paris, Île-de-France, France
- Centre de Référence Maladies Rares Syndrome de Marfan et apparentés, Hôpital Bichat, APHP, Paris, Île-de-France, France
| | | |
Collapse
|
11
|
Lu X, Wang R, Li M, Zhang B, Rao H, Huang X, Chen X, Wu Y. Identification of two novel large deletions in FBN1 gene by next-generation sequencing and multiplex ligation-dependent probe amplification. BMC Med Genomics 2024; 17:47. [PMID: 38317175 PMCID: PMC10840365 DOI: 10.1186/s12920-024-01822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Mutations in fibrillin-1 (FBN1) are known to be associated with Marfan syndrome (MFS), an autosomal dominant connective tissue disorder. Most FBN1 mutations are missense or nonsense mutations. Traditional molecular genetic testing for the FBN1 gene, like Sanger sequencing, may miss disease-causing mutations in the gene's regulatory regions or non-coding sequences, as well as partial or complete gene deletions and duplications. METHODS Next-generation sequencing, multiplex ligation-dependent probe amplification and gap PCR were conducted on two MFS patients to screen for disease-causing mutations. RESULTS We identified two large deletions in FBN1 from two MFS patients. One patient had a 0.23 Mb deletion (NC_000015.9:g.48550506_48779360del) including 5'UTR-exon6 of FBN1. The other patient harbored a 1416 bp deletion (NC_000015.9:g.48410869_48412284del) affecting the last exon, exon 66, of the FBN1 gene. CONCLUSION Our results expanded the number of large FBN1 deletions and highlighted the importance of screening for large deletions in FBN1 in clinical genetic testing, especially for those with the classic MFS phenotype.
Collapse
Affiliation(s)
- Xinxin Lu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Ren Wang
- Department of Cardiovascular Surgery, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Mingjie Li
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Biao Zhang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Huiying Rao
- Department of Ophthalmology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoli Huang
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Xijun Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yan'an Wu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
12
|
Piscopo A, Warner T, Nagy J, Nagrale V, Stence A, Guseva N, Bernat JA, Calhoun A. A novel de novo intragenic duplication in FBN1 associated with early-onset Marfan syndrome in a 16-month-old: A case report and review of the literature. Am J Med Genet A 2024; 194:368-373. [PMID: 37840436 DOI: 10.1002/ajmg.a.63440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder due to pathogenic variants in Fibrillin-1 (FBN1) affecting nearly one in every 10,000 individuals. We report a 16-month-old female with early-onset MFS heterozygous for an 11.2 kb de novo duplication within the FBN1 gene. Tandem location of the duplication was further confirmed by optical genome mapping in addition to genetic sequencing and chromosomal microarray. This is the third reported case of a large multi-exon duplication in FBN1, and the only one confirmed to be in tandem. As the vast majority of pathogenic variants associated with MFS are point mutations, this expands the landscape of known FBN1 pathogenic variants and supports consistent use of genetic testing strategies that can detect large, indel-type variants.
Collapse
Affiliation(s)
- Anthony Piscopo
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Taylor Warner
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jaime Nagy
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Vidya Nagrale
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Aaron Stence
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Natalya Guseva
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - John A Bernat
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy Calhoun
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Li L, Huang J, Liu Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front Cell Dev Biol 2024; 11:1302285. [PMID: 38269088 PMCID: PMC10806136 DOI: 10.3389/fcell.2023.1302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Fibrillin-1 (FBN1) is a large, cysteine-rich, calcium binding extracellular matrix glycoprotein encoded by FBN1 gene. It serves as a structural component of microfibrils and provides force-bearing mechanical support in elastic and nonelastic connective tissue. As such, mutations in the FBN1 gene can cause a wide variety of genetic diseases such as Marfan syndrome, an autosomal dominant disorder characterized by ocular, skeletal and cardiovascular abnormalities. FBN1 also interacts with numerous microfibril-associated proteins, growth factors and cell membrane receptors, thereby mediating a wide range of biological processes such as cell survival, proliferation, migration and differentiation. Dysregulation of FBN1 is involved in the pathogenesis of many human diseases, such as cancers, cardiovascular disorders and kidney diseases. Paradoxically, both depletion and overexpression of FBN1 upregulate the bioavailability and signal transduction of TGF-β via distinct mechanisms in different settings. In this review, we summarize the structure and expression of FBN1 and present our current understanding of the functional role of FBN1 in various human diseases. This knowledge will allow to develop better strategies for therapeutic intervention of FBN1 related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Junxin Huang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
14
|
Summers KM. Genetic models of fibrillinopathies. Genetics 2024; 226:iyad189. [PMID: 37972149 PMCID: PMC11021029 DOI: 10.1093/genetics/iyad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
The fibrillinopathies represent a group of diseases in which the 10-12 nm extracellular microfibrils are disrupted by genetic variants in one of the genes encoding fibrillin molecules, large glycoproteins of the extracellular matrix. The best-known fibrillinopathy is Marfan syndrome, an autosomal dominant condition affecting the cardiovascular, ocular, skeletal, and other systems, with a prevalence of around 1 in 3,000 across all ethnic groups. It is caused by variants of the FBN1 gene, encoding fibrillin-1, which interacts with elastin to provide strength and elasticity to connective tissues. A number of mouse models have been created in an attempt to replicate the human phenotype, although all have limitations. There are also natural bovine models and engineered models in pig and rabbit. Variants in FBN2 encoding fibrillin-2 cause congenital contractural arachnodactyly and mouse models for this condition have also been produced. In most animals, including birds, reptiles, and amphibians, there is a third fibrillin, fibrillin-3 (FBN3 gene) for which the creation of models has been difficult as the gene is degenerate and nonfunctional in mice and rats. Other eukaryotes such as the nematode C. elegans and zebrafish D. rerio have a gene with some homology to fibrillins and models have been used to discover more about the function of this family of proteins. This review looks at the phenotype, inheritance, and relevance of the various animal models for the different fibrillinopathies.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
15
|
Guo D, Liu L, Ng KY, Cao Q, Zheng D, Zhang X, Jin G. Ocular, cardiovascular, and genetic characteristics and their associations in children with Marfan syndrome and related fibrillinopathies. Graefes Arch Clin Exp Ophthalmol 2023; 261:3315-3324. [PMID: 37477739 DOI: 10.1007/s00417-023-06177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
PURPOSE Congenital ectopia lentis (CEL) and heart abnormalities are common clinical symptoms in patients with Marfan syndrome (MFS) and related fibrillinopathies, which is caused by mutations in fibrillin-1 (FBN1) gene. This study aims to explore the ocular and cardiovascular characteristics and their association with genotype in children with MFS and related fibrillinopathies. METHODS Seventy-nine children diagnosed with CEL and with FBN1 mutations confirmed via whole-exome sequencing were included for genotypes and phenotypes analysis. The axial length (AL), corneal curvature, and refractive status were included for ocular phenotypes analysis. The cardiovascular examination was performed by echocardiography, and aortic root Z score was calculated to evaluate the severity of aortic dilatation. The heart disorders were classified as aortic root dilatation, valvular disorders, and others. Both the ocular and cardiac manifestations were collected for comprehensive analysis and compared among patients with different genotypes, including the mutation involving cysteine substitution or mutation in different regions. RESULTS In CEL children with FBN1 mutations, 77.2% patients could be diagnosed as MFS. It was observed that children with mutations in exons 22-42 had significant higher aortic root Z score (P = 0.003) and higher incidence of cardiovascular disorders (P = 0.004). Additionally, children with cysteine substitution mutations had significant higher aortic root Z score (P = 0.011), and the aortic root Z score was positively associated with axial length (AL) in children under 6 years old (P = 0.035). Those with long AL (≥ 26 mm) had significant higher incidence of valve disorders (P = 0.023). In addition, nearly half the children with CEL (46.8%) were diagnosed with cardiovascular disease for the first time. CONCLUSIONS CEL children with FBN1 mutations involving cysteine substitution or mutations in exons 22-42 or with long AL had higher risks of severe cardiovascular complications. Knowing the phenotype may help in anticipating severe cardiovascular disease in CEL patients.
Collapse
Affiliation(s)
- Dongwei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Liyan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Kit Yee Ng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Qianzhong Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xinyu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Guangming Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Lau C, Muthu ML, Siddiqui IF, Li L, Reinhardt DP. High-Fat Diet Has a Protective Sex-Dependent Effect on Aortic Aneurysm Severity in a Marfan Syndrome Mouse Model. Can J Cardiol 2023; 39:1553-1567. [PMID: 37482239 DOI: 10.1016/j.cjca.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a genetic disorder caused by mutations in fibrillin-1 and is characterized by thoracic aortic aneurysms and other complications. Previous studies revealed sexual dimorphisms in formation of aortic aneurysm in patients with MFS. The current study aimed to investigate the combined role of a high-fat diet (HFD) and biological sex in aortic disease using the mgR/mgR MFS mouse model. METHODS Male and female mgR/mgR mice, as well as wild-type (WT) littermate mice, were fed a control diet (CD [10% fat]) or HFD (60% fat) from 4 to 12 weeks of age. Key aortic disease parameters analyzed included the diameter of the aortic wall; elastic fibre fragmentation; proteoglycan content; mRNA levels of Mmp12, Col1a1, Col3a1, and Fbn1; and fibrillin-1 deposition in the aortic wall. RESULTS HFD-fed female mgR/mgR mice had significantly reduced aortic diameters (35%), elastic fibre fragmentation (56%), pathologically enhanced proteoglycans (45%), and expression of Mmp12 (64%), Col1a1 (41%), and Col3a1 (43%) compared with male mgR/mgR mice on HFD. Fibrillin-1 deposition and Fbn1 mRNA levels were unaffected. The data reveal a protective effect of HFD in female mice. In contrast, CD did not exert any protective effects. CONCLUSIONS This study demonstrates a specific sexual dimorphism in MFS mice, with HFD exerting an explicit protective effect on severity of aortic disease in female mice. These preclinical data may be useful for developing nutritional recommendations for individuals with MFS in the longer term.
Collapse
Affiliation(s)
- Cori Lau
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Iram Fatima Siddiqui
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Ling Li
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Mulatti GC, Joviliano EE, Pereira AH, Fioranelli A, Pereira AA, Brito-Queiroz A, Von Ristow A, Freire LMD, Ferreira MMDV, Lourenço M, De Luccia N, Silveira PG, Yoshida RDA, Fidelis RJR, Boustany SM, de Araujo WJB, de Oliveira JCP. Brazilian Society for Angiology and Vascular Surgery guidelines on abdominal aortic aneurysm. J Vasc Bras 2023; 22:e20230040. [PMID: 38021279 PMCID: PMC10648059 DOI: 10.1590/1677-5449.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/15/2023] [Indexed: 12/01/2023] Open
Abstract
The Brazilian Society of Angiology and Vascular Surgery, through the Guidelines Project, presents new Abdominal Aortic Aneurysm Guidelines, on the subject of care for abdominal aortic aneurysm patients. Its development prioritized descriptive guidelines, using the EMBASE, LILACS, and PubMed databases. References include randomized controlled trials, systematic reviews, meta-analyses, and cohort studies. Quality of evidence was evaluated by a pair of coordinators, aided by the RoB 2 Cochrane tool and the Newcastle Ottawa Scale forms. The subjects include juxtarenal aneurysms, infected aneurysms, and new therapeutic techniques, especially endovascular procedures. The current version of the guidelines include important recommendations for the primary topics involving diagnosis, treatment, and follow-up for abdominal aortic aneurysm patients, providing an objective guide for medical practice, based on scientific evidence and widely available throughout Brazil.
Collapse
Affiliation(s)
- Grace Carvajal Mulatti
- Universidade de São Paulo - USP, Faculdade de Medicina, Hospital das Clínicas, São Paulo, SP, Brasil.
| | - Edwaldo Edner Joviliano
- Universidade de São Paulo - USP, Faculdade de Medicina de Ribeirão Preto - FMRP, Ribeirão Preto, SP, Brasil.
| | - Adamastor Humberto Pereira
- Universidade Federal do Rio Grande do Sul - UFRGS, Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, RS, Brasil.
| | | | - Alexandre Araújo Pereira
- Universidade Federal do Rio Grande do Sul - UFRGS, Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, RS, Brasil.
| | - André Brito-Queiroz
- Universidade Federal da Bahia - UFBA, Hospital Ana Nery, Salvador, BA, Brasil.
| | - Arno Von Ristow
- Pontifícia Universidade Católica do Rio de Janeiro - PUC-Rio, Rio de Janeiro, RJ, Brasil.
| | | | | | | | - Nelson De Luccia
- Universidade de São Paulo - USP, Faculdade de Medicina, São Paulo, SP, Brasil.
| | | | - Ricardo de Alvarenga Yoshida
- Universidade Estadual Paulista “Júlio de Mesquita Filho” - UNESP, Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil.
| | | | - Sharbel Mahfuz Boustany
- Universidade Federal do Rio Grande do Sul - UFRGS, Hospital de Clínicas de Porto Alegre - HCPA, Porto Alegre, RS, Brasil.
| | | | | |
Collapse
|
18
|
Kemezyte A, Gegieckiene R, Burnyte B. Genotype-phenotype spectrum and prognosis of early-onset Marfan syndrome. BMC Pediatr 2023; 23:539. [PMID: 37891508 PMCID: PMC10612290 DOI: 10.1186/s12887-023-04357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Marfan syndrome is a genetic connective tissue disorder affecting skeletal, ocular, and cardiovascular organ systems. Previous research found that pathogenic variants clustered in exons 24-32 of fibrillin-1 (FBN1) gene result in more severe clinical phenotypes. Furthermore, genotype-phenotype correlation studies suggested that more severe cardiovascular phenotypes were related to variants held responsible for haploinsufficiency. Our objective was to analyze the differences in clinical manifestations and genotypes of individuals with early-onset Marfan syndrome and to assess their impact on management strategies. METHODS We analyzed clinical and genetic data of a new patient with early-onset Marfan syndrome together with 51 previously reported ones in the PubMed database between 1991 and 2022. RESULTS Analysis showed 94% (49/52) of pathogenic variants clustered in exons 24-32 of the FBN1. The most common skeletal features were arachnodactyly (98%), reduced elbow extension (48%), pectus deformity (40%), and scoliosis (39%). Haploinsufficiency variants were reported as having poor outcome in 87.5% of the cases. Among patients carrying variants that substitute a cysteine for another amino acid and those that do not change cysteine content, cardiac intervention was found to be associated with a better outcome (p = 0.035 vs. p = 0.002). Variants that create an extra cysteine residue were found to be associated with a higher risk of ectopia lentis. Additionally, children up to 36-months-old were more often reported as still alive at the time of publication compared to newborns (p < 0.01). CONCLUSIONS Our findings have implications for prognosis, because different genotype groups and their resulting phenotype may require personalized care and management.
Collapse
Affiliation(s)
- Aurelija Kemezyte
- Faculty of Medicine, Vilnius University, M.K. Ciurlionio st. 21, Vilnius, Lithuania
| | - Ruta Gegieckiene
- Center of Cardiothoracic Surgery, Clinic of Cardiovascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariskiu St. 2, Vilnius, Lithuania
| | - Birute Burnyte
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu st. 2, LT-08661, Vilnius, Lithuania.
| |
Collapse
|
19
|
Marelli S, Micaglio E, Taurino J, Salvi P, Rurali E, Perrucci GL, Dolci C, Udugampolage NS, Caruso R, Gentilini D, Trifiro' G, Callus E, Frigiola A, De Vincentiis C, Pappone C, Parati G, Pini A. Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies. Diagnostics (Basel) 2023; 13:2284. [PMID: 37443678 DOI: 10.3390/diagnostics13132284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Marfan syndrome (MFS) is a rare inherited autosomic disorder, which encompasses a variety of systemic manifestations caused by mutations in the Fibrillin-1 encoding gene (FBN1). Cardinal clinical phenotypes of MFS are highly variable in terms of severity, and commonly involve cardiovascular, ocular, and musculoskeletal systems with a wide range of manifestations, such as ascending aorta aneurysms and dissection, mitral valve prolapse, ectopia lentis and long bone overgrowth, respectively. Of note, an accurate and prompt diagnosis is pivotal in order to provide the best treatment to the patients as early as possible. To date, the diagnosis of the syndrome has relied upon a systemic score calculation as well as DNA mutation identification. The aim of this review is to summarize the latest MFS evidence regarding the definition, differences and similarities with other connective tissue pathologies with severe systemic phenotypes (e.g., Autosomal dominant Weill-Marchesani syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome) and clinical assessment. In this regard, the management of MFS requires a multidisciplinary team in order to accurately control the evolution of the most severe and potentially life-threatening complications. Based on recent findings in the literature and our clinical experience, we propose a multidisciplinary approach involving specialists in different clinical fields (i.e., cardiologists, surgeons, ophthalmologists, orthopedics, pneumologists, neurologists, endocrinologists, geneticists, and psychologists) to comprehensively characterize, treat, and manage MFS patients with a personalized medicine approach.
Collapse
Affiliation(s)
- Susan Marelli
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Emanuele Micaglio
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Paolo Salvi
- Istituto Auxologico Italiano, Cardiology Unit, IRCCS, 20133 Milan, Italy
| | - Erica Rurali
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Claudia Dolci
- Laboratory of Functional Anatomy of the Stomatognathic System (LAFAS), Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Rosario Caruso
- Clinical Research Service, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, University of Milano-Bicocca, 20095 Milan, Italy
| | - Giuliana Trifiro'
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Edward Callus
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Clinical Psychology Service, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Alessandro Frigiola
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
- Association "Bambini Cardiopatici nel Mondo" Non-Governmental Organization (NGO), 20123 Milan, Italy
| | - Carlo De Vincentiis
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Cardiac Surgery, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Carlo Pappone
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, Cardiology Unit, IRCCS, 20133 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandro Pini
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
20
|
Saxton S, Dickinson G, Wang D, Zhou B, Um SY, Lin Y, Rojas L, Sampson BA, Graham JK, Tang Y. Molecular Genetic Characterization of Sudden Deaths Due to Thoracic Aortic Dissection or Rupture. Cardiovasc Pathol 2023; 65:107540. [PMID: 37116669 DOI: 10.1016/j.carpath.2023.107540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Sudden deaths due to thoracic aortic dissection or ruptures (TADR) are often investigated by forensic pathologists in the United States. Up to a quarter of reported TADR result from a highly penetrant autosomal dominant single gene variant. Testing genes associated with familial TADR provides an underlying etiology for the cause of death and informs effective sudden death prevention for at-risk family members. At the New York City Office of Chief Medical Examiner (NYC-OCME), TADR cases are routinely tested by the in-house, CAP-accredited Molecular Genetics Laboratory. In this retrospective study, TADR and cardiovascular cases were reviewed to understand the burden of TADR in sudden deaths, value of molecular diagnostic testing in TADR, and genotype-phenotype correlations in a demographically diverse TADR cohort. METHODS Between July 2019 and June 2022, cases with in-house cardiovascular genetic testing at NYC-OCME were retrospectively reviewed. Twenty genes associated with familial TADR were analyzed using high throughput massive parallel sequencing on postmortem tissues or bloodspot cards. Variant interpretation was conducted according to ACMG/AMP guidelines. RESULTS A total of 1078 cases were tested for cardiovascular genetic conditions, of which 34 (3%) had TADR. Eight of those TADR cases had a pathogenic or likely pathogenic variant (P/LPV), 4 had a variant of uncertain significance (VUS), and 22 cases were negative for variants in TADR genes. The molecular diagnostic yield using the TADR subpanel was 23.5%. The genes with the greatest prevalence of P/LPV were FBN1 (6), followed by TGFBR2 (2), TGFBR1 (1), and MYLK (1). Highly penetrant P/LPV in TGFBR2, FBN1, and TGFBR1 were found in TADR individuals who died younger than 34 years old. Two P/LPV in FBN1 were secondary findings unrelated to cause of death. P/LPV in FBN1 included five truncating variants located in the N-terminal domains and one missense variant involved in the disulfide bonds of the EGF-like domain. All P/LPV in TGFBR1 and TGFBR2 were missense or in-frame deletion variants located in the protein kinase catalytic domain. Three variants were first reported in this study. CONCLUSIONS Molecular testing of familial TADR-associated genes is a highly effective tool to identify the genetic cause of TADR sudden deaths and benefits surviving at-risk families.
Collapse
Affiliation(s)
| | - Gregory Dickinson
- Department of Forensic Pathology, New York City Office of Chief Medical Examiner
| | | | - Bo Zhou
- Molecular Genetics Laboratory
| | | | | | | | - Barbara A Sampson
- Department of Forensic Pathology, New York City Office of Chief Medical Examiner
| | - Jason K Graham
- Department of Forensic Pathology, New York City Office of Chief Medical Examiner
| | | |
Collapse
|
21
|
Shen R, Feng JH, Yang SP. Acromicric dysplasia caused by a mutation of fibrillin 1 in a family: A case report. World J Clin Cases 2023; 11:2036-2042. [PMID: 36998968 PMCID: PMC10044957 DOI: 10.12998/wjcc.v11.i9.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Acromicric dysplasia (AD) is a rare skeletal dysplasia. Its incidence is < 1/1000000, and only approximately 60 cases are reported worldwide. It is a disease characterized by severe short stature, short hands and feet, facial abnormalities, normal intelligence, and bone abnormalities. Unlike other skeletal dysplasia, AD has a mild clinical phenotype, mainly characterized by short stature. Extensive endocrine examination has not revealed a potential cause. The clinical effect of growth hormone therapy is still uncertain.
CASE SUMMARY We report a clinical phenotype of AD associated with mutations in the fibrillin 1 (FBN1) (OMIM 102370) gene c.5183C>T (p. Ala1728Val) in three people from a Chinese family. A 4-year-old member of the family first visited the hospital because of slow growth and short stature for 2 years, but no abnormalities were found after a series of laboratory tests, echocardiography, pituitary magnetic resonance imaging, and ophthalmological examination. Recombinant human growth hormone (rhGH) was used to treat the patient for > 5 years. The efficacy of rhGH was apparent in the first year of treatment; the height increased from -3.64 standard deviation score (SDS) to -2.88 SDS, while the efficacy weakened from the second year. However, long-term follow-up is required to clarify the efficacy of rhGH.
CONCLUSION FBN1-related AD has genetic heterogeneity and/or clinical variability, which brings challenges to the evaluation of clinical treatment. rhGH is effective for treatment of AD, but long-term follow-up is needed to clarify the effect.
Collapse
Affiliation(s)
- Ren Shen
- Department of Pediatrics, The People's Hospital of Yuhuan, Taizhou 317600, Zhejiang Province, China
| | - Jian-Hua Feng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Shan-Pu Yang
- Department of Pediatrics, The People's Hospital of Yuhuan, Taizhou 317600, Zhejiang Province, China
| |
Collapse
|
22
|
Buki G, Szalai R, Pinter A, Hadzsiev K, Melegh B, Rauch T, Bene J. Correlation between large FBN1 deletions and severe cardiovascular phenotype in Marfan syndrome: Analysis of two novel cases and analytical review of the literature. Mol Genet Genomic Med 2023:e2166. [PMID: 36945115 DOI: 10.1002/mgg3.2166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/26/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a clinically heterogeneous hereditary connective tissue disorder. Severe cardiovascular manifestations (i.e., aortic aneurysm and dissection) are the most life-threatening complications. Most of the cases are caused by mutations, a minor group of which are copy number variations (CNV), in the FBN1 gene. METHODS Multiplex ligation-dependent probe amplification test was performed to detect CNVs in 41 MFS patients not carrying disease-causing mutations in FBN1 gene. Moreover, the association was analyzed between the localization of CNVs, the affected regulatory elements and the cardiovascular phenotypes among all cases known from the literature. RESULTS A large two-exon deletion (exon 46 and 47) was identified in two related patients, which was associated with a mild form of cardiovascular phenotype. Severe cardiovascular symptoms were found significantly more frequent in patients with FBN1 large deletion compared to our patients with intragenic small scale FBN1 mutation. Bioinformatic data analyses of regulatory elements located within the FBN1 gene revealed an association between the deletion of STAT3 transcription factor-binding site and cardiovascular symptoms in five out of 25 patients. CONCLUSION Our study demonstrated that large CNVs are often associated with severe cardiovascular manifestations in MFS and the localization of these CNVs affect the phenotype severity.
Collapse
Affiliation(s)
- Gergely Buki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Renata Szalai
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Adrienn Pinter
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Rauch
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
23
|
Liu X, Niu L, Zhang L, Jiang L, Liu K, Wu X, Liu X, Wang J. Clinical and genetic findings in Chinese families with congenital ectopia lentis. Mol Genet Genomic Med 2023; 11:e2140. [PMID: 36670079 PMCID: PMC10178797 DOI: 10.1002/mgg3.2140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Congenital ectopia lentis (EL) refers to the congenital dysplasia or weakness of the lens suspensory ligament, resulting in an abnormal position of the crystalline lens, which can appear as isolated EL or as an ocular manifestation of a syndrome, such as the Marfan syndrome. The fibrillin-1 protein encoded by the FBN1 gene is an essential component of the lens zonules. Mutations in FBN1 are the leading causes of congenital EL and Marfan syndrome. Owing to the complexity and individual heterogeneity of FBN1 gene mutations, the correlation between FBN1 mutation characteristics and various clinical phenotypes remains unclear. METHODS This study describes the clinical characteristics and identifies possible causative genes in eight families with Marfan syndrome or isolated EL using Sanger and whole-exome sequencing. RESULTS Eight FBN1 mutations were identified in these families, of which three (c.5065G > C, c.1600 T > A, and c.2210G > C) are reported for the first time. Based on in silico analyses, we hypothesized that these mutations may be pathogenic by affecting the fibrillin-1 protein structure and function. CONCLUSION These findings expand the number of known mutations involved in EL and provide a reference for the research on their genotype and phenotype associations.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Liman Niu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Liyun Zhang
- Postgraduate Training Base of Jinzhou Medical University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong, China
| | - Liqiong Jiang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Kaiqing Liu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xueping Wu
- Postgraduate Training Base of Jinzhou Medical University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong, China
| | - Xinhua Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA. Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 2023; 138:106979. [PMID: 36630758 DOI: 10.1016/j.ymgme.2022.106979] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFβ family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom.
| | - Margaret R Davis
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Jennifer A West
- Faculty of Medicine, The University of Queensland, Mayne Medical Building, 288 Herston Road, Herston, Queensland 4006, Australia.
| |
Collapse
|
25
|
Zhou WZ, Zhang Y, Zhu G, Shen H, Zeng Q, Chen Q, Li W, Luo M, Shu C, Yang H, Zhou Z. HTAADVar: Aggregation and fully automated clinical interpretation of genetic variants in heritable thoracic aortic aneurysm and dissection. Genet Med 2022; 24:2544-2554. [PMID: 36194209 DOI: 10.1016/j.gim.2022.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Early detection and pathogenicity interpretation of disease-associated variants are crucial but challenging in molecular diagnosis, especially for insidious and life-threatening diseases, such as heritable thoracic aortic aneurysm and dissection (HTAAD). In this study, we developed HTAADVar, an unbiased and fully automated system for the molecular diagnosis of HTAAD. METHODS We developed HTAADVar (http://htaadvar.fwgenetics.org) under the American College of Medical Genetics and Genomics/Association for Molecular Pathology framework, with optimizations based on disease- and gene-specific knowledge, expert panel recommendations, and variant observations. HTAADVar provides variant interpretation with a self-built database through the web server and the stand-alone programs. RESULTS We constructed an expert-reviewed database by integrating 4373 variants in HTAAD genes, with comprehensive metadata curated from 697 publications and an in-house study of 790 patients. We further developed an interpretation system to assess variants automatically. Notably, HTAADVar showed a multifold increase in performance compared with public tools, reaching a sensitivity of 92.64% and specificity of 70.83%. The molecular diagnostic yield of HTAADVar among 790 patients (42.03%) also matched the clinical data, independently demonstrating its good performance in clinical application. CONCLUSION HTAADVar represents the first fully automated system for accurate variant interpretation for HTAAD. The framework of HTAADVar could also be generalized for the molecular diagnosis of other genetic diseases.
Collapse
Affiliation(s)
- Wei-Zhen Zhou
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yujing Zhang
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoyan Zhu
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huayan Shen
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingyi Zeng
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianlong Chen
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenke Li
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyao Luo
- Center of Vascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang Shu
- Center of Vascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Yang
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhou Zhou
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
Chen ZX, Jia WN, Jiang YX. Genotype-phenotype correlations of marfan syndrome and related fibrillinopathies: Phenomenon and molecular relevance. Front Genet 2022; 13:943083. [PMID: 36176293 PMCID: PMC9514320 DOI: 10.3389/fgene.2022.943083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Marfan syndrome (MFS, OMIM: 154700) is a heritable multisystemic disease characterized by a wide range of clinical manifestations. The underlying molecular defect is caused by variants in the FBN1. Meanwhile, FBN1 variants are also detected in a spectrum of connective tissue disorders collectively termed as ‘type I fibrillinopathies’. A multitude of FBN1 variants is reported and most of them are unique in each pedigree. Although MFS is being considered a monogenic disorder, it is speculated that the allelic heterogeneity of FBN1 variants contributes to various manifestations, distinct prognoses, and differential responses to the therapies in affected patients. Significant progress in the genotype–phenotype correlations of MFS have emerged in the last 20 years, though, some of the associations were still in debate. This review aims to update the recent advances in the genotype-phenotype correlations of MFS and related fibrillinopathies. The molecular bases and pathological mechanisms are summarized for better support of the observed correlations. Other factors contributing to the phenotype heterogeneity and future research directions were also discussed. Dissecting the genotype-phenotype correlation of FBN1 variants and related disorders will provide valuable information in risk stratification, prognosis, and choice of therapy.
Collapse
Affiliation(s)
- Ze-Xu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wan-Nan Jia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yong-Xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
27
|
Luperchio TR, Kozel BA. Extending the spectrum in aortopathy: stenosis to aneurysm. Curr Opin Genet Dev 2022; 76:101962. [DOI: 10.1016/j.gde.2022.101962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
|
28
|
Fibrillin-1 Regulates Arteriole Integrity in the Retina. Biomolecules 2022; 12:biom12101330. [PMID: 36291539 PMCID: PMC9599515 DOI: 10.3390/biom12101330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022] Open
Abstract
Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils that provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Fibrillin-1 is a component of the wall of large arteries but has been poorly described in other vessels. We examined the microvasculature in the retina using wild type mice and two models of Marfan syndrome, Fbn1C1041G/+ and Fbn1mgR/mgR. In the mouse retina, fibrillin-1 was detected around arterioles, in close contact with the basement membrane, where it colocalized with MAGP1. Both a mutation in fibrillin-1 or fibrillin-1 underexpression characteristically altered the microvasculature. In Fbn1C1041G/+ and Fbn1mgR/mgR mice, arterioles were enlarged with reduced MAGP1 deposition and focal loss of smooth muscle cell coverage. Losartan, which prevents aortic enlargement in Fbn1C1041G/+ mice, prevented smooth muscle cell loss and vessel leakiness when administrated in a preventive mode. Moreover, losartan also partially rescued the defects in a curative mode. Thus, fibrillin-1/MAGP1 performs essential functions in arteriolar integrity and mutant fibrillin-1-induced defects can be prevented or partially rescued pharmacologically. These new findings could have implications for people with Marfan syndrome.
Collapse
|
29
|
Requejo-Garcia L, Martinez-Lopez R, Plana-Andani E, Medina P, Hernandiz-Martinez A, Miralles-Hernández M. Extra-Thoracic Aneurysms in Marfan Syndrome: A Systematic Review of the Literature. Ann Vasc Surg 2022; 87:548-559. [PMID: 36029951 DOI: 10.1016/j.avsg.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Marfan syndrome (MS) most often shows as thoracic aortic aneurysm (TAA) or aortic dissection, but it may also involve other vascular territories. OBJECTIVE To identify those extra-thoracic vascular manifestations most frequently associated with MS. METHODOLOGY Systematic review of the literature with PRISMA criteria. The following databases were included: Medline, Embase, Web of Science (WOS), Cumulative Index of Nursing and Health Sciences Literature (CINHAL); Spanish database MEDESY Cochrane Central Register of Controlled Trials (CENTRAL). RESULTS 10,008 articles were identified, leaving 155 for the first stage of data analysis (total incidence of aneurysms) and 83 for the second (descriptive data analysis). Overall, 518 aneurysms were identified: 149 in the head and neck, 94 in the extremities 275 in the aortic, iliac and visceral sectors. Mostly, they were simultaneously discovered during studies of the AAT. In the abdominal aorta, the presentation with rupture in 11 of 32 patients stands out. Resection and bypass was the most frequently used method for repair in the treated cases. CONCLUSIONS Although its frequency in the general population is unknown, this systematic review suggests that extra-thoracic aneurysmal arterial involvement in the MS may be more frequent than expected. We believe screening for aneurysms in other vascular sectors may be advisable, especially in patients with MS and AAT.
Collapse
Affiliation(s)
- L Requejo-Garcia
- Angiology and Vascular Surgery Department. Hospital Universitario de La Ribera, Alzira, Valencia
| | - R Martinez-Lopez
- Angiology and Vascular Surgery Department. Hospital Universitario y Politécnico La Fe, Valencia
| | - E Plana-Andani
- Angiology and Vascular Surgery Department. Hospital Universitario y Politécnico La Fe, Valencia; Research Group on hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology. Instituto de Investigación Sanitara-Hospital La Fe, Valencia
| | - P Medina
- Research Group on hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology. Instituto de Investigación Sanitara-Hospital La Fe, Valencia
| | - A Hernandiz-Martinez
- Research Group on Regeneration and Heart Transplantation. Instituto de Investigación Sanitara-Hospital La Fe, Valencia
| | - M Miralles-Hernández
- Angiology and Vascular Surgery Department. Hospital Universitario y Politécnico La Fe, Valencia; Research Group on hemostasis, Thrombosis, Arteriosclerosis and Vascular Biology. Instituto de Investigación Sanitara-Hospital La Fe, Valencia.
| |
Collapse
|
30
|
Otero Luna A, Park KB, Schauer J, Castera M, Quintana Grijalba C, Chikkabyrappa SM, Tjoeng YL, Romberg EK, Olson A, Glass IA, Young L. A unique cardiovascular presentation of Marfan syndrome. Am J Med Genet A 2022; 188:2443-2447. [PMID: 35679177 DOI: 10.1002/ajmg.a.62865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
We report a neonate with severe Marfan syndrome (MS), prenatally identified to have persistent atrial tachycardia, biventricular dysfunction, and an unusual structure within the atria. Detailed postnatal echocardiographic evaluation and cross-sectional imaging confirmed congenital pseudoaneurysm of the mitral-aortic intervalvular fibrosa. Emergent testing by next-generation sequencing identified a FBN1 pathological variant, key to establishing goals of care. To our knowledge, this is the first reported case of a congenital pseudoaneurysm of the mitral-aortic intervalvular fibrosa in MS.
Collapse
Affiliation(s)
- Andrea Otero Luna
- Division of Pediatric Critical Care, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| | - Kaylee B Park
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Jenna Schauer
- Division of Pediatric Cardiology, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark Castera
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Carolina Quintana Grijalba
- Division of Pediatric Critical Care, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| | - Sathish Mallenahalli Chikkabyrappa
- Division of Pediatric Cardiology, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| | - Yuen Lie Tjoeng
- Division of Pediatric Critical Care, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| | - Erin K Romberg
- Division of Radiology, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| | - Aaron Olson
- Division of Pediatric Cardiology, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| | - Ian A Glass
- Division of Genetic Medicine, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, United States
| | - Luciana Young
- Division of Pediatric Cardiology, Department of Pediatrics, Seattle Children's Hospital and University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
31
|
Tiedemann K, Muthu ML, Reinhardt DP, Komarova SV. Male Marfan mice are predisposed to high fat diet induced obesity, diabetes, and fatty liver. Am J Physiol Cell Physiol 2022; 323:C354-C366. [PMID: 35759435 DOI: 10.1152/ajpcell.00062.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene mutations in the extracellular matrix protein fibrillin-1 cause connective tissue disorders including Marfan syndrome (MFS) with clinical symptoms in the cardiovascular, skeletal, and ocular systems. MFS patients also exhibit alterations in adipose tissues, which in some individuals leads to lipodystrophy, whereas in others to obesity. We have recently demonstrated that fibrillin-1 regulates adipose tissue homeostasis. Here, we examined how fibrillin-1 abnormality affects metabolic adaptation to different diets. We used two MFS mouse models: Hypomorph Fbn1mgR/mgR mice and Fbn1C1041G/+ mice with a fibrillin-1 missense mutation. When Fbn1mgR/mgR mice were fed with high fat diet (HFD) for 12 weeks, male mice were heavier than littermate controls (LC), whereas female mice gained less weight compared to LC. Female Fbn1C1041G/+ mice on a HFD for 24 weeks were similarly protected from weight gain. Male Fbn1C1041G/+ mice on HFD demonstrated higher insulin levels, insulin intolerance, circulating levels of cholesterol and high-density lipoproteins. Moreover, male HFD-fed Fbn1C1041G/+ mice showed a higher liver weight and a fatty liver phenotype, which was reduced to LC levels after orchiectomy. Phosphorylation of protein kinase-like endoplasmic reticulum kinase (PERK) as well as the expression of sterol regulatory element-binding protein 1 (Srebp1) in livers of HFD-fed male Fbn1C1041G/+ mice were elevated. In conclusion, the data demonstrate that male mice of both MFS models are susceptible to HFD-induced obesity and diabetes. Moreover, male Fbn1C1041G/+ mice develop a fatty liver phenotype, likely mediated by a baseline increased endoplasmic reticulum stress. In contrast, female MFS mice were protected from the consequence of HFD.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Shriners Hospital for Children - Canada, Montréal, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Dieter P Reinhardt
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Svetlana V Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, Canada.,Shriners Hospital for Children - Canada, Montréal, Canada
| |
Collapse
|
32
|
Zhang RM, Tiedemann K, Muthu ML, Dinesh NEH, Komarova S, Ramkhelawon B, Reinhardt DP. Fibrillin-1-regulated miR-122 has a critical role in thoracic aortic aneurysm formation. Cell Mol Life Sci 2022; 79:314. [PMID: 35606547 PMCID: PMC11072253 DOI: 10.1007/s00018-022-04337-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Thoracic aortic aneurysms (TAA) in Marfan syndrome, caused by fibrillin-1 mutations, are characterized by elevated cytokines and fragmentated elastic laminae in the aortic wall. This study explored whether and how specific fibrillin-1-regulated miRNAs mediate inflammatory cytokine expression and elastic laminae degradation in TAA. miRNA expression profiling at early and late TAA stages using a severe Marfan mouse model (Fbn1mgR/mgR) revealed a spectrum of differentially regulated miRNAs. Bioinformatic analyses predicted the involvement of these miRNAs in inflammatory and extracellular matrix-related pathways. We demonstrate that upregulation of pro-inflammatory cytokines and matrix metalloproteinases is a common characteristic of mouse and human TAA tissues. miR-122, the most downregulated miRNA in the aortae of 10-week-old Fbn1mgR/mgR mice, post-transcriptionally upregulated CCL2, IL-1β and MMP12. Similar data were obtained at 70 weeks of age using Fbn1C1041G/+ mice. Deficient fibrillin-1-smooth muscle cell interaction suppressed miR-122 levels. The marker for tissue hypoxia HIF-1α was upregulated in the aortic wall of Fbn1mgR/mgR mice, and miR-122 was reduced under hypoxic conditions in cell and organ cultures. Reduced miR-122 was partially rescued by HIF-1α inhibitors, digoxin and 2-methoxyestradiol in aortic smooth muscle cells. Digoxin-treated Fbn1mgR/mgR mice demonstrated elevated miR-122 and suppressed CCL2 and MMP12 levels in the ascending aortae, with reduced elastin fragmentation and aortic dilation. In summary, this study demonstrates that miR-122 in the aortic wall inhibits inflammatory responses and matrix remodeling, which is suppressed by deficient fibrillin-1-cell interaction and hypoxia in TAA.
Collapse
Affiliation(s)
- Rong-Mo Zhang
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Kerstin Tiedemann
- Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Muthu L Muthu
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Svetlana Komarova
- Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Bhama Ramkhelawon
- Department of Surgery, New York University School of Medicine, New York, USA
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
33
|
Peeters S, De Kinderen P, Meester JAN, Verstraeten A, Loeys BL. The fibrillinopathies: new insights with focus on the paradigm of opposing phenotypes for both FBN1 and FBN2. Hum Mutat 2022; 43:815-831. [PMID: 35419902 PMCID: PMC9322447 DOI: 10.1002/humu.24383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
Abstract
Different pathogenic variants in the fibrillin‐1 gene (FBN1) cause Marfan syndrome and acromelic dysplasias. Whereas the musculoskeletal features of Marfan syndrome involve tall stature, arachnodactyly, joint hypermobility, and muscle hypoplasia, acromelic dysplasia patients present with short stature, brachydactyly, stiff joints, and hypermuscularity. Similarly, pathogenic variants in the fibrillin‐2 gene (FBN2) cause either a Marfanoid congenital contractural arachnodactyly or a FBN2‐related acromelic dysplasia that most prominently presents with brachydactyly. The phenotypic and molecular resemblances between both the FBN1 and FBN2‐related disorders suggest that reciprocal pathomechanistic lessons can be learned. In this review, we provide an updated overview and comparison of the phenotypic and mutational spectra of both the “tall” and “short” fibrillinopathies. The future parallel functional study of both FBN1/2‐related disorders will reveal new insights into how pathogenic fibrillin variants differently affect the fibrillin microfibril network and/or growth factor homeostasis in clinically opposite syndromes. This knowledge may eventually be translated into new therapeutic approaches by targeting or modulating the fibrillin microfibril network and/or the signaling pathways under its control.
Collapse
Affiliation(s)
- Silke Peeters
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Pauline De Kinderen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Josephina A N Meester
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Aline Verstraeten
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Bart L Loeys
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Identification, function, and biological relevance of POGLUT2 and POGLUT3. Biochem Soc Trans 2022; 50:1003-1012. [PMID: 35411374 DOI: 10.1042/bst20210850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
O-glycosylation of Epidermal Growth Factor-like (EGF) repeats plays crucial roles in protein folding, trafficking and function. The Notch extracellular domain has been used as a model to study these mechanisms due to its many O-glycosylated EGF repeats. Three enzymes were previously known to O-glycosylate Notch EGF repeats: Protein O-Glucosyltransferase 1 (POGLUT1), Protein O-Fucosyltransferase 1 (POFUT1), and EGF Domain Specific O-Linked N-Acetylglucosamine Transferase (EOGT). All of these modifications affect Notch activity. Recently, POGLUT2 and POGLUT3 were identified as two novel O-glucosyltransferases that modify a few Notch EGF repeats at sites distinct from those modified by POGLUT1. Comparison of these modification sites revealed a putative consensus sequence which predicted modification of many extracellular matrix proteins including fibrillins (FBNs) and Latent TGFβ-binding proteins (LTBPs). Glycoproteomic analysis revealed that approximately half of the 47 EGF repeats in FBN1 and FBN2, and half of the 18 EGF repeats in LTBP1, are modified by POGLUT2 and/or POGLUT3. Cellular assays showed that loss of modifications by POGLUT2 and/or POGLUT3 significantly reduces FBN1 secretion. There is precedent for EGF modifications to affect protein-protein interactions, as has been demonstrated by research of POGLUT1 and POFUT1 modifications on Notch. Here we discuss the identification and characterization of POGLUT2 and POGLUT3 and the ongoing research that continues to elucidate the biological significance of these novel enzymes.
Collapse
|
35
|
Identification of a Novel 15q21.1 Microdeletion in a Family with Marfan Syndrome. Genet Res (Camb) 2022; 2022:3556302. [PMID: 35440892 PMCID: PMC9005307 DOI: 10.1155/2022/3556302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background Marfan syndrome (MFS) is a connective tissue disease involving multiple systems, with thoracic aortic aneurysm (TAA) as the most common life-threatening manifestation. Method A pedigree with TAA was investigated, and peripheral venous blood was extracted from six family members. After whole exome sequencing (WES) and chromosomal microarray analysis (CMA) in these individuals, bioinformatics and inheritance analyses were performed. Result WES revealed a novel, small, 0.76 Mb microdeletion in 15q21.1, which cosegregated with the disease phenotype in the family and led to the haploinsufficiency of the fibrillin 1 (FBN1) gene, which is associated with MFS. This small copy number variant (CNV) was confirmed by CMA. Conclusion Our study expands the phenotypic spectrum of the pathogenic CNV associated with MFS, thereby facilitating clinical genetic diagnosis and future genetic counseling for this family.
Collapse
|
36
|
Kimbrel NA, Ashley-Koch AE, Qin XJ, Lindquist JH, Garrett ME, Dennis MF, Hair LP, Huffman JE, Jacobson DA, Madduri RK, Trafton JA, Coon H, Docherty AR, Kang J, Mullins N, Ruderfer DM, Harvey PD, McMahon BH, Oslin DW, Hauser ER, Hauser MA, Beckham JC. A genome-wide association study of suicide attempts in the million veterans program identifies evidence of pan-ancestry and ancestry-specific risk loci. Mol Psychiatry 2022; 27:2264-2272. [PMID: 35347246 PMCID: PMC9910180 DOI: 10.1038/s41380-022-01472-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022]
Abstract
To identify pan-ancestry and ancestry-specific loci associated with attempting suicide among veterans, we conducted a genome-wide association study (GWAS) of suicide attempts within a large, multi-ancestry cohort of U.S. veterans enrolled in the Million Veterans Program (MVP). Cases were defined as veterans with a documented history of suicide attempts in the electronic health record (EHR; N = 14,089) and controls were defined as veterans with no documented history of suicidal thoughts or behaviors in the EHR (N = 395,064). GWAS was performed separately in each ancestry group, controlling for sex, age and genetic substructure. Pan-ancestry risk loci were identified through meta-analysis and included two genome-wide significant loci on chromosomes 20 (p = 3.64 × 10-9) and 1 (p = 3.69 × 10-8). A strong pan-ancestry signal at the Dopamine Receptor D2 locus (p = 1.77 × 10-7) was also identified and subsequently replicated in a large, independent international civilian cohort (p = 7.97 × 10-4). Additionally, ancestry-specific genome-wide significant loci were also detected in African-Americans, European-Americans, Asian-Americans, and Hispanic-Americans. Pathway analyses suggested over-representation of many biological pathways with high clinical significance, including oxytocin signaling, glutamatergic synapse, cortisol synthesis and secretion, dopaminergic synapse, and circadian rhythm. These findings confirm that the genetic architecture underlying suicide attempt risk is complex and includes both pan-ancestry and ancestry-specific risk loci. Moreover, pathway analyses suggested many commonly impacted biological pathways that could inform development of improved therapeutics for suicide prevention.
Collapse
Affiliation(s)
- Nathan A Kimbrel
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA.
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University Health System, Durham, NC, USA
| | - Xue J Qin
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Jennifer H Lindquist
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, USA
| | | | - Michelle F Dennis
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Lauren P Hair
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Daniel A Jacobson
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
- Department of Psychology, NeuroNet Research Center, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Ravi K Madduri
- Consortium for Advanced Science and Engineering, The University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jodie A Trafton
- Program Evaluation and Resource Center, Office of Mental Health and Suicide Prevention, VA Palo Alto Health Care System, Menlo Park, CA, USA
| | - Hilary Coon
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, US
- Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, US
| | - Anna R Docherty
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, US
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, US
| | - Jooeun Kang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, US
| | - Niamh Mullins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, US
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, US
| | - Douglas M Ruderfer
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, US
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, US
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, US
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Research Service Bruce W. Carter VA Medical Center, Miami, FL, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David W Oslin
- VISN 4 Mental Illness Research, Education, and Clinical Center, Center of Excellence, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth R Hauser
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Michael A Hauser
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University Health System, Durham, NC, USA
| | - Jean C Beckham
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
37
|
Jayavelu AK, Wolf S, Buettner F, Alexe G, Häupl B, Comoglio F, Schneider C, Doebele C, Fuhrmann DC, Wagner S, Donato E, Andresen C, Wilke AC, Zindel A, Jahn D, Splettstoesser B, Plessmann U, Münch S, Abou-El-Ardat K, Makowka P, Acker F, Enssle JC, Cremer A, Schnütgen F, Kurrle N, Chapuy B, Löber J, Hartmann S, Wild PJ, Wittig I, Hübschmann D, Kaderali L, Cox J, Brüne B, Röllig C, Thiede C, Steffen B, Bornhäuser M, Trumpp A, Urlaub H, Stegmaier K, Serve H, Mann M, Oellerich T. The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell 2022; 40:301-317.e12. [PMID: 35245447 DOI: 10.1016/j.ccell.2022.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/30/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis. We report a comprehensive proteogenomic analysis of bone marrow biopsies from 252 uniformly treated AML patients to elucidate the molecular pathophysiology of AML in order to inform future diagnostic and therapeutic approaches. In addition to in-depth quantitative proteomics, our analysis includes cytogenetic profiling and DNA/RNA sequencing. We identify five proteomic AML subtypes, each reflecting specific biological features spanning genomic boundaries. Two of these proteomic subtypes correlate with patient outcome, but none is exclusively associated with specific genomic aberrations. Remarkably, one subtype (Mito-AML), which is captured only in the proteome, is characterized by high expression of mitochondrial proteins and confers poor outcome, with reduced remission rate and shorter overall survival on treatment with intensive induction chemotherapy. Functional analyses reveal that Mito-AML is metabolically wired toward stronger complex I-dependent respiration and is more responsive to treatment with the BCL2 inhibitor venetoclax.
Collapse
Affiliation(s)
- Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Clinical Cooperation Unit Pediatric Leukemia, DKFZ and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg - KiTZ, Heidelberg, Germany
| | - Sebastian Wolf
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Buettner
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Alexe
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Björn Häupl
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Constanze Schneider
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Carmen Doebele
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sebastian Wagner
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Carolin Andresen
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Anne C Wilke
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Alena Zindel
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Jahn
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Splettstoesser
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Silvia Münch
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Khali Abou-El-Ardat
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Philipp Makowka
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Fabian Acker
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Julius C Enssle
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Anjali Cremer
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Frank Schnütgen
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Nina Kurrle
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Björn Chapuy
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medicine Berlin, Berlin, Germany
| | - Jens Löber
- Department of Medical Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Benjamin Franklin, University Medicine Berlin, Berlin, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Daniel Hübschmann
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Pattern Recognition and Digital Medicine, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Computational Oncology, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bernhard Brüne
- Department of Biochemistry I, Goethe University, Frankfurt, Germany
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Björn Steffen
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany; National Center for Tumor Diseases, Dresden (NCT/UCC), Dresden, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Kimberly Stegmaier
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
38
|
Arnaud P, Mougin Z, Boileau C, Le Goff C. Cooperative Mechanism of ADAMTS/ ADAMTSL and Fibrillin-1 in the Marfan Syndrome and Acromelic Dysplasias. Front Genet 2021; 12:734718. [PMID: 34912367 PMCID: PMC8667168 DOI: 10.3389/fgene.2021.734718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
The term “fibrillinopathies” gathers various diseases with a wide spectrum of clinical features and severity but all share mutations in the fibrillin genes. The first described fibrillinopathy, Marfan syndrome (MFS), is a multisystem disease with a unique combination of skeletal, thoracic aortic aneurysm (TAA) and ocular features. The numerous FBN1 mutations identified in MFS are located all along the gene, leading to the same pathogenic mechanism. The geleophysic/acromicric dysplasias (GD/AD), characterized by short stature, short extremities, and joint limitation are described as “the mirror image” of MFS. Previously, in GD/AD patients, we identified heterozygous FBN1 mutations all affecting TGFβ-binding protein-like domain 5 (TB5). ADAMTS10, ADAMTS17 and, ADAMTSL2 are also involved in the pathogenic mechanism of acromelic dysplasia. More recently, in TAA patients, we identified mutations in THSD4, encoding ADAMTSL6, a protein belonging to the ADAMTSL family suggesting that ADAMTSL proteins are also involved in the Marfanoid spectrum. Together with human genetic data and generated knockout mouse models targeting the involved genes, we provide herein an overview of the role of fibrillin-1 in opposite phenotypes. Finally, we will decipher the potential biological cooperation of ADAMTS-fibrillin-1 involved in these opposite phenotypes.
Collapse
Affiliation(s)
- Pauline Arnaud
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, Hôpital Bichat, Paris, France.,Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Zakaria Mougin
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, Hôpital Bichat, Paris, France
| | - Catherine Boileau
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, Hôpital Bichat, Paris, France.,Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - Carine Le Goff
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, Hôpital Bichat, Paris, France
| |
Collapse
|
39
|
van Andel MM, Groenink M, van den Berg MP, Timmermans J, Scholte AJHA, Mulder BJM, Zwinderman AH, de Waard V. Genome-wide methylation patterns in Marfan syndrome. Clin Epigenetics 2021; 13:217. [PMID: 34895303 PMCID: PMC8665617 DOI: 10.1186/s13148-021-01204-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients with MFS aiming at identifying DNA methylation loci associated with MFS phenotypes that may shed light on the disease process. Methods The Illumina 450 k DNA-methylation array was used on stored peripheral whole-blood samples of 190 patients with MFS originally included in the COMPARE trial. An unbiased genome-wide approach was used, and methylation of CpG-sites across the entire genome was evaluated. Additionally, we investigated CpG-sites across the FBN1-locus (15q21.1) more closely, since this is the gene defective in MFS. Differentially Methylated Positions (DMPs) and Differentially Methylated Regions (DMRs) were identified through regression analysis. Associations between methylation levels and aortic diameters and presence or absence of 21 clinical features of MFS at baseline were analyzed. Moreover, associations between aortic diameter change, and the occurrence of clinical events (death any cause, type-A or -B dissection/rupture, or aortic surgery) and methylation levels were analyzed. Results We identified 28 DMPs that are significantly associated with aortic diameters in patients with MFS. Seven of these DMPs (25%) could be allocated to a gene that was previously associated with cardiovascular diseases (HDAC4, IGF2BP3, CASZ1, SDK1, PCDHGA1, DIO3, PTPRN2). Moreover, we identified seven DMPs that were significantly associated with aortic diameter change and five DMP’s that associated with clinical events. No significant associations at p < 10–8 or p < 10–6 were found with any of the non-cardiovascular phenotypic MFS features. Investigating DMRs, clusters were seen mostly on X- and Y, and chromosome 18–22. The remaining DMRs indicated involvement of a large family of protocadherins on chromosome 5, which were not reported in MFS before. Conclusion This EWAS in patients with MFS has identified a number of methylation loci significantly associated with aortic diameters, aortic dilatation rate and aortic events. Our findings add to the slowly growing literature on the regulation of gene expression in MFS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01204-4.
Collapse
Affiliation(s)
- Mitzi M van Andel
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Maarten Groenink
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janneke Timmermans
- Department of Cardiology, Radboud University Hospital, Nijmegen, The Netherlands
| | - Arthur J H A Scholte
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Barbara J M Mulder
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Zhao S, Duan Y, Ma L, Shi Q, Wang K, Zhou Y. Sudden death due to a novel nonsense mutation in Marfan syndrome. Leg Med (Tokyo) 2021; 53:101967. [PMID: 34598112 DOI: 10.1016/j.legalmed.2021.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Marfan syndrome is a hereditary connective tissue disease accompanied by autosomal dominant inheritance; that mainly arises from a mutation in the fibrillin-1 gene (FBN1). Aortic dissection and rupture are the common and lethal complications of MFS and may cause sudden unexpected death. METHOD A man aged 34 was admitted to the hospital due to persistent pain in his abdomen 12 h post-drinking and suddenly died 10 h later. A forensic autopsy was performed to identify the underlying mechanism of death. Due to the high suspected of MFS, Sanger sequencing was performed, and a novel mutation was detected in the deceased. To clarify the underlying mechanism of this mutation, real-time quantitative polymerase chain reaction was conducted and Western blot analysis was performed in vitro. RESULTS A novel PTC mutation c.933C > A in FBN1 was found. Through family history inspection and Sanger sequencing, other MFS patients in the present family were confirmed. The pathologic changes in the aorta in the present case showed media cystic degeneration, disordered arrangement of elastic fibers and a significant reduction in fibrillin 1 compared with the control. The mutation led to significant reduction inFBN1 mRNA and fibrillin-1 in cells in vitro, and overexpression of phospho-Smad2 was observed. CONCLUSION We confirmed a novel pathogenic PTC mutation in the FBN1gene through Sanger sequencing, and the pathological changes and underlying mechanisms were also identified. The present work not only extends the pathogenic mutation spectrum of MFS, but also stresses the role of forensic autopsy, genetic analysis and functional validation of novel mutations in cases of sudden death associated with congenital diseases.
Collapse
Affiliation(s)
- Shuquan Zhao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, PR China.
| | - Yijie Duan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, PR China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, PR China
| | - Qing Shi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, PR China
| | - Kang Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, PR China.
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, PR China.
| |
Collapse
|
41
|
Rysz J, Gluba-Brzózka A, Rokicki R, Franczyk B. Oxidative Stress-Related Susceptibility to Aneurysm in Marfan's Syndrome. Biomedicines 2021; 9:biomedicines9091171. [PMID: 34572356 PMCID: PMC8467736 DOI: 10.3390/biomedicines9091171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023] Open
Abstract
The involvement of highly reactive oxygen-derived free radicals (ROS) in the genesis and progression of various cardiovascular diseases, including arrhythmias, aortic dilatation, aortic dissection, left ventricular hypertrophy, coronary arterial disease and congestive heart failure, is well-established. It has also been suggested that ROS may play a role in aortic aneurysm formation in patients with Marfan's syndrome (MFS). This syndrome is a multisystem disorder with manifestations including cardiovascular, skeletal, pulmonary and ocular systems, however, aortic aneurysm and dissection are still the most life-threatening manifestations of MFS. In this review, we will concentrate on the impact of oxidative stress on aneurysm formation in patients with MFS as well as on possible beneficial effects of some agents with antioxidant properties. Mechanisms responsible for oxidative stress in the MFS model involve a decreased expression of superoxide dismutase (SOD) as well as enhanced expression of NAD(P)H oxidase, inducible nitric oxide synthase (iNOS) and xanthine oxidase. The results of studies have indicated that reactive oxygen species may be involved in smooth muscle cell phenotype switching and apoptosis as well as matrix metalloproteinase activation, resulting in extracellular matrix (ECM) remodeling. The progression of the thoracic aortic aneurysm was suggested to be associated with markedly impaired aortic contractile function and decreased nitric oxide-mediated endothelial-dependent relaxation.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
- Correspondence: or ; Tel.: +48-42-639-3750
| | - Robert Rokicki
- Clinic of Hand Surgery, Medical University of Lodz, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
42
|
Abstract
Marfan syndrome (MFS) is an autosomal dominant, age-related but highly penetrant condition with substantial intrafamilial and interfamilial variability. MFS is caused by pathogenetic variants in FBN1, which encodes fibrillin-1, a major structural component of the extracellular matrix that provides support to connective tissues, particularly in arteries, the pericondrium and structures in the eye. Up to 25% of individuals with MFS have de novo variants. The most prominent manifestations of MFS are asymptomatic aortic root aneurysms, aortic dissections, dislocation of the ocular lens (ectopia lentis) and skeletal abnormalities that are characterized by overgrowth of the long bones. MFS is diagnosed based on the Ghent II nosology; genetic testing confirming the presence of a FBN1 pathogenetic variant is not always required for diagnosis but can help distinguish MFS from other heritable thoracic aortic disease syndromes that can present with skeletal features similar to those in MFS. Untreated aortic root aneurysms can progress to life-threatening acute aortic dissections. Management of MFS requires medical therapy to slow the rate of growth of aneurysms and decrease the risk of dissection. Routine surveillance with imaging techniques such as transthoracic echocardiography, CT or MRI is necessary to monitor aneurysm growth and determine when to perform prophylactic repair surgery to prevent an acute aortic dissection.
Collapse
|
43
|
Chen Z, Chen T, Zhang M, Chen J, Deng M, Zheng J, Lan LN, Jiang Y. Fibrillin-1 gene mutations in a Chinese cohort with congenital ectopia lentis: spectrum and genotype-phenotype analysis. Br J Ophthalmol 2021; 106:1655-1661. [PMID: 34281902 DOI: 10.1136/bjophthalmol-2021-319084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/02/2021] [Indexed: 11/04/2022]
Abstract
AIMS To identify the mutation spectrum and genotype-phenotype correlations of fibrillin-1 (FBN1) mutations in a Chinese cohort with congenital ectopia lentis (EL). METHODS Patients clinically suspected of congenital zonulopathy were screened using panel-based next-generation sequencing followed by multiplex ligation-dependent probe amplification. All the probands were subjected to thorough ocular examinations. Molecular and clinical data were integrated in pursuit of genotype-phenotype correlation. RESULTS A total of 131 probands of FBN1 mutations from unrelated families were recruited. Around 65% of the probands were children younger than 9 years old. Overall, 110 distinct FBN1 mutations were identified, including 39 novel ones. The most at-risk regions were exons 13, 2, 6, 15, 24 and 33 in descending order of mutation frequency. The most prevalent mutation was c.184C>T (seven, 5.34%) in the coding sequence and c.5788+5G>A (three, 2.29%) in introns. Missense mutations were the most frequent type (103, 78.63%); half of which were distributed in the N-terminal regions (53, 51.46%). The majority of missense mutations were detected in one of the calcium-binding epidermal growth factor-like domains (62, 60.19%), and 39 (62.90%) of them were substitutions of conserved cysteine residues. Microspherophakia (MSP) was found in 15 patients (11.45%). Mutations in the middle region (exons 22-42), especially exon 26, had higher risks of combined MSP (OR, 5.51 (95% CI 1.364 to 22.274), p=0.017). CONCLUSIONS This study extended the knowledge of the FBN1 mutation spectrum and provided novel insights into its clinical correlation regarding EL and MSP in the Chinese population.
Collapse
Affiliation(s)
- Zexu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tianhui Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Min Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiahui Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Michael Deng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jialei Zheng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Li-Na Lan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yongxiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China .,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
44
|
Ruiz-Rodríguez AJ, García Robles A, Benavente Fernández A. Upper gastrointestinal bleeding in a patient with Marfan's disease. Med Clin (Barc) 2021; 158:237-238. [PMID: 34112511 DOI: 10.1016/j.medcli.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022]
Affiliation(s)
| | - Adelina García Robles
- Servicio de Aparato Digestivo, Hospital Universitario Clínico San Cecilio, Granada, España
| | | |
Collapse
|
45
|
Stengl R, Ágg B, Pólos M, Mátyás G, Szabó G, Merkely B, Radovits T, Szabolcs Z, Benke K. Potential predictors of severe cardiovascular involvement in Marfan syndrome: the emphasized role of genotype-phenotype correlations in improving risk stratification-a literature review. Orphanet J Rare Dis 2021; 16:245. [PMID: 34059089 PMCID: PMC8165977 DOI: 10.1186/s13023-021-01882-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a genetically determined systemic connective tissue disorder, caused by a mutation in the FBN1 gene. In MFS mainly the cardiovascular, musculoskeletal and ocular systems are affected. The most dangerous manifestation of MFS is aortic dissection, which needs to be prevented by a prophylactic aortic root replacement. MAIN BODY The indication criteria for the prophylactic procedure is currently based on aortic diameter, however aortic dissections below the threshold defined in the guidelines have been reported, highlighting the need for a more accurate risk stratification system to predict the occurrence of aortic complications. The aim of this review is to present the current knowledge on the possible predictors of severe cardiovascular manifestations in MFS patients, demonstrating the wide range of molecular and radiological differences between people with MFS and healthy individuals, and more importantly between MFS patients with and without advanced aortic manifestations. These differences originating from the underlying common molecular pathological processes can be assessed by laboratory (e.g. genetic testing) and imaging techniques to serve as biomarkers of severe aortic involvement. In this review we paid special attention to the rapidly expanding field of genotype-phenotype correlations for aortic features as by collecting and presenting the ever growing number of correlations, future perspectives for risk stratification can be outlined. CONCLUSIONS Data on promising biomarkers of severe aortic complications of MFS have been accumulating steadily. However, more unifying studies are required to further evaluate the applicability of the discussed predictors with the aim of improving the risk stratification and therefore the life expectancy and quality of life of MFS patients.
Collapse
Affiliation(s)
- Roland Stengl
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary.
| | - Bence Ágg
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Gábor Mátyás
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People With Rare Diseases, Wagistrasse 25, 8952, CH-Schlieren-Zurich, Switzerland
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Halle, Halle, Germany
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Zoltán Szabolcs
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
- Department of Cardiac Surgery, University of Halle, Halle, Germany
| |
Collapse
|
46
|
Fernández-Álvarez P, Codina-Sola M, Valenzuela I, Teixidó-Turá G, Cueto-González A, Paramonov I, Antolín M, López-Grondona F, Vendrell T, Evangelista A, García-Arumí E, Tizzano EF. A systematic study and literature review of parental somatic mosaicism of FBN1 pathogenic variants in Marfan syndrome. J Med Genet 2021; 59:605-612. [PMID: 33910934 DOI: 10.1136/jmedgenet-2020-107604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND A proportion of de novo variants in patients affected by genetic disorders, particularly those with autosomal dominant (AD) inheritance, could be the consequence of somatic mosaicism in one of the progenitors. There is growing evidence that germline and somatic mosaicism are more common and play a greater role in genetic disorders than previously acknowledged. In Marfan syndrome (MFS), caused by pathogenic variants in the fibrillin-1 gene (FBN1) gene, approximately 25% of the disease-causing variants are reported as de novo. Only a few cases of parental mosaicism have been reported in MFS. METHODS Employing an amplicon-based deep sequencing (ADS) method, we carried out a systematic analysis of 60 parents of 30 FBN1 positive, consecutive patients with MFS with an apparently de novo pathogenic variant. RESULTS Out of the 60 parents studied (30 families), the majority (n=51, 85%) had a systemic score of 0, seven had a score of 1 and two a score of 2, all due to minor criteria common in the normal population. We detected two families with somatic mosaicism in one of the progenitors, with a rate of 6.6% (2/30) of apparently de novo cases. CONCLUSIONS The search for parental somatic mosaicism should be routinely implemented in de novo cases of MFS, to offer appropriate genetic and reproductive counselling as well as to reveal masked, isolated clinical signs of MFS in progenitors that may require specific follow-up.
Collapse
Affiliation(s)
- Paula Fernández-Álvarez
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Marta Codina-Sola
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Gisela Teixidó-Turá
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Anna Cueto-González
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Ida Paramonov
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Fermina López-Grondona
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Teresa Vendrell
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Artur Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Elena García-Arumí
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Departament de Patologia Neuromuscular i Mitocondrial, Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain .,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| |
Collapse
|
47
|
Haan EA, Chamalaun FH, Chamuleau SAJ, Arnolda LF, Slavotinek JP, Wise NC, Gunawardane DN, Schwarze U, Byers PH, Gabb GM. Marfan syndrome resulting from a rare pathogenic FBN1 variant, ascertained through a proband with IgG4-related arteriopathy. Am J Med Genet A 2021; 185:2180-2189. [PMID: 33878224 DOI: 10.1002/ajmg.a.62218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/10/2022]
Abstract
A 57-year-old man with a family history of aortic aneurysm was found, during assessment of unexplained fever, to have an infrarenal aortic aneurysm requiring immediate repair. Dilatation of popliteal and iliac arteries was also present. Progressive aortic root dilatation with aortic regurgitation was documented from 70 years leading to valve-sparing aortic root replacement at 77 years, at which time genetic studies identified a likely pathogenic FBN1 missense variant c.6916C > T (p.Arg2306Cys) in exon 56. The proband's lenses were normally positioned and the Marfan syndrome (MFS) systemic score was 0/20. Cascade genetic testing identified 15 other family members with the FBN1 variant, several of whom had unsuspected aortic root dilatation; none had ectopia lentis or MFS systemic score ≥ 7. Segregation analysis resulted in reclassification of the FBN1 variant as pathogenic. The combination of thoracic aortic aneurysm and dissection (TAAD) and a pathogenic FBN1 variant in multiple family members allowed a diagnosis of MFS using the revised Ghent criteria. At 82 years, the proband's presenting abdominal aortic aneurysm was diagnosed retrospectively to have resulted from IgG4-related inflammatory aortopathy.
Collapse
Affiliation(s)
- Eric A Haan
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide and Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Steven A J Chamuleau
- Department of Cardiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Leonard F Arnolda
- Medical School, Australian National University, Australian Capital Territory, Canberra, Australian Capital Territory, Australia
| | - John P Slavotinek
- Department of Radiology, Flinders Medical Center and Repatriation Health Precinct, SA Medical Imaging, SA Health and College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Nadia C Wise
- Vascular Surgery, Division of Surgery, Flinders Medical Center and College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Dimuth N Gunawardane
- Department of Anatomical Pathology/SA Pathology, Flinders Medical Center and Department of Anatomical Pathology/SA Pathology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Ulrike Schwarze
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Peter H Byers
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, USA
| | - Genevieve M Gabb
- Cardiac and Critical Care, Division of Medicine, Flinders Medical Center, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.,Acute and Urgent Care, Royal Adelaide Hospital and Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Cale JM, Greer K, Fletcher S, Wilton SD. Proof-of-Concept: Antisense Oligonucleotide Mediated Skipping of Fibrillin-1 Exon 52. Int J Mol Sci 2021; 22:ijms22073479. [PMID: 33801742 PMCID: PMC8037683 DOI: 10.3390/ijms22073479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2–3 in 10,000 individuals, and is caused by one of over 2800 unique FBN1 mutations. Mutations in FBN1 result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of FBN1 exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of FBN1 transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from FBN1 pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.
Collapse
Affiliation(s)
- Jessica M. Cale
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Kane Greer
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (K.G.); (S.F.)
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-9360-2305
| |
Collapse
|
49
|
Jensen SA, Atwa O, Handford PA. Assembly assay identifies a critical region of human fibrillin-1 required for 10-12 nm diameter microfibril biogenesis. PLoS One 2021; 16:e0248532. [PMID: 33735269 PMCID: PMC7971562 DOI: 10.1371/journal.pone.0248532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
The human FBN1 gene encodes fibrillin-1 (FBN1); the main component of the 10–12 nm diameter extracellular matrix microfibrils. Marfan syndrome (MFS) is a common inherited connective tissue disorder, caused by FBN1 mutations. It features a wide spectrum of disease severity, from mild cases to the lethal neonatal form (nMFS), that is yet to be explained at the molecular level. Mutations associated with nMFS generally affect a region of FBN1 between domains TB3-cbEGF18—the "neonatal region". To gain insight into the process of fibril assembly and increase our understanding of the mechanisms determining disease severity in MFS, we compared the secretion and assembly properties of FBN1 variants containing nMFS-associated substitutions with variants associated with milder, classical MFS (cMFS). In the majority of cases, both nMFS- and cMFS-associated neonatal region variants were secreted at levels comparable to wild type. Microfibril incorporation by the nMFS variants was greatly reduced or absent compared to the cMFS forms, however, suggesting that nMFS substitutions disrupt a previously undefined site of microfibril assembly. Additional analysis of a domain deletion variant caused by exon skipping also indicates that register in the neonatal region is likely to be critical for assembly. These data demonstrate for the first time new requirements for microfibril biogenesis and identify at least two distinct molecular mechanisms associated with disease substitutions in the TB3-cbEGF18 region; incorporation of mutant FBN1 into microfibrils changing their integral properties (cMFS) or the blocking of wild type FBN1 assembly by mutant molecules that prevents late-stage lateral assembly (nMFS).
Collapse
Affiliation(s)
- Sacha A Jensen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ondine Atwa
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
MacKintosh EW, Chen ML, Wenger T, Carlin K, Young L. Risk Factors and Inadequacy of Screening for Sleep-Disordered Breathing in Children with Marfan Syndrome. Pediatr Cardiol 2021; 42:510-516. [PMID: 33394117 DOI: 10.1007/s00246-020-02508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
The prevalence of obstructive sleep apnea (OSA) is increased in children and adults with Marfan syndrome (MFS) compared to the general population and has been shown to be associated with rapid aortic root dilation and dissection in adults. Early diagnosis and treatment of OSA may decrease long-term cardiac morbidity. We therefore studied the utility of noninvasive OSA screening tools in children with MFS. We hypothesized that youth with MFS would have higher OSA screening scores than the general pediatric population. Subjects with confirmed MFS were recruited from a single pediatric center. Data collected included cardiac history, retrospective polysomnogram (PSG) data, and prospectively collected Pediatric Sleep Questionnaire (SRBD-PSQ) and Epworth Sleepiness Scale (ESS-CHAD) scores. Fifty-one individuals aged 2-21 years old were identified. Nineteen subjects completed the surveys, 53% female, median age 16 years. Of those that completed the survey, mean SRBD-PSQ score was 0.24 ± 0.21 and mean ESS-CHAD was 6.4 ± 3.7. Comparatively, published normative data for pediatric control subjects were 0.24 ± 0.21 for SRBD-PSQ and 5.4 ± 3.7 for ESS-CHAD. In conclusions, youth with MFS had similar OSA screening scores compared to published pediatric controls. Given these findings and high prevalence of OSA in MFS youth, standard questionnaires may not be an appropriate tool for identifying children at risk for OSA in this population. In the absence of evidence-based guidelines, physicians caring for children with MFS should consider referral for PSG, even in the absence of classic symptoms.
Collapse
Affiliation(s)
- Erin Walker MacKintosh
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA.
| | - Maida Lynn Chen
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Tara Wenger
- Division of Genetics, Seattle Children's Hospital, Seattle, WA, USA
| | - Kristen Carlin
- Center for Clinical & Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Luciana Young
- Division of Cardiology, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|