1
|
Gao X, Iqbal H, Yu DQ, Gor J, Coker AR, Perkins SJ. The SCR-17 and SCR-18 glycans in human complement factor H enhance its regulatory function. J Biol Chem 2024; 300:107624. [PMID: 39098532 PMCID: PMC11417181 DOI: 10.1016/j.jbc.2024.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Human complement factor H (CFH) plays a central role in regulating activated C3b to protect host cells. CFH contain 20 short complement regulator (SCR) domains and eight N-glycosylation sites. The N-terminal SCR domains mediate C3b degradation while the C-terminal CFH domains bind to host cell surfaces to protect these. Our earlier study of Pichia-generated CFH fragments indicated a self-association site at SCR-17/18 that comprises a dimerization site for human factor H. Two N-linked glycans are located on SCR-17 and SCR-18. Here, when we expressed SCR-17/18 without glycans in an Escherichia coli system, analytical ultracentrifugation showed that no dimers were now formed. To investigate this novel finding, full-length CFH and its C-terminal fragments were purified from human plasma and Pichia pastoris respectively, and their glycans were enzymatically removed using PNGase F. Using size-exclusion chromatography, mass spectrometry, and analytical ultracentrifugation, SCR-17/18 from Pichia showed notably less dimer formation without its glycans, confirming that the glycans are necessary for the formation of SCR-17/18 dimers. By surface plasmon resonance, affinity analyses interaction showed decreased binding of deglycosylated full-length CFH to immobilized C3b, showing that CFH glycosylation enhances the key CFH regulation of C3b. We conclude that our study revealed a significant new aspect of CFH regulation based on its glycosylation and its resulting dimerization.
Collapse
Affiliation(s)
- Xin Gao
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK; Division of Medicine, University College London, London, UK
| | - Hina Iqbal
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ding-Quan Yu
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK
| | - Jayesh Gor
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK
| | - Alun R Coker
- Division of Medicine, University College London, London, UK
| | - Stephen J Perkins
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
2
|
Menon SS, Ramirez-Toloza G, Wycoff KL, Ehinger S, Shaughnessy J, Ram S, Ferreira VP. Mechanisms by which Factor H protects Trypanosoma cruzi from the alternative pathway of complement. Front Immunol 2024; 15:1152000. [PMID: 38361922 PMCID: PMC10867245 DOI: 10.3389/fimmu.2024.1152000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Chagas disease, a chronic disabling disease caused by the protozoan Trypanosoma cruzi, has no standardized treatment or preventative vaccine. The infective trypomastigote form of T. cruzi is highly resistant to killing by the complement immune system. Factor H (FH), a negative regulator of the alternative pathway (AP) of complement on cell surfaces and in blood, contains 20 short consensus repeat domains. The four N-terminal domains of FH inactivate the AP, while the other domains interact with C3b/d and glycan markers on cell surfaces. Various pathogens bind FH to inactivate the AP. T. cruzi uses its trans-sialidase enzyme to transfer host sialic acids to its own surface, which could be one of the approaches it uses to bind FH. Previous studies have shown that FH binds to complement-opsonized T. cruzi and parasite desialylation increases complement-mediated lysis of trypomastigotes. However, the molecular basis of FH binding to T. cruzi remain unknown. Only trypomastigotes, but not epimastigotes (non-infective, complement susceptible) bound FH directly, independent of C3 deposition, in a dose-dependent manner. Domain mapping experiments using 3-5 FH domain fragments showed that domains 5-8 competitively inhibited FH binding to the trypomastigotes by ~35% but did not decrease survival in complement. FH-Fc or mutant FH-Fc fusion proteins (3-11 contiguous FH domains fused to the IgG Fc) also did not kill trypomastigotes. FH-related protein-5, whose domains bear significant sequence identity to all known polyanion-binding FH domains (6-7, 10-14, 19-20), fully inhibited FH binding to trypomastigotes and reduced trypomastigote survival to < 24% in the presence of serum. In conclusion, we have elucidated the role of FH in complement resistance of trypomastigotes.
Collapse
Affiliation(s)
- Smrithi S. Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Galia Ramirez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | | | - Sean Ehinger
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
3
|
Ma Z, Mao C, Jia Y, Yu F, Xu P, Tan Y, Zou QH, Zhou XJ, Kong W, Fu Y. ADAMTS7-Mediated Complement Factor H Degradation Potentiates Complement Activation to Contributing to Renal Injuries. J Am Soc Nephrol 2023; 34:291-308. [PMID: 36735376 PMCID: PMC10103097 DOI: 10.1681/asn.0000000000000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The dysfunction of complement factor H (CFH), the main soluble complement negative regulator, potentiates various complement-induced renal injuries. However, insights into the underlying mechanism of CFH dysfunction remain limited. In this study, we investigated whether extracellular protease-mediated degradation accounts for CFH dysfunction in complement-mediated renal injuries. METHODS An unbiased interactome of lupus mice kidneys identified CFH-binding protease. In vitro cleavage assay clarified CFH degradation. Pristane-induced SLE or renal ischemia-reperfusion (I/R) injury models were used in wild-type and ADAMTS7-/- mice. RESULTS We identified the metalloprotease ADAMTS7 as a CFH-binding protein in lupus kidneys. Moreover, the upregulation of ADAMTS7 correlated with CFH reduction in both lupus mice and patients. Mechanistically, ADAMTS7 is directly bound to CFH complement control protein (CCP) 1-4 domain and degraded CCP 1-7 domain through multiple cleavages. In mice with lupus nephritis or renal I/R injury, ADAMTS7 deficiency alleviated complement activation and related renal pathologies, but without affecting complement-mediated bactericidal activity. Adeno-associated virus-mediated CFH silencing compromised these protective effects of ADAMTS7 knockout against complement-mediated renal injuries in vivo. CONCLUSION ADAMTS7-mediated CFH degradation potentiates complement activation and related renal injuries. ADAMTS7 would be a promising anticomplement therapeutic target that does not increase bacterial infection risk.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Institute of Biotechnology, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Abstract
Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.
Collapse
Affiliation(s)
- Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
5
|
Gavriilaki E, Asteris PG, Touloumenidou T, Koravou EE, Koutra M, Papayanni PG, Karali V, Papalexandri A, Varelas C, Chatzopoulou F, Chatzidimitriou M, Chatzidimitriou D, Veleni A, Grigoriadis S, Rapti E, Chloros D, Kioumis I, Kaimakamis E, Bitzani M, Boumpas D, Tsantes A, Sotiropoulos D, Sakellari I, Kalantzis IG, Parastatidis ST, Koopialipoor M, Cavaleri L, Armaghani DJ, Papadopoulou A, Brodsky RA, Kokoris S, Anagnostopoulos A. Genetic justification of severe COVID-19 using a rigorous algorithm. Clin Immunol 2021; 226:108726. [PMID: 33845193 PMCID: PMC8043057 DOI: 10.1016/j.clim.2021.108726] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
Recent studies suggest excessive complement activation in severe coronavirus disease-19 (COVID-19). The latter shares common characteristics with complement-mediated thrombotic microangiopathy (TMA). We hypothesized that genetic susceptibility would be evident in patients with severe COVID-19 (similar to TMA) and associated with disease severity. We analyzed genetic and clinical data from 97 patients hospitalized for COVID-19. Through targeted next-generation-sequencing we found an ADAMTS13 variant in 49 patients, along with two risk factor variants (C3, 21 patients; CFH,34 patients). 31 (32%) patients had a combination of these, which was independently associated with ICU hospitalization (p = 0.022). Analysis of almost infinite variant combinations showed that patients with rs1042580 in thrombomodulin and without rs800292 in complement factor H did not require ICU hospitalization. We also observed gender differences in ADAMTS13 and complement-related variants. In light of encouraging results by complement inhibitors, our study highlights a patient population that might benefit from early initiation of specific treatment.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department - BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece.
| | - Panagiotis G Asteris
- Computational Mechanics Laboratory, School of Pedagogical and Technological Education, Athens, Greece
| | | | | | - Maria Koutra
- Hematology Department - BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Vassiliki Karali
- Rheumatology and Clinical Immunology Unit, "Attikon" University Hospital, Athens, Greece
| | | | - Christos Varelas
- Hematology Department - BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Microbiology Department, Aristotle University of Thessaloniki, Greece
| | - Maria Chatzidimitriou
- Biomedical Sciences, Alexander Campus International Hellenic University, Thessaloniki, Greece
| | | | - Anastasia Veleni
- Infectious Disease Committee, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Savvas Grigoriadis
- Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdoxia Rapti
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Greece
| | - Diamantis Chloros
- Pneumonology Department, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Ioannis Kioumis
- Respiratory Failure Department, G Papanicolaou Hospital-Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Milly Bitzani
- 1st Intensive Care Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Dimitrios Boumpas
- Rheumatology and Clinical Immunology Unit, "Attikon" University Hospital, Athens, Greece
| | - Argyris Tsantes
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Greece
| | | | - Ioanna Sakellari
- Hematology Department - BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Stefanos T Parastatidis
- Computational Mechanics Laboratory, School of Pedagogical and Technological Education, Athens, Greece
| | | | - Liborio Cavaleri
- Department of Civil, Environmental, Aerospace and Materials Engineering, University of Palermo, Palermo, Italy
| | - Danial J Armaghani
- Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Robert Alan Brodsky
- Hematology Division, Department of Internal Medicine, Johns Hopkins University, Baltimore, USA
| | - Styliani Kokoris
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Greece
| | | |
Collapse
|
6
|
Delvasto-Nuñez L, Jongerius I, Zeerleder S. It takes two to thrombosis: Hemolysis and complement. Blood Rev 2021; 50:100834. [PMID: 33985796 DOI: 10.1016/j.blre.2021.100834] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
Thromboembolic events represent the most common complication of hemolytic anemias characterized by complement-mediated hemolysis such as paroxysmal nocturnal hemoglobinuria and autoimmune hemolytic anemia. Similarly, atypical hemolytic uremic syndrome is characterized by hemolysis and thrombotic abnormalities. The main player in the development of thrombosis in hemolytic diseases is suggested to be the complement system. However, the release of extracellular hemoglobin and heme by hemolysis itself can also drive procoagulant responses. Both, complement activation and hemolysis promote the activation of neutrophils resulting in the formation of neutrophil extracellular traps and induce inflammation and vascular damage which all together might (synergistically) lead to hypercoagulability. In this review we aim to summarize the current knowledge on the role of complement activation and hemolysis in the onset of thrombosis in hemolytic diseases. This review will discuss the interplay between different biological systems and neutrophil activation contributing to the pathogenesis of thrombosis. Finally, we will combine this fundamental knowledge and address the pathophysiology of hemolysis in prototypical complement-driven diseases.
Collapse
Affiliation(s)
- Laura Delvasto-Nuñez
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Pediatric Immunology, Amsterdam UMC, University of Amsterdam, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, University of Bern, Switzerland.
| |
Collapse
|
7
|
Dunne OM, Gao X, Nan R, Gor J, Adamson PJ, Gordon DL, Moulin M, Haertlein M, Forsyth VT, Perkins SJ. A Dimerization Site at SCR-17/18 in Factor H Clarifies a New Mechanism for Complement Regulatory Control. Front Immunol 2021; 11:601895. [PMID: 33552059 PMCID: PMC7859452 DOI: 10.3389/fimmu.2020.601895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/03/2020] [Indexed: 11/15/2022] Open
Abstract
Complement Factor H (CFH), with 20 short complement regulator (SCR) domains, regulates the alternative pathway of complement in part through the interaction of its C-terminal SCR-19 and SCR-20 domains with host cell-bound C3b and anionic oligosaccharides. In solution, CFH forms small amounts of oligomers, with one of its self-association sites being in the SCR-16/20 domains. In order to correlate CFH function with dimer formation and the occurrence of rare disease-associated variants in SCR-16/20, we identified the dimerization site in SCR-16/20. For this, we expressed, in Pichia pastoris, the five domains in SCR-16/20 and six fragments of this with one-three domains (SCR-19/20, SCR-18/20, SCR-17/18, SCR-16/18, SCR-17 and SCR-18). Size-exclusion chromatography suggested that SCR dimer formation occurred in several fragments. Dimer formation was clarified using analytical ultracentrifugation, where quantitative c(s) size distribution analyses showed that SCR-19/20 was monomeric, SCR-18/20 was slightly dimeric, SCR-16/20, SCR-16/18 and SCR-18 showed more dimer formation, and SCR-17 and SCR-17/18 were primarily dimeric with dissociation constants of ~5 µM. The combination of these results located the SCR-16/20 dimerization site at SCR-17 and SCR-18. X-ray solution scattering experiments and molecular modelling fits confirmed the dimer site to be at SCR-17/18, this dimer being a side-by-side association of the two domains. We propose that the self-association of CFH at SCR-17/18 enables higher concentrations of CFH to be achieved when SCR-19/20 are bound to host cell surfaces in order to protect these better during inflammation. Dimer formation at SCR-17/18 clarified the association of genetic variants throughout SCR-16/20 with renal disease.
Collapse
Affiliation(s)
- Orla M Dunne
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom.,Life Sciences Group, Institut Laue Langevin, Grenoble, France
| | - Xin Gao
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom.,Division of Medicine, University College London, London, United Kingdom
| | - Ruodan Nan
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Jayesh Gor
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Penelope J Adamson
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre and Flinders University, Bedford Park, SA, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders Medical Centre and Flinders University, Bedford Park, SA, Australia
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, Grenoble, France
| | | | - V Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, Grenoble, France.,Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Stephen J Perkins
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Sridharan M, Kluge ML, Go RS, Abraham RS, Moyer AM. Challenges in classification of novel CFH variants in patients with atypical hemolytic uremic syndrome. THROMBOSIS UPDATE 2020. [DOI: 10.1016/j.tru.2020.100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Schulte-Kemna L, Reister B, Bettac L, Ludwig U, Fürst D, Mytilineos J, Bergmann C, van Erp R, Schröppel B. Eculizumab in chemotherapy-induced thrombotic microangiopathy. Clin Nephrol Case Stud 2020; 8:25-32. [PMID: 32318323 PMCID: PMC7171698 DOI: 10.5414/cncs109836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/28/2020] [Indexed: 01/08/2023] Open
Abstract
Thrombotic microangiopathy (TMA) is a rare but severe complication of tumors and their chemotherapeutic treatment. We report on two patients with chemotherapy-induced TMA who were successfully treated with a short course of the terminal complement inhibitor eculizumab. Both patients quickly achieved remission of microangiopathic hemolytic anemia and recovery of renal function. After withdrawal of eculizumab, remission was stable over an observation period of 47 months and 15 months, respectively. Our data show that eculizumab is effective in treating chemotherapy-induced TMA. Discontinuation of eculizumab is feasible once the complement-activating condition is controlled and the trigger is eliminated. Additional studies need to determine the optimal duration of complement-directed therapies and validate effective monitoring strategies after discontinuation of such therapy.
Collapse
Affiliation(s)
| | | | | | - Ulla Ludwig
- Section of Nephrology, University Hospital, Ulm
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm
- Institute of Transfusion Medicine, University of Ulm, and
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm
- Institute of Transfusion Medicine, University of Ulm, and
| | | | | | | |
Collapse
|
10
|
Perkins SJ. Genetic and Protein Structural Evaluation of Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. Adv Chronic Kidney Dis 2020; 27:120-127.e4. [PMID: 32553244 DOI: 10.1053/j.ackd.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) are associated with loss of regulation of the alternative pathway of complement and its resulting overactivation. As rare diseases, genetic variants leading to aHUS and C3G were previously analysed in relatively low patient numbers. To improve this analysis, data were pooled from six centres. Totals of 610 rare variants for aHUS and 82 for C3G were presented in an interactive database for 13 genes. Using allele frequency comparisons with the Exome Aggregation Consortium as a reference genome, the patients with aHUS showed significantly more protein-altering ultrarare variants (allele frequency <0.01%) in five genes CFH, CFI, CD46, C3, and DGKE. In patients with C3G, the corresponding association was only found for C3 and CFH. Protein structure analyses of these five proteins showed distinct differences in the positioning of these variants in C3 and FH. For aHUS, variants were clustered at the C-terminus of FH and implicated changes in the binding of FH to host cell surfaces. For C3G, variants were clustered at the N-terminal C3b binding site of FH and implicated changes in the fluid-phase regulation of C3b. We discuss the utility of the Web database as a patient resource for clinicians.
Collapse
|
11
|
Osborne AJ, Nan R, Miller A, Bhatt JS, Gor J, Perkins SJ. Two distinct conformations of factor H regulate discrete complement-binding functions in the fluid phase and at cell surfaces. J Biol Chem 2018; 293:17166-17187. [PMID: 30217822 PMCID: PMC6222095 DOI: 10.1074/jbc.ra118.004767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/10/2018] [Indexed: 11/06/2022] Open
Abstract
Factor H (FH) is the major regulator of C3b in the alternative pathway of the complement system in immunity. FH comprises 20 short complement regulator (SCR) domains, including eight glycans, and its Y402H polymorphism predisposes those who carry it to age-related macular degeneration. To better understand FH complement binding and self-association, we have studied the solution structures of both the His-402 and Tyr-402 FH allotypes. Analytical ultracentrifugation revealed that up to 12% of both FH allotypes self-associate, and this was confirmed by small-angle X-ray scattering (SAXS), MS, and surface plasmon resonance analyses. SAXS showed that monomeric FH has a radius of gyration (Rg ) of 7.2-7.8 nm and a length of 25 nm. Starting from known structures for the SCR domains and glycans, the SAXS data were fitted using Monte Carlo methods to determine atomistic structures of monomeric FH. The analysis of 29,715 physically realistic but randomized FH conformations resulted in 100 similar best-fit FH structures for each allotype. Two distinct molecular structures resulted that showed either an extended N-terminal domain arrangement with a folded-back C terminus or an extended C terminus and a folded-back N terminus. These two structures are the most accurate to date for glycosylated full-length FH. To clarify FH functional roles in host protection, crystal structures for the FH complexes with C3b and C3dg revealed that the extended N-terminal conformation accounted for C3b fluid-phase regulation, the extended C-terminal conformation accounted for C3d binding, and both conformations accounted for bivalent FH binding to glycosaminoglycans on the target cell surface.
Collapse
Affiliation(s)
- Amy J Osborne
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ruodan Nan
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ami Miller
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jayesh S Bhatt
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen J Perkins
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Recurrent structural variation, clustered sites of selection, and disease risk for the complement factor H ( CFH) gene family. Proc Natl Acad Sci U S A 2018; 115:E4433-E4442. [PMID: 29686068 DOI: 10.1073/pnas.1717600115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural variation and single-nucleotide variation of the complement factor H (CFH) gene family underlie several complex genetic diseases, including age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (AHUS). To understand its diversity and evolution, we performed high-quality sequencing of this ∼360-kbp locus in six primate lineages, including multiple human haplotypes. Comparative sequence analyses reveal two distinct periods of gene duplication leading to the emergence of four CFH-related (CFHR) gene paralogs (CFHR2 and CFHR4 ∼25-35 Mya and CFHR1 and CFHR3 ∼7-13 Mya). Remarkably, all evolutionary breakpoints share a common ∼4.8-kbp segment corresponding to an ancestral CFHR gene promoter that has expanded independently throughout primate evolution. This segment is recurrently reused and juxtaposed with a donor duplication containing exons 8 and 9 from ancestral CFH, creating four CFHR fusion genes that include lineage-specific members of the gene family. Combined analysis of >5,000 AMD cases and controls identifies a significant burden of a rare missense mutation that clusters at the N terminus of CFH [P = 5.81 × 10-8, odds ratio (OR) = 9.8 (3.67-Infinity)]. A bipolar clustering pattern of rare nonsynonymous mutations in patients with AMD (P < 10-3) and AHUS (P = 0.0079) maps to functional domains that show evidence of positive selection during primate evolution. Our structural variation analysis in >2,400 individuals reveals five recurrent rearrangement breakpoints that show variable frequency among AMD cases and controls. These data suggest a dynamic and recurrent pattern of mutation critical to the emergence of new CFHR genes but also in the predisposition to complex human genetic disease phenotypes.
Collapse
|
13
|
Osborne AJ, Breno M, Borsa NG, Bu F, Frémeaux-Bacchi V, Gale DP, van den Heuvel LP, Kavanagh D, Noris M, Pinto S, Rallapalli PM, Remuzzi G, Rodríguez de Cordoba S, Ruiz A, Smith RJH, Vieira-Martins P, Volokhina E, Wilson V, Goodship THJ, Perkins SJ. Statistical Validation of Rare Complement Variants Provides Insights into the Molecular Basis of Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. THE JOURNAL OF IMMUNOLOGY 2018; 200:2464-2478. [PMID: 29500241 DOI: 10.4049/jimmunol.1701695] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) are associated with dysregulation and overactivation of the complement alternative pathway. Typically, gene analysis for aHUS and C3G is undertaken in small patient numbers, yet it is unclear which genes most frequently predispose to aHUS or C3G. Accordingly, we performed a six-center analysis of 610 rare genetic variants in 13 mostly complement genes (CFH, CFI, CD46, C3, CFB, CFHR1, CFHR3, CFHR4, CFHR5, CFP, PLG, DGKE, and THBD) from >3500 patients with aHUS and C3G. We report 371 novel rare variants (RVs) for aHUS and 82 for C3G. Our new interactive Database of Complement Gene Variants was used to extract allele frequency data for these 13 genes using the Exome Aggregation Consortium server as the reference genome. For aHUS, significantly more protein-altering rare variation was found in five genes CFH, CFI, CD46, C3, and DGKE than in the Exome Aggregation Consortium (allele frequency < 0.01%), thus correlating these with aHUS. For C3G, an association was only found for RVs in C3 and the N-terminal C3b-binding or C-terminal nonsurface-associated regions of CFH In conclusion, the RV analyses showed nonrandom distributions over the affected proteins, and different distributions were observed between aHUS and C3G that clarify their phenotypes.
Collapse
Affiliation(s)
- Amy J Osborne
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Breno
- Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," 24020 Ranica Bergamo, Italy
| | - Nicolo Ghiringhelli Borsa
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Fengxiao Bu
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Medical Genetics Center, Southwest Hospital, Chongqing 400038, China
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie Biologique, 75015 Paris, France
| | - Daniel P Gale
- Centre for Nephrology, Royal Free Hospital, University College London, London NW3 2QG, United Kingdom
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.,Department of Pediatric Nephrology, Department of Growth and Regeneration, University Hospital Leuven, 3000 Leuven, Belgium
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre, Newcastle upon Tyne NE1 4LP, United Kingdom.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Marina Noris
- Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," 24020 Ranica Bergamo, Italy
| | - Sheila Pinto
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, 28040 Madrid, Spain
| | - Pavithra M Rallapalli
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Giuseppe Remuzzi
- Centro di Ricerche Cliniche per le Malattie Rare "Aldo e Cele Daccò," IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," 24020 Ranica Bergamo, Italy.,Department of Biomedical and Clinical Sciences, University of Milan, 20122 Milan, Italy; and
| | - Santiago Rodríguez de Cordoba
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, 28040 Madrid, Spain
| | - Angela Ruiz
- Department of Cellular and Molecular Medicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, 28040 Madrid, Spain
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Paula Vieira-Martins
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie Biologique, 75015 Paris, France
| | - Elena Volokhina
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Valerie Wilson
- Northern Molecular Genetics Service, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Timothy H J Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
14
|
Olivar R, Luque A, Cárdenas-Brito S, Naranjo-Gómez M, Blom AM, Borràs FE, Rodriguez de Córdoba S, Zipfel PF, Aran JM. The Complement Inhibitor Factor H Generates an Anti-Inflammatory and Tolerogenic State in Monocyte-Derived Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:4274-90. [PMID: 27076676 DOI: 10.4049/jimmunol.1500455] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 02/27/2016] [Indexed: 12/14/2022]
Abstract
The activation of the complement system is a key initiating step in the protective innate immune-inflammatory response against injury, although it may also cause harm if left unchecked. The structurally related soluble complement inhibitors C4b-binding protein (C4BP) and factor H (FH) exert a tight regulation of the classical/lectin and alternative pathways of complement activation, respectively, attenuating the activity of the C3/C5 convertases and, consequently, avoiding serious damage to host tissues. We recently reported that the acute-phase C4BP isoform C4BP lacking the β-chain plays a pivotal role in the modulation of the adaptive immune responses. In this study, we demonstrate that FH acts in the early stages of monocyte to dendritic cell (DC) differentiation and is able to promote a distinctive tolerogenic and anti-inflammatory profile on monocyte-derived DCs (MoDCs) challenged by a proinflammatory stimulus. Accordingly, FH-treated and LPS-matured MoDCs are characterized by altered cytoarchitecture, resembling immature MoDCs, lower expression of the maturation marker CD83 and the costimulatory molecules CD40, CD80, and CD86, decreased production of key proinflammatory Th1-cytokines (IL-12, TNF-α, IFN-γ, IL-6, and IL-8), and preferential production of immunomodulatory mediators (IL-10 and TGF-β). Moreover, FH-treated MoDCs show low Ag uptake and, when challenged with LPS, display reduced CCR7 expression and chemotactic migration, impaired CD4(+) T cell alloproliferation, inhibition of IFN-γ secretion by the allostimulated T cells, and, conversely, induction of CD4(+)CD127(low/negative)CD25(high)Foxp3(+) regulatory T cells. Thus, this novel noncanonical role of FH as an immunological brake able to directly affect the function of MoDCs in an inflammatory environment may exhibit therapeutic potential in hypersensitivity, transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Rut Olivar
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ana Luque
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Sonia Cárdenas-Brito
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Mar Naranjo-Gómez
- Innovation in Vesicles and Cells for Application Therapy Group, Germans Trias i Pujol Health Sciences Research Institute, 08916 Badalona, Barcelona, Spain; Nephrology Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Barcelona, Spain
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Lund University, 20502 Malmö, Sweden
| | - Francesc E Borràs
- Innovation in Vesicles and Cells for Application Therapy Group, Germans Trias i Pujol Health Sciences Research Institute, 08916 Badalona, Barcelona, Spain; Nephrology Service, Germans Trias i Pujol University Hospital, 08916 Badalona, Barcelona, Spain
| | | | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Products Research and Infection Biology, 07745 Jena, Germany
| | - Josep M Aran
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
15
|
Sim RB, Ferluga J, Al-Rashidi H, Abbow H, Schwaeble W, Kishore U. Complement factor H in its alternative identity as adrenomedullin-binding protein 1. Mol Immunol 2016; 68:45-8. [PMID: 26597206 DOI: 10.1016/j.molimm.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/07/2015] [Indexed: 11/16/2022]
Abstract
Complement factor H has been extensively studied since its discovery 50 years ago, and its role in the complement system is quite well established. It has another role, however, as a binding protein for the regulatory peptide adrenomedullin. Part of this role appears to be protection of adrenomedullin from proteolytic degradation. The binding interaction is unusual and merits further investigation. Adrenomedullin has potential therapeutic uses in diseases affecting the vasculature, and factor H has been administered with adrenomedullin in some animal models of disease.
Collapse
Affiliation(s)
- Robert B Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK; Department of Infection, Immunity and Inflammation, University of Leicester, University Rd, Leicester, LE1 9HN, UK.
| | - Janez Ferluga
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK; Centre for Infection, Immunity and Disease Mechanisms, Biosciences, Heinz Wolff Building, Brunel University, London UB8 3PH, UK
| | - Hanan Al-Rashidi
- Department of Infection, Immunity and Inflammation, University of Leicester, University Rd, Leicester, LE1 9HN, UK
| | - Hussein Abbow
- Department of Infection, Immunity and Inflammation, University of Leicester, University Rd, Leicester, LE1 9HN, UK
| | - Wilhelm Schwaeble
- Department of Infection, Immunity and Inflammation, University of Leicester, University Rd, Leicester, LE1 9HN, UK
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, Biosciences, Heinz Wolff Building, Brunel University, London UB8 3PH, UK
| |
Collapse
|
16
|
Thomas A, Biswas A, Ivaskevicius V, Oldenburg J. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants. Mol Genet Genomic Med 2015; 3:258-71. [PMID: 26247044 PMCID: PMC4521963 DOI: 10.1002/mgg3.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/17/2022] Open
Abstract
The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the only mutation to show a direct secretion-based defect since the mutated protein was observed to accumulate in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Anne Thomas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| |
Collapse
|
17
|
Loeven MA, Rops ALWMM, Berden JHM, Daha MR, Rabelink TJ, van der Vlag J. The role of heparan sulfate as determining pathogenic factor in complement factor H-associated diseases. Mol Immunol 2015; 63:203-8. [DOI: 10.1016/j.molimm.2014.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/20/2022]
|
18
|
Watson R, Wearmouth E, McLoughlin AC, Jackson A, Ward S, Bertram P, Bennaceur K, Barker CE, Pappworth IY, Kavanagh D, Lea SM, Atkinson JP, Goodship THJ, Marchbank KJ. Autoantibodies to CD59, CD55, CD46 or CD35 are not associated with atypical haemolytic uraemic syndrome (aHUS). Mol Immunol 2015; 63:287-96. [PMID: 25150608 PMCID: PMC4452024 DOI: 10.1016/j.molimm.2014.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 07/16/2014] [Indexed: 01/31/2023]
Abstract
Autoantibody formation against Factor H (FH) is found in 7-10% of patients who are diagnosed with atypical haemolytic uraemic syndrome (aHUS). These autoantibodies predominately target the C-terminal cell binding recognition domain of FH and are associated with absence of FHR1. Additional autoantibodies have also been identified in association with aHUS, for example autoantibodies to Factor I. Based on this, and that there are genetic mutations in other complement regulators and activators associated with aHUS, we hypothesised that other complement regulator proteins, particularly surface bound regulators in the kidney, might be the target for autoantibody formation in aHUS. Therefore, we assayed serum derived from 89 patients in the Newcastle aHUS cohort for the presence of autoantibodies to CD46 (membrane cofactor protein, MCP), CD55 (decay accelerating factor, DAF), CD35 (complement receptor type 1, CR1; TP10) and CD59. We also assayed 100 healthy blood donors to establish the normal levels of reactivity towards these proteins in the general population. Recombinant proteins CD46 and CD55 (purified from Escherichia coli) as well as soluble CR1 (CD35) and oligomeric C4BP-CD59 (purified from eukaryotic cell media) were used in ELISA to detect high responders. False positive results were established though Western blot and flow cytometric analysis. After excluding false positive responders to bacterial proteins in the CD46 and CD55 preparations, and responses to blood group antigens in CD35, we found no significant level of patient serum IgG reactivity with CD46, CD55, CD35 or CD59 above that detected in the normal population. These results suggest that membrane anchored complement regulators are not a target for autoantibody generation in aHUS.
Collapse
Affiliation(s)
- Rachael Watson
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Emma Wearmouth
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Amy-Claire McLoughlin
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Arthur Jackson
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sophie Ward
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Paula Bertram
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Karim Bennaceur
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Catriona E Barker
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Isabel Y Pappworth
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - David Kavanagh
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - John P Atkinson
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy H J Goodship
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Kevin J Marchbank
- Institutes of Cellular and Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
19
|
New functional and structural insights from updated mutational databases for complement factor H, Factor I, membrane cofactor protein and C3. Biosci Rep 2014; 34:BSR20140117. [PMID: 25188723 PMCID: PMC4206863 DOI: 10.1042/bsr20140117] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
aHUS (atypical haemolytic uraemic syndrome), AMD (age-related macular degeneration) and other diseases are associated with defective AP (alternative pathway) regulation. CFH (complement factor H), CFI (complement factor I), MCP (membrane cofactor protein) and C3 exhibited the most disease-associated genetic alterations in the AP. Our interactive structural database for these was updated with a total of 324 genetic alterations. A consensus structure for the SCR (short complement regulator) domain showed that the majority (37%) of SCR mutations occurred at its hypervariable loop and its four conserved Cys residues. Mapping 113 missense mutations onto the CFH structure showed that over half occurred in the C-terminal domains SCR-15 to -20. In particular, SCR-20 with the highest total of affected residues is associated with binding to C3d and heparin-like oligosaccharides. No clustering of 49 missense mutations in CFI was seen. In MCP, SCR-3 was the most affected by 23 missense mutations. In C3, the neighbouring thioester and MG (macroglobulin) domains exhibited most of 47 missense mutations. The mutations in the regulators CFH, CFI and MCP involve loss-of-function, whereas those for C3 involve gain-of-function. This combined update emphasizes the importance of the complement AP in inflammatory disease, clarifies the functionally important regions in these proteins, and will facilitate diagnosis and therapy. A new compilation of 324 mutations in four major proteins from the complement alternative pathway reveals mutational hotspots in factor H and complement C3, and less so in factor I and membrane cofactor protein. Their associations with function are discussed.
Collapse
|
20
|
Birth of a Pathogen. Food Saf (Tokyo) 2014. [DOI: 10.1128/9781555816186.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Lengyel I, Peto T. Cure or cause: opposing roles for zinc in age-related macular degeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.3.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Hörl S, Banki Z, Huber G, Ejaz A, Müllauer B, Willenbacher E, Steurer M, Stoiber H. Complement factor H-derived short consensus repeat 18-20 enhanced complement-dependent cytotoxicity of ofatumumab on chronic lymphocytic leukemia cells. Haematologica 2013; 98:1939-47. [PMID: 23850806 DOI: 10.3324/haematol.2013.089615] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The antitumor activity of monoclonal antibodies in the treatment of chronic lymphocytic leukemia is mediated mainly by antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Unfortunately, the efficacy of complement-dependent cytotoxicity is strongly restricted due to the expression and acquisition of regulators of complement activation by lymphocytic leukemia cells. Whereas the role of membrane regulators of complement activation, such as CD55 and CD59, has been investigated in detail in chronic lymphocytic leukemia, the involvement of soluble regulators of complement activation, such as complement factor H, has not yet been reported. Propidium iodide staining was performed to investigate the efficacy of ofatumumab and factor H-derived short-consensus-repeat 18-20 in the induction of complement-dependent cytotoxicity on primary chronic lymphocytic leukemia cells from 20 patients. Deposition of complement C3 fragments was monitored by western blot analysis. Expression of CD20, CD55 or CD59 was determined by FACS analysis. Replacement of factor H with short consensus repeat 18-20 significantly increased the susceptibility of primary chronic lymphocytic leukemia cells to ofatumumab-induced complement-dependent cytotoxicity. More importantly, addition of short-consensus-repeat 18-20 was able to overcome complement- resistance occurring during treatment with ofatumumab alone. Use of short consensus repeat 18-20 is likely to prolong the turnover time of active C3b fragments generated on the target cells following ofatumumab-induced complement activation, thereby improving specific killing of chronic lymphocytic leukemia cells by complement-dependent cytotoxicity. The relative contribution of factor H to the protection of chronic lymphocytic leukemia cells against complement-dependent cytotoxicity was comparable to that of CD55. Our data suggest that, by abrogating factor H function, short consensus repeat 18-20 may provide a novel approach that improves the complement-dependent efficacy of therapeutic monoclonal antibodies.
Collapse
|
23
|
Hörl S, Bánki Z, Huber G, Ejaz A, Windisch D, Muellauer B, Willenbacher E, Steurer M, Stoiber H. Reduction of complement factor H binding to CLL cells improves the induction of rituximab-mediated complement-dependent cytotoxicity. Leukemia 2013; 27:2200-8. [PMID: 23760402 PMCID: PMC3826035 DOI: 10.1038/leu.2013.169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/23/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
A main effector mechanism of rituximab (RTX) is the induction of complement-dependent cytotoxicity (CDC). However, this effector function is limited, because CLL cells are protected from complement-induced damage by regulators of complement activation (RCAs). A prominent RCA in fluid phase is factor H (fH), which has not been investigated in this context yet. Here, we show that fH binds to CLL cells and that human recombinant fH-derived short-consensus repeat 18–20 (hSCR18–20) interferes with this binding. In complement-based lysis assays, CLL cells from therapy-naive patients were differently susceptible to RTX-induced CDC and were defined as CDC responder or CDC non-responder, respectively. In CDC responders, but notably also in non-responders, hSCR18–20 significantly boosted RTX-induced CDC. Killing of the cells was specific for CD20+ cells, whereas CD20− cells were poorly affected. CDC resistance was independent of expression of the membrane-anchored RCAs CD55 and CD59, although blocking of these RCAs further boosted CDC. Thus, inhibition of fH binding by hSCR18–20 sensitizes CLL cells to CDC and may provide a novel strategy for improving RTX-containing immunochemotherapy of CLL patients.
Collapse
Affiliation(s)
- S Hörl
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kouser L, Abdul-Aziz M, Nayak A, Stover CM, Sim RB, Kishore U. Properdin and factor h: opposing players on the alternative complement pathway "see-saw". Front Immunol 2013; 4:93. [PMID: 23630525 PMCID: PMC3632793 DOI: 10.3389/fimmu.2013.00093] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Properdin and factor H are two key regulatory proteins having opposite functions in the alternative complement pathway. Properdin up-regulates the alternative pathway by stabilizing the C3bBb complex, whereas factor H downregulates the pathway by promoting proteolytic degradation of C3b. While factor H is mainly produced in the liver, there are several extrahepatic sources. In addition to the liver, factor H is also synthesized in fetal tubuli, keratinocytes, skin fibroblasts, ocular tissue, adipose tissue, brain, lungs, heart, spleen, pancreas, kidney, muscle, and placenta. Neutrophils are the major source of properdin, and it is also produced by monocytes, T cells and bone marrow progenitor cell line. Properdin is released by neutrophils from intracellular stores following stimulation by N-formyl-methionine-leucine-phenylalanine (fMLP) and tumor necrosis factor alpha (TNF-α). The HEP G2 cells derived from human liver has been found to produce functional properdin. Endothelial cells also produce properdin when induced by shear stress, thus is a physiological source for plasma properdin. The diverse range of extrahepatic sites for synthesis of these two complement regulators suggests the importance and need for local availability of the proteins. Here, we discuss the significance of the local synthesis of properdin and factor H. This assumes greater importance in view of recently identified unexpected and novel roles of properdin and factor H that are potentially independent of their involvement in complement regulation.
Collapse
Affiliation(s)
- Lubna Kouser
- Centre for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social Care, Brunel University London, UK
| | | | | | | | | | | |
Collapse
|
25
|
Dissection of functional sites in herpesvirus saimiri complement control protein homolog. J Virol 2012; 87:282-95. [PMID: 23077301 DOI: 10.1128/jvi.01867-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus saimiri is known to encode a homolog of human complement regulators named complement control protein homolog (CCPH). We have previously reported that this virally encoded inhibitor effectively inactivates complement by supporting factor I-mediated inactivation of complement proteins C3b and C4b (termed cofactor activity), as well as by accelerating the irreversible decay of the classical/lectin and alternative pathway C3 convertases (termed decay-accelerating activity). To fine map its functional sites, in the present study, we have generated a homology model of CCPH and performed substitution mutagenesis of its conserved residues. Functional analyses of 24 substitution mutants of CCPH indicated that (i) amino acids R118 and F144 play a critical role in imparting C3b and C4b cofactor activities, (ii) amino acids R35, K142, and K191 are required for efficient decay of the C3 convertases, (iii) positively charged amino acids of the linker regions, which are dubbed to be critical for functioning in other complement regulators, are not crucial for its function, and (iv) S100K and G110D mutations substantially enhance its decay-accelerating activities without affecting the cofactor activities. Overall, our data point out that ionic interactions form a major component of the binding interface between CCPH and its interacting partners.
Collapse
|
26
|
Gnappi E, Allinovi M, Vaglio A, Bresin E, Sorosina A, Pilato FP, Allegri L, Manenti L. Membrano-proliferative glomerulonephritis, atypical hemolytic uremic syndrome, and a new complement factor H mutation: report of a case. Pediatr Nephrol 2012; 27:1995-9. [PMID: 22669321 DOI: 10.1007/s00467-012-2210-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Complement protein factor H (CFH) is a regulatory protein of the alternative complement pathway (AP); CFH mutations lead to a spectrum of different phenotypical manifestations of renal disease. CASE-DIAGNOSIS/TREATMENT We report the case of a boy with a novel CFH gene mutation who presented with a membranoproliferative (MPGN) pattern of glomerular injury and developed 2 years later atypical hemolytic uremic syndrome (aHUS); this description shows that CFH alteration leads to two different renal diseases in the same patient. CONCLUSIONS Our case suggests the possibility that complement dysregulation could determine different renal conditions, which may be part of the same disease spectrum. Early recognition of an evolution of glomerulopathies into aHUS may allow appropriate management and prevention of life-threatening consequences.
Collapse
Affiliation(s)
- Elisa Gnappi
- Department of Clinical Medicine, Nephrology and Health Sciences, University Hospital of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Goodship THJ, Pappworth IY, Toth T, Denton M, Houlberg K, McCormick F, Warland D, Moore I, Hunze EM, Staniforth SJ, Hayes C, Cavalcante DP, Kavanagh D, Strain L, Herbert AP, Schmidt CQ, Barlow PN, Harris CL, Marchbank KJ. Factor H autoantibodies in membranoproliferative glomerulonephritis. Mol Immunol 2012; 52:200-6. [PMID: 22721707 DOI: 10.1016/j.molimm.2012.05.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/03/2012] [Accepted: 05/05/2012] [Indexed: 02/06/2023]
Abstract
Factor H autoantibodies are found in ~10% of aHUS patients. Most are associated with complete deficiency of factor H related proteins 1/3 and bind to the C terminal recognition domain. MPGN, like aHUS, is characterised by complement activation. In this study we, therefore, examined the hypothesis that factor H autoantibodies are associated with MPGN. We screened sera from 16 MPGN patients and 100 normal controls using ELISA and detected strongly positive IgG factor H autoantibodies in 2 patients. One patient had type II (DDD) MPGN (male aged 24 yrs) with C3NeF and the other type I (female aged 26 yrs) with no detectable C3NeF. We identified the binding site of the autoantibodies using small SCR domain fragments in the ELISA and showed that the autoantibodies in both patients bound predominately to the N terminal complement regulatory domain of factor H. We measured CFHR 1/3 copy number using MLPA and showed that both patients had 2 copies of CFHR1 and 3. Finally, we examined the functionality of detected factor H autoantibodies using purified patient IgG and observed increased haemolysis when purified IgG from both patients was added to normal human sera prior to incubation with rabbit red blood cells. Thus, in a cohort of MPGN patients we have found a high titre of functionally significant factor H autoantibodies in two patients with MPGN. Antibody depleting therapy may have a role in such patients and we suggest that screening for factor H autoantibodies should be undertaken in all patients with MPGN.
Collapse
Affiliation(s)
- Timothy H J Goodship
- Institutes of Cellular Medicine and Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Morgan HP, Mertens HDT, Guariento M, Schmidt CQ, Soares DC, Svergun DI, Herbert AP, Barlow PN, Hannan JP. Structural analysis of the C-terminal region (modules 18-20) of complement regulator factor H (FH). PLoS One 2012; 7:e32187. [PMID: 22389686 PMCID: PMC3289644 DOI: 10.1371/journal.pone.0032187] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/23/2012] [Indexed: 11/19/2022] Open
Abstract
Factor H (FH) is a soluble regulator of the human complement system affording protection to host tissues. It selectively inhibits amplification of C3b, the activation-specific fragment of the abundant complement component C3, in fluid phase and on self-surfaces and accelerates the decay of the alternative pathway C3 convertase, C3bBb. We have determined the crystal structure of the three carboxyl-terminal complement control protein (CCP) modules of FH (FH18-20) that bind to C3b, and which additionally recognize polyanionic markers specific to self-surfaces. These CCPs harbour nearly 30 disease-linked missense mutations. We have also deployed small-angle X-ray scattering (SAXS) to investigate FH18-20 flexibility in solution using FH18-20 and FH19-20 constructs. In the crystal lattice FH18-20 adopts a "J"-shape: A ~122-degree tilt between the structurally highly similar modules 18 and 19 precedes an extended, linear arrangement of modules 19 and 20 as observed in previously determined structures of these two modules alone. However, under solution conditions FH18-20 adopts multiple conformations mediated by flexibility between CCPs 18 and 19. We also pinpoint the locations of disease-associated missense mutations on the module 18 surface and discuss our data in the context of the C3b:FH interaction.
Collapse
Affiliation(s)
- Hugh P. Morgan
- Institute of Structural and Molecular Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Mara Guariento
- Edinburgh Biomolecular NMR Unit, EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Christoph Q. Schmidt
- Edinburgh Biomolecular NMR Unit, EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Dinesh C. Soares
- Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Andrew P. Herbert
- Edinburgh Biomolecular NMR Unit, EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul N. Barlow
- Edinburgh Biomolecular NMR Unit, EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan P. Hannan
- Institute of Structural and Molecular Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Complement factor H-ligand interactions: self-association, multivalency and dissociation constants. Immunobiology 2011; 217:281-97. [PMID: 22137027 DOI: 10.1016/j.imbio.2011.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 11/21/2022]
Abstract
Factor H (FH) is the major plasma regulator of the central complement protein C3b in the alternative pathway of complement activation. The elucidation of the FH interactions with five major ligands (below) is complicated by their weak μM dissociation constants K(D) and FH multivalency. We present the first survey of all the K(D) values for the major FH-ligand interactions and critically review their physiological significance. (i) FH self-association is presently well-established. We review multiple data sets that show that 5-14% of FH is self-associated in physiological conditions. FH self-association is significant for both laboratory investigations and physiological function.(ii) The FH-C3b complex shows low M affinity, meaning that the complex is not fully formed in plasma. In addition, C3, its hydrolysed form C3u, and its cleaved forms C3b and C3d show multimerisation. Current data favour a model when two C3b molecules bind independently to one FH molecule, as opposed to a1:1 stoichiometry where FH wraps itself around C3b.(iii) Heparin is often used as an analogue of the polyanionic host cell surface. The FH-heparin complex also shows a low M affinity, again meaning that complexes are not fully formed in vivo. The oligomeric FH-heparin complexes clarify a two-site interaction model of FH with host-cell surfaces.(iv) Reinvestigation of the FH and C-reactive protein (CRP) interaction revealed that this can only occur in plasma when CRP levels are elevated during acute-phase conditions. Given that CRP binds more weakly to the His402 allotype of FH than the Tyr402 allotype, this suggested a link with age-related macular degeneration (AMD).(v) FH activity is inhibited by zinc, which causes FH to aggregate strongly. High levels of bioavailable zinc occur in sub-retinal pigment epithelial deposits which lead to AMD. Excess zinc binds weakly to a central region of FH, explaining how zinc inhibits FH regulation of C3b.
Collapse
|
30
|
Factor H gene variants in Japanese: Its relation to atypical hemolytic uremic syndrome. Mol Immunol 2011; 49:48-55. [DOI: 10.1016/j.molimm.2011.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/25/2022]
|
31
|
Advances in assay of complement function and activation. Adv Drug Deliv Rev 2011; 63:976-87. [PMID: 21664392 DOI: 10.1016/j.addr.2011.05.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 05/26/2011] [Indexed: 12/12/2022]
Abstract
The main function of the complement system is pattern recognition of danger. Typical exogenous danger signals are pathogen associated molecular patterns inducing a protective inflammatory response. Other examples are exposure to foreign surfaces of biomedical materials including nanoparticles, which principally induce the same inflammatory response. If a surface is "foreign" to the host, it induces complement activation. Development of monoclonal antibodies to neoepitopes on complement activation products introduced an entirely new set of methods for assay of complement activation. Activation of complement by a surface occurs by impairment of the fine balance of the control system, e.g. by preferred binding of factor B at the expense of factor H. Sensitive methods to detect complement activation on surfaces and in the fluid phase are a prerequisite for investigation of the biocompatibility of artificial materials. This information can be used to develop new materials with enhanced biocompatibility. Here we review available methods to study human and animal complement function and activation in vitro and in vivo.
Collapse
|
32
|
Perkins SJ, Nan R, Okemefuna AI, Li K, Khan S, Miller A. Multiple interactions of complement Factor H with its ligands in solution: a progress report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 703:25-47. [PMID: 20711705 DOI: 10.1007/978-1-4419-5635-4_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Factor H (FH) is the major regulator of the central complement protein C3b in the alternative pathway of complement activation, and is comprised of 20 SCR domains. A FH Tyr402His polymorphism in SCR-7 is associated with age-related macular degeneration (AMD) and leads to deposition of complement in drusen. The unravelling of how FH interacts with five major physiological and patho-physiological ligands is complicated by the weak nature of these interactions, coupled with the multivalency of FH. Using multiple biophysical methods, we summarise our recent results for these five FH ligands: (1) FH by itself shows a folded-back SCR domain structure in solution, and self-associates in a manner dependent on electrostatic forces. (2) FH activity is inhibited by zinc, which causes FH to aggregate. The onset of FH-zinc aggregation for zinc concentrations above 20 muM appears to be enhanced with the His402 allotype, and may be relevant to AMD. (3) The FH and C-reactive protein (CRP) interaction has been controversial; however our new work resolves earlier discrepancies. The FH-CRP interaction is only observed when native CRP is at high acute-phase concentration levels, and CRP binds weakly to the His402 FH allotype to suggest a molecular mechanism that leads to AMD. (4) Heparin is an analogue of the polyanionic host cell surface, and FH forms higher oligomers with larger heparin fragments, suggesting a mechanism for more effective FH regulation. (5) The interaction of C3b with FH also depends on buffer, and FH forms multimers with the C3d fragment of C3b. This FH-C3d interaction at high FH concentration may also facilitate complement regulation. Overall, our results to date suggest that the FH interactions involving zinc and native CRP have the closest relevance for explaining the onset of AMD.
Collapse
Affiliation(s)
- Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Roumenina LT, Loirat C, Dragon-Durey MA, Halbwachs-Mecarelli L, Sautes-Fridman C, Fremeaux-Bacchi V. Alternative complement pathway assessment in patients with atypical HUS. J Immunol Methods 2011; 365:8-26. [PMID: 21215749 DOI: 10.1016/j.jim.2010.12.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/31/2010] [Accepted: 12/30/2010] [Indexed: 01/02/2023]
Abstract
The atypical Hemolytic Uremic Syndrome (aHUS) is a rare thrombotic microangiopathy leading to end stage renal disease in approximately 60% of patients. Over the last decade, a clear link has been demonstrated between this disease and defective complement regulation. The hallmark of the aHUS is the association with mutations in complement alternative pathway genes. Endothelial damage is related to complement dysregulation, but the exact mechanism is just starting to be elucidated. Screening for and characterization of mutations in the components of the C3 convertase (C3 and FB) or its regulators (FH, FI, MCP, and Thrombomodulin) or anti-FH antibodies has become an indispensable part of the disease's diagnostic. This review will initially summarize current knowledge on the understanding of complement activation and regulation, followed by a description on the genetic analysis as well as the methods used for complement protein quantification. Another part of this review will focus on the mechanisms of action of aHUS-associated mutations. We will emphasize on when and why some mutations lead to protein deficiency, while others result in - to dysfunctional but normally expressed proteins. Finally, we will discuss how the therapy of aHUS patients can be modified according to the functional consequences of each particular genetic defect.
Collapse
|
34
|
Waters AM, Licht C. aHUS caused by complement dysregulation: new therapies on the horizon. Pediatr Nephrol 2011; 26:41-57. [PMID: 20556434 PMCID: PMC2991208 DOI: 10.1007/s00467-010-1556-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5-10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS.
Collapse
Affiliation(s)
- Aoife M. Waters
- Department of Nephrology, Great Ormond Street Hospital, London, WC1N 3JH UK ,University College London, Institute of Child Health, London, UK
| | - Christoph Licht
- Division of Nephrology, Hospital for Sick Children, Toronto, ON Canada ,Department of Paediatrics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
35
|
Kelly U, Yu L, Kumar P, Ding JD, Jiang H, Hageman GS, Arshavsky VY, Frank MM, Hauser MA, Rickman CB. Heparan sulfate, including that in Bruch's membrane, inhibits the complement alternative pathway: implications for age-related macular degeneration. THE JOURNAL OF IMMUNOLOGY 2010; 185:5486-94. [PMID: 20876352 DOI: 10.4049/jimmunol.0903596] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An imbalance between activation and inhibition of the complement system has been implicated in the etiologies of numerous common diseases. Allotypic variants of a key complement fluid-phase regulatory protein, complement factor H (CFH), are strongly associated with age-related macular degeneration (AMD), a leading cause of worldwide visual dysfunction, although its specific role in AMD pathogenesis is still not clear. CFH was isolated from individuals carrying combinations of two of the nonsynonymous coding variants most strongly associated with AMD risk, V62/H402 (risk haplotype variants), I62/Y402 (nonrisk haplotype variants), and V62/Y402. These proteins were used in two functional assays (cell surface- and fluid-phase-based) measuring cofactor activity of CFH in the factor I-mediated cleavage of C3b. Although no variant-specific differences in the cofactor activity were detected, when heparan sulfate (HS) was added to these assays, it accelerated the rate of C3b cleavage, and this effect could be modulated by degree of HS sulfation. Bruch's membrane/choroid, a site of tissue damage in AMD, contains high concentrations of glycosaminoglycans, including HS. Addition of human Bruch's membrane/choroid to the fluid-phase assay accelerated the C3b cleavage, and this effect was lost posttreatment of the tissue with heparinase III. Binding of CFH variants to Bruch's membrane/choroid isolated from elderly, non-AMD donor eyes, was similar, as was the functional activity of bound CFH. These findings refine our understanding of interactions of HS and complement and support the hypothesis that these interactions play a role in the transition between normal aging and AMD in Bruch's membrane/choroid.
Collapse
Affiliation(s)
- Una Kelly
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Unravelling protein–protein interactions between complement factor H and C-reactive protein using a multidisciplinary strategy. Biochem Soc Trans 2010; 38:894-900. [DOI: 10.1042/bst0380894] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Experimental studies of protein–protein interactions are very much affected by whether the complexes are fully formed (strong, with nanomolar dissociation constants) or partially dissociated (weak, with micromolar dissociation constants). The functions of the complement proteins of innate immunity are governed by the weak interactions between the activated proteins and their regulators. Complement is effective in attacking pathogens, but not the human host, and imbalances in this process can lead to disease conditions. The inherent complexity in analysing complement interactions is augmented by the multivalency of its main regulator, CFH (complement factor H), for its physiological or pathophysiological ligands. The unravelling of such weak protein–protein or protein–ligand interactions requires a multidisciplinary approach. Synchrotron X-ray solution scattering and constrained modelling resulted in the determination of the solution structure of CFH and its self-associative properties, whereas AUC (analytical ultracentrifugation) identified the formation of much larger CFH multimers through the addition of metals such as zinc. The ligands of CFH, such as CRP (C-reactive protein), also undergo self-association. The combination of X-rays and AUC with SPR (surface plasmon resonance) proved to be essential to identify CRP self-association and revealed how CFH interacts with CRP. We show that CRP unexpectedly binds to CFH at two non-contiguous sites and explain its relevance to age-related macular degeneration.
Collapse
|
37
|
Sullivan M, Erlic Z, Hoffmann MM, Arbeiter K, Patzer L, Budde K, Hoppe B, Zeier M, Lhotta K, Rybicki LA, Bock A, Berisha G, Neumann HPH. Epidemiological approach to identifying genetic predispositions for atypical hemolytic uremic syndrome. Ann Hum Genet 2010; 74:17-26. [PMID: 20059470 DOI: 10.1111/j.1469-1809.2009.00554.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is caused by several susceptibility genes. A registry including analyses of susceptibility genes, familial occurrence and genotype-phenotype correlation should provide classification insights. Registry data of 187 unrelated index patients included age at onset, gender, family history, relapse of aHUS and potentially triggering conditions. Mutation analyses were performed in the genes CFH, CD46 and CFI and in the six potential susceptibility genes, FHR1 to FHR5 and C4BP. Germline mutations were identified in 17% of the index cases; 12% in CFH, 3% in CD46 and 2% in CFI. Twenty-nine patients had heterozygous mutations and one each had a homozygous and compound heterozygous mutation. Mutations were not found in the genes FHR1-5 and C4BP. In 40% of the patients with familial HUS a mutation was found. Penetrance by age 45 was 50% among carriers of any mutation including results of relatives of mutation-positive index cases. The only risk factor for a mutation was family history of HUS (p = 0.02). Penetrance of aHUS in carriers of mutations is not complete. Occurrence of homo- and heterozygous mutations in the same gene suggests that the number of necessary DNA variants remains unclear. Among clinical information only familial occurrence predicts a mutation.
Collapse
Affiliation(s)
- Maren Sullivan
- Department of Nephrology, University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Complement Factor H Y403H Polymorphism in the Turkish Population. Balkan J Med Genet 2010. [DOI: 10.2478/v10034-010-0025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement Factor H Y403H Polymorphism in the Turkish PopulationComplement factor H (CFH) is an important regulator protein of the alternative pathway of the complement system. TheCFHmutations and polymorphisms in CFH have been associated with diseases of the kidney and eye. We investigated the allelic frequency of the most commonCFHpolymorphism, c.1277 T>C (Y402H), in 100 healthy Turkish volunteers from the Antalya Province by direct sequencing of the corresponding genomic region. We found a frequency of 0.65% for the T and 0.35% for the C alleles. The frequency of the TT, CT and CC genotypes was 0.40, 0.49 and 0.11% respectively. Thus, the disease-related C allele has a frequency in Turkey similar to that of Caucasian populations.
Collapse
|
39
|
Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood 2009; 115:379-87. [PMID: 19861685 DOI: 10.1182/blood-2009-05-221549] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Factor H autoantibodies have been reported in approximately 10% of patients with atypical hemolytic uremic syndrome (aHUS) and are associated with deficiency of factor H-related proteins 1 and 3. In this study we examined the prevalence of factor H autoantibodies in the Newcastle cohort of aHUS patients, determined whether the presence of such autoantibodies is always associated with deficiency of factor H-related proteins 1 and 3, and examined whether such patients have additional susceptibility factors and/or mutations in the genes encoding complement regulator/activators. We screened 142 patients with aHUS and found factor H autoantibodies in 13 individuals (age 1-11 years). The presence of the autoantibodies was confirmed by Western blotting. By using multiplex ligation-dependent probe amplification we measured complement factor H-related (CFHR)1 and CFHR3 copy number. In 10 of the 13 patients there were 0 copies of CFHR1, and in 3 patients there were 2. In 3 of the patients with 0 copies of CFHR1 there was 1 copy of CFHR3, and these individuals exhibited a novel deletion incorporating CFHR1 and CFHR4. In 5 patients mutations were identified: 1 in CFH, 1 in CFI, 1 in CD46, and 2 in C3. The latter observation emphasizes that multiple concurrent factors may be necessary in individual patients for disease manifestation.
Collapse
|
40
|
Taylor CM, Machin S, Wigmore SJ, Goodship THJ. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol 2009; 148:37-47. [PMID: 19821824 DOI: 10.1111/j.1365-2141.2009.07916.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atypical haemolytic uraemic syndrome (aHUS) is associated with a poor prognosis with regard to survival at presentation, recovery of renal function and transplantation. It is now established that aHUS is a disease of complement dysregulation with mutations in the genes encoding both complement regulators and activators, and autoantibodies against the complement regulator factor H. Identification of the underlying molecular abnormality in an individual patient can now help to guide their future management. In these guidelines we make recommendations for the investigation and management of aHUS patients both at presentation and in the long-term. We particularly address the role of renal transplantation alone and combined liver-kidney transplantation.
Collapse
Affiliation(s)
- C Mark Taylor
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
41
|
Wu J, Wu YQ, Ricklin D, Janssen BJC, Lambris JD, Gros P. Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol 2009; 10:728-33. [PMID: 19503104 PMCID: PMC2713992 DOI: 10.1038/ni.1755] [Citation(s) in RCA: 269] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/14/2009] [Indexed: 01/28/2023]
Abstract
Factor H (FH) is an abundant regulator of complement activation and protects host cells from self-attack by complement. Here we provide insight into the regulatory activity of FH by solving the crystal structure of the first four domains of FH in complex with its target, complement fragment C3b. FH interacted with multiple domains of C3b, covering a large, extended surface area. The structure indicated that FH destabilizes the C3 convertase by competition and electrostatic repulsion and that FH enables proteolytic degradation of C3b by providing a binding platform for protease factor I while stabilizing the overall domain arrangement of C3b. Our results offer general models for complement regulation and provide structural explanations for disease-related mutations in the genes encoding both FH and C3b.
Collapse
Affiliation(s)
- Jin Wu
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Okemefuna AI, Nan R, Gor J, Perkins SJ. Electrostatic interactions contribute to the folded-back conformation of wild type human factor H. J Mol Biol 2009; 391:98-118. [PMID: 19505476 DOI: 10.1016/j.jmb.2009.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/27/2009] [Accepted: 06/03/2009] [Indexed: 11/28/2022]
Abstract
Factor H (FH), a major serum regulator of C3b in the complement alternative pathway, is composed of 20 short complement regulator (SCR) domains. Earlier solution structures for FH showed that this has a folded-back domain arrangement and exists as oligomers. To clarify the molecular basis for this, analytical ultracentrifugation and X-ray scattering studies of native FH were performed as a function of NaCl concentration and pH. The sedimentation coefficient for the FH monomer decreased from 5.7 S to 5.3 S with increase in NaCl concentration, showing that weak electrostatic inter-domain interactions affect its folded-back structure. FH became more elongated at pH 9.4, showing the involvement of histidine residue(s) in its folded-back structure. Similar studies of partially deglycosylated FH suggested that oligosaccharides were not significant in determining the FH domain structure. The formation of FH oligomers decreased with increased NaCl concentration, indicating that electrostatic interactions also affect this. X-ray scattering showed that the maximum length of FH increased from 32 nm in low salt to 38 nm in high salt. Constrained X-ray scattering modelling was used to generate significantly improved FH molecular structures at medium resolution. In 50 mM NaCl, the modelled structures showed that inter-SCR domain contacts are likely, while these contacts are fewer in 250 mM NaCl. The results of this study show that the conformation of FH is affected by its local environment, and this may be important for its interactions with C3b and when bound to polyanionic cell surfaces.
Collapse
Affiliation(s)
- Azubuike I Okemefuna
- Institute of Structural and Molecular Biology, Division of Biosciences, Darwin Building, University College London, Gower Street, London, UK
| | | | | | | |
Collapse
|
43
|
Ariceta G, Besbas N, Johnson S, Karpman D, Landau D, Licht C, Loirat C, Pecoraro C, Taylor CM, Van de Kar N, Vandewalle J, Zimmerhackl LB. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol 2009; 24:687-96. [PMID: 18800230 DOI: 10.1007/s00467-008-0964-1] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 12/13/2022]
Abstract
This guideline for the investigation and initial treatment of atypical hemolytic uremic syndrome (HUS) is intended to offer an approach based on opinion, as evidence is lacking. It builds on the current ability to identify the etiology of specific diagnostic sub-groups of HUS. HUS in children is mostly due to infection, enterohemorrhagic Escherichia coli (EHEC), Shigella dysenteriae type 1 in some geographic regions, and invasive Streptococcus pneumoniae. These sub-groups are relatively straightforward to diagnose. Their management, which is outside the remit of this guideline, is related to control of infection where that is necessary and supportive measures for the anemia and acute renal failure. A thorough investigation of the remainder of childhood HUS cases, commonly referred to as "atypical" HUS, will reveal a risk factor for the syndrome in approximately 60% of cases. Disorders of complement regulation are, numerically, the most important. The outcome for children with atypical HUS is poor, and, because of the rarity of these disorders, clinical experience is scanty. Some cases of complement dysfunction appear to respond to plasma therapy. The therapeutic part of this guideline is the consensus of the contributing authors and is based on limited information from uncontrolled studies. The guideline proposes urgent and empirical plasmapheresis replacement with whole plasma fraction for the first month after diagnosis. This should only be undertaken in specialized pediatric nephrology centers where appropriate medical and nursing skills are available. The guideline includes defined terminology and audit points so that the early clinical effectiveness of the strategy can be evaluated.
Collapse
|
44
|
Klein R, Knudtson MD, Lee KE, Klein BEK. Serum cystatin C level, kidney disease markers, and incidence of age-related macular degeneration: the Beaver Dam Eye Study. ACTA ACUST UNITED AC 2009; 127:193-9. [PMID: 19204238 DOI: 10.1001/archophthalmol.2008.551] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To examine the associations of the serum cystatin C level and chronic kidney disease with the incidence of age-related macular degeneration (AMD) over 15 years. METHODS In this population-based cohort study of 4926 individuals aged 43 to 86 years at baseline, 3779 participated in 1 or more follow-up examinations. Age-related macular degeneration was determined by grading photographs of the macula. Individuals were defined as having mild or moderate to severe chronic kidney disease based on a value of more than 45 mL/min/1.73 m(2) to 60 mL/min/1.73 m(2) or less and 45 mL/min/1.73 m(2) or less, respectively, according to the Modification of Diet in Renal Disease Study equation. RESULTS While controlling for age and other risk factors, the level of serum cystatin C at baseline was associated with the incidence of early AMD (odds ratio per log standard deviation [95% confidence interval], 1.16 [1.01-1.35]) and exudative AMD (1.42 [1.03-1.96]) but not geographic atrophy (0.89 [0.56-1.41]) or progression of AMD (1.02 [0.88-1.18]). Mild chronic kidney disease was associated with the 15-year cumulative incidence of early AMD (odds ratio per log standard deviation, 1.36 [95% confidence interval, 1.00-1.86]) but not the incidence of other AMD end points. CONCLUSION There is a relationship between the level of serum cystatin C and chronic kidney disease with the incidence of AMD. The underlying biological processes remain to be determined.
Collapse
Affiliation(s)
- Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, 610 N Walnut St, Room 417 WARF, Madison, WI 53726-2336, USA.
| | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
Recent advances in understanding the aetiology of the disorders that make up the haemolytic uraemic syndrome (HUS) permit a revised classification of the syndrome. With appropriate laboratory support, an aetiologically-based subgroup diagnosis can be made in all but a few cases. HUS caused by enterohaemorrhagic Escherichia coli remains by far the most prevalent subgroup, and new insights into this zoonosis are discussed. The most rapidly expanding area of interest is the subgroup of inherited and acquired abnormalities of complement regulation. Details of the pathogenesis are incomplete but it is reasonable to conclude that local activation of the alternative pathway of complement in the glomerulus is a central event. There is no evidence-based treatment for this diagnostic subgroup. However, in circumstances where there is a mutated plasma factor such as complement factor H, strategies to replace the abnormal protein by plasmapheresis or more radically by liver transplantation are logical, and anecdotal successes are reported. In summary, the clinical presentation of HUS gives a strong indication as to the underlying cause. Patients without evidence of EHEC infection should be fully investigated to determine the aetiology. Where complement abnormalities are suspected there is a strong argument for empirical and early plasma exchange, although rapid advances in this field may provide more specific treatments in the near future.
Collapse
|
47
|
Lapeyraque AL, Wagner E, Phan V, Clermont MJ, Merouani A, Frémeaux-Bacchi V, Goodship THJ, Robitaille P. Efficacy of plasma therapy in atypical hemolytic uremic syndrome with complement factor H mutations. Pediatr Nephrol 2008; 23:1363-6. [PMID: 18425537 DOI: 10.1007/s00467-008-0803-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 01/16/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) frequently results in end-stage renal failure and can be lethal. Several studies have established an association between quantitative or qualitative abnormalities in complement factor H and aHUS. Although plasma infusion and exchange are often advocated, guidelines have yet to be established. Long-term outcome for patients under treatment is still unknown. We describe a patient who, at 7 months of age, presented with aHUS associated with combined de novo complement factor H mutations (S1191L and V1197A) on the same allele. Laboratory investigations showed normal levels of complements C4, C3 and factor H. Plasma exchanges and large-dose infusion therapy resulted in a resolution of hemolysis and recovery of renal function. Three recurrences were successfully treated by intensification of the plasma infusion treatment to intervals of 2 or 3 days. This patient showed good response to large doses of plasma infusions and her condition remained stable for 30 months with weekly plasma infusions (30 ml/kg). Long-term tolerance and efficacy of such intensive plasma therapy are still unknown. Reported secondary failure of plasma therapy in factor H deficiency warrants the search for alternative therapeutic approaches.
Collapse
Affiliation(s)
- Anne-Laure Lapeyraque
- Department of Pediatrics, Division of Nephrology, CHU Sainte-Justine, Montreal, QC, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Saunders RE, Perkins SJ. CoagMDB: a database analysis of missense mutations within four conserved domains in five vitamin K-dependent coagulation serine proteases using a text-mining tool. Hum Mutat 2008; 29:333-44. [PMID: 18058827 DOI: 10.1002/humu.20629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Central repositories of mutations that combine structural, sequence, and phenotypic information in related proteins will facilitate the diagnosis and molecular understanding of diseases associated with them. Coagulation involves the sequential activation of serine proteases and regulators in order to yield stable blood clots while maintaining hemostasis. Five coagulation serine proteases-factor VII (F7), factor IX (F9), factor X (F10), protein C (PROC), and thrombin (F2)-exhibit high sequence similarities and all require vitamin K. All five of these were incorporated into an interactive database of mutations named CoagMDB (http://www.coagMDB.org; last accessed: 9 August 2007). The large number of mutations involved (especially for factor IX) and the increasing problem of out-of-date databases required the development of new database management tools. A text mining tool automatically scans full-length references to identify and extract mutations. High recall rates between 96 and 99% and precision rates of 87 to 93% were achieved. Text mining significantly reduces the time and expertise required to maintain the databases and offers a solution to the problem of locus-specific database management and upkeep. A total of 875 mutations were extracted from 1,279 literature sources. Of these, 116 correspond to Gla domains, 86 to the N-terminal EGF domain, 73 to the C-terminal EGF domain, and 477 to the serine protease domain. The combination of text mining and consensus domain structures enables mutations to be correlated with experimentally-measurable phenotypes based on either low protein levels (Type I) or reduced functional activities (Type II), respectively. A tendency for the conservation of phenotype with structural location was identified.
Collapse
Affiliation(s)
- Rebecca E Saunders
- Department of Biochemistry and Molecular Biology, University College London, London, United Kingdom
| | | |
Collapse
|
49
|
Edey MM, Mead PA, Saunders RE, Strain L, Perkins SJ, Goodship THJ, Kanagasundaram NS. Association of a factor H mutation with hemolytic uremic syndrome following a diarrheal illness. Am J Kidney Dis 2008; 51:487-90. [PMID: 18295065 DOI: 10.1053/j.ajkd.2007.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 08/08/2007] [Indexed: 11/11/2022]
Abstract
Hemolytic uremic syndrome (HUS) takes 2 forms: diarrheal HUS and nondiarrheal HUS. As its name suggests, diarrheal HUS classically follows an enteric infection. The classic infective organism is the Escherichia coli O157 serotype, although other bacteria, including Shigella species, can produce the verocytotoxin required to cause HUS. The usual clinical course is an episode of bloody diarrhea followed by thrombotic microangiopathy and acute renal failure. Supportive treatment sees recovery of renal function in the vast majority of patients. Most cases occur in children, but all age groups can be affected. Conversely, nondiarrheal HUS may have one of a number of predisposing factors, including drugs, irradiation, and hypertension. It also is well established that mutations in the genes encoding the complement regulator proteins factor H, factor I, and membrane cofactor protein predispose to nondiarrheal HUS. In patients with nondiarrheal HUS, recovery of renal function is much less common. Here, we present a case of HUS after a diarrheal illness in which the patient did not recover renal function in the long term. A novel mutation in exon 23 of the factor H gene was discovered. This is clinically important. If this patient underwent transplantation, he would be expected to have an 80% risk of graft loss at 2 years because of recurrent HUS. We recommend consideration of complement gene mutations in any patient with HUS after a diarrheal episode in which there are unusual features.
Collapse
Affiliation(s)
- Matthew M Edey
- Department of Nephrology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Xing C, Sivakumaran TA, Wang JJ, Rochtchina E, Joshi T, Smith W, Mitchell P, Iyengar SK. Complement factor H polymorphisms, renal phenotypes and age-related macular degeneration: the Blue Mountains Eye Study. Genes Immun 2008; 9:231-9. [PMID: 18340363 DOI: 10.1038/gene.2008.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Complement factor H (CFH) is a key regulator of the alternative pathway of complement and its mutations have been associated with membranoproliferative glomerulonephritis type II, atypical hemolytic uremic syndrome and age-related macular degeneration (AMD), suggesting that alternative pathway dysregulation is a common pathogenetic feature of these ocular and renal conditions. In this study we tested the hypothesis that common CFH variants have a global role in renal function in the Australian population-based Blue Mountains Eye Study (BMES). We replicated the association of I62V with estimated glomerular filtration rate (GFR; P=0.017) and creatinine clearance (CRCL; P=0.015). The minor allele of I62V (G) was deleterious: adding one copy of the G allele decreased GFR/CRCL by approximately 0.98 ml min(-1) per 1.73 m(2) (95% confidence interval (CI): 0.97, 0.99). We also replicated the association of Y402H with AMD and provided an unbiased estimate of population attributable risk (PAR). The minor allele of Y402H (C) was deleterious: the odds ratio estimate of CC genotype compared to TT was 1.87 (95% CI: 1.44, 2.45). The PAR of the C allele was estimated as 0.22 (95% CI: 0.15, 0.28). In summary, in the BMES population we confirmed the association between I62V and renal function, as measured by the estimated GFR, plus the association of Y402H with both early- and late-stage AMD.
Collapse
Affiliation(s)
- C Xing
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|