1
|
Da Costa L, Mohandas N, David-NGuyen L, Platon J, Marie I, O'Donohue MF, Leblanc T, Gleizes PE. Diamond-Blackfan anemia, the archetype of ribosomopathy: How distinct is it from the other constitutional ribosomopathies? Blood Cells Mol Dis 2024:102838. [PMID: 38413287 DOI: 10.1016/j.bcmd.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.
Collapse
Affiliation(s)
- L Da Costa
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France; University of Paris Saclay, F-94270 Le Kremlin-Bicêtre, France; University of Paris Cité, F-75010 Paris, France; University of Picardie Jules Verne, F-80000 Amiens, France; Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France; Laboratory of Excellence for Red Cells, LABEX GR-Ex, F-75015 Paris, France.
| | | | - Ludivine David-NGuyen
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Jessica Platon
- Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France
| | - Isabelle Marie
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Marie Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thierry Leblanc
- Service d'immuno-hématologie pédiatrique, Hôpital Robert-Debré, F-75019 Paris, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
2
|
Li J, Su Y, Chen L, Lin Y, Ru K. Identification of novel mutations in patients with Diamond-Blackfan anemia and literature review of RPS10 and RPS26 mutations. Int J Lab Hematol 2023; 45:766-773. [PMID: 37376976 DOI: 10.1111/ijlh.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome characterized by erythroid aplasia, physical malformation, and cancer predisposition. Twenty ribosomal protein genes and three non-ribosomal protein genes have been identified associated with DBA. METHODS To investigate the presence of novel mutations and gain a deeper understanding of the molecular mechanisms of disease, targeted next-generation sequencing was performed in 12 patients with clinically suspected DBA. Literatures were retrieved with complete clinical information published in English by November 2022. The clinical features, treatment, and RPS10/RPS26 mutations were analyzed. RESULTS Among the 12 patients, 11 mutations were identified and 5 of them were novel (RPS19, p.W52S; RPS10, p.P106Qfs*11; RPS26, p.R28*; RPL5, p.R35*; RPL11, p.T44Lfs*40). Including 2 patients in this study, 13 patients with RPS10 mutations and 38 patients with RPS26 mutations were reported from 4 and 6 countries, respectively. The incidences of physical malformation in patients with RPS10 and RPS26 mutations (22% and 36%, respectively) were lower than the overall incidence in DBA patients (~50%). Patients with RPS26 mutations had a worse response rate of steroid therapy than RPS10 (47% vs. 87.5%), but preferred RBC transfusions (67% vs. 44%, p = 0.0253). CONCLUSION Our findings add to the DBA pathogenic variant database and demonstrate the clinical presentations of the DBA patients with RPS10/RPS26 mutations. It shows that next-generation sequencing is a powerful tool for the diagnosis of genetic diseases such as DBA.
Collapse
Affiliation(s)
- Jing Li
- SINO-US Diagnostics, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, China
| | - Yongfeng Su
- Department of Hematology for Seniors, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Long Chen
- SINO-US Diagnostics, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, China
| | - Yani Lin
- SINO-US Diagnostics, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, China
| | - Kun Ru
- SINO-US Diagnostics, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, China
- Department of Pathology and Lab Medicine, Shandong Cancer Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
Franklin DA, Liu S, Jin A, Cui P, Guo Z, Arend KC, Moorman NJ, He S, Wang GG, Wan YY, Zhang Y. Ribosomal protein RPL11 haploinsufficiency causes anemia in mice via activation of the RP-MDM2-p53 pathway. J Biol Chem 2022; 299:102739. [PMID: 36435197 PMCID: PMC9793318 DOI: 10.1016/j.jbc.2022.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent discovery of the ribosomal protein (RP) RPL11 interacting with and inhibiting the E3 ubiquitin ligase function of MDM2 established the RP-MDM2-p53 signaling pathway, which is linked to biological events, including ribosomal biogenesis, nutrient availability, and metabolic homeostasis. Mutations in RPs lead to a diverse array of phenotypes known as ribosomopathies in which the role of p53 is implicated. Here, we generated conditional RPL11-deletion mice to investigate in vivo effects of impaired RP expression and its functional connection with p53. While deletion of one Rpl11 allele in germ cells results in embryonic lethality, deletion of one Rpl11 allele in adult mice does not affect viability but leads to acute anemia. Mechanistically, we found RPL11 haploinsufficiency activates p53 in hematopoietic tissues and impedes erythroid precursor differentiation, resulting in insufficient red blood cell development. We demonstrated that reducing p53 dosage by deleting one p53 allele rescues RPL11 haploinsufficiency-induced inhibition of erythropoietic precursor differentiation and restores normal red blood cell levels in mice. Furthermore, blocking the RP-MDM2-p53 pathway by introducing an RP-binding mutation in MDM2 prevents RPL11 haploinsufficiency-caused p53 activation and rescues the anemia in mice. Together, these findings demonstrate that the RP-MDM2-p53 pathway is a critical checkpoint for RP homeostasis and that p53-dependent cell cycle arrest of erythroid precursors is the molecular basis for the anemia phenotype commonly associated with RP deficiency.
Collapse
Affiliation(s)
- Derek A. Franklin
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shijie Liu
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aiwen Jin
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pengfei Cui
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zengli Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle C. Arend
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel J. Moorman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shenghui He
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yisong Y. Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yanping Zhang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,For correspondence: Yanping Zhang
| |
Collapse
|
4
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
5
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
6
|
Schreiner C, Kernl B, Dietmann P, Riegger RJ, Kühl M, Kühl SJ. The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. Front Cell Dev Biol 2022; 10:777121. [PMID: 35281111 PMCID: PMC8905602 DOI: 10.3389/fcell.2022.777121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 01/24/2023] Open
Abstract
Ribosomal biogenesis is a fundamental process necessary for cell growth and division. Ribosomal protein L5 (Rpl5) is part of the large ribosomal subunit. Mutations in this protein have been associated with the congenital disease Diamond Blackfan anemia (DBA), a so called ribosomopathy. Despite of the ubiquitous need of ribosomes, clinical manifestations of DBA include tissue-specific symptoms, e.g., craniofacial malformations, eye abnormalities, skin pigmentation failure, cardiac defects or liver cirrhosis. Here, we made use of the vertebrate model organism Xenopus laevis and showed a specific expression of rpl5 in the developing anterior tissue correlating with tissues affected in ribosomopathies. Upon Rpl5 knockdown using an antisense-based morpholino oligonucleotide approach, we showed different phenotypes affecting anterior tissue, i.e., defective cranial cartilage, malformed eyes, and microcephaly. Hence, the observed phenotypes in Xenopus laevis resemble the clinical manifestations of DBA. Analyses of the underlying molecular basis revealed that the expression of several marker genes of neural crest, eye, and brain are decreased during induction and differentiation of the respective tissue. Furthermore, Rpl5 knockdown led to decreased cell proliferation and increased cell apoptosis during early embryogenesis. Investigating the molecular mechanisms underlying Rpl5 function revealed a more than additive effect between either loss of function of Rpl5 and loss of function of c-Myc or loss of function of Rpl5 and gain of function of Tp53, suggesting a common signaling pathway of these proteins. The co-injection of the apoptosis blocking molecule Bcl2 resulted in a partial rescue of the eye phenotype, supporting the hypothesis that apoptosis is one main reason for the phenotypes occurring upon Rpl5 knockdown. With this study, we are able to shed more light on the still poorly understood molecular background of ribosomopathies.
Collapse
Affiliation(s)
- Corinna Schreiner
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm, Germany
| | - Bianka Kernl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ricarda J Riegger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Doty RT, Yan X, Meng C, Lausted C, Tian Q, Abkowitz JL. Single-cell analysis of erythropoiesis in Rpl11 haploinsufficient mice reveals insight into the pathogenesis of Diamond-Blackfan anemia. Exp Hematol 2021; 97:66-78.e6. [PMID: 33631277 DOI: 10.1016/j.exphem.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
Rpl11 haploinsufficient mice develop a macrocytic anemia similar to patients with DBA. Here, we fully characterize this model from clinical and pathophysiological perspectives. Early erythroid precursors have increased heme content and high cytoplasmic reactive oxygen species, impairing erythroid differentiation at the colony-forming unit-erythroid (CFU-E)/proerythroblast stage and subsequently. Using single-cell analyses that link a cell's surface protein expression to its total transcriptome and unbiased analyses, we found GATA1, GATA1 target gene, and mitotic spindle pathway gene transcription were the pathways that decreased the most. Expression of ribosome protein and globin genes was amplified. These changes, as well as the other transcriptional changes that were identified, closely resemble findings in mice that lack the heme export protein FLVCR and, thus, suggest that heme excess and toxicity are the primary drivers of the macrocytic anemia. Consistent with this, treating Rpl11 haploinsufficient mice with corticosteroids increased the numbers of earliest erythroblasts but failed to overcome heme toxicity and improve the anemia. Rpl11 haploinsufficient mice uniquely upregulated mitochondrial genes, p53 and CDKN1A pathway genes, and DNA damage checkpoint genes, which should contribute further to erythroid marrow failure. Together our data establish Rpl11 haploinsufficient mice as an excellent model of DBA that can be used to study DBA pathogenesis and test novel therapies.
Collapse
Affiliation(s)
- Raymond T Doty
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA.
| | | | | | | | - Qiang Tian
- Institute for Systems Biology, Seattle, WA.
| | - Janis L Abkowitz
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Pediatric bone marrow failure: Clinical, hematological and targeted next generation sequencing data. Blood Cells Mol Dis 2020; 87:102510. [PMID: 33197791 DOI: 10.1016/j.bcmd.2020.102510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In this study, clinico-hematological, genetic and outcome profile of children with BMF was evaluated to delineate the underlying genotype and phenotype. DESIGN Cases were evaluated as two groups: Group 1 (n = 56; DBA-23, FA-18, DC-2, UBMFS-13) included children with suspected IBMFS based on clinical phenotype and accessible lab investigations and Group 2 (n = 53) included children with IAA treated with IST. Targeted NGS was carried out in a subset of these children (n = 42) and supplemented with WES wherever required. RESULTS We identified causative mutation in overall 15 of 27 tested children (55.5%) in group 1 and 2 of 15 tested children (13.3%) in group 2. In DBA, a mutation was noted in 50% cases with involvement of RPS 19 (75%) and RPL5 (25%) genes. Phenotypic abnormalities were present in 69.5% and response to steroids in 68.4% of cases at a median follow up of 33 months. In children with IAA, overall response (complete + partial) was present in 51% at a median follow up of 23 months. The 3-year OS and FFS for the cohort of IAA were 68% and 48% respectively. Targeted sequencing could also pick up germline mutations in 50% of UBMFS cases and nearly 19% of IAA cases.
Collapse
|
9
|
Azam I, Rahul M, Tewari N, Bansal K. Dental considerations in a paediatric patient with Diamond-Blackfan anaemia. BMJ Case Rep 2020; 13:13/9/e237992. [PMID: 32928813 DOI: 10.1136/bcr-2020-237992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Diamond-Blackfan anaemia (DBA) is a rare genetic disorder characterised by a decrease in the production of red blood cells due to bone marrow malfunction. The estimation of disease occurrence is approximately 1 in 100 000-2 00 000 live births. This paper presents the case of a 7-year-old male child diagnosed with DBA at the age of 4 months. The diagnosis was established with haematological findings, bone marrow biopsy and molecular testing. The case was managed successfully for dental symptoms without any complication.
Collapse
Affiliation(s)
- Imam Azam
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, India
| | - Morankar Rahul
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, India
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, India
| | - Kalpana Bansal
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, India
| |
Collapse
|
10
|
Da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia. Blood 2020; 136:1262-1273. [PMID: 32702755 PMCID: PMC7483438 DOI: 10.1182/blood.2019000947] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described and is a constitutional inherited bone marrow failure syndrome. Erythroblastopenia is the major characteristic of the disease, which is a model for ribosomal diseases, related to a heterozygous allelic variation in 1 of the 20 ribosomal protein genes of either the small or large ribosomal subunit. The salient feature of classical DBA is a defect in ribosomal RNA maturation that generates nucleolar stress, leading to stabilization of p53 and activation of its targets, resulting in cell-cycle arrest and apoptosis. Although activation of p53 may not explain all aspects of DBA erythroid tropism, involvement of GATA1/HSP70 and globin/heme imbalance, with an excess of the toxic free heme leading to reactive oxygen species production, account for defective erythropoiesis in DBA. Despite significant progress in defining the molecular basis of DBA and increased understanding of the mechanistic basis for DBA pathophysiology, progress in developing new therapeutic options has been limited. However, recent advances in gene therapy, better outcomes with stem cell transplantation, and discoveries of putative new drugs through systematic drug screening using large chemical libraries provide hope for improvement.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Adenosine Deaminase/blood
- Adenosine Deaminase/genetics
- Anemia, Diamond-Blackfan/diagnosis
- Anemia, Diamond-Blackfan/genetics
- Anemia, Diamond-Blackfan/metabolism
- Anemia, Diamond-Blackfan/therapy
- Child, Preschool
- Congenital Abnormalities/genetics
- Diagnosis, Differential
- Disease Management
- Drug Resistance
- Erythrocytes/enzymology
- Fetal Growth Retardation/etiology
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/physiology
- Genetic Heterogeneity
- Genetic Therapy
- Glucocorticoids/therapeutic use
- HSP70 Heat-Shock Proteins/metabolism
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Infant, Newborn
- Intercellular Signaling Peptides and Proteins/blood
- Intercellular Signaling Peptides and Proteins/genetics
- Models, Biological
- Mutation
- Neoplastic Syndromes, Hereditary/genetics
- Ribosomal Proteins/genetics
- Ribosomal Proteins/physiology
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Lydie Da Costa
- Service d'Hématologie Biologique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- U1134, Université Paris, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Thierry Leblanc
- Service d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France; and
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY
| |
Collapse
|
11
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
12
|
Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint. Oncogene 2020; 39:3443-3457. [PMID: 32108164 DOI: 10.1038/s41388-020-1231-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/05/2023]
Abstract
Perturbations in ribosome biogenesis have been associated with cancer. Such aberrations activate p53 through the RPL5/RPL11/5S rRNA complex-mediated inhibition of HDM2. Studies using animal models have suggested that this signaling pathway might constitute an important anticancer barrier. To gain a deeper insight into this issue in humans, here we analyze somatic mutations in RPL5 and RPL11 coding regions, reported in The Cancer Genome Atlas and International Cancer Genome Consortium databases. Using a combined computational and statistical approach, complemented by a range of biochemical and functional analyses in human cancer cell models, we demonstrate the existence of several mechanisms by which RPL5 mutations may impair wild-type p53 upregulation and ribosome biogenesis. Unexpectedly, the same approach provides only modest evidence for a similar role of RPL11, suggesting that RPL5 represents a preferred target during human tumorigenesis in cancers with wild-type p53. Furthermore, we find that several functional cancer-associated RPL5 somatic mutations occur as rare germline variants in general population. Our results shed light on the so-far enigmatic role of cancer-associated mutations in genes encoding ribosomal proteins, with implications for our understanding of the tumor suppressive role of the RPL5/RPL11/5S rRNA complex in human malignancies.
Collapse
|
13
|
Volejnikova J, Vojta P, Urbankova H, Mojzíkova R, Horvathova M, Hochova I, Cermak J, Blatny J, Sukova M, Bubanska E, Feketeova J, Prochazkova D, Horakova J, Hajduch M, Pospisilova D. Czech and Slovak Diamond-Blackfan Anemia (DBA) Registry update: Clinical data and novel causative genetic lesions. Blood Cells Mol Dis 2019; 81:102380. [PMID: 31855845 DOI: 10.1016/j.bcmd.2019.102380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital erythroid aplasia, underlied by haploinsufficient mutations in genes coding for ribosomal proteins (RP) in approximately 70% of cases. DBA is frequently associated with somatic malformations, endocrine dysfunction and with an increased predisposition to cancer. Here we present clinical and genetic characteristics of 62 patients from 52 families enrolled in the Czech and Slovak DBA Registry. Whole exome sequencing (WES) and array comparative genomic hybridization (aCGH) were employed to identify causative mutations in newly diagnosed patients and in cases with previously unrecognized molecular pathology. RP mutation detection rate was 81% (50/62 patients). This included 8 novel point mutations and 4 large deletions encompassing some of the RP genes. Malignant or predisposing condition developed in 8/62 patients (13%): myelodysplastic syndrome in 3 patients; breast cancer in 2 patients; colorectal cancer plus ocular tumor, diffuse large B-cell lymphoma and multiple myeloma each in one case. These patients exclusively harbored RPL5, RPL11 or RPS19 mutations. Array CGH is beneficial for detection of novel mutations in DBA due to its capacity to detect larger chromosomal aberrations. Despite the importance of genotype-phenotype correlation in DBA, phenotypic differences among family members harboring an identical mutation were observed.
Collapse
Affiliation(s)
- Jana Volejnikova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 77900 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Petr Vojta
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Helena Urbankova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 77900 Olomouc, Czech Republic
| | - Renata Mojzíkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Monika Horvathova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Ivana Hochova
- Department of Hematology, Second Faculty of Medicine, Charles University and University Hospital Motol Prague, V Uvalu 84, 15006 Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 12820 Prague, Czech Republic
| | - Jan Blatny
- Department of Pediatric Hematology, Masaryk University and University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
| | - Martina Sukova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol Prague, V Uvalu 84, 15006 Prague, Czech Republic
| | - Eva Bubanska
- Department of Pediatric Oncology and Hematology, Children's Faculty Hospital Banska Bystrica, Ludovit Svoboda Square 4, 97409 Banska Bystrica, Slovakia
| | - Jaroslava Feketeova
- Department of Pediatric Oncology and Hematology, Children Teaching Hospital Kosice, Trieda SNP 457/1, 04011 Kosice, Slovakia
| | - Daniela Prochazkova
- Department of Pediatrics, Masaryk Hospital Usti nad Labem, Socialni pece 3316/12A, 40113 Usti nad Labem, Czech Republic
| | - Julia Horakova
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Comenius University and University Hospital Bratislava, Limbova 1, 83340 Bratislava, Slovakia
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 1333/5, 77900 Olomouc, Czech Republic
| | - Dagmar Pospisilova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 77900 Olomouc, Czech Republic.
| |
Collapse
|
14
|
Seo A, Gulsuner S, Pierce S, Ben-Harosh M, Shalev H, Walsh T, Krasnov T, Dgany O, Doulatov S, Tamary H, Shimamura A, King MC. Inherited thrombocytopenia associated with mutation of UDP-galactose-4-epimerase (GALE). Hum Mol Genet 2019; 28:133-142. [PMID: 30247636 DOI: 10.1093/hmg/ddy334] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Severe thrombocytopenia, characterized by dysplastic megakaryocytes and intracranial bleeding, was diagnosed in six individuals from a consanguineous kindred. Three of the individuals were successfully treated by bone marrow transplant. Whole-exome sequencing and homozygosity mapping of multiple family members, coupled with whole-genome sequencing to reveal shared non-coding variants, revealed one potentially functional variant segregating with thrombocytopenia under a recessive model: GALE p.R51W (c.C151T, NM_001127621). The mutation is extremely rare (allele frequency = 2.5 × 10-05), and the likelihood of the observed co-segregation occurring by chance is 1.2 × 10-06. GALE encodes UDP-galactose-4-epimerase, an enzyme of galactose metabolism and glycosylation responsible for two reversible reactions: interconversion of UDP-galactose with UDP-glucose and interconversion of UDP-N-acetylgalactosamine with UDP-N-acetylglucosamine. The mutation alters an amino acid residue that is conserved from yeast to humans. The variant protein has both significantly lower enzymatic activity for both interconversion reactions and highly significant thermal instability. Proper glycosylation is critical to normal hematopoiesis, in particular to megakaryocyte and platelet development, as reflected in the presence of thrombocytopenia in the context of congenital disorders of glycosylation. Mutations in GALE have not previously been associated with thrombocytopenia. Our results suggest that GALE p.R51W is inadequate for normal glycosylation and thereby may impair megakaryocyte and platelet development. If other mutations in GALE are shown to have similar consequences, this gene may be proven to play a critical role in hematopoiesis.
Collapse
Affiliation(s)
- Aaron Seo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Suleyman Gulsuner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Sarah Pierce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Miri Ben-Harosh
- Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel
| | - Hanna Shalev
- Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel
| | - Tom Walsh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Sergei Doulatov
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Hannah Tamary
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel.,Hematology Unit, Schneider Children's Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Akiko Shimamura
- Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mary-Claire King
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood 2019; 133:1358-1370. [PMID: 30700418 DOI: 10.1182/blood-2018-09-875674] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/12/2019] [Indexed: 02/07/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a congenital erythroblastopenia that is characterized by a blockade in erythroid differentiation related to impaired ribosome biogenesis. DBA phenotype and genotype are highly heterogeneous. We have previously identified 2 in vitro erythroid cell growth phenotypes for primary CD34+ cells from DBA patients and following short hairpin RNA knockdown of RPS19, RPL5, and RPL11 expression in normal human CD34+ cells. The haploinsufficient RPS19 in vitro phenotype is less severe than that of 2 other ribosomal protein (RP) mutant genes. We further documented that proteasomal degradation of HSP70, the chaperone of GATA1, is a major contributor to the defect in erythroid proliferation, delayed erythroid differentiation, increased apoptosis, and decreased globin expression, which are all features of the RPL5 or RPL11 DBA phenotype. In the present study, we explored the hypothesis that an imbalance between globin and heme synthesis may be involved in pure red cell aplasia of DBA. We identified disequilibrium between the globin chain and the heme synthesis in erythroid cells of DBA patients. This imbalance led to accumulation of excess free heme and increased reactive oxygen species production that was more pronounced in cells of the RPL5 or RPL11 phenotype. Strikingly, rescue experiments with wild-type HSP70 restored GATA1 expression levels, increased globin synthesis thereby reducing free heme excess and resulting in decreased apoptosis of DBA erythroid cells. These results demonstrate the involvement of heme in DBA pathophysiology and a major role of HSP70 in the control of balanced heme/globin synthesis.
Collapse
|
16
|
Dong Z, Jiang H, Liang S, Wang Y, Jiang W, Zhu C. Ribosomal Protein L15 is involved in Colon Carcinogenesis. Int J Med Sci 2019; 16:1132-1141. [PMID: 31523176 PMCID: PMC6743284 DOI: 10.7150/ijms.34386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Ribosomal biogenesis is responsible for protein synthesis in all eukaryotic cells. Perturbation of ribosomal biogenesis processes can cause dysfunctions of protein synthesis and varieties of human diseases. In this study, we examine the role of RPL15, a large ribosomal subunit protein, in human colon carcinogenesis. Our results reveal that RPL15 is remarkably upregulated in human primary colon cancer tissues and cultured cell lines when compared with paired non-cancerous tissues and non-transformed epithelium cells. Elevated expression of RPL15 in colon cancer tissues is closely correlated with clinicopathological characteristics in patients. We determine the effects of RPL15 on nucleolar maintenance, ribosomal biogenesis and cell proliferation in human cells. We show that RPL15 is required for maintenance of nucleolar structure and formation of pre-60S subunits in the nucleoli. Depletion of RPL15 causes ribosomal stress, resulting in a G1-G1/S cell cycle arrest in non-transformed human epithelium cells, but apoptosis in colon cancer cells. Together, these results indicate that RPL15 is involved in human colon carcinogenesis and might be a potential clinical biomarker and/or target for colon cancer therapy.
Collapse
Affiliation(s)
- Zhixiong Dong
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hongyu Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shuangshuang Liang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,AstraZeneca Pharmaceutical Co Ltd, Xi'an, 710100, China
| | - Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wei Jiang
- Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
17
|
Abstract
Diamond–Blackfan anemia (DBA) is a rare congenital hypoplastic anemia characterized by a block in erythropoiesis at the progenitor stage, although the exact stage at which this occurs remains to be fully defined. DBA presents primarily during infancy with macrocytic anemia and reticulocytopenia with 50% of cases associated with a variety of congenital malformations. DBA is most frequently due to a sporadic mutation (55%) in genes encoding several different ribosomal proteins, although there are many cases where there is a family history of the disease with varying phenotypes. The erythroid tropism of the disease is still a matter of debate for a disease related to a defect in global ribosome biogenesis. Assessment of biological features in conjunction with genetic testing has increased the accuracy of the diagnosis of DBA. However, in certain cases, it continues to be difficult to firmly establish a diagnosis. This review will focus on the diagnosis of DBA along with a description of new advances in our understanding of the pathophysiology and treatment recommendations for DBA.
Collapse
Affiliation(s)
- Lydie Da Costa
- Université Paris 7 Denis Diderot-Sorbonne, Paris, France.,AP-HP, Hematology laboratory, Robert Debré Hospital, Paris, France.,INSERM UMR1134, Paris, France.,Laboratory of Excellence for Red Cell, LABEX GR-Ex, Paris, France
| | - Anupama Narla
- Stanford University School of Medicine, Stanford, USA
| | | |
Collapse
|
18
|
Jo Hodonsky C, Schurmann C, Schick UM, Kocarnik J, Tao R, van Rooij FJ, Wassel C, Buyske S, Fornage M, Hindorff LA, Floyd JS, Ganesh SK, Lin DY, North KE, Reiner AP, Loos RJ, Kooperberg C, Avery CL. Generalization and fine mapping of red blood cell trait genetic associations to multi-ethnic populations: The PAGE Study. Am J Hematol 2018; 93:10.1002/ajh.25161. [PMID: 29905378 PMCID: PMC6300146 DOI: 10.1002/ajh.25161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Red blood cell (RBC) traits provide insight into a wide range of physiological states and exhibit moderate to high heritability, making them excellent candidates for genetic studies to inform underlying biologic mechanisms. Previous RBC trait genome-wide association studies were performed primarily in European- or Asian-ancestry populations, missing opportunities to inform understanding of RBC genetic architecture in diverse populations and reduce intervals surrounding putative functional SNPs through fine-mapping. Here, we report the first fine-mapping of six correlated (Pearson's r range: |0.04 - 0.92|) RBC traits in up to 19,036 African Americans and 19,562 Hispanic/Latinos participants of the Population Architecture using Genomics and Epidemiology (PAGE) consortium. Trans-ethnic meta-analysis of race/ethnic- and study-specific estimates for approximately 11,000 SNPs flanking 13 previously identified association signals as well as 150,000 additional array-wide SNPs was performed using inverse-variance meta-analysis after adjusting for study and clinical covariates. Approximately half of previously reported index SNP-RBC trait associations generalized to the trans-ethnic study population (p<1.7x10-4 ); previously unreported independent association signals within the ABO region reinforce the potential for multiple functional variants affecting the same locus. Trans-ethnic fine-mapping did not reveal additional signals at the HFE locus independent of the known functional variants. Finally, we identified a potential novel association in the Hispanic/Latino study population at the HECTD4/RPL6 locus for RBC count (p=1.9x10-7 ). The identification of a previously unknown association, generalization of a large proportion of known association signals, and refinement of known association signals all exemplify the benefits of genetic studies in diverse populations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chani Jo Hodonsky
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jonathan Kocarnik
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Frank Ja van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3000, the Netherlands
| | - Christina Wassel
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, VT
| | - Steve Buyske
- Department of Statistics and Biostatistics, Hill Center, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd. Piscataway, NY
| | - Myriam Fornage
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Lucia A Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National institutes of Health, Bethesda, MD
| | - James S Floyd
- Departments of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Santhi K Ganesh
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Dan-Yu Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC
| | - Kari E North
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, NC
- Carolina Population Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
19
|
Arbiv OA, Cuvelier G, Klaassen RJ, Fernandez CV, Robitaille N, Steele M, Breakey V, Abish S, Wu J, Sinha R, Silva M, Goodyear L, Jardine L, Lipton JH, Corriveau-Bourque C, Brossard J, Michon B, Ghemlas I, Waespe N, Zlateska B, Sung L, Cada M, Dror Y. Molecular analysis and genotype-phenotype correlation of Diamond-Blackfan anemia. Clin Genet 2017; 93:320-328. [PMID: 29044489 DOI: 10.1111/cge.13158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/03/2023]
Abstract
Diamond-Blackfan anemia (DBA) features hypoplastic anemia and congenital malformations, largely caused by mutations in various ribosomal proteins. The aim of this study was to characterize the spectrum of genetic lesions causing DBA and identify genotypes that correlate with phenotypes of clinical significance. Seventy-four patients with DBA from across Canada were included. Nucleotide-level mutations or large deletions were identified in 10 ribosomal genes in 45 cases. The RPS19 mutation group was associated with higher requirement for chronic treatment for anemia than other DBA groups. Patients with RPS19 mutations, however, were more likely to maintain long-term corticosteroid response without requirement for further chronic transfusions. Conversely, patients with RPL11 mutations were less likely to need chronic treatment. Birth defects, including cardiac, skeletal, hand, cleft lip or palate and genitourinary malformations, also varied among the various genetic groups. Patients with RPS19 mutations had the fewest number of defects, while patients with RPL5 had the greatest number of birth defects. This is the first study to show differences between DBA genetic groups with regards to treatment. Previously unreported differences in the rate and types of birth defects were also identified. These data allow better patient counseling, a more personalized monitoring plan, and may also suggest differential functions of DBA genes on ribosome and extra-ribosomal functions.
Collapse
Affiliation(s)
- O A Arbiv
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - G Cuvelier
- Division of Haematology/Oncology, CancerCare Manitoba, Winnipeg, Canada
| | - R J Klaassen
- Division of Haematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - C V Fernandez
- Division of Haematology/Oncology, IWK Health Centre, Halifax, Canada
| | - N Robitaille
- Division of Haematology/Oncology, CHU Sainte Justine, Montreal, Canada
| | - M Steele
- Division of Haematology/Oncology, Alberta Children's Hospital, Calgary, Canada
| | - V Breakey
- Division of Haematology/Oncology, McMaster Children's Hospital, Hamilton, Canada
| | - S Abish
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, Canada
| | - J Wu
- Division of Haematology/Oncology, British Columbia Children's Hospital, Vancouver, Canada
| | - R Sinha
- Division of Haematology/Oncology, University of Saskatchewan, Saskatoon, Canada
| | - M Silva
- Division of Haematology/Oncology, Queen's University, Kingston, Canada
| | - L Goodyear
- Division of Haematology/Oncology, Janeway Child Health Centre, St. John's, Canada
| | - L Jardine
- Division of Haematology/Oncology, Children's Hospital of Western Ontario, London, Canada
| | - J H Lipton
- Department of Haematology and Internal Medicine, Princess Margaret Hospital, Toronto, Canada
| | - C Corriveau-Bourque
- Division of Haematology/Oncology, University of Alberta Health Sciences Centre, Edmonton, Canada
| | - J Brossard
- Division of Haematology/Oncology, Centre Y Sante L'Estrie-Fleur, Sherbrooke, Canada
| | - B Michon
- Division of Haematology/Oncology, Centre Hospitalier de l'Université Laval, Quebec City, Canada
| | - I Ghemlas
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Division of Haematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Waespe
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - B Zlateska
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - L Sung
- Program in Child Health and Evaluative Medicine, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Lymphoma Leukemia Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - M Cada
- The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Y Dror
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
van Dooijeweert B, van Ommen CH, Smiers FJ, Tamminga RYJ, te Loo MW, Donker AE, Peters M, Granzen B, Gille HJJP, Bierings MB, MacInnes AW, Bartels M. Pediatric Diamond-Blackfan anemia in the Netherlands: An overview of clinical characteristics and underlying molecular defects. Eur J Haematol 2017; 100:163-170. [DOI: 10.1111/ejh.12995] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Birgit van Dooijeweert
- Department of Pediatric Hematology; University Medical Center Utrecht; Utrecht The Netherlands
| | - C. Heleen van Ommen
- Department of Pediatric Hematology; Erasmus Medical Center; Rotterdam The Netherlands
| | - Frans J. Smiers
- Department of Pediatric Hematology; Leiden University Medical Center; Leiden The Netherlands
| | - Rienk Y. J. Tamminga
- Department of Pediatric Hematology; University Medical Center Groningen; Groningen The Netherlands
| | - Maroeska W. te Loo
- Department of Pediatric Hematology; Radboud University Medical Center; Nijmegen The Netherlands
| | | | - Marjolein Peters
- Department of Pediatric Hematology; Academic Medical Center Amsterdam; Amsterdam The Netherlands
| | - Bernd Granzen
- Department of Pediatric Hematology; Maastricht University Medical Center; Maastricht The Netherlands
| | - Hans J. J. P. Gille
- Department of Clinical Genetics; VU University Medical Center; Amsterdam The Netherlands
| | - Marc B. Bierings
- Department of Pediatric Hematology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Alyson W. MacInnes
- Laboratory Genetic Metabolic Diseases; Academic Medical Center Amsterdam; Amsterdam The Netherlands
| | - Marije Bartels
- Department of Pediatric Hematology; University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
21
|
The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70. Blood Adv 2017; 1:1959-1976. [PMID: 29296843 DOI: 10.1182/bloodadvances.2017008078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome that exhibits an erythroid-specific phenotype. In at least 70% of cases, DBA is related to a haploinsufficient germ line mutation in a ribosomal protein (RP) gene. Additional cases have been associated with mutations in GATA1. We have previously established that the RPL11+/Mut phenotype is more severe than RPS19+/Mut phenotype because of delayed erythroid differentiation and increased apoptosis of RPL11+/Mut erythroid progenitors. The HSP70 protein is known to protect GATA1, the major erythroid transcription factor, from caspase-3 mediated cleavage during normal erythroid differentiation. Here, we show that HSP70 protein expression is dramatically decreased in RPL11+/Mut erythroid cells while being preserved in RPS19+/Mut cells. The decreased expression of HSP70 in RPL11+/Mut cells is related to an enhanced proteasomal degradation of polyubiquitinylated HSP70. Restoration of HSP70 expression level in RPL11+/Mut cells reduces p53 activation and rescues the erythroid defect in DBA. These results suggest that HSP70 plays a key role in determining the severity of the erythroid phenotype in RP-mutation-dependent DBA.
Collapse
|
22
|
Fancello L, Kampen KR, Hofman IJF, Verbeeck J, De Keersmaecker K. The ribosomal protein gene RPL5 is a haploinsufficient tumor suppressor in multiple cancer types. Oncotarget 2017; 8:14462-14478. [PMID: 28147343 PMCID: PMC5362418 DOI: 10.18632/oncotarget.14895] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 01/21/2023] Open
Abstract
For many years, defects in the ribosome have been associated to cancer. Recently, somatic mutations and deletions affecting ribosomal protein genes were identified in a few leukemias and solid tumor types. However, systematic analysis of all 81 known ribosomal protein genes across cancer types is lacking. We screened mutation and copy number data of respectively 4926 and 7322 samples from 16 cancer types and identified six altered genes (RPL5, RPL11, RPL23A, RPS5, RPS20 and RPSA). RPL5 was located at a significant peak of heterozygous deletion or mutated in 11% of glioblastoma, 28% of melanoma and 34% of breast cancer samples. Moreover, patients with low RPL5 expression displayed worse overall survival in glioblastoma and in one breast cancer cohort. RPL5 knockdown in breast cancer cell lines enhanced G2/M cell cycle progression and accelerated tumor progression in a xenograft mouse model. Interestingly, our data suggest that the tumor suppressor role of RPL5 is not only mediated by its known function as TP53 or c-MYC regulator. In conclusion, RPL5 heterozygous inactivation occurs at high incidence (11-34%) in multiple tumor types, currently representing the most common somatic ribosomal protein defect in cancer, and we demonstrate a tumor suppressor role for RPL5 in breast cancer.
Collapse
Affiliation(s)
- Laura Fancello
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| | - Kim R Kampen
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| | - Jelle Verbeeck
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- KU Leuven-University of Leuven, Department of Oncology, LKI-Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
23
|
Carlston CM, Afify ZA, Palumbos JC, Bagley H, Barbagelata C, Wooderchak-Donahue WL, Mao R, Carey JC. Variable expressivity and incomplete penetrance in a large family with non-classical Diamond-Blackfan anemia associated with ribosomal protein L11 splicing variant. Am J Med Genet A 2017; 173:2622-2627. [PMID: 28742285 DOI: 10.1002/ajmg.a.38360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a group of clinically and genetically heterogeneous bone marrow failure disorders with or without congenital anomalies. Variable expressivity and incomplete penetrance have been observed within affected families. Diamond-Blackfan anemia-7 (DBA7), caused by heterozygous mutations in ribosomal protein L11 (RPL11), accounts for approximately 5% of DBA. DBA7 is usually characterized by early-onset bone marrow failure often accompanied by congenital malformations, especially thumb defects. Here, we present the case of a 2-year-old boy with chronic mild normocytic anemia, short stature, bilateral underdevelopment of the thumbs, atrial septal defect, and hypospadias. Hematological testing revealed slightly decreased hematocrit and hemoglobin, normal HbF, and elevated eADA. Family history included maternal relatives with thumb defects, but the mother's thumbs were normal. Clinical exome sequencing detected a maternally-inherited RPL11 variant, c.396+3A>G, that is predicted to affect splicing. A family correlation study of the identified variant demonstrates segregation with thumb anomalies in the mother's family. RNA studies suggest that the variant produces an alternative transcript that is likely susceptible to nonsense-mediated decay. This report summarizes the prevalence of non-anemia findings in DBA7 and describes a non-classical familial presentation of DBA7 more associated with thumb anomalies than with anemia.
Collapse
Affiliation(s)
- Colleen M Carlston
- Department of Pathology, University of Utah, Salt Lake City, Utah.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | - Zeinab A Afify
- Department of Pediatrics, Hematology & Oncology, University of Utah, Salt Lake City, Utah
| | - Janice C Palumbos
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | | | - Carlos Barbagelata
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Whitney L Wooderchak-Donahue
- Department of Pathology, University of Utah, Salt Lake City, Utah.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | - John C Carey
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
24
|
He YE, Qiu HX, Jiang JB, Wu RZ, Xiang RL, Zhang YH. Microarray analysis reveals key genes and pathways in Tetralogy of Fallot. Mol Med Rep 2017; 16:2707-2713. [PMID: 28713939 PMCID: PMC5548054 DOI: 10.3892/mmr.2017.6933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/12/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify key genes that may be involved in the pathogenesis of Tetralogy of Fallot (TOF) using bioinformatics methods. The GSE26125 microarray dataset, which includes cardiovascular tissue samples derived from 16 children with TOF and five healthy age-matched control infants, was downloaded from the Gene Expression Omnibus database. Differential expression analysis was performed between TOF and control samples to identify differentially expressed genes (DEGs) using Student's t-test, and the R/limma package, with a log2 fold-change of >2 and a false discovery rate of <0.01 set as thresholds. The biological functions of DEGs were analyzed using the ToppGene database. The ReactomeFIViz application was used to construct functional interaction (FI) networks, and the genes in each module were subjected to pathway enrichment analysis. The iRegulon plugin was used to identify transcription factors predicted to regulate the DEGs in the FI network, and the gene-transcription factor pairs were then visualized using Cytoscape software. A total of 878 DEGs were identified, including 848 upregulated genes and 30 downregulated genes. The gene FI network contained seven function modules, which were all comprised of upregulated genes. Genes enriched in Module 1 were enriched in the following three neurological disorder-associated signaling pathways: Parkinson's disease, Alzheimer's disease and Huntington's disease. Genes in Modules 0, 3 and 5 were dominantly enriched in pathways associated with ribosomes and protein translation. The Xbox binding protein 1 transcription factor was demonstrated to be involved in the regulation of genes encoding the subunits of cytoplasmic and mitochondrial ribosomes, as well as genes involved in neurodegenerative disorders. Therefore, dysfunction of genes involved in signaling pathways associated with neurodegenerative disorders, ribosome function and protein translation may contribute to the pathogenesis of TOF.
Collapse
Affiliation(s)
- Yue-E He
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hui-Xian Qiu
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jian-Bing Jiang
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Rong-Zhou Wu
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ru-Lian Xiang
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yuan-Hai Zhang
- Department of Pediatric Cardiology, Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
25
|
The uS8, uS4, eS31, and uL14 Ribosomal Protein Genes Are Dysregulated in Nasopharyngeal Carcinoma Cell Lines. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4876954. [PMID: 28791303 PMCID: PMC5534291 DOI: 10.1155/2017/4876954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022]
Abstract
The association of ribosomal proteins with carcinogenesis of nasopharyngeal carcinoma (NPC) has been established in a limited subset of ribosomal protein genes. To date, three ribosomal protein genes, eL27 (L27), eL41 (L41), and eL43 (L37a), have been found to be differentially expressed in cell lines derived from NPC tumors. This raises the possibility of more ribosomal protein genes that could be associated with NPC. In this study, we investigated the expression profiles of eight ribosomal protein genes, uS8 (S8), uS4 (S9), eS31 (S27a), eL6 (L6), eL18 (L18), uL14 (L23), eL24 (L24), and eL30 (L30), in six NPC-derived cell lines (HONE-1, SUNE1, HK1, TW01, TW04, and C666-1). Their expression levels were compared with that of a nonmalignant nasopharyngeal epithelial cell line (NP69) using quantitative real-time PCR (RT-qPCR) assay. Of the eight genes studied, the expressions of four ribosomal protein genes uS8 (S8), uS4 (S9), eS31 (S27a), and uL14 (L23) were found to be significantly downregulated in NPC cell lines relative to NP69. Our findings provide novel empirical evidence of these four ribosomal protein genes as NPC-associated genetic factors and reinforce the relevance of ribosomal proteins in the carcinogenesis of nasopharyngeal cancer.
Collapse
|
26
|
Whole exome sequencing in the differential diagnosis of Diamond-Blackfan anemia: Clinical and molecular study of three patients with novel RPL5 and mosaic RPS19 mutations. Blood Cells Mol Dis 2017; 64:38-44. [PMID: 28376382 PMCID: PMC7129236 DOI: 10.1016/j.bcmd.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 11/20/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital disorder presenting remarkable phenotypic overlap with other inherited bone marrow failure syndromes, making differential diagnosis challenging and its confirmation often reached with great delay. By whole exome sequencing, we unraveled the presence of pathogenic variants affecting genes already known to be involved in DBA pathogenesis (RPL5 and RPS19) in three patients with otherwise uncertain clinical diagnosis, and provided new insights on DBA genotype-phenotype correlations. Remarkably, the RPL5 c.482del frameshift mutation has never been reported before, whereas the RPS19 c.3G>T missense mutation, although previously described in a 2-month-old DBA patient without malformations and refractory to steroid therapy, was detected here in the mosaic state in different bodily tissues for the first time in DBA patients.
Collapse
|
27
|
Fungal Ribotoxins: A Review of Potential Biotechnological Applications. Toxins (Basel) 2017; 9:toxins9020071. [PMID: 28230789 PMCID: PMC5331450 DOI: 10.3390/toxins9020071] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022] Open
Abstract
Fungi establish a complex network of biological interactions with other organisms in nature. In many cases, these involve the production of toxins for survival or colonization purposes. Among these toxins, ribotoxins stand out as promising candidates for their use in biotechnological applications. They constitute a group of highly specific extracellular ribonucleases that target a universally conserved sequence of RNA in the ribosome, the sarcin-ricin loop. The detailed molecular study of this family of toxic proteins over the past decades has highlighted their potential in applied research. Remarkable examples would be the recent studies in the field of cancer research with promising results involving ribotoxin-based immunotoxins. On the other hand, some ribotoxin-producer fungi have already been studied in the control of insect pests. The recent role of ribotoxins as insecticides could allow their employment in formulas and even as baculovirus-based biopesticides. Moreover, considering the important role of their target in the ribosome, they can be used as tools to study how ribosome biogenesis is regulated and, eventually, may contribute to a better understanding of some ribosomopathies.
Collapse
|
28
|
Pillet B, Mitterer V, Kressler D, Pertschy B. Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation. Bioessays 2016; 39:1-12. [PMID: 27859409 DOI: 10.1002/bies.201600153] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Eukaryotic ribosomes are assembled from their components, the ribosomal RNAs and ribosomal proteins, in a tremendously complex, multi-step process, which primarily takes place in the nuclear compartment. Therefore, most ribosomal proteins have to travel from the cytoplasm to their incorporation site on pre-ribosomes within the nucleus. However, due to their particular characteristics, such as a highly basic amino acid composition and the presence of unstructured extensions, ribosomal proteins are especially prone to aggregation and degradation in their unassembled state, hence specific mechanisms must operate to ensure their safe delivery. Recent studies have uncovered a group of proteins, termed dedicated chaperones, specialized in accompanying and guarding individual ribosomal proteins. In this essay, we review how these dedicated chaperones utilize different folds to interact with their ribosomal protein clients and how they ensure their soluble expression and interconnect their intracellular transport with their efficient assembly into pre-ribosomes.
Collapse
Affiliation(s)
- Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Valentin Mitterer
- Institut für Molekulare Biowissenschaften, Universität Graz, Graz, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Brigitte Pertschy
- Institut für Molekulare Biowissenschaften, Universität Graz, Graz, Austria
| |
Collapse
|
29
|
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2016; 8:1013-26. [PMID: 26398160 PMCID: PMC4582105 DOI: 10.1242/dmm.020529] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes. Summary: This paper reviews recent data on Diamond Blackfan anemia and discusses them in connection with other ribosomopathies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
30
|
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48:1313-24. [PMID: 26892688 PMCID: PMC4777597 DOI: 10.3892/ijo.2016.3387] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Ricciardi S, Miluzio A, Brina D, Clarke K, Bonomo M, Aiolfi R, Guidotti LG, Falciani F, Biffo S. Eukaryotic translation initiation factor 6 is a novel regulator of reactive oxygen species-dependent megakaryocyte maturation. J Thromb Haemost 2015; 13:2108-18. [PMID: 26391622 DOI: 10.1111/jth.13150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 09/05/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Ribosomopathies constitute a class of inherited disorders characterized by defects in ribosome biogenesis and function. Classically, bone marrow (BM) failure is a clinical symptom shared between these syndromes, including Shwachman-Bodian-Diamond syndrome (SBDS). Eukaryotic translation initiation factor 6 (eIF6) is a critical translation factor that rescues the quasilethal effect of the loss of the SBDS protein. OBJECTIVES To determine whether eIF6 activity is necessary for BM development. METHODS We used eIF6(+/-) mice and primary BM megakaryocytes to investigate the involvement of eIF6 in the regulation of hematopoiesis. RESULTS We provide evidence that reduced eIF6 expression negatively impacts on megakaryopoiesis. We show that inhibition of eIF6 leads to a reduction in cell size and mean ploidy level of megakaryocytes and a delay in megakaryocyte maturation by blocking the G1 /S transition. Consistent with this phenotype, only few megakaryocyte-forming proplatelets were found in eIF6(+/-) cells. We also discovered that, in eIF6(+/-) cells, the steady-state abundance of mitochondrial respiratory chain complex I-encoding mRNAs is decreased, resulting in decreased reactive oxygen species (ROS) production. Intriguingly, connectivity map analysis showed that eIF6-mediated changes overlap with specific translational inhibitors. eIF6 is a translation factor acting downstream of insulin/phorbol 12-myristate 13-acetate (PMA) stimulation. PMA treatment significantly restored eIF6(+/-) megakaryocyte maturation, indicating that activation of eIF6 is essential for the rescue of the phenotype. CONCLUSIONS Taken together, our results show a role for eIF6-driven translation in megakaryocyte development, and unveil the novel connection between translational control and ROS production in this cell subset.
Collapse
Affiliation(s)
- S Ricciardi
- Molecular Histology and Cell Growth Unit, National Institute of Molecular Genetics - INGM, 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - A Miluzio
- Molecular Histology and Cell Growth Unit, National Institute of Molecular Genetics - INGM, 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - D Brina
- Molecular Histology and Cell Growth Unit, National Institute of Molecular Genetics - INGM, 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - K Clarke
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Bonomo
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - R Aiolfi
- Immunopathology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - L G Guidotti
- Immunopathology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - F Falciani
- Centre for Computational Biology and Modeling, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - S Biffo
- Molecular Histology and Cell Growth Unit, National Institute of Molecular Genetics - INGM, 'Romeo ed Enrica Invernizzi', Milan, Italy
| |
Collapse
|
32
|
Morgado-Palacin L, Varetti G, Llanos S, Gómez-López G, Martinez D, Serrano M. Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis. Cell Rep 2015; 13:712-722. [PMID: 26489471 DOI: 10.1016/j.celrep.2015.09.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/10/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is characterized by anemia and cancer susceptibility and is caused by mutations in ribosomal genes, including RPL11. Here, we report that Rpl11-heterozygous mouse embryos are not viable and that Rpl11 homozygous deletion in adult mice results in death within a few weeks, accompanied by bone marrow aplasia and intestinal atrophy. Importantly, Rpl11 heterozygous deletion in adult mice results in anemia associated with decreased erythroid progenitors and defective erythroid maturation. These defects are also present in mice transplanted with inducible heterozygous Rpl11 bone marrow and, therefore, are intrinsic to the hematopoietic system. Additionally, heterozygous Rpl11 mice present increased susceptibility to radiation-induced lymphomagenesis. In this regard, total or partial deletion of Rpl11 compromises p53 activation upon ribosomal stress or DNA damage in fibroblasts. Moreover, fibroblasts and hematopoietic tissues from heterozygous Rpl11 mice present higher basal cMYC levels. We conclude that Rpl11-deficient mice recapitulate DBA disorder, including cancer predisposition.
Collapse
Affiliation(s)
- Lucia Morgado-Palacin
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Gianluca Varetti
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Susana Llanos
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Gonzalo Gómez-López
- Bioniformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Dolores Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.
| |
Collapse
|
33
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Delaporta P, Sofocleous C, Stiakaki E, Polychronopoulou S, Economou M, Kossiva L, Kostaridou S, Kattamis A. Clinical phenotype and genetic analysis of RPS19, RPL5, and RPL11 genes in Greek patients with Diamond Blackfan Anemia. Pediatr Blood Cancer 2014; 61:2249-55. [PMID: 25132370 DOI: 10.1002/pbc.25183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diamond Blackfan Anemia (DBA) is a rare congenital, bone marrow failure syndrome characterized by normochromic macrocytic anemia, reticulocytopenia and absence or insufficiency of erythroid precursors in normocellular bone marrow, frequently associated with somatic malformations. Here, we present our findings from the study of 17 patients recorded in the Greek DBA registry. PROCEDURE Clinical evaluation of patients and data collection was performed followed by the molecular analysis of RPS19, RPL5, and RPL11 genes. Mutation screening included PCR amplification, ECMA analysis, and direct sequencing. RESULTS Congenital anomalies were observed in 71% of the patients. Six patients (35.2%) were found to carry mutations on either the RPS19 gene (three patients,) or the RPL5 gene (three patients). Mutations c.C390G (p.Y130X) and c.197_198insA (p.Y66X) detected in the RPL5 gene were novel. No mutations at the RPL11 gene were identified in Greek patients with DBA. CONCLUSIONS The clinical course of the patients was similar to previous reports. The occurrence of thyroid carcinoma in an adult patient with DBA is the first to be reported in DBA.
Collapse
|
35
|
Solomon J, Kamalammal R, Menezes GA, Sait MY, Lohith H, Ramalingam R. A Case of Diamond Blackfan Anemia (DBA) with Mutation in Ribosomal Protein S19. J Clin Diagn Res 2014; 8:179-80. [PMID: 24596764 DOI: 10.7860/jcdr/2014/7018.3899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022]
Abstract
Diamond Blackfan Anemia (DBA) is a rare disorder which presents with anemia in early infancy. This disorder is genetically and clinically heterogeneous in nature. The inheritance is mainly autosomal dominant. Approximately 25% of the cases are associated with craniofacial anomalies and some cases may end up in malignancy. The diagnosis is made by blood investigations, and bone marrow studies in which red cell precursors are reduced or absent. Screening for the mutations including those encoding for ribosomal proteins in the patient and the family members confirms the diagnosis. Human Leukocyte Antigen (HLA) matched hemopoietic stem cell transplantation is the treatment of choice. In other cases, corticosteroids and cyclosporine A have been tried. The haemoglobin level is maintained with packed red cell transfusion. We are presenting here a female baby who had anemia at birth and was brought to us at the age of 2 months. The diagnosis of DBA was made since the patient presented with anemia and showed reticulocytopenia, gross reduction in Red Blood Cell (RBC) count, and reduction in red cell precursors in the bone marrow. Genetic screening revealed mutation in ribosomal protein S19 (RPS19) gene in both the infant and the father.
Collapse
Affiliation(s)
- John Solomon
- Professor & Head, Department of Paediatrics, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Rugmini Kamalammal
- Associate Professor, Department of Paediatrics, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Godfred Antony Menezes
- Scientist & Incharge, Central Research Laboratory- CRL, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Mohamed Yaseen Sait
- Postgraduate student, Department of Paediatrics, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Harita Lohith
- Postgraduate student, Department of Paediatrics, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Revathy Ramalingam
- Research Assistant, Central Research Laboratory- CRL, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| |
Collapse
|
36
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
37
|
Vlachos A, Blanc L, Lipton JM. Diamond Blackfan anemia: a model for the translational approach to understanding human disease. Expert Rev Hematol 2014; 7:359-72. [PMID: 24665981 DOI: 10.1586/17474086.2014.897923] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome. As with the other rare inherited bone marrow failure syndromes, the study of these disorders provides important insights into basic biology and, in the case of DBA, ribosome biology; the disruption of which characterizes the disorder. Thus DBA serves as a paradigm for translational medicine in which the efforts of clinicians to manage DBA have informed laboratory scientists who, in turn, have stimulated clinical researchers to utilize scientific discovery to provide improved care. In this review we describe the clinical syndrome Diamond Blackfan anemia and, in particular, we demonstrate how the study of DBA has allowed scientific inquiry to create opportunities for progress in its understanding and treatment.
Collapse
|
38
|
Zhang Z, Jia H, Zhang Q, Wan Y, Zhou Y, Jia Q, Zhang W, Yuan W, Cheng T, Zhu X, Fang X. Assessment of hematopoietic failure due to Rpl11 deficiency in a zebrafish model of Diamond-Blackfan anemia by deep sequencing. BMC Genomics 2013; 14:896. [PMID: 24341334 PMCID: PMC3890587 DOI: 10.1186/1471-2164-14-896] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 12/10/2013] [Indexed: 01/18/2023] Open
Abstract
Background Diamond–Blackfan anemia is a rare congenital red blood cell dysplasia that develops soon after birth. RPL11 mutations account for approximately 4.8% of human DBA cases with defective hematopoietic phenotypes. However, the mechanisms by which RPL11 regulates hematopoiesis in DBA remain elusive. In this study, we analyzed the transcriptome using deep sequencing data from an Rpl11-deficient zebrafish model to identify Rpl11-mediated hematopoietic failure and investigate the underlying mechanisms. Results We characterized hematological defects in Rpl11-deficient zebrafish embryos by identifying affected hematological genes, hematopoiesis-associated pathways, and regulatory networks. We found that hemoglobin biosynthetic and hematological defects in Rpl11-deficient zebrafish were related to dysregulation of iron metabolism-related genes, including tfa, tfr1b, alas2 and slc25a37, which are involved in heme and hemoglobin biosynthesis. In addition, we found reduced expression of the hematopoietic stem cells (HSC) marker cmyb and HSC transcription factors tal1 and hoxb4a in Rpl11-deficient zebrafish embryos, indicating that the hematopoietic defects may be related to impaired HSC formation, differentiation, and proliferation. However, Rpl11 deficiency did not affect the development of other blood cell lineages such as granulocytes and myelocytes. Conclusion We identified hematopoietic failure of Rpl11-deficient zebrafish embryos using transcriptome deep sequencing and elucidated potential underlying mechanisms. The present analyses demonstrate that Rpl11-deficient zebrafish may serve as a model of DBA and may provide insights into the pathogenesis of mutant RPL11-mediated human DBA disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaofan Zhu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
39
|
Bursac S, Brdovcak MC, Donati G, Volarevic S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:817-30. [PMID: 24514102 DOI: 10.1016/j.bbadis.2013.08.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Sladana Bursac
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Maja Cokaric Brdovcak
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Giulio Donati
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Institut d'Investigacio' Biome'dica de Bellvitge (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
40
|
The ribosomal protein S26 regulates p53 activity in response to DNA damage. Oncogene 2013; 33:2225-35. [PMID: 23728348 DOI: 10.1038/onc.2013.170] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 03/16/2013] [Accepted: 03/25/2013] [Indexed: 12/27/2022]
Abstract
Ribosomal proteins have emerged as novel regulators of the Mdm2-p53 feedback loop, especially in the context of ribosomal stress. RPS26 is a recently identified Diamond-Blackfan Anemia-related ribosomal protein and its role in p53 activation has not been previously explored. In this study we found knockdown of RPS26 induced p53 stabilization and activation via a RPL11-dependent mechanism, resulting in p53-dependent cell growth inhibition. Moreover, RPS26 has the ability to interact with Mdm2 and inhibits Mdm2-mediated p53 ubiquitination that leads to p53 stabilization upon overexpression. Importantly, we discovered that RPS26 knockdown impaired p53's ability to transcriptionally activate its target genes in response to DNA damage, without affecting its stability. Accordingly, the cells lost the ability to induce G2/M cell cycle arrest. We further found that upon RPS26 knockdown, the DNA damage induced recruitment of p53 to the promoters of its target genes and p53 acetylation were both greatly reduced. In addition, RPS26 can interact with p53 independent of Mdm2 and coexist in a complex with p53 and p300. These data establish a role of RPS26 in DNA damage response by directly influencing p53 transcriptional activity, and suggest that RPS26 acts distinctively in different scenarios of p53 activation. Our finding also implicates p53 transcriptional activity control as an important mechanism of p53 regulation by ribosomal proteins.
Collapse
|
41
|
Growth control and ribosomopathies. Curr Opin Genet Dev 2013; 23:63-71. [PMID: 23490481 DOI: 10.1016/j.gde.2013.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 02/07/2023]
Abstract
Ribosome biogenesis and protein synthesis are two of the most energy consuming processes in a growing cell. Moreover, defects in their molecular components can alter the pattern of gene expression. Thus it is understandable that cells have developed a surveillance system to monitor the status of the translational machinery. Recent discoveries of causative mutations and deletions in genes linked to ribosome biogenesis have defined a group of similar pathologies termed ribosomopathies. Over the past decade, much has been learned regarding the relationship between growth control and ribosome biogenesis. The discovery of extra-ribosomal functions of several ribosome proteins and their regulation of p53 levels has provided a link from ribosome impairment to cell cycle regulation. Yet, evidence suggesting p53 and/or Hdm2 independent pathways also exists. In this review, we summarize recent advances in understanding the mechanisms underlying the pathologies of ribosomopathies and discuss the relationship between ribosome production and tumorigenesis.
Collapse
|
42
|
Ruggero D. Translational control in cancer etiology. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012336. [PMID: 22767671 DOI: 10.1101/cshperspect.a012336] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The link between perturbations in translational control and cancer etiology is becoming a primary focus in cancer research. It has now been established that genetic alterations in several components of the translational apparatus underlie spontaneous cancers as well as an entire class of inherited syndromes known as "ribosomopathies" associated with increased cancer susceptibility. These discoveries have illuminated the importance of deregulations in translational control to very specific cellular processes that contribute to cancer etiology. In addition, a growing body of evidence supports the view that deregulation of translational control is a common mechanism by which diverse oncogenic pathways promote cellular transformation and tumor development. Indeed, activation of these key oncogenic pathways induces rapid and dramatic translational reprogramming both by increasing overall protein synthesis and by modulating specific mRNA networks. These translational changes promote cellular transformation, impacting almost every phase of tumor development. This paradigm represents a new frontier in the multihit model of cancer formation and offers significant promise for innovative cancer therapies. Current research, in conjunction with cutting edge technologies, will further enable us to explore novel mechanisms of translational control, functionally identify translationally controlled mRNA groups, and unravel their impact on cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Cancer Center, School of Medicine, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Hu W, Feng Z, Levine AJ. The Regulation of Multiple p53 Stress Responses is Mediated through MDM2. Genes Cancer 2012; 3:199-208. [PMID: 23150753 DOI: 10.1177/1947601912454734] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The MDM2 oncogene is a key negative regulator of the p53 tumor suppressor protein. MDM2 and p53 form an autoregulatory feedback loop to tightly control the proper cellular responses to various stress signals in order to prevent mutations and tumor formation. The levels and function of the MDM2 protein, an E3 ubiquitin ligase, are regulated by a wide variety of extracellular and intracellular stress signals through distinct signaling pathways and mechanisms. These signals regulate the E3 ubiquitin ligase activity of MDM2, the ability of MDM2 to interact with p53 and a number of other proteins, and the cellular localization of MDM2, which in turn impact significantly upon p53 function. This review provides an overview of the regulation of MDM2 activities by the signals and factors that regulate the MDM2 protein, including genotoxic stress signals, oncogenic activation, cell cycle transition, ribosomal stress, chronic stress, neurohormones, and microRNAs. Disruption of the proper regulation of the MDM2-p53 negative feedback loop impacts significantly upon the frequency of tumorigenesis in a host. A better understanding of the complex regulation of MDM2 and its impact upon p53 function in cells under different conditions will help to develop novel and more effective strategies for cancer therapy and prevention.
Collapse
Affiliation(s)
- Wenwei Hu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | | | | |
Collapse
|
44
|
Abstract
The oncoprotein MDM2 is both the transcriptional target and the predominant antagonist of the tumor suppressor p53. MDM2 inhibits the functions of p53 via a negative feedback loop that can be circumvented by several ribosomal proteins in response to nucleolar or ribosomal stress. Stress conditions in the nucleolus can be triggered by a variety of extracellular and intracellular insults that impair ribosomal biogenesis and function, such as chemicals, nutrient deprivation, DNA damaging agents, or genetic alterations. The past decade has witnessed a tremendous progress in understanding this previously underinvestigated ribosomal stress-MDM2-p53 pathway. Here, we review the recent progress in understanding this unique signaling pathway, discuss its biological and pathological significance, and share with readers our insight into the research in this field.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | |
Collapse
|
45
|
Neuwirtova R, Fuchs O, Holicka M, Vostry M, Kostecka A, Hajkova H, Jonasova A, Cermak J, Cmejla R, Pospisilova D, Belickova M, Siskova M, Hochova I, Vondrakova J, Sponerova D, Kadlckova E, Novakova L, Brezinova J, Michalova K. Transcription factors Fli1 and EKLF in the differentiation of megakaryocytic and erythroid progenitor in 5q- syndrome and in Diamond-Blackfan anemia. Ann Hematol 2012; 92:11-8. [PMID: 22965552 DOI: 10.1007/s00277-012-1568-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
Friend leukemia virus integration 1 (Fli1) and erythroid Krüppel-like factor (EKLF) participate under experimental conditions in the differentiation of megakaryocytic and erythroid progenitor in cooperation with other transcription factors, cytokines, cytokine receptors, and microRNAs. Defective erythropoiesis with refractory anemia and effective megakaryopoiesis with normal or increased platelet count is typical for 5q- syndrome. We decided to evaluate the roles of EKLF and Fli1 in the pathogenesis of this syndrome and of another ribosomopathy, Diamond-Blackfan anemia (DBA). Fli1 and EKLF mRNA levels were examined in mononuclear blood and bone marrow cells from patients with 5q- syndrome, low-risk MDS patients with normal chromosome 5, DBA patients, and healthy controls. In 5q- syndrome, high Fli1 mRNA levels in the blood and bone marrow mononuclear cells were found. In DBA, Fli1 expression did not differ from the controls. EKLF mRNA level was significantly decreased in the blood and bone marrow of 5q- syndrome and in all DBA patients. We propose that the elevated Fli1 in 5q- syndrome protects megakaryocytic cells from ribosomal stress contrary to erythroid cells and contributes to effective though dysplastic megakaryopoiesis.
Collapse
Affiliation(s)
- Radana Neuwirtova
- 1st Department of Medicine, Department of Hematology, General University Hospital, U Nemocnice 2, Prague 2, 128 00, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Moniz H, Gastou M, Leblanc T, Hurtaud C, Crétien A, Lécluse Y, Raslova H, Larghero J, Croisille L, Faubladier M, Bluteau O, Lordier L, Tchernia G, Vainchenker W, Mohandas N, Da Costa L. Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death Dis 2012; 3:e356. [PMID: 22833095 PMCID: PMC3406587 DOI: 10.1038/cddis.2012.88] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diamond-Blackfan anemia (DBA) is caused by aberrant ribosomal biogenesis due to ribosomal protein (RP) gene mutations. To develop mechanistic understanding of DBA pathogenesis, we studied CD34+ cells from peripheral blood of DBA patients carrying RPL11 and RPS19 ribosomal gene mutations and determined their ability to undergo erythroid differentiation in vitro. RPS19 mutations induced a decrease in proliferation of progenitor cells, but the terminal erythroid differentiation was normal with little or no apoptosis. This phenotype was related to a G0/G1 cell cycle arrest associated with activation of the p53 pathway. In marked contrast, RPL11 mutations led to a dramatic decrease in progenitor cell proliferation and a delayed erythroid differentiation with a marked increase in apoptosis and G0/G1 cell cycle arrest with activation of p53. Infection of cord blood CD34+ cells with specific short hairpin (sh) RNAs against RPS19 or RPL11 recapitulated the two distinct phenotypes in concordance with findings from primary cells. In both cases, the phenotype has been reverted by shRNA p53 knockdown. These results show that p53 pathway activation has an important role in pathogenesis of DBA and can be independent of the RPL11 pathway. These findings shed new insights into the pathogenesis of DBA.
Collapse
Affiliation(s)
- H Moniz
- INSERM UMR U1009, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Farruggia P, Quarello P, Garelli E, Paolicchi O, Ruffo GB, Cuccia L, Cannella S, Bruno G, D'Angelo P. The spectrum of non-classical Diamond-Blackfan anemia: a case of late beginning transfusion dependency associated to a new RPL5 mutation. Pediatr Rep 2012; 4:e25. [PMID: 22803003 PMCID: PMC3395983 DOI: 10.4081/pr.2012.e25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/13/2012] [Indexed: 11/23/2022] Open
Abstract
Diamond Blackfan anemia typically presents in infants and is often associated with many kinds of malformations. Severity of anemia often needs transfusional support in the first months of life. We describe here a patient with Diamond Blackfan anemia related to a RPL5 mutation. The patient had no physical abnormalities and experienced a very late onset of transfusion dependency.
Collapse
Affiliation(s)
- Piero Farruggia
- Pediatric Hematology and Oncology Unit, Oncology Department, A.R.N.A.S. Civico, Di Cristina and Benfratelli Hospitals, Palermo
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pospisilova D, Cmejlova J, Ludikova B, Stary J, Cerna Z, Hak J, Timr P, Petrtylova K, Blatny J, Vokurka S, Cmejla R. The Czech National Diamond-Blackfan Anemia Registry: Clinical data and ribosomal protein mutations update. Blood Cells Mol Dis 2012; 48:209-18. [DOI: 10.1016/j.bcmd.2012.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
|
49
|
Abstract
Abstract
Fifty percent of Diamond-Blackfan anemia (DBA) patients possess mutations in genes coding for ribosomal proteins (RPs). To identify new mutations, we investigated large deletions in the RP genes RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26. We developed an easy method based on quantitative-PCR in which the threshold cycle correlates to gene copy number. Using this approach, we were able to diagnose 7 of 27 Japanese patients (25.9%) possessing mutations that were not detected by sequencing. Among these large deletions, similar results were obtained with 6 of 7 patients screened with a single nucleotide polymorphism array. We found an extensive intragenic deletion in RPS19, including exons 1-3. We also found 1 proband with an RPL5 deletion, 1 patient with an RPL35A deletion, 3 with RPS17 deletions, and 1 with an RPS19 deletion. In particular, the large deletions in the RPL5 and RPS17 alleles are novel. All patients with a large deletion had a growth retardation phenotype. Our data suggest that large deletions in RP genes comprise a sizable fraction of DBA patients in Japan. In addition, our novel approach may become a useful tool for screening gene copy numbers of known DBA genes.
Collapse
|
50
|
Zhou X, Hao Q, Liao J, Zhang Q, Lu H. Ribosomal protein S14 unties the MDM2-p53 loop upon ribosomal stress. Oncogene 2012; 32:388-96. [PMID: 22391559 DOI: 10.1038/onc.2012.63] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The MDM2-p53 feedback loop is crucially important for restricting p53 level and activity during normal cell growth and proliferation, and is thus subjected to dynamic regulation in order for cells to activate p53 upon various stress signals. Several ribosomal proteins, such as RPL11, RPL5, RPL23, RPL26 or RPS7, have been shown to have a role in regulation of this feedback loop in response to ribosomal stress. Here, we identify another ribosomal protein S14, which is highly associated with 5q-syndrome, as a novel activator of p53 by inhibiting MDM2 activity. We found that RPS14, but not RPS19, binds to the central acidic domain of MDM2, similar to RPL5 and RPL23, and inhibits its E3 ubiquitin ligase activity toward p53. This RPS14-MDM2 binding was induced upon ribosomal stress caused by actinomycin D or mycophenolic acid. Overexpression of RPS14, but not RPS19, elevated p53 level and activity, leading to G1 or G2 arrest. Conversely, knockdown of RPS14 alleviated p53 induction by these two reagents. Interestingly, knockdown of either RPS14 or RPS19 caused a ribosomal stress that led to p53 activation, which was impaired by further knocking down the level of RPL11 or RPL5. Together, our results demonstrate that RPS14 and RPS19 have distinct roles in regulating the MDM2-p53 feedback loop in response to ribosomal stress.
Collapse
Affiliation(s)
- X Zhou
- Department of Biochemistry & Molecular Biology and Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|