1
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
2
|
Chang DF, Gilliam EA, Nucho LMA, Garcia J, Shevchenko Y, Zuber SM, Squillaro AI, Maselli KM, Huang S, Spence JR, Grikscheit TC. NH 2-terminal deletion of specific phosphorylation sites on PHOX2B disrupts the formation of enteric neurons in vivo. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1054-G1066. [PMID: 33881351 DOI: 10.1152/ajpgi.00073.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutations in the paired-like homeobox 2 b (PHOX2B) gene are associated with congenital central hypoventilation syndrome (CCHS), which is a rare condition in which both autonomic dysregulation with hypoventilation and an enteric neuropathy may occur. The majority of patients with CCHS have a polyalanine repeat mutation (PARM) in PHOX2B, but a minority of patients have nonpolyalanine repeat mutations (NPARMs), some of which have been localized to exon 1. A PHOX2B-Y14X nonsense mutation previously generated in a human pluripotent stem cell (hPSC) line results in an NH2-terminus truncated product missing the first 17 or 20 amino acids, possibly due to translational reinitiation at an alternate ATG start site. This NH2-terminal truncation in the PHOX2B protein results in the loss of two key phosphorylation residues. Though the deletion does not affect the potential for PHOX2BY14X/Y14X mutant hPSC to differentiate into enteric neural crest cells (ENCCs) in culture, it impedes in vivo development of neurons in an in vivo model of human aganglionic small intestine.NEW & NOTEWORTHY A mutation that affects only 17-20 NH2-terminal amino acids in the paired-like homeobox 2 b (PHOX2B) gene hinders the subsequent in vivo establishment of intestinal neuronal cells, but not the in vitro differentiation of these cells.
Collapse
Affiliation(s)
- David F Chang
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Elizabeth A Gilliam
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Laura-Marie A Nucho
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jazmin Garcia
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Yevheniya Shevchenko
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Samuel M Zuber
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Anthony I Squillaro
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Kathryn M Maselli
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Sha Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Program of Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Division of Pediatric Surgery, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, California.,Keck Medical School, University of Southern California, Los Angeles, California
| |
Collapse
|
3
|
Kasi AS, Li H, Jurgensen TJ, Guglani L, Keens TG, Perez IA. Variable phenotypes in congenital central hypoventilation syndrome with PHOX2B nonpolyalanine repeat mutations. JOURNAL OF CLINICAL SLEEP MEDICINE : JCSM : OFFICIAL PUBLICATION OF THE AMERICAN ACADEMY OF SLEEP MEDICINE 2021; 17:2049-2055. [PMID: 33983112 DOI: 10.5664/jcsm.9370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Congenital central hypoventilation syndrome (CCHS) is a rare disorder affecting the autonomic nervous system that is caused by variants in the PHOX2B gene. About 10% of patients with CCHS have nonpolyalanine repeat mutations (NPARM) that are associated with severe phenotypes requiring continuous assisted ventilation, Hirschsprung's disease, and increased neural crest tumor risk. However, some patients with NPARMs have milder phenotypes. Our objective was to describe the phenotypes in patients with CCHS PHOX2B NPARM. METHODS Retrospective case series of patients with CCHS PHOX2B NPARM was conducted at two children's hospitals to evaluate their phenotypes. RESULTS We identified eight patients with CCHS PHOX2B NPARM aged 3-31 years. Seven patients were diagnosed in infancy and one patient at two years of age. All patients presented with respiratory depression in the first two months of life. Only one patient was identified with a severe phenotype requiring continuous assisted ventilation, Hirschsprung's disease, and a neural crest tumor, that was resected. Five patients required positive pressure ventilation via tracheostomy only during sleep and two patients required oxygen only during sleep. Four patients had Hirschsprung's disease and one patient had a cardiac pacemaker due to a bradyarrhythmia. None of the patients had echocardiographic abnormalities. CONCLUSIONS Patients with CCHS PHOX2B NPARM can have variable phenotypes emphasizing the importance of implementing a plan of care that is individualized for each patient. The type of NPARM and its respective location on the PHOX2B gene may play a critical role in the severity of phenotypes displayed by each patient.
Collapse
Affiliation(s)
- Ajay S Kasi
- Department of Pediatrics, Division of Pediatric Pulmonology, Emory University, Children's Healthcare of Atlanta, Atlanta, GA
| | - Hong Li
- Department of Human Genetics, Emory University, Children's Healthcare of Atlanta, Atlanta, GA
| | - Taryn J Jurgensen
- Department of Pediatrics, Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Lokesh Guglani
- Department of Pediatrics, Division of Pediatric Pulmonology, Emory University, Children's Healthcare of Atlanta, Atlanta, GA
| | - Thomas G Keens
- Department of Pediatrics, Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine of the University of Southern California
| | - Iris A Perez
- Department of Pediatrics, Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine of the University of Southern California
| |
Collapse
|
4
|
Pace NP, Pace Bardon M, Borg I. A respiratory/Hirschsprung phenotype in a three-generation family associated with a novel pathogenic PHOX2B splice donor mutation. Mol Genet Genomic Med 2020; 8:e1528. [PMID: 33047879 PMCID: PMC7767558 DOI: 10.1002/mgg3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/22/2020] [Accepted: 09/25/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mutations in the PHOX2B gene cause congenital central hypoventilation syndrome (CCHS), a rare autonomic nervous system dysfunction disorder characterized by a decreased ventilatory response to hypercapnia. Affected subjects develop alveolar hypoventilation requiring ventilatory support particularly during the non-REM phase of sleep. In more severe cases, hypoventilation may extend into wakefulness. CCHS is associated with disorders characterized by the defective migration/differentiation of neural crest derivatives, including aganglionic megacolon or milder gastrointestinal phenotypes, such as constipation. Most cases of CCHS are de novo, caused by heterozygosity for polyalanine repeat expansion mutations (PARMs) in exon 3. About 10% of cases are due to heterozygous non-PARM missense, nonsense or frameshift mutations. METHODS We describe a three-generation Maltese-Caucasian family with a variable respiratory/Hirschsprung phenotype, characterized by chronic constipation, three siblings with Hirschsprung disease necessitating surgery, chronic hypoxia, and alveolar hypoventilation requiring non-invasive ventilation. RESULTS The sequencing of PHOX2B revealed a novel heterozygous c.241+2delT splice variant in exon 1 that segregates with the CCHS/Hirschsprung phenotype in the family. The mutation generates a non-functional splice site with a deleterious effect on protein structure and is pathogenic according to ACMG P VS1, PM2, and PP1 criteria. CONCLUSION This report is significant as no PHOX2B splice-site mutations have been reported. Additionally, it highlights the variability in clinical expression and disease severity of non-PARM mutations.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Isabella Borg
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Medical Genetics Unit, Department of Pathology, Mater Dei Hospital, Msida, Malta.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
5
|
Screening Children with a Family History of Central Congenital Hypoventilation Syndrome. Case Rep Pediatr 2020; 2020:2713606. [PMID: 32274237 PMCID: PMC7136801 DOI: 10.1155/2020/2713606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare genetic disorder of an autonomic nervous disorder that affects breathing. It is characterized by respiratory insufficiency secondary to insensitivity to hypoxemia and hypercarbia, particularly during sleep leading to persistent apnea. We report four individuals across two generations harboring heterozygous 25 polyalanine repeats mutations (PARMs) in PHOX2B with a varying degree of phenotypic clinical manifestations. Two family members who reported to be “asymptomatic” were subsequently diagnosed with CCHS, based on genetic testing, obtained because of their family history. Genetic studies in the family including a mother and three offsprings revealed in-frame five amino acid PARMs of PHOX2B consistent with CCHS in addition to full clinical assessment. All affected individuals had evidence of hypercapnia on blood gas analysis with PCO2 in the range of 32–70 (mean; 61). Nocturnal polysomnogram revealed evidence of hypoventilation in two individuals (1 offspring and mother) with the end-tidal CO2 median of 54. Magnetic resonance imaging of brain revealed no abnormalities in the brain stem. There was no evidence of cor pulmonale on echocardiograms in all individuals. Neuropsychological testing was conducted on all four patients; two patients (mother and 1 offspring) had normal results, while the other two offspring exhibited some impairments on neuropsychological testing. This case series emphasizes the importance of screening first-degree relatives of individuals with confirmed CCHS to minimize complications associated with long-term ventilatory impairment. It also suggests that some patients with CCHS should undergo neuropsychological evaluations to assess for cognitive weaknesses secondary to their CCHS.
Collapse
|
6
|
Bachetti T, Ceccherini I. Causative and commonPHOX2Bvariants define a broad phenotypic spectrum. Clin Genet 2019; 97:103-113. [DOI: 10.1111/cge.13633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Tiziana Bachetti
- Laboratorio Neurobiologia dello Sviluppo, Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV)Università di Genova Genova Italy
| | | |
Collapse
|
7
|
Bardanzellu F, Pintus MC, Fanos V, Marcialis MA. Neonatal Congenital Central Hypoventilation Syndrome: Why We Should not Sleep on it. Literature Review of Forty-two Neonatal Onset Cases. Curr Pediatr Rev 2019; 15:139-153. [PMID: 31223092 DOI: 10.2174/1573396315666190621103954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
Congenital Central Hypoventilation Syndrome (CCHS), also referred with the expression "Ondine's Curse", is a rare genetic life-long disease resulting from the mutation of PHOX2B gene on chromosome 4p12.3. CCHS represents an autonomic nervous system disorder; its more fearsome manifestation is central hypoventilation, due to a deficient response of chemoreceptors to hypercapnia and hypoxia. Several associated symptoms can occur, such as pupillary anomalies, arrhythmias, reduced heart rate variability, esophageal dysmotility, and structural comorbidities (Hirschsprung's Disease or neural crest tumours). CCHS typical onset is during the neonatal period, but cases of delayed diagnosis have been reported; moreover, both sporadic or familial cases can occur. In preterm newborns, asphyxia and typical prematurity-related findings may overlap CCHS clinical manifestations and make it harder to formulate a correct diagnosis. The early recognition of CCHS allows appropriate management, useful to reduce immediate and long- term consequences.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | - Maria Cristina Pintus
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | | |
Collapse
|
8
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Advances in the molecular biology and pathogenesis of congenital central hypoventilation syndrome—implications for new therapeutic targets. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1540978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
- CNR- Neuroscience Institute, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
- CNR- Neuroscience Institute, Milan, Italy
| |
Collapse
|
9
|
Katwa U, D'Gama AM, Qualls AE, Donovan LM, Heffernan J, Shi J, Agrawal PB. Atypical presentations associated with non-polyalanine repeat PHOX2B mutations. Am J Med Genet A 2018; 176:1627-1631. [PMID: 29704303 PMCID: PMC6117218 DOI: 10.1002/ajmg.a.38720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/26/2018] [Accepted: 03/29/2018] [Indexed: 11/06/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a disorder of ventilatory control and autonomic dysregulation that can be caused by mutations in the paired-like homeobox 2B (PHOX2B) gene. The majority of CCHS cases are caused by polyalanine repeat mutations (PARMs) in PHOX2B; however, in rare cases, non-polyalanine repeat mutations (NPARMs) have been identified. Here, we report two patients with NPARMs in PHOX2B. Patient 1 has a mild CCHS phenotype seen only on polysomnogram, which was performed for desaturations and stridor following a bronchiolitis episode, and characterized by night-time hypoventilation and a history of ganglioneuroblastoma. She carried a novel de novo missense variant, p.R102S (c.304C > A), in exon 2. Patient 2 has an atypical CCHS phenotype including micrognathia, gastroesophageal reflux, stridor, hypopnea, and intermittent desaturations. Sleep study demonstrated that Patient 2 had daytime and night-time hypercarbia with obstructive sleep apnea, requiring tracheostomy. On PHOX2B sequencing, she carried a recently identified nonsense variant, p.Y78* (c.234C > G), in exon 1. In summary, we present two patients with CCHS and identified NPARMs in PHOX2B who have distinct differences in phenotype severity, further elucidating the range of clinical outcomes in CCHS and illustrating the necessity of considering PHOX2B mutations when encountering atypical CCHS presentations.
Collapse
Affiliation(s)
- Umakanth Katwa
- Division of Pulmonology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alissa M. D'Gama
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anita E. Qualls
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lucas M. Donovan
- Division of Pulmonology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Division of Pulmonary and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jody Heffernan
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Newborn Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Byers HM, Chen M, Gelfand AS, Ong B, Jendras M, Glass IA. Expanding the phenotype of congenital central hypoventilation syndrome impacts management decisions. Am J Med Genet A 2018; 176:1398-1404. [PMID: 29696799 DOI: 10.1002/ajmg.a.38726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 11/10/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a neurocristopathy caused by pathogenic heterozygous variants in the gene paired-like homeobox 2b (PHOX2B). It is characterized by severe infantile alveolar hypoventilation. Individuals may also have diffuse autonomic nervous system dysfunction, Hirschsprung disease and neural crest tumors. We report three individuals with CCHS due to an 8-base pair duplication in PHOX2B; c.691_698dupGGCCCGGG (p.Gly234Alafs*78) with a predominant enteral and neural crest phenotype and a relatively mild respiratory phenotype. The attenuated respiratory phenotype reported here and elsewhere suggests an emergent genotype:phenotype correlation which challenges the current paradigm of invoking mechanical ventilation for all infants diagnosed with CCHS. Best treatment requires careful clinical judgment and ideally the assistance of a care team with expertise in CCHS.
Collapse
Affiliation(s)
- Heather M Byers
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, California
| | - Maida Chen
- Department of Pediatrics, University of Washington, Seattle, Washington.,Division of Pulmonary Medicine, Seattle Children's Hospital, Seattle, Washington
| | | | - Bruce Ong
- Division of Pediatric Pulmonology, Tripler Army Medical Center, Honolulu, Hawaii
| | | | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, Washington.,Division of Medical Genetics, Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
11
|
Yilmaz S, Uludağ Alkaya D, Kasapçopur Ö, Barut K, Akdemir ES, Celen C, Youngblood MW, Yasuno K, Bilguvar K, Günel M, Tüysüz B. Genotype-phenotype investigation of 35 patients from 11 unrelated families with camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome. Mol Genet Genomic Med 2018; 6:230-248. [PMID: 29397575 PMCID: PMC5902402 DOI: 10.1002/mgg3.364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Background The camptodactyly–arthropathy–coxa vara–pericarditis syndrome (CACP) is a rare autosomal recessive condition characterized by camptodactyly, noninflammatory arthropathy, coxa vara, and pericarditis. CACP is caused by mutations in the proteoglycan 4 (PRG4) gene, which encodes a lubricating glycoprotein present in the synovial fluid and at the surface of articular cartilage. Methods In the present study, we compared the clinical and molecular findings of CACP syndrome in 35 patients from 11 unrelated families. In 28 patients, whole exome sequencing was used to investigate genomic variations. Results We found that camptodactyly of hands was the first symptom presented by most patients. Swelling of wrists, knees, and elbows began before 4 years of age, while the age of joint involvement was variable. Patients reported an increased pain level after the age of 10, and severe hip involvement developed after 20 years old. All patients presented developmental coxa vara and seven patients (~22%) had pleural effusion, pericarditis, and/or ascites. We identified nine novel genomic alterations, including the first case of homozygous complete deletion of exon 1 in the PRG4 gene. Conclusion With this study, we contribute to the catalog of CACP causing variants. We confirm that the skeletal component of this disease worsens with age, and presents the potential mechanisms for interfamily variability, by discussing the influence of a modifier gene and escape from nonsense‐mediated mRNA decay. We believe that this report will increase awareness of this familial arthropathic condition and the characteristic clinical and radiological findings will facilitate the differentiation from the common childhood rheumatic diseases such as juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Saliha Yilmaz
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Özgür Kasapçopur
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kenan Barut
- Department of Pediatric Rheumatology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ekin S Akdemir
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Cemre Celen
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mark W Youngblood
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | - Murat Günel
- Department of Neurosurgery, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Di Lascio S, Benfante R, Di Zanni E, Cardani S, Adamo A, Fornasari D, Ceccherini I, Bachetti T. Structural and functional differences in PHOX2B frameshift mutations underlie isolated or syndromic congenital central hypoventilation syndrome. Hum Mutat 2017; 39:219-236. [PMID: 29098737 PMCID: PMC5846889 DOI: 10.1002/humu.23365] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022]
Abstract
Heterozygous mutations in the PHOX2B gene are causative of congenital central hypoventilation syndrome (CCHS), a neurocristopathy characterized by defective autonomic control of breathing due to the impaired differentiation of neural crest cells. Among PHOX2B mutations, polyalanine (polyAla) expansions are almost exclusively associated with isolated CCHS, whereas frameshift variants, although less frequent, are often more severe than polyAla expansions and identified in syndromic CCHS. This article provides a complete review of all the frameshift mutations identified in cases of isolated and syndromic CCHS reported in the literature as well as those identified by us and not yet published. These were considered in terms of both their structure, whether the underlying indels induced frameshifts of either 1 or 2 steps ("frame 2" and "frame 3" mutations respectively), and clinical associations. Furthermore, we evaluated the structural and functional effects of one "frame 3" mutation identified in a patient with isolated CCHS, and one "frame 2" mutation identified in a patient with syndromic CCHS, also affected with Hirschsprung's disease and neuroblastoma. The data thus obtained confirm that the type of translational frame affects the severity of the transcriptional dysfunction and the predisposition to isolated or syndromic CCHS.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | | |
Collapse
|
13
|
Schirwani S, Pysden K, Chetcuti P, Blyth M. Carbamazepine Improves Apneic Episodes in Congenital Central Hypoventilation Syndrome (CCHS) With a Novel PHOX2B Exon 1 Missense Mutation. J Clin Sleep Med 2017; 13:1359-1362. [PMID: 28992836 DOI: 10.5664/jcsm.6818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Abstract
ABSTRACT Pathogenic variants in Paired-Like Homeobox 2B (PHOX2B) gene cause congenital central hypoventilation syndrome (CCHS), a rare disorder of the nervous system characterized by absent or reduced ventilatory response to hypoxia and hypercapnia. The focus of management in CCHS is optimizing ventilation. Thus far, no medication has proved effective in improving ventilation. Most CCHS cases are caused by polyalanine repeat expansion mutations. Non-polyalanine repeat expansion mutations are the cause in 8% of cases and result in a more severe clinical presentation. PHOX2B has 3 exons. Exon 3 of PHOX2B is the most common location for CCHS-causing mutations. Thus far, only 9 CCHS-causing mutations have been reported in exon 1, 8 of which were nonsense mutations. We report a child with CCHS who was found to have a novel heterozygous missense variant in exon 1; c.95A > T. Improvement in his apneic episodes was observed following treatment with carbamazepine.
Collapse
Affiliation(s)
- Schaida Schirwani
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Karen Pysden
- Department of Paediatric Neurology, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Philip Chetcuti
- Department of Respiratory Paediatrics, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Moira Blyth
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
14
|
Kasi AS, Jurgensen TJ, Yen S, Kun SS, Keens TG, Perez IA. Three-Generation Family With Congenital Central Hypoventilation Syndrome and Novel PHOX2B Gene Non-Polyalanine Repeat Mutation. J Clin Sleep Med 2017. [PMID: 28633714 DOI: 10.5664/jcsm.6670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACT PHOX2B non-polyalanine repeat mutation (NPARM) in patients with congenital central hypoventilation syndrome (CCHS) is generally considered to be associated with full-time ventilator dependence and severe autonomic nervous system dysfunction. We report a three-generation family with four individuals possessing a novel PHOX2B NPARM (c.245C > T) with variable phenotypes. This mutation was inherited in an autosomal dominant pattern with variable penetrance. The affected family members with CCHS have a milder phenotype than is typically expected with a NPARM. Two family members are ventilator dependent only during sleep and do not have Hirschsprung disease or neural crest tumors. One family member was asymptomatic until systemic hypertension developed during adulthood and another family member remains asymptomatic as an adult. Our findings emphasize the importance of monitoring adults with a PHOX2B NPARM who are considered asymptomatic in childhood.
Collapse
Affiliation(s)
- Ajay S Kasi
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Taryn J Jurgensen
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Stephanie Yen
- Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sheila S Kun
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Thomas G Keens
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, California.,Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Iris A Perez
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, California.,Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
15
|
Lombardo RC, Kramer E, Cnota JF, Sawnani H, Hopkin RJ. Variable phenotype in a novel mutation in PHOX2B. Am J Med Genet A 2017; 173:1705-1709. [PMID: 28422456 DOI: 10.1002/ajmg.a.38218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 11/10/2022]
Abstract
We evaluated a family with three siblings, two of whom ages 2 years and 19 months, had long segment colonic agangliosis and anisocoria. The mother also had anisocoria. All three affected family members were mildly dysmorphic with a flat facial profile, square appearance to the face, depressed nasal bridge, and anteverted nares. Genetic testing identified a novel heterozygous mutation, c.234C>G, resulting in a premature stop codon in exon 1 of the PHOX2B gene. Screening for neural crest tumors was performed in the siblings and to date has been negative. This family supports a strong association between non polyalanine tract mutations, autonomic dysfunction, and Hirschsprung disease, but suggests mutation outside of the polyalanine tract may not dictate severe phenotype with significant respiratory compromise. A unique finding in this family is the association of congenital heart disease in two of the affected patients. These malformations may be a sporadic isolated finding or the result of environmental factors or a modifying allele. Given the association between congenital heart disease and aberrant neural crest cell development, however, findings are suggestive that congenital heart disease may be a rare feature of PHOX2B mutation which has not been previously reported.
Collapse
Affiliation(s)
- Rachel C Lombardo
- Division of Human Genetics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Elizabeth Kramer
- Division of Pulmonary Medicine, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - James F Cnota
- Division of Cardiology, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Hemant Sawnani
- Division of Pulmonary Medicine, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio
| |
Collapse
|
16
|
Cain JT, Kim DI, Quast M, Shivega WG, Patrick RJ, Moser C, Reuter S, Perez M, Myers A, Weimer JM, Roux KJ, Landsverk M. Nonsense pathogenic variants in exon 1 of PHOX2B lead to translational reinitiation in congenital central hypoventilation syndrome. Am J Med Genet A 2017; 173:1200-1207. [PMID: 28371199 DOI: 10.1002/ajmg.a.38162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/15/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022]
Abstract
Pathogenic variants in PHOX2B lead to congenital central hypoventilation syndrome (CCHS), a rare disorder of the nervous system characterized by autonomic dysregulation and hypoventilation typically presenting in the neonatal period, although a milder late-onset (LO) presentation has been reported. More than 90% of cases are caused by polyalanine repeat mutations (PARMs) in the C-terminus of the protein; however non-polyalanine repeat mutations (NPARMs) have been reported. Most NPARMs are located in exon 3 of PHOX2B and result in a more severe clinical presentation including Hirschsprung disease (HSCR) and/or peripheral neuroblastic tumors (PNTs). A previously reported nonsense pathogenic variant in exon 1 of a patient with LO-CCHS and no HSCR or PNTs leads to translational reinitiation at a downstream AUG codon producing an N-terminally truncated protein. Here we report additional individuals with nonsense pathogenic variants in exon 1 of PHOX2B. In vitro analyses were used to determine if these and other reported nonsense variants in PHOX2B exon 1 produced N-terminally truncated proteins. We found that all tested nonsense variants in PHOX2B exon 1 produced a truncated protein of the same size. This truncated protein localized to the nucleus and transactivated a target promoter. These data suggest that nonsense pathogenic variants in the first exon of PHOX2B likely escape nonsense mediated decay (NMD) and produce N-terminally truncated proteins functionally distinct from those produced by the more common PARMs.
Collapse
Affiliation(s)
- Jacob T Cain
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Dae I Kim
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Megan Quast
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Winnie G Shivega
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Ryan J Patrick
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Chuanpit Moser
- Section of Pediatric Pulmonology, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Suzanne Reuter
- Section of Neonatal-Perinatal Medicine, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Myrza Perez
- Department of Pediatric Pulmonology, Kaiser Permanente, Roseville, California
| | - Angela Myers
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Jill M Weimer
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Kyle J Roux
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Megan Landsverk
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
17
|
Detection of autophagy in Hirschsprung's disease: implication for its role in aganglionosis. Neuroreport 2016; 26:1044-50. [PMID: 26509546 DOI: 10.1097/wnr.0000000000000465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hirschsprung's disease (HD) is a common congenital gastrointestinal malformation, characterized by the lack of ganglion cells from the distal rectum to the proximal bowel, but the pathogenesis is not well understood. This paper evaluates the effects of autophagy in HD. Using electron microscopy, the autophagosomes were detected in three segments: narrow segment (NS), transitional segment (TS), and dilated segment (DS). Typical autophagosome structures are found in the Auerbach plexus of both NS and TS. Real-time PCR results showed that Beclin1 (NS vs. TS, P<0.01) and LC3 (NS vs. TS, P<0.05) mRNA were the highest in the NS, but p75 (NS vs. TS, P<0.01) was the highest in the DS. Correlation analysis results showed a positive correlation between Beclin1 and LC3 mRNA levels (R=0.736, P=0.000), whereas inverse correlations were found between p75 and Beclin1/LC3 mRNA levels (p75 vs. Beclin1: R=-0.714, P=0.000; p75 vs. LC3: R=-0.619, P=0.000). Immunohistochemistry analyses indicated a consistent result with mRNA levels, by increased Beclin1-positive and LC3-positive neurons, but reduced p75-positive neurons in the Auerbach plexus of TS compared with DS. These findings indicated that autophagy exists in the bowel of patients with HD. On the basis of the detection of the highest expression of the autophagy genes in NS, autophagy may additionally cause the lack of neurons.
Collapse
|
18
|
Di Lascio S, Belperio D, Benfante R, Fornasari D. Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import. J Biol Chem 2016; 291:13375-93. [PMID: 27129232 PMCID: PMC4933246 DOI: 10.1074/jbc.m115.679027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/30/2022] Open
Abstract
Heterozygous mutations of the human PHOX2B gene, a key regulator of autonomic nervous system development, lead to congenital central hypoventilation syndrome (CCHS), a neurodevelopmental disorder characterized by a failure in the autonomic control of breathing. Polyalanine expansions in the 20-residues region of the C terminus of PHOX2B are the major mutations responsible for CCHS. Elongation of the alanine stretch in PHOX2B leads to a protein with altered DNA binding, transcriptional activity, and nuclear localization and the possible formation of cytoplasmic aggregates; furthermore, the findings of various studies support the idea that CCHS is not due to a pure loss of function mechanism but also involves a dominant negative effect and/or toxic gain of function for PHOX2B mutations. Because PHOX2B forms homodimers and heterodimers with its paralogue PHOX2A in vitro, we tested the hypothesis that the dominant negative effects of the mutated proteins are due to non-functional interactions with the wild-type protein or PHOX2A using a co-immunoprecipitation assay and the mammalian two-hybrid system. Our findings show that PHOX2B forms homodimers and heterodimerizes weakly with mutated proteins, exclude the direct involvement of the polyalanine tract in dimer formation, and indicate that mutated proteins retain partial ability to form heterodimers with PHOX2A. Moreover, in this study, we investigated the effects of the longest polyalanine expansions on the homeodomain-mediated nuclear import, and our data clearly show that the expanded C terminus interferes with this process. These results provide novel insights into the effects of the alanine tract expansion on PHOX2B folding and activity.
Collapse
Affiliation(s)
- Simona Di Lascio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Debora Belperio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Roberta Benfante
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| | - Diego Fornasari
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| |
Collapse
|
19
|
Heide S, Masliah-Planchon J, Isidor B, Guimier A, Bodet D, Coze C, Deville A, Thebault E, Pasquier CJ, Cassagnau E, Pierron G, Clément N, Schleiermacher G, Amiel J, Delattre O, Peuchmaur M, Bourdeaut F. Oncologic Phenotype of Peripheral Neuroblastic Tumors Associated With PHOX2B Non-Polyalanine Repeat Expansion Mutations. Pediatr Blood Cancer 2016; 63:71-7. [PMID: 26375764 DOI: 10.1002/pbc.25723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Germline non-polyalanine repeat expansion mutations in PHOX2B (PHOX2B NPARM) predispose to peripheral neuroblastic tumors (PNT), frequently in association with other neurocristopathies: Hirschsprung disease (HSCR) or congenital central hypoventilation syndrome (CCHS). Although PHOX2B polyalanine repeat expansions predispose to a low incidence of benign PNTs, the oncologic phenotype associated with PHOX2B NPARM is still not known in detail. METHODS We analyzed prognostic factors, treatment toxicity, and outcome of patients with PNT and PHOX2B NPARM. RESULTS Thirteen patients were identified, six of whom also had CCHS and/or HSCR, one also had late-onset hypoventilation with hypothalamic dysfunction (LO-CHS/HD), and six had no other neurocristopathy. Four tumours were "poorly differentiated," and nine were differentiated, including five ganglioneuromas, three ganglioneuroblastomas, and one differentiating neuroblastoma, hence illustrating that PHOX2B NPARM are predominantly associated with differentiating tumors. Nevertheless, three patients had stage 4 and one patient had stage 3 disease. Segmental chromosomal alterations, correlating with poor prognosis, were found in all the six tumors analyzed by array-comparative genomic hybridization. One patient died of tumor progression, one is on palliative care, one died of hypoventilation, and 10 patients are still alive, with median follow-up of 5 years. CONCLUSIONS Based on histological phenotype, our series suggests that heterozygous PHOX2B NPARM do not fully preclude ganglion cell differentiation in tumors. However, this tumor predisposition syndrome may also be associated with poorly differentiated tumors with unfavorable genomic profiles and clinically aggressive behaviors. The intrafamilial variability and the unpredictable tumor prognosis should be considered in genetic counseling.
Collapse
Affiliation(s)
- Solveig Heide
- Service de Pathologie, Hôpital Robert Debré, APHP, Paris, France
| | - Julien Masliah-Planchon
- INSERM U830, Génétique et Biologie des Cancers, Institut Curie, Paris, France.,Institut Curie, Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Bertrand Isidor
- Service de Génétique Clinique, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Anne Guimier
- INSERM UMR 1163, Institut Imagine, Paris, France
| | - Damien Bodet
- Unité d'Onco-Hématologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Carole Coze
- Service d'Oncologie Pédiatrique, Hôpital de la Timone, Centre Hospitalier Universitaire de Marseille, Marseille, France
| | - Anne Deville
- Service d'Onco-Hématologie Pédiatrique, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Estelle Thebault
- Service d'Onco-Hématologie Pédiatrique, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | | - Elisabeth Cassagnau
- Service d'Anatomie Et Cytologie Pathologiques, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Gaelle Pierron
- Institut Curie, Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Nathalie Clément
- Institut Curie, Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Gudrun Schleiermacher
- INSERM U830, Génétique et Biologie des Cancers, Institut Curie, Paris, France.,Institut Curie, Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Jeanne Amiel
- INSERM UMR 1163, Institut Imagine, Paris, France.,Sorbonne Paris Cite, Université Paris Descartes, Paris, France.,Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Olivier Delattre
- INSERM U830, Génétique et Biologie des Cancers, Institut Curie, Paris, France.,Institut Curie, Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Michel Peuchmaur
- Service de Pathologie, Hôpital Robert Debré, APHP, Paris, France.,Sorbonne Paris Cite, Université Paris Diderot, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Génétique et Biologie des Cancers, Institut Curie, Paris, France.,Institut Curie, Département de pédiatrie-adolescent-jeunes adultes, Institut Curie, Paris, France.,Site de Recherche Intégrée en Cancérologie, Recherche Translationnelle en Oncologie Pédiatrique, Institut Curie, Paris, France
| |
Collapse
|
20
|
Baek C, Jung JM, Lim YJ, Kim KH, Yu HW, Kim GH, Chung ML. Haddad Syndrome with a Germ-Line Mutation in the PHOX2BGene in a Korean Neonate. NEONATAL MEDICINE 2015. [DOI: 10.5385/nm.2015.22.3.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Chunglyul Baek
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Korea
| | - Ji Mi Jung
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Korea
| | - Yun-Jung Lim
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Korea
| | - Ki Hoon Kim
- Department of Surgery, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Korea
| | - Han-Wook Yu
- Medical Genetics Center, Asan Medical Center, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, Seoul, Korea
| | - Mi Lim Chung
- Department of Pediatrics, Haeundae Paik Hospital, Inje University College of Medicine, Pusan, Korea
| |
Collapse
|
21
|
Trang H, Brunet JF, Rohrer H, Gallego J, Amiel J, Bachetti T, Fischbeck KH, Similowski T, Straus C, Ceccherini I, Weese-Mayer DE, Frerick M, Bieganowska K, Middleton L, Morandi F, Ottonello G. Proceedings of the fourth international conference on central hypoventilation. Orphanet J Rare Dis 2014; 9:194. [PMID: 25928806 PMCID: PMC4268904 DOI: 10.1186/s13023-014-0194-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023] Open
Abstract
Central hypoventilation syndromes (CHS) are rare diseases of central autonomic respiratory control associated with autonomous nervous dysfunction. Severe central hypoventilation is the hallmark and the most life-threatening feature. CHS is a group of not-fully defined disorders. Congenital CHS (CCHS) (ORPHA661) is clinically and genetically well-characterized, with the disease-causing gene identified in 2003. CCHS presents at birth in most cases, and associated with Hirschsprung's disease (ORPHA99803) and neural crest tumours in 20% and 5% of cases, respectively. The incidence of CCHS is estimated to be 1 of 200,000 live births in France, yet remains unknown for the rest of the world. In contrast, late-onset CHS includes a group of not yet fully delineated diseases. Overlap with CCHS is likely, as a subset of patients harbours PHOX2B mutations. Another subset of patients present with associated hypothalamic dysfunction. The number of these patients is unknown (less than 60 cases reported worldwide). Treatment of CHS is palliative using advanced techniques of ventilation support during lifetime. Research is ongoing to better understand physiopathological mechanisms and identify potential treatment pathways.The Fourth International Conference on Central Hypoventilation was organised in Warsaw, Poland, April 13-15, 2012, under the patronage of the European Agency for Health and Consumers and Public Health European Agency of European Community. The conference provided a state-of-the-art update of knowledge on all the genetic, molecular, cellular, and clinical aspects of these rare diseases.
Collapse
Affiliation(s)
- Ha Trang
- French Centre of Reference for Central Hypoventilation, Robert Debré University Hospital, EA 7334 REMES Paris-Diderot University, 48 boulevard Serurier, 75019, Paris, France.
| | | | - Hermann Rohrer
- Research Group Developmental Neurobiology, Department of Neurochemistry, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| | - Jorge Gallego
- Inserm U676, Robert Debré University Hospital, Paris, France.
| | - Jeanne Amiel
- French Centre of Reference for Central Hypoventilation, Necker-Enfants Malades University Hospital, Paris, France.
| | | | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Missouri, USA.
| | - Thomas Similowski
- French Centre of Reference for Central Hypoventilation, La Pitié Salpêtrière University Hospital, Pierre et Maris Curie University, Paris, France.
| | - Christian Straus
- French Centre of Reference for Central Hypoventilation, La Pitié Salpêtrière University Hospital, Pierre et Maris Curie University, Paris, France.
| | - Isabella Ceccherini
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Genova, Italy.
| | - Debra E Weese-Mayer
- Autonomic Medicine in Paediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Low KJ, Turnbull AR, Smith KR, Hilliard TN, Hole LJ, Meecham Jones DJ, Williams MM, Donaldson A. A case of congenital central hypoventilation syndrome in a three-generation family with non-polyalanine repeat PHOX2B mutation. Pediatr Pulmonol 2014; 49:E140-3. [PMID: 24799442 DOI: 10.1002/ppul.23051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/27/2014] [Indexed: 11/06/2022]
Abstract
We describe a three generation family in whom multiple individuals are variably affected due to a PHOX2B non-polyalanine repeat mutation. This family demonstrates extreme phenotypic variability and autosomal dominant transmission over three generations not previously reported in the wider literature. Novel findings also inclue a history of recurrent second trimester miscarriage. Pediatr Pulmonol. 2014; 49:E140-E143. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- K J Low
- Department of Clinical Genetics, UHBristol NHS Trust, St Michaels Hospital, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Magalhães J, Madureira N, Medeiros R, Fernandes PC, Oufadem M, Amiel J, Estêvão MH, Reis MG. Late-onset congenital central hypoventilation syndrome and a rare PHOX2B gene mutation. Sleep Breath 2014; 19:55-60. [DOI: 10.1007/s11325-014-0996-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 04/19/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
24
|
Weese-Mayer DE, Berry-Kravis EM, Ceccherini I, Keens TG, Loghmanee DA, Trang H. [ATS clinical policy statement: congenital central hypoventilation syndrome. Genetic basis, diagnosis and management]. Rev Mal Respir 2013; 30:706-33. [PMID: 24182656 DOI: 10.1016/j.rmr.2013.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Fernández RM, Mathieu Y, Luzón-Toro B, Núñez-Torres R, González-Meneses A, Antiñolo G, Amiel J, Borrego S. Contributions of PHOX2B in the pathogenesis of Hirschsprung disease. PLoS One 2013; 8:e54043. [PMID: 23342068 PMCID: PMC3544660 DOI: 10.1371/journal.pone.0054043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022] Open
Abstract
Hirschsprung disease (HSCR) is a congenital malformation of the hindgut resulting from a disruption of neural crest cell migration during embryonic development. It has a complex genetic aetiology with several genes involved in its pathogenesis. PHOX2B plays a key function in the development of neural crest derivatives, and heterozygous mutations cause a complex dysautonomia associating HSCR, Congenital Central Hypoventilation Syndrome (CCHS) and neuroblastoma (NB) in various combinations. In order to determine the role of PHOX2B in isolated HSCR, we performed a mutational screening in a cohort of 207 Spanish HSCR patients. Our most relevant finding has been the identification of a de novo and novel deletion (c.393_410del18) in a patient with HSCR. Results of in silico and functional assays support its pathogenic effect related to HSCR. Therefore our results support that PHOX2B loss-of-function is a rare cause of HSCR phenotype.
Collapse
Affiliation(s)
- Raquel María Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Yves Mathieu
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Rocío Núñez-Torres
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | | | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Jeanne Amiel
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
- * E-mail:
| |
Collapse
|
26
|
Di Lascio S, Bachetti T, Saba E, Ceccherini I, Benfante R, Fornasari D. Transcriptional dysregulation and impairment of PHOX2B auto-regulatory mechanism induced by polyalanine expansion mutations associated with congenital central hypoventilation syndrome. Neurobiol Dis 2012; 50:187-200. [PMID: 23103552 DOI: 10.1016/j.nbd.2012.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/09/2012] [Accepted: 10/20/2012] [Indexed: 11/26/2022] Open
Abstract
The PHOX2B transcription factor plays a crucial role in autonomic nervous system development. In humans, heterozygous mutations of the PHOX2B gene lead to congenital central hypoventilation syndrome (CCHS), a rare disorder characterized by a broad variety of symptoms of autonomic nervous system dysfunction including inadequate control of breathing. The vast majority of patients with CCHS are heterozygous for a polyalanine repeat expansion mutation involving a polyalanine tract of twenty residues in the C-terminus of PHOX2B. Although several lines of evidence support a dominant-negative mechanism for PHOX2B mutations in CCHS, the molecular effects of PHOX2B mutant proteins on the transcriptional activity of the wild-type protein have not yet been elucidated. As one of the targets of PHOX2B is the PHOX2B gene itself, we tested the transcriptional activity of wild-type and mutant proteins on the PHOX2B gene promoter, and found that the transactivation ability of proteins with polyalanine expansions decreased as a function of the length of the expansion, whereas DNA binding was severely affected only in the case of the mutant with the longest polyalanine tract (+13 alanine). Co-transfection experiments using equimolar amounts of PHOX2B wild-type and mutant proteins in order to simulate a heterozygous state in vitro and four different PHOX2B target gene regulatory regions (PHOX2B, PHOX2A, DBH, TLX2) clearly showed that the polyalanine expanded proteins alter the transcriptional activity of wild-type protein in a promoter-specific manner, without any clear correlation with the length of the expansion. Moreover, although reduced transactivation may be caused by retention of the wild-type protein in the cytoplasm or in nuclear aggregates, this mechanism can only be partially responsible for the pathogenesis of CCHS because of the reduction in cytoplasmic and nuclear accumulation when the +13 alanine mutant is co-expressed with wild-type protein, and the fact that the shortest polyalanine expansions do not form visible cytoplasmic aggregates. Deletion of the C-terminal of PHOX2B leads to a protein that correctly localizes in the nucleus but impairs PHOX2B wild-type transcriptional activity, thus suggesting that protein mislocalization is not the only mechanism leading to CCHS. The results of this study provide novel in vitro experimental evidence of a transcriptional dominant-negative effect of PHOX2B polyalanine mutant proteins on wild-type protein on two different PHOX2B target genes.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Neu-Yilik G, Amthor B, Gehring NH, Bahri S, Paidassi H, Hentze MW, Kulozik AE. Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA (NEW YORK, N.Y.) 2011; 17:843-854. [PMID: 21389146 PMCID: PMC3078734 DOI: 10.1261/rna.2401811] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
The degradation of nonsense-mutated β-globin mRNA by nonsense-mediated mRNA decay (NMD) limits the synthesis of C-terminally truncated dominant negative β-globin chains and thus protects the majority of heterozygotes from symptomatic β-thalassemia. β-globin mRNAs with nonsense mutations in the first exon are known to bypass NMD, although current mechanistic models predict that such mutations should activate NMD. A systematic analysis of this enigma reveals that (1) β-globin exon 1 is bisected by a sharp border that separates NMD-activating from NMD-bypassing nonsense mutations and (2) the ability to bypass NMD depends on the ability to reinitiate translation at a downstream start codon. The data presented here thus reconcile the current mechanistic understanding of NMD with the observed failure of a class of nonsense mutations to activate this important mRNA quality-control pathway. Furthermore, our data uncover a reason why the position of a nonsense mutation alone does not suffice to predict the fate of the affected mRNA and its effect on protein expression.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Jiang M, Stanke J, Lahti JM. The connections between neural crest development and neuroblastoma. Curr Top Dev Biol 2011; 94:77-127. [PMID: 21295685 DOI: 10.1016/b978-0-12-380916-2.00004-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuroblastoma (NB), the most common extracranial solid tumor in childhood, is an extremely heterogeneous disease both biologically and clinically. Although significant progress has been made in identifying molecular and genetic markers for NB, this disease remains an enigmatic challenge. Since NB is thought to be an embryonal tumor that is derived from precursor cells of the peripheral (sympathetic) nervous system, understanding the development of normal sympathetic nervous system may highlight abnormal events that contribute to NB initiation. Therefore, this review focuses on the development of the peripheral trunk neural crest, the current understanding of how developmental factors may contribute to NB and on recent advances in the identification of important genetic lesions and signaling pathways involved in NB tumorigenesis and metastasis. Finally, we discuss how future advances in identification of molecular alterations in NB may lead to more effective, less toxic therapies, and improve the prognosis for NB patients.
Collapse
Affiliation(s)
- Manrong Jiang
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
29
|
Weese-Mayer DE, Berry-Kravis EM, Ceccherini I, Keens TG, Loghmanee DA, Trang H. An official ATS clinical policy statement: Congenital central hypoventilation syndrome: genetic basis, diagnosis, and management. Am J Respir Crit Care Med 2010; 181:626-44. [PMID: 20208042 DOI: 10.1164/rccm.200807-1069st] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is characterized by alveolar hypoventilation and autonomic dysregulation. PURPOSE (1) To demonstrate the importance of PHOX2B testing in diagnosing and treating patients with CCHS, (2) to summarize recent advances in understanding how mutations in the PHOX2B gene lead to the CCHS phenotype, and (3) to provide an update on recommendations for diagnosis and treatment of patients with CCHS. METHODS Committee members were invited on the basis of their expertise in CCHS and asked to review the current state of the science by independently completing literature searches. Consensus on recommendations was reached by agreement among members of the Committee. RESULTS A review of pertinent literature allowed for the development of a document that summarizes recent advances in understanding CCHS and expert interpretation of the evidence for management of affected patients. CONCLUSIONS A PHOX2B mutation is required to confirm the diagnosis of CCHS. Knowledge of the specific PHOX2B mutation aids in anticipating the CCHS phenotype severity. Parents of patients with CCHS should be tested for PHOX2B mutations. Maintaining a high index of suspicion in cases of unexplained alveolar hypoventilation will likely identify a higher incidence of milder cases of CCHS. Recommended management options aimed toward maximizing safety and optimizing neurocognitive outcome include: (1) biannual then annual in-hospital comprehensive evaluation with (i) physiologic studies during awake and asleep states to assess ventilatory needs during varying levels of activity and concentration, in all stages of sleep, with spontaneous breathing, and with artificial ventilation, and to assess ventilatory responsiveness to physiologic challenges while awake and asleep, (ii) 72-hour Holter monitoring, (iii) echocardiogram, (iv) evaluation of ANS dysregulation across all organ systems affected by the ANS, and (v) formal neurocognitive assessment; (2) barium enema or manometry and/or full thickness rectal biopsy for patients with a history of constipation; and (3) imaging for neural crest tumors in individuals at greatest risk based on PHOX2B mutation.
Collapse
|
30
|
Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci 2010; 30:905-15. [PMID: 20089899 DOI: 10.1523/jneurosci.5368-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a pediatric tumor that is thought to arise from autonomic precursors in the neural crest. Mutations in the PHOX2B gene have been observed in familial and sporadic forms of neuroblastoma and represent the first defined genetic predisposition for neuroblastoma. Here, we address the mechanisms that may underlie this predisposition, comparing the function of wild-type and mutant Phox2b proteins ectopically expressed in proliferating, embryonic sympathetic neurons. Phox2b displays a strong antiproliferative effect, which is lost in all Phox2b neuroblastoma variants analyzed. In contrast, an increase in sympathetic neuron proliferation is elicited by Phox2b variants with mutations in the homeodomain when endogenous Phox2b levels are lowered by siRNA-mediated knockdown to mimic the situation of heterozygous PHOX2B mutations in neuroblastoma. The increased proliferation is blocked by Hand2 knockdown and the antiproliferative Phox2b effects are rescued by Hand2 overexpression, implying Hand2 in Phox2b-mediated proliferation control. A Phox2b variant with a nonsense mutation in the homeodomain elicits, in addition, a decreased expression of characteristic marker genes. Together, these results suggest that PHOX2B mutations predispose to neuroblastoma by increasing proliferation and promoting dedifferentiation of cells in the sympathoadrenergic lineage.
Collapse
|
31
|
Carroll MS, Patwari PP, Weese-Mayer DE. Carbon dioxide chemoreception and hypoventilation syndromes with autonomic dysregulation. J Appl Physiol (1985) 2010; 108:979-88. [PMID: 20110549 DOI: 10.1152/japplphysiol.00004.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory and autonomic disorders of infancy, childhood, and adulthood are a group of disorders that have varying presentation, combined with a range of severity of respiratory control and autonomic nervous system dysfunction. Within this group, congenital central hypoventilation syndrome and rapid onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation, exhibit the greatest respiratory control deficits, requiring supported ventilation as a mainstay of care. The discovery of the key role of the paired-like homeobox 2B gene in autonomic nervous system development, along with the identification of paired-like homeobox 2B gene mutations causing congenital central hypoventilation syndrome, has led to a fruitful dialog between basic scientists and physician-scientists, producing an explosion of knowledge regarding genotype-phenotype correlations in this disorder, as well as important animal models of chemosensory regulation deficit. Though the etiology of rapid onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation is still to be determined, recent studies have begun to carefully delineate the phenotype, suggesting that it too may provide fertile ground for research that both advances our knowledge and improves patient care.
Collapse
Affiliation(s)
- Michael S Carroll
- Center for Autonomic Medicine in Pediatrics, Children's Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
32
|
Janoueix-Lerosey I, Schleiermacher G, Delattre O. Molecular pathogenesis of peripheral neuroblastic tumors. Oncogene 2010; 29:1566-79. [PMID: 20101209 DOI: 10.1038/onc.2009.518] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is an embryonal cancer of the sympathetic nervous system observed in early childhood, characterized by a broad spectrum of clinical behaviors, ranging from spontaneous regression to fatal outcome despite aggressive therapies. NB accounts for 8-10% of pediatric cancers and 15% of the deaths attributable to malignant conditions in children. Interestingly, NB may occur in various contexts, being mostly sporadic but also familial or syndromic. This review focuses on recent advances in the identification of the genes and mechanisms implicated in NB pathogenesis. Although the extensive characterization of the genomic aberrations recurrently observed in sporadic NBs provides important insights into the understanding of the clinical heterogeneity of this neoplasm, analysis of familial and syndromic cases also unravels essential clues on the genetic bases of NB. Recently, the ALK gene emerged as an important NB gene, being implicated both in sporadic and familial cases. The identification of gene expression signatures associated with patient's outcome points out the potential of using gene expression profiling to improve clinical management of patients suffering from NB. Finally, based on recent observations integrating genomic analyses, biological data and clinical information, we discuss possible evolution/progression schemes in NB.
Collapse
Affiliation(s)
- I Janoueix-Lerosey
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris Cedex 05, France.
| | | | | |
Collapse
|
33
|
Amiel J, Dubreuil V, Ramanantsoa N, Fortin G, Gallego J, Brunet JF, Goridis C. PHOX2B in respiratory control: Lessons from congenital central hypoventilation syndrome and its mouse models. Respir Physiol Neurobiol 2009; 168:125-32. [DOI: 10.1016/j.resp.2009.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/24/2022]
|