1
|
Basilisco G, Marchi M, Coletta M. Chronic intestinal pseudo-obstruction in adults: A practical guide to identify patient subgroups that are suitable for more specific treatments. Neurogastroenterol Motil 2024; 36:e14715. [PMID: 37994282 DOI: 10.1111/nmo.14715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Chronic intestinal pseudo-obstruction is a rare and heterogeneous syndrome characterized by recurrent symptoms of intestinal obstruction with radiological features of dilated small or large intestine with air/fluid levels in the absence of any mechanical occlusive lesion. Several diseases may be associated with chronic intestinal pseudo-obstruction and in these cases, the prognosis and treatment are related to the underlying disease. Also, in its "primary or idiopathic" form, two subgroups of patients should be determined as they require a more specific therapeutic approach: patients whose chronic intestinal pseudo-obstruction is due to sporadic autoimmune/inflammatory mechanisms and patients whose neuromuscular changes are genetically determined. In a context of a widely heterogeneous adult population presenting chronic intestinal pseudo-obstruction, this review aims to summarize a practical diagnostic workup for identifying definite subgroups of patients who might benefit from more specific treatments, based on the etiology of their underlying condition.
Collapse
Affiliation(s)
- Guido Basilisco
- Gastroenterology and Endoscopic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Marina Coletta
- Gastroenterology and Endoscopic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Hernández K, Godoy L, Newquist G, Kellermeyer R, Alavi M, Mathew D, Kidd T. Dscam1 overexpression impairs the function of the gut nervous system in Drosophila. Dev Dyn 2023; 252:156-171. [PMID: 36454543 PMCID: PMC9812936 DOI: 10.1002/dvdy.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Down syndrome (DS) patients have a 100-fold increase in the risk of Hirschsprung syndrome of the colon and rectum (HSCR), a lack of enteric neurons in the colon. The leading DS candidate gene is trisomy of the Down syndrome cell adhesion molecule (DSCAM). RESULTS We find that Dscam1 protein is expressed in the Drosophila enteric/stomatogastric nervous system (SNS). Axonal Dscam1 phenotypes can be rescued equally by diverse isoforms. Overexpression of Dscam1 resulted in frontal and hindgut nerve overgrowth. Expression of dominant negative Dscam1-ΔC led to a truncated frontal nerve and increased branching of the hindgut nerve. Larval locomotion is influenced by feeding state, and we found that the average speed of larvae with Dscam1 SNS expression was reduced, whereas overexpression of Dscam1-ΔC significantly increased the speed. Dscam1 overexpression reduced the efficiency of food clearance from the larval gut. CONCLUSION Our work demonstrates that overexpression of Dscam1 can perturb gut function in a model system.
Collapse
Affiliation(s)
| | - Luis Godoy
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | | | | | - Maryam Alavi
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Dennis Mathew
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| | - Thomas Kidd
- Biology/MS 314, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
3
|
Gharaylou Z, Shafaghi L, Pestehei SK, Hadjighassem M. Long-term bumetanide administration altered behavioral pattern in mosaic Down's Syndrome: A case report. APPLIED NEUROPSYCHOLOGY. CHILD 2023; 12:88-95. [PMID: 34860628 DOI: 10.1080/21622965.2021.2007481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The behavioral phenotypes emerge from cognitive architecture comprising attention, executive functions, and primary communication skills that all have shown remarkable deficits in Down's Syndrome (DS). These states arise from the proper functional interactions of the contributing neurotransmission and neuromodulation systems and other coding platforms. Gamma-aminobutyric acid (GABA) is an integral part of the neural interaction and regulation networks that its reverse action leads to broad detrimental consequences. This inhibitory substance needs an appropriate balance of co-transporters that largely shape the ionic milieu. Bumetanide, a specific NKCC1 inhibitor used for an eighteen-month interval, showed promising effects in restoring some behavior deficits in a fourteen-year-old boy diagnosed with genetically confirmed mosaic Down's Syndrome.
Collapse
Affiliation(s)
- Zeinab Gharaylou
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Tehran, Iran
| | - Lida Shafaghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mu J, Zhang Y, Liao G, Li X, Luo Y, Huang Z, Luo C, Wu K. Association of rs2435357 and rs2506030 polymorphisms in RET with susceptibility to hirschsprung disease: A systematic review and meta-analysis. Front Pediatr 2022; 10:1030933. [PMID: 36324815 PMCID: PMC9618721 DOI: 10.3389/fped.2022.1030933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There are numerous published studies on the association between RET polymorphisms and susceptibility to Hirschsprung disease (HSCR). However, some of the results are inconsistent and the studies were conducted with small sample sizes. Therefore, we performed a meta-analysis to clarify the relationship. METHODS Relevant data were retrieved from PubMed, Web of Science, Cochrane Library, EMBASE, CNKI, and Google Scholar according to PRISMA guidelines. Odds ratios (OR) were calculated to assess susceptibility to HSCR. Meanwhile, heterogeneity and publication bias were also calculated by R software package (version 4.2.1). The protocol was published in PROSPERO (CRD42022348940). RESULTS A total of 12 studies were included in the meta-analysis and comprised 12 studies on the RET polymorphism rs2435357 (1,939 subjects and 3,613 controls) and 7 studies on the RET polymorphism rs2506030 (1,849 patients with HSCR and 3,054 controls). The analysis revealed that rs2435357 [A vs. G: odds ratio (OR) = 3.842, 95% confidence interval (CI) 2.829-5.220; AA vs. GG: OR = 2.597, 95% CI 1.499-4.501; AA + AG vs. GG: OR = 6.789, 95% CI 3.0711-14.9973; AA vs. AG + GG: OR = 8.156, 95%CI 5.429-12.253] and rs2506030 (A vs. G: OR = 0.519, 95% CI 0.469-0.573; AA vs. GG: OR = 0.543, 95% CI 0.474-0.623; AA + AG vs. GG: OR = 0.410, 95% CI 0.360-0.468; AA vs. AG + GG: OR = 0.361, 95%CI 0.292-0.447) were significantly associated with susceptibility to HSCR. CONCLUSIONS The polymorphisms rs2435357 and rs2506030 in the RET may be related to susceptibility to HSCR, of which rs2435357 (T > C) is the causal locus and rs2506030 (A > G) is the protective locus. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier:CRD42022348940.
Collapse
Affiliation(s)
- Jianhua Mu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxi Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guoying Liao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinxin Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yinyan Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaorong Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Caiyun Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Kuil LE, MacKenzie KC, Tang CS, Windster JD, Le TL, Karim A, de Graaf BM, van der Helm R, van Bever Y, Sloots CEJ, Meeussen C, Tibboel D, de Klein A, Wijnen RMH, Amiel J, Lyonnet S, Garcia-Barcelo MM, Tam PKH, Alves MM, Brooks AS, Hofstra RMW, Brosens E. Size matters: Large copy number losses in Hirschsprung disease patients reveal genes involved in enteric nervous system development. PLoS Genet 2021; 17:e1009698. [PMID: 34358225 PMCID: PMC8372947 DOI: 10.1371/journal.pgen.1009698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 08/18/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex genetic disease characterized by absence of ganglia in the intestine. HSCR etiology can be explained by a unique combination of genetic alterations: rare coding variants, predisposing haplotypes and Copy Number Variation (CNV). Approximately 18% of patients have additional anatomical malformations or neurological symptoms (HSCR-AAM). Pinpointing the responsible culprits within a CNV is challenging as often many genes are affected. Therefore, we selected candidate genes based on gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics. Next, we used a zebrafish model to investigate whether loss of these genes affects enteric neuron development in vivo. This study included three groups of patients, two groups without coding variants in disease associated genes: HSCR-AAM and HSCR patients without associated anomalies (HSCR-isolated). The third group consisted of all HSCR patients in which a confirmed pathogenic rare coding variant was identified. We compared these patient groups to unaffected controls. Predisposing haplotypes were determined, confirming that every HSCR subgroup had increased contributions of predisposing haplotypes, but their contribution was highest in isolated HSCR patients without RET coding variants. CNV profiling proved that specifically HSCR-AAM patients had larger Copy Number (CN) losses. Gene enrichment strategies using mouse enteric nervous system transcriptomes and constraint metrics were used to determine plausible candidate genes located within CN losses. Validation in zebrafish using CRISPR/Cas9 targeting confirmed the contribution of UFD1L, TBX2, SLC8A1, and MAPK8 to ENS development. In addition, we revealed epistasis between reduced Ret and Gnl1 expression and between reduced Ret and Tubb5 expression in vivo. Rare large CN losses—often de novo—contribute to HSCR in HSCR-AAM patients. We proved the involvement of six genes in enteric nervous system development and Hirschsprung disease. Hirschsprung disease is a congenital disorder characterized by the absence of intestinal neurons in the distal part of the intestine. It is a complex genetic disorder in which multiple variations in our genome combined, result in disease. One of these variations are Copy Number Variations (CNVs): large segments of our genome that are duplicated or deleted. Patients often have Hirschsprung disease without other symptoms. However, a proportion of patients has additional associated anatomical malformations and neurological symptoms. We found that CNVs, present in patients with associated anomalies, are more often larger compared to unaffected controls or Hirschsprung patients without other symptoms. Furthermore, Copy Number (CN) losses are enriched for constrained coding regions (CCR; genes usually not impacted by genomic alterations in unaffected controls) of which the expression is higher in the developing intestinal neurons compared to the intestine. We modelled loss of these candidate genes in zebrafish by disrupting the zebrafish orthologues by genome editing. For several genes this resulted in changes in intestinal neuron development, reminiscent of HSCR observed in patients. The results presented here highlight the importance of Copy Number profiling, zebrafish validation and evaluating all CCR expressed in developing intestinal neurons during diagnostic evaluation.
Collapse
Affiliation(s)
- Laura E. Kuil
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Katherine C. MacKenzie
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Clara S. Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Jonathan D. Windster
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thuy Linh Le
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bianca M. de Graaf
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert van der Helm
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cornelius E. J. Sloots
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Conny Meeussen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - René M. H. Wijnen
- Department of Paediatric Surgery, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeanne Amiel
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | - Stanislas Lyonnet
- Laboratory of embryology and genetics of malformations, Institut Imagine Université de Paris INSERM UMR1163 Necker Enfants malades University Hospital, Paris, France
| | | | - Paul K. H. Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Li Dak-Sum Research Centre, The University of Hong Kong–Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC–Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Lu YJ, Yu WW, Cui MM, Yu XX, Song HL, Bai MR, Wu WJ, Gu BL, Wang J, Cai W, Chu X. Association Analysis of Variants of DSCAM and BACE2 With Hirschsprung Disease Susceptibility in Han Chinese and Functional Evaluation in Zebrafish. Front Cell Dev Biol 2021; 9:641152. [PMID: 34136475 PMCID: PMC8201997 DOI: 10.3389/fcell.2021.641152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hirschsprung disease (HSCR) has a higher incidence in children with Down syndrome (DS), which makes trisomy 21 a predisposing factor to HSCR. DSCAM and BACE2 are close together on the HSCR-associated critical region of chromosome 21. Common variants of DSCAM and rare variants of BACE2 were implicated to be associated with sporadic HSCR. However, the submucosal neuron defect of DS mouse model could not be rescued by normalization of Dscam. We aimed to explore the contribution of DSCAM and BACE2 to the development of the enteric nervous system (ENS) and HSCR susceptibility. We genotyped 133 tag single-nucleotide polymorphisms (SNPs) in DSCAM and BACE2 gene region in 420 HSCR patients and 1,665 controls of Han Chinese. Expression of DSCAM and BACE2 homologs was investigated in the developing gut of zebrafish. Overexpression and knockdown of the homologs were performed in zebrafish to investigate their roles in the development of ENS. Two DSCAM SNPs, rs430255 (PAddtive = 0.0052, OR = 1.36, 95% CI: 1.10–1.68) and rs2837756 (PAddtive = 0.0091, OR = 1.23, 95% CI: 1.05–1.43), showed suggestive association with HSCR risk. Common variants in BACE2 were not associated with HSCR risk. We observed dscama, dscamb, and bace2 expression in the developing gut of zebrafish. Knockdown of dscama, dscamb, and bace2 caused a reduction of enteric neurons in the hindgut of zebrafish. Overexpression of DSCAM and bace2 had no effects on neuron number in the hindgut of zebrafish. Our results suggested that common variation of DSCAM contributed to HSCR risk in Han Chinese. The dysfunction of both dscams and bace2 caused defects in enteric neuron, indicating that DSCAM and BACE2 might play functional roles in the occurrence of HSCR. These novel findings might shed new light on the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Yan-Jiao Lu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wen-Wen Yu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Meng-Meng Cui
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xian-Xian Yu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Huan-Lei Song
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Mei-Rong Bai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wen-Jie Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bei-Lin Gu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jun Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xun Chu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
7
|
Bahrami R, Shajari A, Aflatoonian M, Noorishadkam M, Akbarian-Bafghi MJ, Morovati-Sharifabad M, Heiranizadeh N, Neamatzadeh H. Association of REarranged during Transfection (RET) c.73 + 9277T > C and c.135G > a Polymorphisms with Susceptibility to Hirschsprung Disease: A Systematic Review and Meta-Analysis. Fetal Pediatr Pathol 2020; 39:476-490. [PMID: 31590591 DOI: 10.1080/15513815.2019.1672225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: Previous studies have suggested a close association between REarranged during Transfection (RET) c.73 + 9277T > C and c.135G > A polymorphisms and Hirschsprung disease (HSCR) susceptibility. The results are inconsistent and contradictory. Thus, we performed a meta-analysis to evaluate the association of RET c.73 + 9277T > C and c.135G > A polymorphisms with risk of HSCR.Methods: The eligible literatures were searched by PubMed, Google Scholar, EMBASE, and CNKI up to August 5 2019.Results: A total of 20 studies including 10 studies with 1136 cases and 2420 controls on c.73 + 9277T > C and 10 studies with 917 cases and 1159 controls on c.135G > A were selected. Pooled ORs revealed that c.73 + 9277T > C and c.135G > A polymorphisms were significantly associated with an increased risk of HSCR. Moreover, stratified analysis revealed that c.73 + 9277T > C and c.135G > A polymorphisms were associated with HSCR risk in Asian, Caucasian and Chinese populations.Conclusions: This meta-analysis result indicated that the RET c.73 + 9277T > C and c.135G > A polymorphisms were associated with susceptibility to HSCR.
Collapse
Affiliation(s)
- Reza Bahrami
- Neonatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Shajari
- Department of Pediatrics, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Majid Aflatoonian
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Noorishadkam
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Naeimeh Heiranizadeh
- Department of Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Pace NP, Pace Bardon M, Borg I. A respiratory/Hirschsprung phenotype in a three-generation family associated with a novel pathogenic PHOX2B splice donor mutation. Mol Genet Genomic Med 2020; 8:e1528. [PMID: 33047879 PMCID: PMC7767558 DOI: 10.1002/mgg3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/22/2020] [Accepted: 09/25/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mutations in the PHOX2B gene cause congenital central hypoventilation syndrome (CCHS), a rare autonomic nervous system dysfunction disorder characterized by a decreased ventilatory response to hypercapnia. Affected subjects develop alveolar hypoventilation requiring ventilatory support particularly during the non-REM phase of sleep. In more severe cases, hypoventilation may extend into wakefulness. CCHS is associated with disorders characterized by the defective migration/differentiation of neural crest derivatives, including aganglionic megacolon or milder gastrointestinal phenotypes, such as constipation. Most cases of CCHS are de novo, caused by heterozygosity for polyalanine repeat expansion mutations (PARMs) in exon 3. About 10% of cases are due to heterozygous non-PARM missense, nonsense or frameshift mutations. METHODS We describe a three-generation Maltese-Caucasian family with a variable respiratory/Hirschsprung phenotype, characterized by chronic constipation, three siblings with Hirschsprung disease necessitating surgery, chronic hypoxia, and alveolar hypoventilation requiring non-invasive ventilation. RESULTS The sequencing of PHOX2B revealed a novel heterozygous c.241+2delT splice variant in exon 1 that segregates with the CCHS/Hirschsprung phenotype in the family. The mutation generates a non-functional splice site with a deleterious effect on protein structure and is pathogenic according to ACMG P VS1, PM2, and PP1 criteria. CONCLUSION This report is significant as no PHOX2B splice-site mutations have been reported. Additionally, it highlights the variability in clinical expression and disease severity of non-PARM mutations.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Isabella Borg
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Medical Genetics Unit, Department of Pathology, Mater Dei Hospital, Msida, Malta.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
9
|
Amooee A, Lookzadeh MH, Mirjalili SR, Miresmaeili SM, Aghili K, Zare-Shehneh M, Neamatzadeh H. ASSOCIATION OF RS2435357 AND RS1800858 POLYMORPHISMS IN RET PROTO-ONCOGENE WITH HIRSCHSPRUNG DISEASE: SYSTEMATIC REVIEW AND META-ANALYSIS. ACTA ACUST UNITED AC 2019; 32:e1448. [PMID: 31644668 PMCID: PMC6812143 DOI: 10.1590/0102-672020190001e1448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/16/2019] [Indexed: 01/22/2023]
Abstract
Introduction:
Many published studies have estimated the association of rs2435357 and
rs1800858 polymorphisms in the proto-oncogene rearranged during transfection
(RET) gene with Hirschsprung disease (HSCR) risk. However, the results
remain inconsistent and controversial.
Aim:
To perform a meta-analysis get a more accurate estimation of the association
of rs2435357 and rs1800858 polymorphisms in the RET proto-oncogene with HSCR
risk.
Methods:
The eligible literatures were searched by PubMed, Google Scholar, EMBASE, and
Chinese National Knowledge Infrastructure (CNKI) up to June 30, 2018.
Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to
evaluate the susceptibility to HSCR.
Results:
A total of 20 studies, including ten (1,136 cases 2,420 controls) for
rs2435357 and ten (917 cases 1,159 controls) for rs1800858 were included.
The overall results indicated that the rs2435357 (allele model: OR=0.230,
95% CI 0.178-0.298, p=0.001; homozygote model: OR=0.079, 95% CI 0.048-0.130,
p=0.001; heterozygote model: OR=0.149, 95% CI 0.048-0.130, p=0.001; dominant
model: OR=0.132, 95% CI 0.098-0.179, p=0.001; and recessive model: OR=0.239,
95% CI 0.161-0.353, p=0.001) and rs1800858 (allele model: OR=5.594, 95% CI
3.653-8.877, p=0.001; homozygote model: OR=8.453, 95% CI 3.783-18.890,
p=0.001; dominant model: OR=3.469, 95% CI 1.881-6.396, p=0.001; and
recessive model: OR=6.120, 95% CI 3.608-10.381, p=0.001) polymorphisms were
associated with the increased risk of HSCR in overall.
Conclusions:
The results suggest that the rs2435357 and rs1800858 polymorphisms in the RET
proto-oncogene might be associated with HSCR risk.
Collapse
Affiliation(s)
| | | | | | | | - Kazem Aghili
- Shahid Sadoughi University of Medical Sciences, Radiology
| | - Masoud Zare-Shehneh
- Shahid Sadoughi University of Medical Sciences, Medical Genetics, Yazd, Yazd, Iran
| | - Hossein Neamatzadeh
- Shahid Sadoughi University of Medical Sciences, Medical Genetics, Yazd, Yazd, Iran
| |
Collapse
|
10
|
Association analysis of NOX5 polymorphisms with Hirschsprung disease. J Pediatr Surg 2019; 54:1815-1819. [PMID: 30686516 DOI: 10.1016/j.jpedsurg.2018.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND/PURPOSE Hirschsprung disease (HSCR) is a developmental disease characterized by the absence of ganglion cells in the intestinal region. NADPH oxidase5 (NOX5) has been identified as one of the possible candidate genes for risk of Hirschsprung disease in our recent genome wide association study (GWAS). In this study, we performed a replication study to analyze the association of NOX5 polymorphisms with HSCR risk and conducted an extended analysis to investigate further associations for sub-groups and haplotypes. METHODS A total of 23 NOX5 single nucleotide polymorphisms (SNPs) were genotyped in 187 HSCR patients and 283 unaffected controls. Statistical analysis was performed to examine the effects of genotype on risk of HSCR and HSCR subtype. RESULTS Logistic regression analyses revealed that six SNPs (rs59355559, rs62010828, rs34990910, rs11856030, rs311905, and rs8024894) were associated with risk of HSCR (minimum p = 0.007 at rs62010828). Moreover, three SNPs (rs59355559, rs62010828, and rs8024894) were significantly associated with risk of long-segment HSCR (L-HSCR) subtype and 5 SNPs (rs59355559, rs62010828, rs34990910, rs11856030, and rs8024894) were found to be associated with risk of TCA subtype. CONCLUSION Our results demonstrate that genetic variants in NOX5 have genetic effects on risk of HSCR, which may serve as useful preliminary information for further study. LEVELS OF EVIDENCE Level III of prognosis study.
Collapse
|
11
|
Schill EM, Wright CM, Jamil A, LaCombe JM, Roper RJ, Heuckeroth RO. Down syndrome mouse models have an abnormal enteric nervous system. JCI Insight 2019; 5:124510. [PMID: 30998504 PMCID: PMC6629165 DOI: 10.1172/jci.insight.124510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 04/17/2019] [Indexed: 12/16/2022] Open
Abstract
Children with trisomy 21 (Down syndrome [DS]) have a 130-fold increased incidence of Hirschsprung Disease (HSCR), a developmental defect where the enteric nervous system (ENS) is missing from distal bowel (i.e., distal bowel is aganglionic). Treatment for HSCR is surgical resection of aganglionic bowel, but many children have bowel problems after surgery. Post-surgical problems like enterocolitis and soiling are especially common in children with DS. To determine how trisomy 21 affects ENS development, we evaluated the ENS in two DS mouse models, Ts65Dn and Tc1. These mice are trisomic for many chromosome 21 homologous genes, including Dscam and Dyrk1a, which are hypothesized to contribute to HSCR risk. Ts65Dn and Tc1 mice have normal ENS precursor migration at E12.5 and almost normal myenteric plexus structure as adults. However, Ts65Dn and Tc1 mice have markedly reduced submucosal plexus neuron density throughout the bowel. Surprisingly, the submucosal neuron defect in Ts65Dn mice is not due to excess Dscam or Dyrk1a, since normalizing copy number for these genes does not rescue the defect. These findings suggest the possibility that the high frequency of bowel problems in children with DS and HSCR may occur because of additional unrecognized problems with ENS structure.
Collapse
Affiliation(s)
- Ellen M. Schill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Christina M. Wright
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Alisha Jamil
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Jonathan M. LaCombe
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Randall J. Roper
- Department of Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Robert O. Heuckeroth
- Department of Pediatrics, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Tilghman JM, Ling AY, Turner TN, Sosa MX, Krumm N, Chatterjee S, Kapoor A, Coe BP, Nguyen KDH, Gupta N, Gabriel S, Eichler EE, Berrios C, Chakravarti A. Molecular Genetic Anatomy and Risk Profile of Hirschsprung's Disease. N Engl J Med 2019; 380:1421-1432. [PMID: 30970187 PMCID: PMC6596298 DOI: 10.1056/nejmoa1706594] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hirschsprung's disease, or congenital aganglionosis, is a developmental disorder of the enteric nervous system and is the most common cause of intestinal obstruction in neonates and infants. The disease has more than 80% heritability, including significant associations with rare and common sequence variants in genes related to the enteric nervous system, as well as with monogenic and chromosomal syndromes. METHODS We genotyped and exome-sequenced samples from 190 patients with Hirschsprung's disease to quantify the genetic burden in patients with this condition. DNA sequence variants, large copy-number variants, and karyotype variants in probands were considered to be pathogenic when they were significantly associated with Hirschsprung's disease or another neurodevelopmental disorder. Novel genes were confirmed by functional studies in the mouse and human embryonic gut and in zebrafish embryos. RESULTS The presence of five or more variants in four noncoding elements defined a widespread risk of Hirschsprung's disease (48.4% of patients and 17.1% of controls; odds ratio, 4.54; 95% confidence interval [CI], 3.19 to 6.46). Rare coding variants in 24 genes that play roles in enteric neural-crest cell fate, 7 of which were novel, were also common (34.7% of patients and 5.0% of controls) and conferred a much greater risk than noncoding variants (odds ratio, 10.02; 95% CI, 6.45 to 15.58). Large copy-number variants, which were present in fewer patients (11.4%, as compared with 0.2% of controls), conferred the highest risk (odds ratio, 63.07; 95% CI, 36.75 to 108.25). At least one identifiable genetic risk factor was found in 72.1% of the patients, and at least 48.4% of patients had a structural or regulatory deficiency in the gene encoding receptor tyrosine kinase (RET). For individual patients, the estimated risk of Hirschsprung's disease ranged from 5.33 cases per 100,000 live births (approximately 1 per 18,800) to 8.38 per 1000 live births (approximately 1 per 120). CONCLUSIONS Among the patients in our study, Hirschsprung's disease arose from common noncoding variants, rare coding variants, and copy-number variants affecting genes involved in enteric neural-crest cell fate that exacerbate the widespread genetic susceptibility associated with RET. For individual patients, the genotype-specific odds ratios varied by a factor of approximately 67, which provides a basis for risk stratification and genetic counseling. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- Joseph M Tilghman
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Albee Y Ling
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Tychele N Turner
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Maria X Sosa
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Niklas Krumm
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Sumantra Chatterjee
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Ashish Kapoor
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Bradley P Coe
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Khanh-Dung H Nguyen
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Namrata Gupta
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Stacey Gabriel
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Evan E Eichler
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Courtney Berrios
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| | - Aravinda Chakravarti
- From the Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore (J.M.T., A.Y.L., T.N.T., M.X.S., S.C., A.K., K.-D.H.N., C.B., A.C.); the Department of Genome Sciences, University of Washington School of Medicine (T.N.T., N.K., A.K., B.P.C., E.E.E.), and the Howard Hughes Medical Institute, University of Washington (E.E.E.) - both in Seattle; and Broad Institute of Harvard and MIT, Cambridge, MA (K.-D.H.N., N.G., S.G.)
| |
Collapse
|
13
|
Virtanen VB, Salo PP, Cao J, Löf-Granström A, Milani L, Metspalu A, Rintala RJ, Saarenpää-Heikkilä O, Paunio T, Wester T, Nordenskjöld A, Perola M, Pakarinen MP. Noncoding RET variants explain the strong association with Hirschsprung disease in patients without rare coding sequence variant. Eur J Med Genet 2019; 62:229-234. [DOI: 10.1016/j.ejmg.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 02/04/2023]
|
14
|
Morales-Miranda A. Congenital intestinal stenosis and Hirschsprung's disease: two extremely rare pathologies in a newborn puppy. BMC Vet Res 2019; 15:92. [PMID: 30866930 PMCID: PMC6416937 DOI: 10.1186/s12917-019-1806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/08/2019] [Indexed: 11/30/2022] Open
Abstract
Background Hirschsprung’s disease (HSCR) is a common congenital malformation of the enteric nervous system (ENS). During fetal development, ganglion cells of the ENS are derived from neural crest cells that migrate to the bowel. These cells reside principally in two ganglionated plexus: 1) The myenteric plexus, extending from the esophagus to the anus, and 2) submucous plexus, extending from the duodenum to the anus. In large animal species, there is a third plexus called Henle’s or Schabadasch’s plexus. ENS ganglion cells play a key role in normal gastrointestinal motility, respond to sensory stimuli and regulate blood flow. Both plexus show a high degree of independence from the central nervous system. Alterations in the embryonic development of the ENS can induce multiple pathologies in animal models and humans. Case presentation The present case was a female the fifth born in a litter of 5 puppies. At about 2–3 weeks of age, she suffered from abdominal distension, pain, and constipation. At approximately 8–10 weeks of age, the puppy started to vomit abundantly, and the regurgitated food appeared undigested. Progressive abdominal distention was observed, with quite visible peristaltic movements and more frequent vomiting episodes. The abdominal radiographs, based on AP and side projections, revealed an enlargement of the abdominal diameter and an increased width in the epigastric region. At 12 weeks of age, exploratory surgery revealed a stenotic segment in the jejunum, followed by a small transition zone and then a significantly reduced diameter. Immunohistochemical examinations were performed using antibodies against calretinin, S-100 protein, CD56, neuron specific enolase (NSE) and synaptophysin, which are the biological markers for diagnosing HSCR. Conclusion A reduced number of ganglion cells (1–3 cells per ganglion) were found. There was no specific staining pattern for many of these; while for others, the pattern was compatible with HSCR. Surgical intervention to remove the stenotic section prolonged the life of the puppy for 13 years. Extremely rare pathologies such as that discussed herein should be studied to understand the pathophysiology and be able to diagnose small species in veterinary medicine in a timely fashion. To our knowledge, this is the first report of congenital intestinal stenosis and Hirschprung’s disease in a newborn puppy. Electronic supplementary material The online version of this article (10.1186/s12917-019-1806-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angélica Morales-Miranda
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Avenue. Vasco de Quiroga 15 Col. Belisario Domínguez, Section XVI, Tlalpan, 14080, México City, Mexico.
| |
Collapse
|
15
|
Moore SW. Advances in understanding the association between Down syndrome and Hirschsprung disease (DS-HSCR). Pediatr Surg Int 2018; 34:1127-1137. [PMID: 30218169 DOI: 10.1007/s00383-018-4344-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
The clinical association between Trisomy 21 (Down syndrome) and aganglionosis (Hirschsprung disease; DS-HSCR) is well-established, being of the order of 5% and remains the most common congenital association with Hirschsprung disease. However, little consensus exists as to the possible etiologic and genetic factors influencing this association. Recent research has identified a number of levels at which development of the enteric nervous system is potentially affected in Trisomy 21. These include a decreased central pool of available neuroblasts for migration into the enteric nervous system, abnormal neuroblast type, poor synaptic nerve function and early germline gene-related influences on the migrating neuroblasts due to genetic mutations of a number of important developmental genes, and possible somatic mutations resulting from alterations in the local tissue microenvironment. In this paper, we review available evidence for this association. In addition, we provide evidence of both germline and somatic gene mutations suggesting causation. Although the picture is complex, recent associations between specific RET proto-oncogene variations have been shown to be significant in Down syndrome patients with Hirschsprung disease, as they probably interfere with vital RET functions in the development of the autonomic and enteric nervous systems, increasing the risk of disturbed normal function. In addition, we explore potential role of other facilitatory influence of other susceptibility genes as well as potential other chromosome 21 gene actions and the microenvironment on the Down syndrome gastro-intestinal tract. The various ways in which trisomy of chromosome influences the enteric nervous system are becoming clearer. The sum of these effects influences the outcome of surgery in Down syndrome patients with Hirschsprung Disease.
Collapse
Affiliation(s)
- S W Moore
- Division of Paediatric Surgery, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, South Africa.
| |
Collapse
|
16
|
Hirschsprung disease - integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 2018; 15:152-167. [PMID: 29300049 DOI: 10.1038/nrgastro.2017.149] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hirschsprung disease is defined by the absence of enteric neurons at the end of the bowel. The enteric nervous system (ENS) is the intrinsic nervous system of the bowel and regulates most aspects of bowel function. When the ENS is missing, there are no neurally mediated propulsive motility patterns, and the bowel remains contracted, causing functional obstruction. Symptoms of Hirschsprung disease include constipation, vomiting, abdominal distension and growth failure. Untreated disease usually causes death in childhood because bloodstream bacterial infections occur in the context of bowel inflammation (enterocolitis) or bowel perforation. Current treatment is surgical resection of the bowel to remove or bypass regions where the ENS is missing, but many children have problems after surgery. Although the anatomy of Hirschsprung disease is simple, many clinical features remain enigmatic, and diagnosis and management remain challenging. For example, the age of presentation and the type of symptoms that occur vary dramatically among patients, even though every affected child has missing neurons in the distal bowel at birth. In this Review, basic science discoveries are linked to clinical manifestations of Hirschsprung disease, including partial penetrance, enterocolitis and genetics. Insights into disease mechanisms that might lead to new prevention, diagnostic and treatment strategies are described.
Collapse
|
17
|
Davis J, Hoover K, Kauffman RP. Müllerian anomaly in a woman with Hirschsprung's disease. BMJ Case Rep 2017; 2017:bcr-2017-220246. [DOI: 10.1136/bcr-2017-220246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
18
|
Bradnock TJ, Knight M, Kenny S, Nair M, Walker GM. Hirschsprung's disease in the UK and Ireland: incidence and anomalies. Arch Dis Child 2017; 102:722-727. [PMID: 28280094 PMCID: PMC5537519 DOI: 10.1136/archdischild-2016-311872] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To describe clinical characteristics and preoperative management of a national cohort of infants with Hirschsprung's disease (HD). DESIGN Population-based cohort study of all live-born infants with HD born in the UK and Ireland from October 2010 to September 2012. SETTING All 28 paediatric surgical centres in the UK and Ireland. PARTICIPANTS 305 infants presenting before 6 months of age with histologically proven HD. MAIN OUTCOME MEASURES Incidence, clinical characteristics including gestational age, birth weight, gender, associated anomalies; age and clinical features at presentation; and use of rectal washouts or stoma. RESULTS The incidence of HD in the UK and Ireland was 1.8 per 10 000 live births (95% CI 1.5 to 1.9). Male to female ratio was 3.3:1. An associated anomaly was identified in 23% (69), with 15% (47) having a recognisable syndrome. The proportion of infants who presented and were diagnosed in the neonatal period was 91.5% (279) and 83.9% (256), respectively. 23.9% (73) and 44.2% (135) passed meconium within 24 and 48 hours of birth. 81% (246) first presented to a hospital without tertiary paediatric surgical services, necessitating interhospital transfer. Initial colonic decompression was by rectal washouts in 86.2% (263) and by defunctioning stoma in 12.8% (39). Subsequently, 27.4% (72) of infants failed management with rectal washouts and required a delayed stoma, resulting in 36.4% (111) of infants having a stoma. CONCLUSIONS In this population-based cohort, presentation outside the neonatal period was rare. Nearly half of the infants with HD passed meconium within 48 hours of birth and over one third were managed with a stoma.
Collapse
Affiliation(s)
- T J Bradnock
- Department of Paediatric Surgery, The Royal Hospital for Children, Glasgow, UK
| | - M Knight
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - S Kenny
- Department of Paediatric Surgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - M Nair
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - G M Walker
- Department of Paediatric Surgery, The Royal Hospital for Children, Glasgow, UK
| | | |
Collapse
|
19
|
Tang CSM, Gui H, Kapoor A, Kim JH, Luzón-Toro B, Pelet A, Burzynski G, Lantieri F, So MT, Berrios C, Shin HD, Fernández RM, Le TL, Verheij JBGM, Matera I, Cherny SS, Nandakumar P, Cheong HS, Antiñolo G, Amiel J, Seo JM, Kim DY, Oh JT, Lyonnet S, Borrego S, Ceccherini I, Hofstra RMW, Chakravarti A, Kim HY, Sham PC, Tam PKH, Garcia-Barceló MM. Trans-ethnic meta-analysis of genome-wide association studies for Hirschsprung disease. Hum Mol Genet 2017; 25:5265-5275. [PMID: 27702942 DOI: 10.1093/hmg/ddw333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/28/2016] [Indexed: 02/04/2023] Open
Abstract
Hirschsprung disease (HSCR) is the most common cause of neonatal intestinal obstruction. It is characterized by the absence of ganglia in the nerve plexuses of the lower gastrointestinal tract. So far, three common disease-susceptibility variants at the RET, SEMA3 and NRG1 loci have been detected through genome-wide association studies (GWAS) in Europeans and Asians to understand its genetic etiologies. Here we present a trans-ethnic meta-analysis of 507 HSCR cases and 1191 controls, combining all published GWAS results on HSCR to fine-map these loci and narrow down the putatively causal variants to 99% credible sets. We also demonstrate that the effects of RET and NRG1 are universal across European and Asian ancestries. In contrast, we detected a European-specific association of a low-frequency variant, rs80227144, in SEMA3 [odds ratio (OR) = 5.2, P = 4.7 × 10-10]. Conditional analyses on the lead SNPs revealed a secondary association signal, corresponding to an Asian-specific, low-frequency missense variant encoding RET p.Asp489Asn (rs9282834, conditional OR = 20.3, conditional P = 4.1 × 10-14). When in trans with the RET intron 1 enhancer risk allele, rs9282834 increases the risk of HSCR from 1.1 to 26.7. Overall, our study provides further insights into the genetic architecture of HSCR and has profound implications for future study designs.
Collapse
Affiliation(s)
- Clara Sze-Man Tang
- Department of Surgery.,Centre for Genomic Sciences.,Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong SAR, China
| | | | - Ashish Kapoor
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeong-Hyun Kim
- Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Anna Pelet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Grzegorz Burzynski
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Courtney Berrios
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyoung Doo Shin
- Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea.,Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Raquel M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Thuy-Linh Le
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Joke B G M Verheij
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ivana Matera
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Stacey S Cherny
- Centre for Genomic Sciences.,Department of Psychiatry.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Priyanka Nandakumar
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 121-742, Republic of Korea
| | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Jeong-Meen Seo
- Division of Pediatric Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Dae-Yeon Kim
- Department of Pediatric Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jung-Tak Oh
- Department of Pediatric Surgery, Severance Children's Hospital, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Robert M W Hofstra
- Department of Clinical Genetic, Erasmus Medical Center, Rotterdam, The Netherlands.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Children's Hospital, Seoul 110-744, Republic of Korea
| | - Pak Chung Sham
- Centre for Genomic Sciences.,Department of Psychiatry.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Paul K H Tam
- Department of Surgery.,Dr Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong SAR, China
| | | |
Collapse
|
20
|
Sergi CM, Caluseriu O, McColl H, Eisenstat DD. Hirschsprung's disease: clinical dysmorphology, genes, micro-RNAs, and future perspectives. Pediatr Res 2017; 81:177-191. [PMID: 27682968 DOI: 10.1038/pr.2016.202] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/05/2016] [Indexed: 01/17/2023]
Abstract
On the occasion of the 100th anniversary of Dr. Harald Hirschsprung's death, there is a worldwide significant research effort toward identifying and understanding the role of genes and biochemical pathways involved in the pathogenesis as well as the use of new therapies for the disease harboring his name (Hirschsprung disease, HSCR). HSCR (aganglionic megacolon) is a frequent diagnostic and clinical challenge in perinatology and pediatric surgery, and a major cause of neonatal intestinal obstruction. HSCR is characterized by the absence of ganglia of the enteric nervous system, mostly in the distal gastrointestinal tract. This review focuses on current understanding of genes and pathways associated with HSCR and summarizes recent knowledge related to micro RNAs (miRNAs) and HSCR pathogenesis. While commonly sporadic, Mendelian patterns of inheritance have been described in syndromic cases with HSCR. Although only half of the patients with HSCR have mutations in specific genes related to early embryonic development, recent pathway-based analysis suggests that gene modules with common functions may be associated with HSCR in different populations. This comprehensive profile of functional gene modules may serve as a useful resource for future developmental, biochemical, and genetic studies providing insights into the complex nature of HSCR.
Collapse
Affiliation(s)
- Consolato Maria Sergi
- Department of Orthopedics, Wuhan University of Science and Technology, Hubei, P.R. China.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Oana Caluseriu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Hunter McColl
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Schill EM, Lake JI, Tusheva OA, Nagy N, Bery SK, Foster L, Avetisyan M, Johnson SL, Stenson WF, Goldstein AM, Heuckeroth RO. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol 2016; 409:473-88. [PMID: 26586201 PMCID: PMC4862364 DOI: 10.1016/j.ydbio.2015.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
Abstract
Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/- mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children.
Collapse
Affiliation(s)
- Ellen Merrick Schill
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jonathan I Lake
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Olga A Tusheva
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA; Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Saya K Bery
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Lynne Foster
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Marina Avetisyan
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - William F Stenson
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Soret R, Mennetrey M, Bergeron KF, Dariel A, Neunlist M, Grunder F, Faure C, Silversides DW, Pilon N. A collagen VI-dependent pathogenic mechanism for Hirschsprung's disease. J Clin Invest 2015; 125:4483-96. [PMID: 26571399 DOI: 10.1172/jci83178] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Hirschsprung's disease (HSCR) is a severe congenital anomaly of the enteric nervous system (ENS) characterized by functional intestinal obstruction due to a lack of intrinsic innervation in the distal bowel. Distal innervation deficiency results from incomplete colonization of the bowel by enteric neural crest cells (eNCCs), the ENS precursors. Here, we report the generation of a mouse model for HSCR--named Holstein--that contains an untargeted transgenic insertion upstream of the collagen-6α4 (Col6a4) gene. This insertion induces eNCC-specific upregulation of Col6a4 expression that increases total collagen VI protein levels in the extracellular matrix (ECM) surrounding both the developing and the postnatal ENS. Increased collagen VI levels during development mainly result in slower migration of eNCCs. This appears to be due to the fact that collagen VI is a poor substratum for supporting eNCC migration and can even interfere with the migration-promoting effects of fibronectin. Importantly, for a majority of patients in a HSCR cohort, the myenteric ganglia from the ganglionated region are also specifically surrounded by abundant collagen VI microfibrils, an outcome accentuated by Down syndrome. Collectively, our data thus unveil a clinically relevant pathogenic mechanism for HSCR that involves cell-autonomous changes in ECM composition surrounding eNCCs. Moreover, as COL6A1 and COL6A2 are on human Chr.21q, this mechanism is highly relevant to the predisposition of patients with Down syndrome to HSCR.
Collapse
|
23
|
Zhang Z, Jiang Q, Li Q, Cheng W, Qiao G, Xiao P, Gan L, Su L, Miao C, Li L. Genotyping analysis of 3 RET polymorphisms demonstrates low somatic mutation rate in Chinese Hirschsprung disease patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5528-5534. [PMID: 26191260 PMCID: PMC4503131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Genetic mosaicism has been reported for both coding and non-coding sequences in the RET gene in Hirschsprung disease (HSCR) patients. This study aimed to investigate somatic mutation rate in Chinese population by comparing both homozygous genotype percentage and risk allele frequency of 3 RET single nucleotide polymorphisms (SNPs) among blood and colon samples. METHODS DNA was extracted from 59 HSCR blood samples, 59 control blood samples and 76 fresh frozen colon tissue samples (grouped into ganglionic, transitional and aganglionic level). Genotype status of rs2435357 and rs2506030 was examined by competitive allele specific hydrolysis probes (Taqman) PCR technology, and rs2506004 was examined by Sanger sequencing. Homozygous genotype percentage and risk allele frequency were calculated for each type of sample and compared by chi-square test. P<0.05 was regarded as being statistically significant. RESULTS Colon tissue DNA samples showed similar frequency of SNPs as that of the blood DNA samples in HSCR patients, both of which are significantly higher than the control blood group (rs2435357 TT genotype: 71.2%, 74.7% versus 22.0% in HSCR blood, HSCR colon and control blood DNA respectively, P=0.000; rs2506004 AA genotype: 72.4%, 83.1% versus 25.5%, P=0.000; rs2506030 GG genotype: 79.7%, 77.2% versus 54.2%, P=0.000 and 0.004). With respect to DNA extracted from ganglionic, transitional and aganglionic levels, no statistically significant difference was demonstrated in those 3 regions (rs2435357: P=0.897; rs2506004: P=0.740; rs2506030: P=0.901). CONCLUSION Our data does not support the notion that high frequency of somatic changes as an underlying etiology of Chinese HSCR population.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of PediatricsBeijing, China
| | - Qi Li
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| | - Wei Cheng
- Department of Surgery, Beijing United Family HospitalChina
- Department of Paediatrics and Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash UniversityVictoria, Australia
| | - Guoliang Qiao
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children’s HospitalBeijing, China
| | - Liang Gan
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| | - Lin Su
- Anhui Medical UniversityHefei, China
| | - Chunyue Miao
- Peking University Capital Institute of Pediatrics Teaching HospitalBeijing, China
| | - Long Li
- Department of Pediatric Surgery, Capital Institute of PediatricsBeijing, China
| |
Collapse
|
24
|
Jiang Q, Arnold S, Heanue T, Kilambi K, Doan B, Kapoor A, Ling A, Sosa M, Guy M, Jiang Q, Burzynski G, West K, Bessling S, Griseri P, Amiel J, Fernandez R, Verheij J, Hofstra R, Borrego S, Lyonnet S, Ceccherini I, Gray J, Pachnis V, McCallion A, Chakravarti A. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet 2015; 96:581-96. [PMID: 25839327 DOI: 10.1016/j.ajhg.2015.02.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/20/2015] [Indexed: 10/23/2022] Open
Abstract
Innervation of the gut is segmentally lost in Hirschsprung disease (HSCR), a consequence of cell-autonomous and non-autonomous defects in enteric neuronal cell differentiation, proliferation, migration, or survival. Rare, high-penetrance coding variants and common, low-penetrance non-coding variants in 13 genes are known to underlie HSCR risk, with the most frequent variants in the ret proto-oncogene (RET). We used a genome-wide association (220 trios) and replication (429 trios) study to reveal a second non-coding variant distal to RET and a non-coding allele on chromosome 7 within the class 3 Semaphorin gene cluster. Analysis in Ret wild-type and Ret-null mice demonstrates specific expression of Sema3a, Sema3c, and Sema3d in the enteric nervous system (ENS). In zebrafish embryos, sema3 knockdowns show reduction of migratory ENS precursors with complete ablation under conjoint ret loss of function. Seven candidate receptors of Sema3 proteins are also expressed within the mouse ENS and their expression is also lost in the ENS of Ret-null embryos. Sequencing of SEMA3A, SEMA3C, and SEMA3D in 254 HSCR-affected subjects followed by in silico protein structure modeling and functional analyses identified five disease-associated alleles with loss-of-function defects in semaphorin dimerization and binding to their cognate neuropilin and plexin receptors. Thus, semaphorin 3C/3D signaling is an evolutionarily conserved regulator of ENS development whose dys-regulation is a cause of enteric aganglionosis.
Collapse
|
25
|
Liang CM, Ji DM, Yuan X, Ren LL, Shen J, Zhang HY. RET and PHOX2B genetic polymorphisms and Hirschsprung's disease susceptibility: a meta-analysis. PLoS One 2014; 9:e90091. [PMID: 24651702 PMCID: PMC3961244 DOI: 10.1371/journal.pone.0090091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 01/29/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Many publications have evaluated the correlation between RET, PHOX2B polymorphisms and Hirschsprung's disease with conflicting results. We performed this meta-analysis to clarify the association of RET, PHOX2B polymorphisms with HSCR. METHODS We searched Pubmed, Elsevier Science Direct, China National Knowledge Infrastructure database, Chinese Biomedical database, Google scholar. The combined odds ratio (OR) with 95% CI was calculated to estimate the strength of the association. Heterogeneity and publication bias were also assessed. RESULTS In total, 16 studies concerning RET and 4 studies concerning PHOX2B were included in the meta-analysis. The effects of five polymorphisms of RET (rs1800858, rs1800860, rs1800861, rs10900297, rs2435357) and one polymorphism (rs28647582) of PHOX2B were evaluated. We found a significant correlation between RET polymorphisms and HSCR. For rs1800858, the overall ORs (95% CI) of the A versus G, AA versus GG, AA/AG versus GG and AA versus GG/AG were 3.81 (2.28-6.35); 8.36 (3.45-20.25); 3.59 (1.83-7.02); and 6.60 (3.66-11.89). For rs1800861, the comparison of subjects in the G versus T, GG versus TT, GG/TG versus TT and GG versus TT/TG were 2.85(1.81-4.47); 5.38(2.68-10.80); 3.07(2.17-4.34) and 4.14(1.84-9.30) respectively. For rs10900297, the comparison results showed statistically significant. (OR(C versus A) = 5.05,95%CI = 4.16-6.13; OR(CC versus AA) = 9.73, 95%CI = 5.94-15.94; OR(CC/AC versus AA) = 5.31, 95%CI = 3.27-6.82; OR(CC versus AC/AA) = 7.06,95%CI = 5.60-8.91.) But, for rs1800860, the GG/GA versus AA did not reach statistical association (OR = 3.77, 95% CI = 0.94-15.07) and the G versus A, GG versus AA, GG versus GA/AA were 2.23 (1.60-3.11);4.56 (1.14-18.27); 2.38 (1.66-3.43) respectively. For rs2435357, the T versus C, TT versus CC, TT/TC versus CC and TT versus CC/TC were 4.53 (3.27-6.27); 11.44 (5.67-23.10); 4.04 (2.92-5.57), and 9.01(5.25-15.46).The single polymorphism of PHOX2B gene wasn't related to the risk for HSCR. CONCLUSIONS This meta-analysis shows a significant association between RET polymorphisms and HSCR.
Collapse
Affiliation(s)
- Chun-mei Liang
- Department of Hygiene Analysis and Detection, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- * E-mail: (CL); (HZ)
| | - Dong-mei Ji
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xu Yuan
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ling-ling Ren
- Department of Hygiene Analysis and Detection, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Juan Shen
- Department of Hygiene Analysis and Detection, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Hai-yan Zhang
- Department of Hygiene Analysis and Detection, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- * E-mail: (CL); (HZ)
| |
Collapse
|
26
|
Tissue specific somatic mutations and aganglionosis in Hirschsprung's disease. J Pediatr Surg 2014; 49:258-61; discussion 261. [PMID: 24528961 DOI: 10.1016/j.jpedsurg.2013.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/09/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND RET proto-oncogene intron 1 variations [e.g. SNP1 (rs2506004) and SNP2 (rs 2435357)] have been shown to be etiologically important in the pathogenesis of Hirschsprung's disease (HSCR). Although activating somatic RET rearrangements have been identified in certain tumours, this is the first study to confirm somatic gene variation in HSCR. METHODS DNA was extracted from 53 paraffin embedded tissue samples (HSCR patients n=33, multiple levels n=17), and controls (n=3). Patients were grouped into aganglionic (Group 1), ganglionated (group 2), and transitional (group 3). PCR products of RET intron 1 were screened for genetic variation by semi-automated bi-directional sequencing analysis and matched to unaffected controls from the general population. Comparison was by Fishers exact test. P <0.05 was regarded as significant. RESULTS HSCR patients included short segment (n=26), long segment colonic [(n=4 (24%)], and total colonic aganglionosis (n=3). RET intronic variations [SNP1 (rs2506004) or SNP2 (rs 2435357)] showed somatic homozygous in affected tissue in 9/12 (75%) Group 1 (aganglionic tissue) compared with 2/5 (40%) and 1/10 (10%) of groups 2 and 3 (P<0.001). Homozygous SNP2 variation was observed in all long segment versus 4/10 short segment. 50% of the short segment cases showing homozygous SNP 1 variation. CONCLUSION We report somatic mutations in the RET intron 1 region of affected HSCR tissue, confirming for the first time that somatic mutations are present in aganglionic tissue and may promote local aganglionosis through deregulated receptor activity. Detailed understanding of the somatic genetic events that drive congenital aganglionosis may have bearing on diagnosis and therapy.
Collapse
|
27
|
Friedmacher F, Puri P. Hirschsprung's disease associated with Down syndrome: a meta-analysis of incidence, functional outcomes and mortality. Pediatr Surg Int 2013; 29:937-46. [PMID: 23943251 DOI: 10.1007/s00383-013-3361-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Down syndrome (DS) is the most frequent chromosomal abnormality associated with Hirschsprung's disease (HD). It has often been suggested that this association results in poorer outcomes with regard to postoperative complications, continence and mortality. On the other hand, the results after surgical treatment of HD in patients with DS are reportedly similar to those in cases with HD alone. The objective of this study was to determine the incidence of DS in cohorts with HD, and to compare pre-/postoperative complications, functional outcome and mortality between cohorts with and without coexisting DS. METHODS A systematic literature-based search for relevant cohorts was conducted using multiple online databases. The number of DS cases in HD cohorts was recorded and data on pre-/postoperative complications, functional outcome and mortality were extracted. Pooled odds ratios with 95% confidence intervals were calculated using meta-analysis methodology. RESULTS Sixty-one articles met defined inclusion criteria, comprising data from 16,497 patients with HD. The overall incidence of DS among them was 7.32%. Vice versa, the incidence of HD in 29,418 patients with DS was 2.62%. There were no significant differences regarding the male-to-female ratio between cohorts with and without coexisting DS (4:1 vs. 3:1 respectively; P = 0.5376). The rate of additional comorbidities was significantly higher in HD associated with DS (P < 0.0001). Recto-sigmoid HD was in both cohorts the most common type of HD (P = 0.8231). Long-segment HD was significantly more frequent in HD with coexisting DS (P = 0.0267), while total colonic aganglionosis occurred significantly more often in HD without DS (P = 0.0003). There were no significant differences in preoperative constipation/obstruction (P = 0.5967), but the rate of preoperative enterocolitis was significantly higher in HD associated with DS (P = 0.0486). Postoperative complications such as recurrent enterocolitis (P = 0.0112) and soiling (P = 0.0002) were significantly more frequent in HD with coexisting DS. Although not statistically significant, fecal incontinence (P = 0.1014) and persistent constipation (P = 0.1670) occurred more often after surgical treatment of HD with DS. The mortality rate was significantly higher in HD associated with DS (P < 0.0001). CONCLUSIONS The association of HD with DS is well-recognized with an incidence of 7.32%. A large number of patients with DS continue to have persistent bowel dysfunction after surgical treatment of HD. Our data provide strong evidence that the coexistence of HD and DS is associated with higher rates of pre-/postoperative enterocolitis, poorer functional outcomes and increased mortality.
Collapse
Affiliation(s)
- Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | | |
Collapse
|
28
|
Jannot AS, Pelet A, Henrion-Caude A, Chaoui A, Masse-Morel M, Arnold S, Sanlaville D, Ceccherini I, Borrego S, Hofstra RMW, Munnich A, Bondurand N, Chakravarti A, Clerget-Darpoux F, Amiel J, Lyonnet S. Chromosome 21 scan in Down syndrome reveals DSCAM as a predisposing locus in Hirschsprung disease. PLoS One 2013; 8:e62519. [PMID: 23671607 PMCID: PMC3646051 DOI: 10.1371/journal.pone.0062519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/20/2013] [Indexed: 12/19/2022] Open
Abstract
Hirschsprung disease (HSCR) genetics is a paradigm for the study and understanding of multigenic disorders. Association between Down syndrome and HSCR suggests that genetic factors that predispose to HSCR map to chromosome 21. To identify these additional factors, we performed a dose-dependent association study on chromosome 21 in Down syndrome patients with HSCR. Assessing 10,895 SNPs in 26 Caucasian cases and their parents led to identify two associated SNPs (rs2837770 and rs8134673) at chromosome-wide level. Those SNPs, which were located in intron 3 of the DSCAM gene within a 19 kb-linkage disequilibrium block region were in complete association and are consistent with DSCAM expression during enteric nervous system development. We replicated the association of HSCR with this region in an independent sample of 220 non-syndromic HSCR Caucasian patients and their parents. At last, we provide the functional rationale to the involvement of DSCAM by network analysis and assessment of SOX10 regulation. Our results reveal the involvement of DSCAM as a HSCR susceptibility locus, both in Down syndrome and HSCR isolated cases. This study further ascertains the chromosome-scan dose-dependent methodology used herein as a mean to map the genetic bases of other sub-phenotypes both in Down syndrome and other aneuploidies.
Collapse
Affiliation(s)
- Anne-Sophie Jannot
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
- Département de Génétique, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Anna Pelet
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
- Département de Génétique, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Alexandra Henrion-Caude
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
- Département de Génétique, Université Paris Descartes, Faculté de Médecine, Paris, France
| | | | - Marine Masse-Morel
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
- Département de Génétique, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Stacey Arnold
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Damien Sanlaville
- HCL, Service de génétique, Bron, France
- INSERM U-1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Equipe TIGER, Lyon, France
| | | | - Salud Borrego
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- CIBER de Enfermedades Raras, ISCIII, Sevilla, Spain
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, ErasmusMC, University of Rotterdam, Rotterdam, The Netherlands
| | - Arnold Munnich
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
- Département de Génétique, Université Paris Descartes, Faculté de Médecine, Paris, France
| | | | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Françoise Clerget-Darpoux
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
- Département de Génétique, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Jeanne Amiel
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
- Département de Génétique, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Stanislas Lyonnet
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
- Département de Génétique, Université Paris Descartes, Faculté de Médecine, Paris, France
| |
Collapse
|
29
|
Abstract
Total colonic aganglionosis (TCA) is a relatively uncommon form of Hirschsprung disease (HSCR), occurring in approximately 2%-13% of cases. It can probably be classified as TCA (defined as aganglionosis extending from the anus to at least the ileocecal valve, but not >50 cm proximal to the ileocecal valve) and total colonic and small bowel aganglionosis, which may involve a very long segment of aganglionosis. It is not yet clear whether TCA merely represents a long form of HSCR or a different expression of the disease. There are many differences between TCA and other forms of HSCR, which require explanation if its ubiquitous clinical features are to be understood. Clinically, TCA appears to represent a different spectrum of disease in terms of presentation and difficulties that may be experienced in diagnosis, suggesting a different pathophysiology from the more common forms of HSCR. There is also some evidence suggesting that instead of being purely congenital, it may represent certain different pathophysiologic mechanisms. This study, in addition to reviewing current understanding and differences between TCA and the more frequently encountered rectosigmoid (or short-segment) expression, correlates them with what is currently known about the genetic and molecular biological background. Moreover, it reviews current outcomes to find consensus on management.
Collapse
Affiliation(s)
- Samuel W Moore
- Division of Paediatric Surgery, University of Stellenbosch, Tygerberg, South Africa.
| |
Collapse
|
30
|
Moore SW. Chromosomal and related Mendelian syndromes associated with Hirschsprung's disease. Pediatr Surg Int 2012; 28:1045-58. [PMID: 23001136 DOI: 10.1007/s00383-012-3175-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
Hirschsprung's disease (HSCR) is a fairly frequent cause of intestinal obstruction in children. It is characterized as a sex-linked heterogonous disorder with variable severity and incomplete penetrance giving rise to a variable pattern of inheritance. Although Hirschsprung's disease occurs as an isolated phenotype in at least 70% of cases, it is not infrequently associated with a number of congenital abnormalities and associated syndromes, demonstrating a spectrum of congenital anomalies. Certain of these syndromic phenotypes have been linked to distinct genetic sites, indicating underlying genetic associations of the disease and probable gene-gene interaction, in its pathogenesis. These associations with HSCR include Down's syndrome and other chromosomal anomalies, Waardenburg syndrome and other Dominant sensorineural deafness, the Congenital Central Hypoventilation and Mowat-Wilson and other brain-related syndromes, as well as the MEN2 and other tumour associations. A number of other autosomal recessive syndromes include the Shah-Waardenburg, the Bardet-Biedl and Cartilage-hair hypoplasia, Goldberg-Shprintzen syndromes and other syndromes related to cholesterol and fat metabolism among others. The genetics of Hirschsprung's disease are highly complex with the majority of known genetic sites relating to the main susceptibility pathways (RET an EDNRB). Non-syndromic non-familial, short-segment HSCR appears to represent a non-Mendelian condition with variable expression and sex-dependent penetrance. Syndromic and familial forms, on the other hand, have complex patterns of inheritance and being reported as autosomal dominant, recessive and polygenic patterns of inheritance. The phenotypic variability and incomplete penetrance observed in Hirschsprung's disease could also be explained by the involvement of modifier genes, especially in its syndromic forms. In this review, we look at the chromosomal and Mendelian associations and their underlying signalling pathways, to obtain a better understanding of the pathogenetic mechanisms involved in developing aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- S W Moore
- Division of Pediatric Surgery, Department of Surgical Sciences, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, South Africa.
| |
Collapse
|
31
|
Jones KL, Pivnick EK, Hines-Dowell S, Weese-Mayer DE, Berry-Kravis EM, Santiago T, Nnorom C, Pourcyrous M. A triple threat: Down syndrome, congenital central hypoventilation syndrome, and Hirschsprung disease. Pediatrics 2012; 130:e1382-4. [PMID: 23045564 DOI: 10.1542/peds.2011-3844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is recognized by characteristic facial features, intellectual disability, and an increased risk for cardiac malformations and duodenal atresia. Recently, Hirschsprung disease (HSCR), or congenital aganglionic megacolon, has been seen more often among patients with DS. Given the systemic nature of DS-related features, it is natural to attribute neonatal complications to the chromosomal aberration. We describe a biracial male infant with DS who had significantly delayed defecation and required continuous ventilator support, but had no primary cardiac or lung disease. Subsequent evaluations confirmed total colonic aganglionosis. Because we were unable to safely extubate the infant, a diagnosis of congenital central hypoventilation syndrome (CCHS) was considered and confirmed by molecular analysis of the PHOX2B gene, revealing a heterozygous polyalanine repeat-expansion mutation containing 27 repeats (normal gene contains 20 repeats). HSCR coexisting with CCHS is known as Haddad syndrome. This is the first reported case with co-occurrence of DS, CCHS, and HSCR.
Collapse
Affiliation(s)
- Kelly L Jones
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gockel HR, Gockel I, Schimanski CC, Schier F, Schumacher J, Nöthen MM, Lang H, Müller M, Eckardt AJ, Eckardt VF. Etiopathological aspects of achalasia: lessons learned with Hirschsprung's disease. Dis Esophagus 2012; 25:566-72. [PMID: 22050474 DOI: 10.1111/j.1442-2050.2011.01277.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The etiology of primary esophageal achalasia is largely unknown. There is increasing evidence that genetic alterations might play an important but underestimated role. Current knowledge of the genetic base of Hirschsprung's disease in contrast is far more detailed. The two enteric neuropathies have several clinical features in common. This association may also exist on a cellular and molecular level. The aim of this review is to enlighten those etiopathogenetic concepts of Hirschsprung's disease that seem to be useful in uncovering the pathological processes causing achalasia. Three aspects are looked at: (i) the genetic base of Hirschsprung's disease, particularly its major susceptibility gene rearranged during transfection and its potential reference to achalasia; (ii) the altered motor functions in both conditions with loss of inhibitory innervation and interstitial cell pathology; and (iii) the involvement of these motility disorders in genetic syndromes.
Collapse
Affiliation(s)
- H R Gockel
- Department of General and Abdominal Surgery, Johannes Gutenberg University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tang CSM, Cheng G, So MT, Yip BHK, Miao XP, Wong EHM, Ngan ESW, Lui VCH, Song YQ, Chan D, Cheung K, Yuan ZW, Lei L, Chung PHY, Liu XL, Wong KKY, Marshall CR, Scherer S, Cherny SS, Sham PC, Tam PKH, Garcia-Barceló MM. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3. PLoS Genet 2012; 8:e1002687. [PMID: 22589734 PMCID: PMC3349728 DOI: 10.1371/journal.pgen.1002687] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/20/2012] [Indexed: 01/23/2023] Open
Abstract
Hirschsprung disease (HSCR) is a congenital disorder characterized by aganglionosis of the distal intestine. To assess the contribution of copy number variants (CNVs) to HSCR, we analysed the data generated from our previous genome-wide association study on HSCR patients, whereby we identified NRG1 as a new HSCR susceptibility locus. Analysis of 129 Chinese patients and 331 ethnically matched controls showed that HSCR patients have a greater burden of rare CNVs (p = 1.50×10−5), particularly for those encompassing genes (p = 5.00×10−6). Our study identified 246 rare-genic CNVs exclusive to patients. Among those, we detected a NRG3 deletion (p = 1.64×10−3). Subsequent follow-up (96 additional patients and 220 controls) on NRG3 revealed 9 deletions (combined p = 3.36×10−5) and 2 de novo duplications among patients and two deletions among controls. Importantly, NRG3 is a paralog of NRG1. Stratification of patients by presence/absence of HSCR–associated syndromes showed that while syndromic–HSCR patients carried significantly longer CNVs than the non-syndromic or controls (p = 1.50×10−5), non-syndromic patients were enriched in CNV number when compared to controls (p = 4.00×10−6) or the syndromic counterpart. Our results suggest a role for NRG3 in HSCR etiology and provide insights into the relative contribution of structural variants in both syndromic and non-syndromic HSCR. This would be the first genome-wide catalog of copy number variants identified in HSCR. Copy number variations (CNVs) are significant genetic risk factors in disease pathogenesis and represent an important portion of missing heritability for some human diseases, making their discovery essential for the identification of genes and risk factors for a wide range of diseases, including Hirschsprung disease (HSCR, congenital colon aganglionosis). Since the discovery of the major HSCR gene, RET, a number of rare mutations have been reported in RET and other genes involved in the development of the enteric nervous system. However, these mutations contribute to only a small proportion of the disease susceptibility. Taking advantage of the recent technical and methodological advances, we have examined the contribution of CNVs to the disease. We have found that HSCR patients are enriched with CNVs encompassing genes. In particular, we found that deletions of NRG3, a paralog of the previously identified HSCR–susceptibility gene NRG1, were associated with the HSCR phenotype.
Collapse
Affiliation(s)
- Clara Sze-Man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guo Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Ting So
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Benjamin Hon-Kei Yip
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao-Ping Miao
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Emily Hoi-Man Wong
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Chi-Hang Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - You-Qiang Song
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Danny Chan
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth Cheung
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhen-Wei Yuan
- Department of Paediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Liu Lei
- Department of Surgery, Shenzhen Children's Hospital, Shenzhen, China
| | - Patrick Ho-Yu Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue-Lai Liu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth Kak-Yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christian R. Marshall
- Program in Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steve Scherer
- Program in Genetics and Genome Biology and The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- The McLaughlin Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stacey S. Cherny
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Genome Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pak-Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Genome Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Maria-Mercè Garcia-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
34
|
Yin H, Boyd T, Pacheco MC, Schonfeld D, Bove KE. Rectal biopsy in children with Down syndrome and chronic constipation: Hirschsprung disease vs non-hirschsprung disease. Pediatr Dev Pathol 2012; 15:87-95. [PMID: 21991983 DOI: 10.2350/11-01-0957-oa.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hirschsprung disease (HD) is reported in patients with Down syndrome with a frequency between 2% and 10%. The incidence of HD is 2% in our community-based registry that contains >700 patients with Down syndrome. We reviewed rectal biopsy findings in 32 of these patients who had suction rectal biopsy performed between 1980 and 2009 to investigate the cause of chronic constipation. We confirmed that 15 patients had diagnostic histologic and histochemical features of HD. More challenging were findings in 5 of 17 patients, in whom ganglia coexisted with equivocal acetylcholinesterase reaction patterns and/or hypertrophic submucosal nerves. In this retrospective study, we were able to resolve most of these discrepant findings by demonstrating normal calretinin-positive nerve twigs in the lamina propria and muscularis mucosae. The clinical significance of these unexpected findings in suction rectal biopsy specimens that did not satisfy strict criteria for a tissue diagnosis of HD is unknown. We speculate that a minority of these patients have transition zone morphology or an incomplete/atypical form of HD. Further investigations may help resolve discrepancies that arise when suction rectal biopsy is used to investigate chronic constipation in Down syndrome.
Collapse
Affiliation(s)
- Hong Yin
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
35
|
Moore SW, Zaahl MG. Intronic RET gene variants in Down syndrome-associated Hirschsprung disease in an African population. J Pediatr Surg 2012; 47:299-302. [PMID: 22325379 DOI: 10.1016/j.jpedsurg.2011.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/10/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND Clinical association between Hirschsprung disease (HD) and Down syndrome (DS) is well established. RET promoter and intron 1 variations have been shown to interfere with RET function, increasing the risk of HD pathogenesis. The intronic single-nucleotide polymorphism 2 (SNP2 [rs2435357]) has been associated with DS-associated HD (DS-HD). This study focuses on variations of specific RET intron, 1 SNPs (viz, SNP1 [rs2506004] and SNP2 [rs2435357]) in DS-HD. PATIENTS AND METHODS DNA was extracted from paraffin-embedded tissue samples and whole blood in 14 patients with DS with histologically proven HD. Polymerase chain reaction products of RET intron 1 were screened for genetic variation and matched to DS and controls from the general population. RESULTS Thirty-seven blood and/or tissue from 14 patients with DS-HD were investigated. RET intronic variations (SNP1 [rs2506004] or SNP2 [rs2435357]) were detected in all patients. SNP1 was detected in all patients, was heterozygous in 9, and homozygous in 5 samples (all aganglionic and 1 total colonic aganglionosis). SNP2 was absent in 6 patients, heterozygous in 6, and homozygous in 3. Three DS controls had a heterozygous SNP1. Homozygous intronic SNP RET variations were related to aganglionic tissue but not normally ganglionated or transitional zone from the same individual. CONCLUSIONS Potential disease-related RET mutations were identified in the intron region in 80% of patients with DS-HD investigated, suggesting a causal relationship. The presence of a homozygous form in the aganglionic tissue probably represents a somatic mutation, which suggests local microenvironmental factors in HD pathogenesis.
Collapse
Affiliation(s)
- Samuel W Moore
- Division of Paediatric Surgery, Faculty of Medicine, University of Stellenbosch, P.O. Box 19063, 7505, Tygerberg, South Africa.
| | | |
Collapse
|
36
|
Panza E, Knowles CH, Graziano C, Thapar N, Burns AJ, Seri M, Stanghellini V, De Giorgio R. Genetics of human enteric neuropathies. Prog Neurobiol 2012; 96:176-89. [PMID: 22266104 DOI: 10.1016/j.pneurobio.2012.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/13/2011] [Accepted: 01/05/2012] [Indexed: 01/10/2023]
Abstract
Knowledge of molecular mechanisms that underlie development of the enteric nervous system has greatly expanded in recent decades. Enteric neuropathies related to aberrant genetic development are thus becoming increasingly recognized. There has been no recent review of these often highly morbid disorders. This review highlights advances in knowledge of the molecular pathogenesis of these disorders from a clinical perspective. It includes diseases characterized by an infantile aganglionic Hirschsprung phenotype and those in which structural abnormalities are less pronounced. The implications for diagnosis, screening and possible reparative approaches are presented.
Collapse
Affiliation(s)
- Emanuele Panza
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Currier DG, Polk RC, Reeves RH. A Sonic hedgehog (Shh) response deficit in trisomic cells may be a common denominator for multiple features of Down syndrome. PROGRESS IN BRAIN RESEARCH 2012; 197:223-36. [PMID: 22541295 PMCID: PMC4405118 DOI: 10.1016/b978-0-444-54299-1.00011-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog (HH) family of growth factors is involved in many aspects of growth and development, from the establishment of left-right axes at gastrulation to the patterning and formation of multiple structures in essentially every tissue, to the maintenance and regulation of stem cell populations in adults. Sonic hedgehog (Shh) in particular acts as a mitogen, regulating proliferation of target cells, a growth factor that triggers differentiation in target populations, and a morphogen causing cells to respond differently based on their positions along a spatial and temporal concentration gradient. Given its very broad range of effects in development, it is not surprising that many of the structures affected by a disruption in Shh signaling are also affected in Down syndrome (DS). However, recent studies have shown that trisomic cerebellar granule cell precursors have a deficit, compared to their euploid counterparts, in their response to the mitogenic effects of Shh. This deficit substantially contributes to the hypocellular cerebellum in mouse models that parallels the human DS phenotype and can be corrected in early development by a single exposure to a small-molecule agonist of the Shh pathway. Here, we consider how an attenuated Shh response might affect several aspects of development to produce multiple phenotypic outcomes observed in DS.
Collapse
Affiliation(s)
- Duane G. Currier
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Renita C. Polk
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Roger H. Reeves
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
38
|
Martinelli M, Staiano A. Motility problems in the intellectually challenged child, adolescent, and young adult. Gastroenterol Clin North Am 2011; 40:765-75, viii. [PMID: 22100116 DOI: 10.1016/j.gtc.2011.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gastrointestinal (GI) motility problems represent an important cause of morbidity and sometimes mortality in patients affected by developmental disorders. This article describes motility disorders in Down syndrome, cerebral palsy, familial dysautonomia, and Williams syndrome. These problems do not often receive appropriate attention, either because priority is given to other medical aspects of the disorder, or because of the inability of affected children to communicate their symptoms. A better approach to the diagnosis and treatment of GI disorders is required to improve quality of life and minimize morbidity and mortality among patients with developmental disorders.
Collapse
Affiliation(s)
- Massimo Martinelli
- Department of Pediatrics, University of Naples Federico II, Via Pansini No. 5, 80131, Naples, Italy
| | | |
Collapse
|
39
|
Jiang Q, Ho YY, Hao L, Nichols Berrios C, Chakravarti A. Copy number variants in candidate genes are genetic modifiers of Hirschsprung disease. PLoS One 2011; 6:e21219. [PMID: 21712996 PMCID: PMC3119685 DOI: 10.1371/journal.pone.0021219] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/23/2011] [Indexed: 01/15/2023] Open
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy characterized by absence of intramural ganglion cells along variable lengths of the gastrointestinal tract. The HSCR phenotype is highly variable with respect to gender, length of aganglionosis, familiality and the presence of additional anomalies. By molecular genetic analysis, a minimum of 11 neuro-developmental genes (RET, GDNF, NRTN, SOX10, EDNRB, EDN3, ECE1, ZFHX1B, PHOX2B, KIAA1279, TCF4) are known to harbor rare, high-penetrance mutations that confer a large risk to the bearer. In addition, two other genes (RET, NRG1) harbor common, low-penetrance polymorphisms that contribute only partially to risk and can act as genetic modifiers. To broaden this search, we examined whether a set of 67 proven and candidate HSCR genes harbored additional modifier alleles. In this pilot study, we utilized a custom-designed array CGH with ∼33,000 test probes at an average resolution of ∼185 bp to detect gene-sized or smaller copy number variants (CNVs) within these 67 genes in 18 heterogeneous HSCR patients. Using stringent criteria, we identified CNVs at three loci (MAPK10, ZFHX1B, SOX2) that are novel, involve regulatory and coding sequences of neuro-developmental genes, and show association with HSCR in combination with other congenital anomalies. Additional CNVs are observed under relaxed criteria. Our research suggests a role for CNVs in HSCR and, importantly, emphasizes the role of variation in regulatory sequences. A much larger study will be necessary both for replication and for identifying the full spectrum of small CNV effects.
Collapse
Affiliation(s)
- Qian Jiang
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yen-Yi Ho
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Li Hao
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Courtney Nichols Berrios
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Hirschsprung's disease (HSCR) is characterized by absence of the enteric nervous system in a variable portion of the distal gut. Affected infants usually present in the days after birth with bowel obstruction. Despite surgical advances, long-term outcomes remain variable. In the last 2 decades, great advances have been made in understanding the genes and molecular biological mechanisms that underlie the disease. In addition, our understanding of normal enteric nervous system development and how motility develops in the developing fetus and infant has also increased. This review aims to draw these strands together to explain the developmental and biological basis of HSCR, and how this knowledge may be used in the future to aid children with HSCR.
Collapse
Affiliation(s)
- Simon E Kenny
- Department of Paediatric Surgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| | | | | |
Collapse
|
41
|
Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 2010; 87:60-74. [PMID: 20598273 DOI: 10.1016/j.ajhg.2010.06.007] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 05/22/2010] [Accepted: 06/11/2010] [Indexed: 01/31/2023] Open
Abstract
The major gene for Hirschsprung disease (HSCR) encodes the receptor tyrosine kinase RET. In a study of 690 European- and 192 Chinese-descent probands and their parents or controls, we demonstrate the ubiquity of a >4-fold susceptibility from a C-->T allele (rs2435357: p = 3.9 x 10(-43) in European ancestry; p = 1.1 x 10(-21) in Chinese samples) that probably arose once within the intronic RET enhancer MCS+9.7. With in vitro assays, we now show that the T variant disrupts a SOX10 binding site within MCS+9.7 that compromises RET transactivation. The T allele, with a control frequency of 20%-30%/47% and case frequency of 54%-62%/88% in European/Chinese-ancestry individuals, is involved in all forms of HSCR. It is marginally associated with proband gender (p = 0.13) and significantly so with length of aganglionosis (p = 7.6 x 10(-5)) and familiality (p = 6.2 x 10(-4)). The enhancer variant is more frequent in the common forms of male, short-segment, and simplex families whereas multiple, rare, coding mutations are the norm in the less common and more severe forms of female, long-segment, and multiplex families. The T variant also increases penetrance in patients with rare RET coding mutations. Thus, both rare and common mutations, individually and together, make contributions to the risk of HSCR. The distribution of RET variants in diverse HSCR patients suggests a "cellular-recessive" genetic model where both RET alleles' function is compromised. The RET allelic series, and its genotype-phenotype correlations, shows that success in variant identification in complex disorders may strongly depend on which patients are studied.
Collapse
|
42
|
Abstract
Hirschsprung disease (HD) and anorectal malformations (ARMs) result from alterations in hindgut development. It has long been recognized that both recur in families and thus result, at least in part, from genetic factors. Progress in the understanding of the genetic basis of HD has been made by the application of findings from genetic animal models of altered enteric nervous system development to human beings. Several genes have been shown to be important for human enteric nervous system development, and current work is progressing to identify genetic interactions that may explain the variable phenotype of HD. By contrast, understanding of the genetic factors underlying ARMs is much less developed. We and others have shown that genetic factors play an important role in the pathogenesis of ARMs, and many mouse genetic models suggest molecular pathways that may be altered in ARMs.
Collapse
Affiliation(s)
- Erin Mundt
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
43
|
Ieiri S, Higashi M, Teshiba R, Saeki I, Esumi G, Akiyoshi J, Nakatsuji T, Taguchi T. Clinical features of Hirschsprung's disease associated with Down syndrome: a 30-year retrospective nationwide survey in Japan. J Pediatr Surg 2009; 44:2347-51. [PMID: 20006024 DOI: 10.1016/j.jpedsurg.2009.07.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2022]
Abstract
PURPOSE To identify the clinical features in diagnosis and treatment of Hirschsprung's disease (HD) associated with Down syndrome (DS), the authors retrospectively analyzed data for patients with DS from the past 3 nationwide surveys in Japan. This survey was already approved by the Japanese Society of Pediatric Surgeons. METHODS Patient data were collected in 3 phases-phase I (1978-1982), n = 47; phase II (1988-1992), n = 79; and phase III (1998-2002), n = 90. In total, data on 216 patients (5.6%) of 3852 were collected and analyzed. RESULTS The incidence of DS in patients with HD was 2.9%, 7.1%, and 8.2% in phases I, II, and III, respectively, with a corresponding male/female ratio of 5:1, 2.4:1, and 5:1. The ratio of the extent of aganglionosis was nearly consistent across all phases. In phases I, II, and III, the incidence of total colonic aganglionosis was 2.1%, 0%, and 2.2%; and that of cardiovascular anomalies, 36.1%, 45.6%, and 55.6%; and that of preoperative enterocolitis, 31.0%, 26.6%, and 24.4%. The 2 most common surgical procedures were the Soave procedure, including transanal endorectal pull-through, and Duhamel procedure including Z-shaped anastomosis. The mortality rate decreased over time, from 26.1% in phase I to 11.4% in phase II and 7.8% in phase III. Almost all mortality cases were associated with cardiovascular anomalies: 54.5%, 62.5%, and 85.7% in phases I, II, and III, respectively. CONCLUSIONS The incidence of HD with DS has increased over time. The number of male patients and cardiac anomalies has also increased in the last 10 years. Total colonic aganglionosis was rare. A marked decrease in the overall mortality rate was observed.
Collapse
Affiliation(s)
- Satoshi Ieiri
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|