1
|
Stepanova A, Ogorodova N, Kadyshev V, Shchagina O, Kutsev S, Polyakov A. A Molecular Genetic Analysis of RPE65-Associated Forms of Inherited Retinal Degenerations in the Russian Federation. Genes (Basel) 2023; 14:2056. [PMID: 38002999 PMCID: PMC10671290 DOI: 10.3390/genes14112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogenic variants in the RPE65 gene cause the only known form of inherited retinal degenerations (IRDs) that are prone to gene therapy. The current study is aimed at the evaluation of the prevalence of RPE65-associated retinopathy in the Russian Federation, the characterization of known variants in the RPE65 gene, and the establishment of the specificities of the mutation spectrum in Russian patients. METHODS The analysis was carried out on blood samples obtained from 1053 non-related IRDs patients. The analysis, which consisted of 211 genes, was carried out based on the method of massive parallel sequencing (MPS) for all probands. Variant validation, as well as biallelic status verification, were carried out using direct automated Sanger sequencing. The number of copies of RPE65 exons 1-14 was analyzed with quantitative MLPA using an MRC-Holland SALSA MLPA probemix. RESULTS Out of 1053 non-related patients, a molecular genetic diagnosis of IRDs has been confirmed in 474 cases, including 25 (5.3%) patients with RPE65-associated retinopathy. We detected 26 variants in the RPE65 gene, nine of which have not been previously described in the literature. The most common mutations in the Russian population were c.304G>T/p.(Glu102*), c.370C>T/p.(Arg124*), and c.272G>A/p.(Arg91Gln), which comprised 41.8% of all affected chromosomes. CONCLUSIONS The current study shows that pathogenic variants in the RPE65 gene contribute significantly to the pathogenesis of IRDs and comprise 5.3% of all patients with a confirmed molecular genetic diagnosis. This study allowed for the formation of a cohort for target therapy of the disorder; such therapy has already been carried out for some patients.
Collapse
Affiliation(s)
- Anna Stepanova
- Research Centre for Medical Genetics, Moscow 115478, Russia
| | | | | | | | | | | |
Collapse
|
2
|
Wu J, Sun Z, Zhang DW, Liu HL, Li T, Zhang S, Wu J. Development of a novel prediction model based on protein structure for identifying RPE65-associated inherited retinal disease (IRDs) of missense variants. PeerJ 2023; 11:e15702. [PMID: 37547722 PMCID: PMC10404030 DOI: 10.7717/peerj.15702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/14/2023] [Indexed: 08/08/2023] Open
Abstract
Purpose This study aimed to develop a prediction model to classify RPE65-mediated inherited retinal disease (IRDs) based on protein secondary structure and to analyze phenotype-protein structure correlations of RPE65 missense variants in a Chinese cohort. Methods Pathogenic or likely pathogenic missense variants of RPE65 were obtained from UniProt, ClinVar, and HGMD databases. The three-dimensional structure of RPE65 was retrieved from the Protein Data Bank (PDB) and modified with Pymol software. A novel prediction model was developed using LASSO regression and multivariate logistic regression to identify RPE65-associated IRDs. A total of 21 Chinese probands with RPE65 variants were collected to analyze phenotype-protein structure correlations of RPE65 missense variants. Results The study found that both pathogenic and population missense variants were associated with structural features of RPE65. Pathogenic variants were linked to sheet, β-sheet, strands, β-hairpins, Fe2+ (iron center), and active site cavity, while population variants were related to helix, loop, helices, and helix-helix interactions. The novel prediction model showed accuracy and confidence in predicting the disease type of RPE65 variants (AUC = 0.7531). The study identified 25 missense variants in Chinese patients, accounting for 72.4% of total mutations. A significant correlation was observed between clinical characteristics of RPE65-associated IRDs and changes in amino acid type, specifically for missense variants of F8 (H68Y, P419S). Conclusion The study developed a novel prediction model based on the protein structure of RPE65 and investigated phenotype-protein structure correlations of RPE65 missense variants in a Chinese cohort. The findings provide insights into the precise diagnosis of RPE65-mutated IRDs.
Collapse
Affiliation(s)
- Jiawen Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Zhongmou Sun
- University of Rochester School of Medicine and Dentistry, New York, United States of America
| | - Dao wei Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Hong-Li Liu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Ting Li
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
3
|
Stingl K, Kempf M, Jung R, Kortüm F, Righetti G, Reith M, Dimopoulos S, Ott S, Kohl S, Stingl K. Therapy with voretigene neparvovec. How to measure success? Prog Retin Eye Res 2023; 92:101115. [PMID: 36096933 DOI: 10.1016/j.preteyeres.2022.101115] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023]
Abstract
Retinal gene supplementation therapy such as the first approved one, voretigene neparvovec, delivers a functioning copy of the missing gene enabling the protein transcription in retinal cells and restore visual functions. After gene supplementation for the genetic defect, a complex network of functional regeneration is the consequence, whereas the extent is very individualized. Diagnostic and functional testings that have been used routinely by ophthalmologists so far to define the correct diagnosis, cannot be applied in the new context of defining small, sometimes subtle changes in visual functions. New view on retinal diagnostics is needed to understand this processes that define safety and efficacy of the treatment. Not only does vision have many aspects that must be addressed by specific evaluations and imaging techniques, but objective readouts of local retinal function for rods and cones separately have been an unmet need until recently. A reliable test-retest variability is necessary in rare diseases such as inherited retinal dystrophies, because statistics are often not applicable due to a low number of participants. Methods for a reliable individual evaluation of the therapy success are needed. In this manuscript we present an elaboration on retinal diagnostics combining psychophysics (eg. full-field stimulus threshold or dark adapted perimetry) as well as objective measures for local retinal function (eg. photopic and scotopic chromatic pupil campimetry) and retinal imaging for a meaningful workflow to apply in evaluation of the individual success in patients receiving gene therapy for photoreceptor diseases.
Collapse
Affiliation(s)
- Krunoslav Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| | - Melanie Kempf
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| | - Ronja Jung
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Friederike Kortüm
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Giulia Righetti
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Milda Reith
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Spyridon Dimopoulos
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Saskia Ott
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
4
|
Aoun M, Passerini I, Chiurazzi P, Karali M, De Rienzo I, Sartor G, Murro V, Filimonova N, Seri M, Banfi S. Inherited Retinal Diseases Due to RPE65 Variants: From Genetic Diagnostic Management to Therapy. Int J Mol Sci 2021; 22:7207. [PMID: 34281261 PMCID: PMC8268668 DOI: 10.3390/ijms22137207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogeneous group of conditions that include retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EO[S]RD), which differ in severity and age of onset. IRDs are caused by mutations in >250 genes. Variants in the RPE65 gene account for 0.6-6% of RP and 3-16% of LCA/EORD cases. Voretigene neparvovec is a gene therapy approved for the treatment of patients with an autosomal recessive retinal dystrophy due to confirmed biallelic RPE65 variants (RPE65-IRDs). Therefore, the accurate molecular diagnosis of RPE65-IRDs is crucial to identify 'actionable' genotypes-i.e., genotypes that may benefit from the treatment-and is an integral part of patient management. To date, hundreds of RPE65 variants have been identified, some of which are classified as pathogenic or likely pathogenic, while the significance of others is yet to be established. In this review, we provide an overview of the genetic diagnostic workup needed to select patients that could be eligible for voretigene neparvovec treatment. Careful clinical characterization of patients by multidisciplinary teams of experts, combined with the availability of next-generation sequencing approaches, can accelerate patients' access to available therapeutic options.
Collapse
Affiliation(s)
- Manar Aoun
- Novartis Farma, Largo Boccioni 1, 21040 Origgio, Italy;
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, 50134 Florence, Italy;
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, UOC Genetica Medica, 00168 Roma, Italy
| | - Marianthi Karali
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Irene De Rienzo
- Department of Ophthalmology, AOU-Careggi, 50234 Florence, Italy;
| | - Giovanna Sartor
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Vittoria Murro
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Eye Clinic Careggi Teaching Hospital, 50234 Florence, Italy;
| | | | - Marco Seri
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Surgical and Medical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
5
|
Pierrache LHM, Ghafaryasl B, Khan MI, Yzer S, van Genderen MM, Schuil J, Boonstra FN, Pott JWR, de Faber JTHN, Tjon-Fo-Sang MJH, Vermeer KA, Cremers FPM, Klaver CCW, van den Born LI. LONGITUDINAL STUDY OF RPE65-ASSOCIATED INHERITED RETINAL DEGENERATIONS. Retina 2021; 40:1812-1828. [PMID: 32032261 DOI: 10.1097/iae.0000000000002681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To study the disease course of RPE65-associated inherited retinal degenerations (IRDs) as a function of the genotype, define a critical age for blindness, and identify potential modifiers. METHODS Forty-five patients with IRD from 33 families with biallelic RPE65 mutations, 28 stemming from a genetic isolate. We collected retrospective data from medical charts. Coexisting variants in 108 IRD-associated genes were identified with Molecular Inversion Probe analysis. RESULTS Most patients were diagnosed within the first years of life. Daytime visual function ranged from near-normal to blindness in the first four decades and met WHO criteria for blindness for visual acuity and visual field in the fifth decade. p.(Thr368His) was the most common variant (54%). Intrafamilial variability and interfamilial variability in disease severity and progression were observed. Molecular Inversion Probe analysis confirmed all RPE65 variants and identified one additional variant in LRAT and one in EYS in two separate patients. CONCLUSION All patients with RPE65-associated IRDs developed symptoms within the first year of life. Visual function in childhood and adolescence varied but deteriorated inevitably toward blindness after age 40. In this study, genotype was not predictive of clinical course. The variance in severity of disease could not be explained by double hits in other IRD genes.
Collapse
Affiliation(s)
- Laurence H M Pierrache
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Babak Ghafaryasl
- Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands.,Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Muhammad I Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Susanne Yzer
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands
| | - Maria M van Genderen
- Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, the Netherlands.,Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - José Schuil
- Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, the Netherlands
| | - F Nienke Boonstra
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.,Royal Dutch Visio, National Foundation for the Visually Impaired and Blind, Huizen, the Netherlands; and
| | - Jan W R Pott
- Department of Ophthalmology, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Centre Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, the Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Sodi A, Banfi S, Testa F, Della Corte M, Passerini I, Pelo E, Rossi S, Simonelli F. RPE65-associated inherited retinal diseases: consensus recommendations for eligibility to gene therapy. Orphanet J Rare Dis 2021; 16:257. [PMID: 34088339 PMCID: PMC8176684 DOI: 10.1186/s13023-021-01868-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background This research aimed to establish recommendations on the clinical and genetic characteristics necessary to confirm patient eligibility for gene supplementation with voretigene neparvovec.
Methods An expert steering committee comprising an interdisciplinary panel of Italian experts in the three fields of medical specialisation involved in the management of RPE65-associated inherited retinal disease (IRD) (medical retina, genetics, vitreoretinal surgery) proposed clinical questions necessary to determine the correct identification of patients with the disease, determine the fundamental clinical and genetics tests to reach the correct diagnosis and to evaluate the urgency to treat patients eligible to receive treatment with voretigene neparvovec. Supported by an extensive review of the literature, a series of statements were developed and refined to prepare precisely constructed questionnaires that were circulated among an external panel of experts comprising ophthalmologists (retina specialists, vitreoretinal surgeons) and geneticists with extensive experience in IRDs in Italy in a two-round Delphi process. Results The categories addressed in the questionnaires included clinical manifestations of RPE65-related IRD, IRD screening and diagnosis, gene testing and genotyping, ocular gene therapy for IRDs, patient eligibility and prioritisation and surgical issues. Response rates by the survey participants were over 90% for the majority of items in both Delphi rounds. The steering committee developed the key consensus recommendations on each category that came from the two Delphi rounds into a simple and linear diagnostic algorithm designed to illustrate the patient pathway leading from the patient’s referral centre to the retinal specialist centre. Conclusions Consensus guidelines were developed to guide paediatricians and general ophthalmologists to arrive at the correct diagnosis of RPE65-associated IRD and make informed clinical decisions regarding eligibility for a gene therapy approach to RPE65-associated IRD. The guidelines aim to ensure the best outcome for the patient, based on expert opinion, the published literature, and practical experience in the field of IRDs. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01868-4.
Collapse
Affiliation(s)
- Andrea Sodi
- Department of Ophthalmology, Careggi Teaching Hospital, Florence, Italy
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Via S. Pansini, 5, 80131, Naples, Italy.
| | - Michele Della Corte
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Via S. Pansini, 5, 80131, Naples, Italy
| | - Ilaria Passerini
- Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Elisabetta Pelo
- Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Via S. Pansini, 5, 80131, Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Via S. Pansini, 5, 80131, Naples, Italy
| | | |
Collapse
|
7
|
Gao FJ, Wang DD, Li JK, Hu FY, Xu P, Chen F, Qi YH, Liu W, Li W, Zhang SH, Chang Q, Xu GZ, Wu JH. Frequency and phenotypic characteristics of RPE65 mutations in the Chinese population. Orphanet J Rare Dis 2021; 16:174. [PMID: 33952291 PMCID: PMC8097799 DOI: 10.1186/s13023-021-01807-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Background The retinoid isomerohydrolase RPE65 has received considerable attention worldwide since a successful clinical gene therapy was approved in 2017 as the first treatment for vision loss associated with RPE65-mediated inherited retinal disease. Identifying patients with RPE65 mutations is a prerequisite to assessing the patients’ eligibility to receive RPE65-targeted gene therapies, and it is necessary to identify individuals who are most likely to benefit from gene therapies. This study aimed to investigate the RPE65 mutations frequency in the Chinese population and to determine the genetic and clinical characteristics of these patients. Results Only 20 patients with RPE65 mutations were identified, and RPE65 mutations were determined to be the 14th most common among all patients with genetic diagnoses. Ten novel variants and two hotspots associated with FAP were identified. A literature review revealed that a total of 57 patients of Chinese origin were identified with pathogenic mutations in the RPE65 gene. The mean best Snellen corrected visual acuity was worse (mean 1.3 ± 1.3 LogMAR) in patients older than 20 years old than in those younger than 15 years old (0.68 ± 0.92 LogMAR). Bone spicule-like pigment deposits (BSLPs) were observed in six patients; they were older than those without BSLP and those with white-yellow dots. Genotype–phenotype analysis revealed that truncating variants seem to lead to a more severe clinical presentation, while best corrected visual acuity testing and fundus changes did not correlate with specific RPE65 variants or mutation types. Conclusions This study provides a detailed clinical-genetic assessment of patients with RPE65 mutations of Chinese origin. These results may help to elucidate RPE65 mutations in the Chinese population and may facilitate genetic counseling and the implementation of gene therapy in China. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01807-3.
Collapse
Affiliation(s)
- Feng-Juan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Dan-Dan Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, Guangdong, China.,Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Fang-Yuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, Guangdong, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Shenzhen Engineering Laboratory for Birth Defects Screening, BGI-Shenzhen, Shenzhen, China
| | - Yu-He Qi
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Liu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Li
- BGI-Shenzhen, Shenzhen, Guangdong, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Qing Chang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Ge-Zhi Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China.
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China.
| |
Collapse
|
8
|
Inverse correlation between fatty acid transport protein 4 and vision in Leber congenital amaurosis associated with RPE65 mutation. Proc Natl Acad Sci U S A 2020; 117:32114-32123. [PMID: 33257550 DOI: 10.1073/pnas.2012623117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fatty acid transport protein 4 (FATP4), a transmembrane protein in the endoplasmic reticulum (ER), is a recently identified negative regulator of the ER-associated retinal pigment epithelium (RPE)65 isomerase necessary for recycling 11-cis-retinal, the light-sensitive chromophore of both rod and cone opsin visual pigments. The role of FATP4 in the disease progression of retinal dystrophies associated with RPE65 mutations is completely unknown. Here we show that FATP4-deficiency in the RPE results in 2.8-fold and 1.7-fold increase of 11-cis- and 9-cis-retinals, respectively, improving dark-adaptation rates as well as survival and function of rods in the Rpe65 R91W knockin (KI) mouse model of Leber congenital amaurosis (LCA). Degradation of S-opsin in the proteasomes, but not in the lysosomes, was remarkably reduced in the KI mouse retinas lacking FATP4. FATP4-deficiency also significantly rescued S-opsin trafficking and M-opsin solubility in the KI retinas. The number of S-cones in the inferior retinas of 4- or 6-mo-old KI;Fatp4 -/- mice was 7.6- or 13.5-fold greater than those in age-matched KI mice. Degeneration rates of S- and M-cones are negatively correlated with expression levels of FATP4 in the RPE of the KI, KI;Fatp4 +/- , and KI;Fatp4 -/- mice. Moreover, the visual function of S- and M-cones is markedly preserved in the KI;Fatp4 -/- mice, displaying an inverse correlation with the FATP4 expression levels in the RPE of the three mutant lines. These findings establish FATP4 as a promising therapeutic target to improve the visual cycle, as well as survival and function of cones and rods in patients with RPE65 mutations.
Collapse
|
9
|
Properties and Therapeutic Implications of an Enigmatic D477G RPE65 Variant Associated with Autosomal Dominant Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11121420. [PMID: 33261050 PMCID: PMC7760593 DOI: 10.3390/genes11121420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
RPE65 isomerase, expressed in the retinal pigmented epithelium (RPE), is an enzymatic component of the retinoid cycle, converting all-trans retinyl ester into 11-cis retinol, and it is essential for vision, because it replenishes the photon capturing 11-cis retinal. To date, almost 200 loss-of-function mutations have been identified within the RPE65 gene causing inherited retinal dystrophies, most notably Leber congenital amaurosis (LCA) and autosomal recessive retinitis pigmentosa (arRP), which are both severe and early onset disease entities. We previously reported a mutation, D477G, co-segregating with the disease in a late-onset form of autosomal dominant RP (adRP) with choroidal involvement; uniquely, it is the only RPE65 variant to be described with a dominant component. Families or individuals with this variant have been encountered in five countries, and a number of subsequent studies have been reported in which the molecular biological and physiological properties of the variant have been studied in further detail, including observations of possible novel functions in addition to reduced RPE65 enzymatic activity. With regard to the latter, a human phase 1b proof-of-concept study has recently been reported in which aspects of remaining vision were improved for up to one year in four of five patients with advanced disease receiving a single one-week oral dose of 9-cis retinaldehyde, which is the first report showing efficacy and safety of an oral therapy for a dominant form of RP. Here, we review data accrued from published studies investigating molecular mechanisms of this unique variant and include hitherto unpublished material on the clinical spectrum of disease encountered in patients with the D477G variant, which, in many cases bears striking similarities to choroideremia.
Collapse
|
10
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Motta FL, Martin RP, Porto FBO, Wohler ES, Resende RG, Gomes CP, Pesquero JB, Sallum JMF. Pathogenicity Reclasssification of RPE65 Missense Variants Related to Leber Congenital Amaurosis and Early-Onset Retinal Dystrophy. Genes (Basel) 2019; 11:E24. [PMID: 31878136 PMCID: PMC7016655 DOI: 10.3390/genes11010024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
A challenge in molecular diagnosis and genetic counseling is the interpretation of variants of uncertain significance. Proper pathogenicity classification of new variants is important for the conclusion of molecular diagnosis and the medical management of patient treatments. The purpose of this study was to reclassify two RPE65 missense variants, c.247T>C (p.Phe83Leu) and c.560G>A (p.Gly187Glu), found in Brazilian families. To achieve this aim, we reviewed the sequencing data of a 224-gene retinopathy panel from 556 patients (513 families) with inherited retinal dystrophies. Five patients with p.Phe83Leu and seven with p.Gly187Glu were selected and their families investigated. To comprehend the pathogenicity of these variants, we evaluated them based on the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) classification guidelines. Initially, these RPE65 variants met only three pathogenic criteria: (i) absence or low frequency in the population, (ii) several missense pathogenic RPE65 variants, and (iii) 15 out of 16 lines of computational evidence supporting them as damaging, which together allowed the variants to be classified as uncertain significance. Two other pieces of evidence were accepted after further analysis of these Brazilian families: (i) p.Phe83Leu and p.Gly187Glu segregate with childhood retinal dystrophy within families, and (ii) their prevalence in Leber congenital amaurosis (LCA)/early-onset retinal dystrophy (EORD) patients can be considered higher than in other inherited retinal dystrophy patients. Therefore, these variants can now be classified as likely pathogenic according to ACMG/AMP classification guidelines.
Collapse
Affiliation(s)
- Fabiana L. Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo SP 04039-032, Brazil;
- Instituto de Genética Ocular, Sao Paulo SP 04552-050, Brazil
| | - Renan P. Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, MD 21205, USA; (R.P.M.); (E.S.W.)
| | - Fernanda B. O. Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte MG 30150-270, Brazil;
- Centro Oftalmológico de Minas Gerais, Belo Horizonte MG 30180-070, Brazil
| | - Elizabeth S. Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, MD 21205, USA; (R.P.M.); (E.S.W.)
| | | | - Caio P. Gomes
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo SP 04039-032, Brazil; (C.P.G.); (J.B.P.)
| | - João B. Pesquero
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo SP 04039-032, Brazil; (C.P.G.); (J.B.P.)
| | - Juliana M. F. Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo SP 04039-032, Brazil;
- Instituto de Genética Ocular, Sao Paulo SP 04552-050, Brazil
| |
Collapse
|
12
|
Zhong Z, Rong F, Dai Y, Yibulayin A, Zeng L, Liao J, Wang L, Huang Z, Zhou Z, Chen J. Seven novel variants expand the spectrum of RPE65-related Leber congenital amaurosis in the Chinese population. Mol Vis 2019; 25:204-214. [PMID: 30996589 PMCID: PMC6441358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/16/2019] [Indexed: 11/04/2022] Open
Abstract
Purpose To screen RPE65 in 187 families with Leber congenital amaurosis (LCA). Methods Sanger sequencing and/or targeted exome sequencing was employed to identify mutations in the RPE65 gene, and intrafamilial cosegregation analysis if DNA was available. In silico analyses and splicing assay were used to evaluate the variants' pathogenicity. Results Genetic analysis revealed 15 mutations in RPE65 in 14 pedigrees, including one splice-site mutation, one frameshift mutation, three nonsense mutations, and ten missense mutations. Of the mutations identified in RPE65, seven are novel associated with LCA, including five missense variants (c.124C>T, c.149T>C, c.340A>C, c.425A>G, and c.1399C>G) and two indel (insertions or deletions) variants (c.858+1delG and c.1181_1182insT). In vitro splicing assay was performed to evaluate the functional impact on RNA splicing of novel mutations if two of three in silico analyses were predicated to be non-pathogenic at the protein level. Among these 15 variants, 14 were classified as 'pathogenic variants,' and a variant (c.124C>T) was 'variants with uncertain significance' according to the standards and guidelines of the American College of Medical Genetics and Genomics. Conclusions Mutations in RPE65 were responsible for 11 of the cohort of 187 Chinese families with LCA, which expands the spectrum of RPE65-related LCA in the Chinese population and potentially facilitates its clinical implementation.
Collapse
Affiliation(s)
- Zilin Zhong
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Feng Rong
- Kizilsu Kirgiz Autonomous Prefecture People's Hospital, Atushi, Xinjiang, China
| | - Yinghui Dai
- Department of Ophthalmology, the First Affiliated Hospital of Benbu medical college, Benbu, Anhui, China
| | - Alakezi Yibulayin
- Kizilsu Kirgiz Autonomous Prefecture People's Hospital, Atushi, Xinjiang, China
| | - Lin Zeng
- Kizilsu Kirgiz Autonomous Prefecture People's Hospital, Atushi, Xinjiang, China
| | - Jian Liao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Liefeng Wang
- Department of Biotechnology, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Zhihua Huang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Zhenping Zhou
- Kizilsu Kirgiz Autonomous Prefecture People's Hospital, Atushi, Xinjiang, China
| | - Jianjun Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Kumaran N, Rubin GS, Kalitzeos A, Fujinami K, Bainbridge JWB, Weleber RG, Michaelides M. A Cross-Sectional and Longitudinal Study of Retinal Sensitivity in RPE65-Associated Leber Congenital Amaurosis. Invest Ophthalmol Vis Sci 2019; 59:3330-3339. [PMID: 30025081 PMCID: PMC6040235 DOI: 10.1167/iovs.18-23873] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose RPE65-associated Leber congenital amaurosis (RPE65-LCA) is an early-onset severe retinal dystrophy associated with progressive visual field loss. Phase I/II and III gene therapy trials have identified improved retinal sensitivity but little is known about the natural history of retinal sensitivity in RPE65-LCA. Methods A total of 19 subjects (aged 9 to 23 years) undertook monocular full-field static perimetry of which 13 subjects were monitored longitudinally. Retinal sensitivity was measured as mean sensitivity (MS) and volumetrically quantified (in decibel-steradian) using visual field modeling and analysis software for the total (VTOT), central 30° (V30) and central 15° (V15) visual field. Correlation was evaluated between retinal sensitivity and age, best-corrected visual acuity (BCVA), contrast sensitivity, vision-related quality of life, and genotype. Test-retest reliability was also investigated. Results V30 was identified to have a strong, weak, and moderate correlation with age, BCVA and contrast sensitivity respectively. Furthermore, V30 was identified as having a weak linear relationship with the mobility and independence domains of the vision-related quality of life questionnaire. Longitudinal analysis demonstrated a slow loss of retinal sensitivity in this cohort. Subjects with at least one RPE65 nonsense variant appeared to show greater progressive loss of retinal sensitivity in the second decade of life than those without. Conclusions Volumetric assessment of central 30° visual field sensitivity, V30, is a useful independent measure of retinal function and, in our data, represented the best metric to monitor deterioration of retinal sensitivity in RPE65-LCA. Furthermore, functional correlation with genotype may enable more informed prognostic counseling. (ClinicalTrials.gov number, NCT02714816.)
Collapse
Affiliation(s)
- Neruban Kumaran
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Gary S Rubin
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom.,National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan.,Keio University, School of Medicine, Tokyo, Japan
| | - James W B Bainbridge
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
14
|
Miraldi Utz V, Coussa RG, Antaki F, Traboulsi EI. Gene therapy for RPE65-related retinal disease. Ophthalmic Genet 2018; 39:671-677. [DOI: 10.1080/13816810.2018.1533027] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Virginia Miraldi Utz
- Cincinnati Children’s Hospital Medical Center, Abrahamson Pediatric Eye Institute, Cincinnati, OH, USA
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Fares Antaki
- Department of Ophthalmology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Stunkel ML, Brodie SE, Cideciyan AV, Pfeifer WL, Kennedy EL, Stone EM, Jacobson SG, Drack AV. Expanded Retinal Disease Spectrum Associated With Autosomal Recessive Mutations in GUCY2D. Am J Ophthalmol 2018; 190:58-68. [PMID: 29559409 DOI: 10.1016/j.ajo.2018.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE GUCY2D has been associated with autosomal recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. This report expands the phenotype of autosomal recessive mutations to congenital night blindness, which may slowly progress to mild retinitis pigmentosa. DESIGN Retrospective case series. METHODS Multicenter study of 5 patients (3 male, 2 female). RESULTS All patients presented with night blindness since childhood. Age at referral was 9-45 years. Length of follow-up was 1-7 years. Best-corrected visual acuity at presentation ranged from 20/15 to 20/30 and at most recent visit averaged 20/25. No patient had nystagmus or high refractive error. ISCEV standard electroretinography revealed nondetectable dark-adapted dim flash responses and reduced amplitude but not electronegative dark-adapted bright flash responses with similar waveforms to the reduced-amplitude light-adapted single flash responses. The 30 Hz flicker responses were relatively preserved. Macular optical coherence tomography revealed normal lamination in 3 patients, with abnormalities in 2. Goldmann visual fields were normal at presentation in children but constricted in 1 adult. One child showed loss of midperipheral fields over time. Fundus appearance was normal in childhood; the adult had sparse bone spicule-like pigmentation. Full-field stimulus testing (FST) revealed markedly decreased retinal sensitivity to light. Dark adaptation demonstrated lack of rod-cone break. Two patients had tritanopia. All 5 had compound heterozygous mutations in GUCY2D. Three of the 5 patients harbor the Arg768Trp mutation reported in GUCY2D-associated Leber congenital amaurosis. CONCLUSIONS Autosomal recessive GUCY2D mutations may cause congenital night blindness with normal acuity and refraction, and unique electroretinography. Progression to mild retinitis pigmentosa may occur.
Collapse
Affiliation(s)
- Maria L Stunkel
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Scott E Brodie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wanda L Pfeifer
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth L Kennedy
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arlene V Drack
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
16
|
Miraldi Utz V, Pfeifer W, Longmuir SQ, Olson RJ, Wang K, Drack AV. Presentation of TRPM1-Associated Congenital Stationary Night Blindness in Children. JAMA Ophthalmol 2018; 136. [PMID: 29522070 PMCID: PMC5876850 DOI: 10.1001/jamaophthalmol.2018.0185] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE Congenital stationary night blindness (CSNB) implies a stable condition, with the major symptom being nyctalopia present at birth. Pediatric clinical presentation and the course of different genetic subtypes of CSNB have not, to our knowledge, been well described in the era of molecular genetic diagnosis. OBJECTIVE To describe the presentation and longitudinal clinical characteristics of pediatric patients with molecularly confirmed TRPM1-associated complete CSNB (cCSNB). DESIGN, SETTING, PARTICIPANTS This study was conducted at the University of Iowa from January 1, 1990, to July 1, 2015, and was a retrospective, longitudinal case series of 7 children (5 [71.4%] female) with TRPM1-associated cCSNB followed up for a mean (SD) of 11.1 (2.8) years. MAIN OUTCOMES AND MEASURES History, ophthalmologic examination findings, full-field electroretinogram (ffERG) results, full-field stimulus threshold testing results, Goldmann visual field results, optical coherence tomography results, and molecular genetic results were evaluated. Presenting symptoms and signs, the correlation of refractive error with electroretinography, and clinical evolution were analyzed. RESULTS Seven patients (5 [71.4%] female) presented early in childhood with strabismus (n = 6 [86%]), myopia (n = 5 [71%]), and/or nystagmus (n = 3 [43%]). The mean (SD) age at presentation was 8 (4) months and for receiving a diagnosis by ffERG was 7.3 years, with molecular diagnosis at 9.7 years. The mean (SD) length of follow-up was 11 (2.8) years. The best-corrected visual acuity at the most recent visit averaged 20/30 in the better-seeing eye (range, 20/20-20/60). The mean (SD) initial refraction was -2.80 (4.42) diopters (D) and the mean refraction at the most recent visit was -8.75 (3.53) D (range, -4.00 to -13.75 D), with the greatest rate of myopic shift before age 5 years. Full-field electroretinogram results were electronegative, consistent with cCSNB, without a significant change in amplitude over time. No patient or parent noted night blindness at presentation; however, subjective nyctalopia was eventually reported in 5 of 7 patients (71%). The full-field stimulus threshold testing results were moderately subnormal (-29.7 [3.8] dB; normal -59.8 [4.0] dB). Goldmann visual field results were significant for full I-4e, but constricted I-2e isopter. Eight different mutations or rare variants in TRPM1 predicted to be pathogenic were detected, with 3 novel variants. CONCLUSIONS AND RELEVANCE Children with TRPM1-associated cCSNB presented before school age with progressive myopia as well as strabismus and nystagmus (but not nyctalopia), with stable, electronegative ffERG results, mildly subnormal full-field stimulus threshold testing results, and a constricted I2e isopter on perimetry. These findings suggest that ffERG and cCSNB genetic testing should be considered for children who present with early-onset myopia, especially in the presence of strabismus and/or nystagmus, and that TRPM1-associated cCSNB is a channelopathy that may present without complaints of night blindness in childhood.
Collapse
Affiliation(s)
- Virginia Miraldi Utz
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wanda Pfeifer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City
- University of Iowa Institute for Vision Research, Iowa City
| | - Susannah Q. Longmuir
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City
- Private practice, Nashville, Tennessee
| | - Richard John Olson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City
| | - Kai Wang
- University of Iowa Institute for Vision Research, Iowa City
- Department of Biostatistics, University of Iowa, Iowa City
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City
- University of Iowa Institute for Vision Research, Iowa City
| |
Collapse
|
17
|
Ward R, Sundaramurthi H, Di Giacomo V, Kennedy BN. Enhancing Understanding of the Visual Cycle by Applying CRISPR/Cas9 Gene Editing in Zebrafish. Front Cell Dev Biol 2018; 6:37. [PMID: 29696141 PMCID: PMC5904205 DOI: 10.3389/fcell.2018.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023] Open
Abstract
During the vertebrate visual cycle, all-trans-retinal is exported from photoreceptors to the adjacent RPE or Müller glia wherein 11-cis-retinal is regenerated. The 11-cis chromophore is returned to photoreceptors, forming light-sensitive visual pigments with opsin GPCRs. Dysfunction of this process perturbs phototransduction because functional visual pigment cannot be generated. Mutations in visual cycle genes can result in monogenic inherited forms of blindness. Though key enzymatic processes are well characterized, questions remain as to the physiological role of visual cycle proteins in different retinal cell types, functional domains of these proteins in retinoid biochemistry and in vivo pathogenesis of disease mutations. Significant progress is needed to develop effective and accessible treatments for inherited blindness arising from mutations in visual cycle genes. Here, we review opportunities to apply gene editing technology to two crucial visual cycle components, RPE65 and CRALBP. Expressed exclusively in the human RPE, RPE65 enzymatically converts retinyl esters into 11-cis retinal. CRALBP is an 11-cis-retinal binding protein expressed in human RPE and Muller glia. Loss-of-function mutations in either protein results in autosomal recessive forms of blindness. Modeling these human conditions using RPE65 or CRALBP murine knockout models have enhanced our understanding of their biochemical function, associated disease pathogenesis and development of therapeutics. However, rod-dominated murine retinae provide a challenge to assess cone function. The cone-rich zebrafish model is amenable to cost-effective maintenance of a variety of strains. Interestingly, gene duplication in zebrafish resulted in three Rpe65 and two Cralbp isoforms with differential temporal and spatial expression patterns. Functional investigations of zebrafish Rpe65 and Cralbp were restricted to gene knockdown with morpholino oligonucleotides. However, transient silencing, off-target effects and discrepancies between knockdown and knockout models, highlight a need for more comprehensive alternatives for functional genomics. CRISPR/Cas9 in zebrafish has emerged as a formidable technology enabling targeted gene knockout, knock-in, activation, or silencing to single base-pair resolution. Effective, targeted gene editing by CRISPR/Cas9 in zebrafish enables unprecedented opportunities to create genetic research models. This review will discuss existing knowledge gaps regarding RPE65 and CRALBP. We explore the benefits of CRISPR/Cas9 to establish innovative zebrafish models to enhance knowledge of the visual cycle.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Breandán N. Kennedy
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Breandán N. Kennedy
| |
Collapse
|
18
|
Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis. J Neurosci 2017; 36:5808-19. [PMID: 27225770 DOI: 10.1523/jneurosci.3857-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or combination therapy to improve cone survival and function in patients with LCA caused by RPE65 mutations. Using a mouse model carrying the most frequent LCA-associated mutation (R91W), we found that the mutant RPE65 underwent ubiquitination-dependent proteasomal degradation due to misfolding. Treatment of the mice with a chemical chaperone partially corrected stability, enzymatic activity, and subcellular localization of R91W RPE65, which was also accompanied by improvement of cone survival and vision. These findings identify an in vivo molecular pathogenic mechanism for R91W mutation and provide a feasible pharmacological approach that can delay vision loss in patients with RPE65 mutations.
Collapse
|
19
|
McCafferty CL, Sergeev YV. In silico Mapping of Protein Unfolding Mutations for Inherited Disease. Sci Rep 2016; 6:37298. [PMID: 27905547 PMCID: PMC5131339 DOI: 10.1038/srep37298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
The effect of disease-causing missense mutations on protein folding is difficult to evaluate. To understand this relationship, we developed the unfolding mutation screen (UMS) for in silico evaluation of the severity of genetic perturbations at the atomic level of protein structure. The program takes into account the protein-unfolding curve and generates propensities using calculated free energy changes for every possible missense mutation at once. These results are presented in a series of unfolding heat maps and a colored protein 3D structure to show the residues critical to the protein folding and are available for quick reference. UMS was tested with 16 crystal structures to evaluate the unfolding for 1391 mutations from the ProTherm database. Our results showed that the computational accuracy of the unfolding calculations was similar to the accuracy of previously published free energy changes but provided a better scale. Our residue identity control helps to improve protein homology models. The unfolding predictions for proteins involved in age-related macular degeneration, retinitis pigmentosa, and Leber's congenital amaurosis matched well with data from previous studies. These results suggest that UMS could be a useful tool in the analysis of genotype-to-phenotype associations and next-generation sequencing data for inherited diseases.
Collapse
Affiliation(s)
- Caitlyn L. McCafferty
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda Maryland, 20892, USA
| | - Yuri V. Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda Maryland, 20892, USA
| |
Collapse
|
20
|
Comparative sequence analyses of rhodopsin and RPE65 reveal patterns of selective constraint across hereditary retinal disease mutations. Vis Neurosci 2016; 33:e002. [DOI: 10.1017/s0952523815000322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRetinitis pigmentosa (RP) comprises several heritable diseases that involve photoreceptor, and ultimately retinal, degeneration. Currently, mutations in over 50 genes have known links to RP. Despite advances in clinical characterization, molecular characterization of RP remains challenging due to the heterogeneous nature of causal genes, mutations, and clinical phenotypes. In this study, we compiled large datasets of two important visual genes associated with RP: rhodopsin, which initiates the phototransduction cascade, and the retinoid isomerase RPE65, which regenerates the visual cycle. We used a comparative evolutionary approach to investigate the relationship between interspecific sequence variation and pathogenic mutations that lead to degenerative retinal disease. Using codon-based likelihood methods, we estimated evolutionary rates (dN/dS) across both genes in a phylogenetic context to investigate differences between pathogenic and nonpathogenic amino acid sites. In both genes, disease-associated sites showed significantly lower evolutionary rates compared to nondisease sites, and were more likely to occur in functionally critical areas of the proteins. The nature of the dataset (e.g., vertebrate or mammalian sequences), as well as selection of pathogenic sites, affected the differences observed between pathogenic and nonpathogenic sites. Our results illustrate that these methods can serve as an intermediate step in understanding protein structure and function in a clinical context, particularly in predicting the relative pathogenicity (i.e., functional impact) of point mutations and their downstream phenotypic effects. Extensions of this approach may also contribute to current methods for predicting the deleterious effects of candidate mutations and to the identification of protein regions under strong constraint where we expect pathogenic mutations to occur.
Collapse
|
21
|
Jin M, Li S, Hu J, Jin HH, Jacobson SG, Bok D. Functional Rescue of Retinal Degeneration-Associated Mutant RPE65 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:525-32. [PMID: 26427455 PMCID: PMC5623592 DOI: 10.1007/978-3-319-17121-0_70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
More than 100 different mutations in the RPE65 gene are associated with inherited retinal degeneration. Although some missense mutations have been shown to abolish isomerase activity of RPE65, the molecular bases leading to loss of function and retinal degeneration remain incompletely understood. Here we show that several missense mutations resulted in significant decrease in expression level of RPE65 in the human retinal pigment epithelium cells. The 26S proteasome non-ATPase regulatory subunit 13, a newly identified negative regulator of RPE65, mediated degradation of mutant RPE65s, which were misfolded and formed aggregates in the cells. Many mutations, including L22P, T101I, and L408P, were mapped on nonactive sites of RPE65. Enzyme activities of these mutant RPE65s were significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. 4-phenylbutyrate (PBA) displayed a significant synergistic effect on the low temperature-mediated rescue of the mutant RPE65s. Our results suggest that a low temperature eye mask and PBA, a FDA-approved oral medicine, may provide a promising "protein repair therapy" that can enhance the efficacy of gene therapy for delaying retinal degeneration caused by RPE65 mutations.
Collapse
Affiliation(s)
- Minghao Jin
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier St. Suite D, 70112, New Orleans, LA, USA.
| | - Songhua Li
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier St. Suite D, 70112, New Orleans, LA, USA.
| | - Jane Hu
- Jules Stein Eye Institute, University of California, 90095, Los Angeles, CA, USA.
| | - Heather H Jin
- Department of Biology, Washington University, 63130, St. Louis, MO, USA.
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 19104, Philadelphia, PA, USA.
| | - Dean Bok
- Jules Stein Eye Institute, University of California, 90095, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Tucker BA, Cranston CM, Anfinson KA, Shrestha S, Streb LM, Leon A, Mullins RF, Stone EM. Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65 kDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial. Transl Res 2015; 166:740-749.e1. [PMID: 26364624 PMCID: PMC4702513 DOI: 10.1016/j.trsl.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 01/07/2023]
Abstract
Retinal pigment epithelium-specific 65 kDa (RPE65)-associated Leber congenital amaurosis is an autosomal recessive disease that results in reduced visual acuity and night blindness beginning at birth. It is one of the few retinal degenerative disorders for which promising clinical gene transfer trials are currently underway. However, the ability to enroll patients in a gene augmentation trial is dependent on the identification of 2 bona fide disease-causing mutations, and there are some patients with the phenotype of RPE65-associated disease who might benefit from gene transfer but are ineligible because 2 disease-causing genetic variations have not yet been identified. Some such patients have novel mutations in RPE65 for which pathogenicity is difficult to confirm. The goal of this study was to determine if an intronic mutation identified in a 2-year-old patient with presumed RPE65-associated disease was truly pathogenic and grounds for inclusion in a clinical gene augmentation trial. Sequencing of the RPE65 gene revealed 2 mutations: (1) a previously identified disease-causing exonic leucine-to-proline mutation (L408P) and (2) a novel single point mutation in intron 3 (IVS3-11) resulting in an A>G change. RT-PCR analysis using RNA extracted from control human donor eye-derived primary RPE, control iPSC-RPE cells, and proband iPSC-RPE cells revealed that the identified IVS3-11 variation caused a splicing defect that resulted in a frameshift and insertion of a premature stop codon. In this study, we demonstrate how patient-specific iPSCs can be used to confirm pathogenicity of unknown mutations, which can enable positive clinical outcomes.
Collapse
Affiliation(s)
- Budd A Tucker
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Cathryn M Cranston
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kristin A Anfinson
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Suruchi Shrestha
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Luan M Streb
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alejandro Leon
- Department of Ophthalmology, Children's Hospital New Orleans, New Orleans, La
| | - Robert F Mullins
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Edwin M Stone
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Howard Hughes Medical Institute, Department of Ophthalmology and Visual Science, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
23
|
Bainbridge JWB, Mehat MS, Sundaram V, Robbie SJ, Barker SE, Ripamonti C, Georgiadis A, Mowat FM, Beattie SG, Gardner PJ, Feathers KL, Luong VA, Yzer S, Balaggan K, Viswanathan A, de Ravel TJL, Casteels I, Holder GE, Tyler N, Fitzke FW, Weleber RG, Nardini M, Moore AT, Thompson DA, Petersen-Jones SM, Michaelides M, van den Born LI, Stockman A, Smith AJ, Rubin G, Ali RR. Long-term effect of gene therapy on Leber's congenital amaurosis. N Engl J Med 2015; 372:1887-97. [PMID: 25938638 PMCID: PMC4497809 DOI: 10.1056/nejmoa1414221] [Citation(s) in RCA: 530] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mutations in RPE65 cause Leber's congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. METHODS We performed a phase 1-2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. RESULTS Improvements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was detected by means of ERG. Three participants had intraocular inflammation, and two had clinically significant deterioration of visual acuity. The reduction in central retinal thickness varied among participants. In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG. CONCLUSIONS Gene therapy with rAAV2/2 RPE65 vector improved retinal sensitivity, albeit modestly and temporarily. Comparison with the results obtained in the dog model indicates that there is a species difference in the amount of RPE65 required to drive the visual cycle and that the demand for RPE65 in affected persons was not met to the extent required for a durable, robust effect. (Funded by the National Institute for Health Research and others; ClinicalTrials.gov number, NCT00643747.).
Collapse
Affiliation(s)
- James W B Bainbridge
- From the UCL (University College London) Institute of Ophthalmology (J.W.B.B., M.S.M., V.S., S.J.R., S.E.B., C.R., A.G., F.M.M., S.G.B., P.J.G., V.A.L., K.B., A.V., G.E.H., F.W.F., M.N., A.T.M., M.M., A.S., A.J.S., G.R., R.R.A.) and the Department of Civil, Environmental, and Geomatic Engineering (N.T.), UCL, and Moorfields Eye Hospital (J.W.B.B., M.S.M., V.S., S.J.R., A.G., K.B., G.H., A.M., M.M.), London, and the Department of Psychology, Durham University, Durham (M.N.) - all in the United Kingdom; the College of Veterinary Medicine, Michigan State University, East Lansing (F.M.M., S.M.P.-J.), and the Kellogg Eye Center, University of Michigan Medical School, Ann Arbor (K.L.F., D.A.T., R.R.A.); the Center for Human Genetics, KU Leuven (T.J.L.R.), and the Department of Ophthalmology, UZ Leuven, Campus Sint-Rafaël (I.C.) - both in Leuven, Belgium; Rotterdam Eye Hospital, Rotterdam, the Netherlands (S.Y., L.I.B.); and the Oregon Retinal Degeneration Center, Ophthalmic Genetics Service, Casey Eye Institute, Oregon Health and Science University, Portland (R.G.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jacobson SG, Cideciyan AV, Aguirre GD, Roman AJ, Sumaroka A, Hauswirth WW, Palczewski K. Improvement in vision: a new goal for treatment of hereditary retinal degenerations. Expert Opin Orphan Drugs 2015; 3:563-575. [PMID: 26246977 PMCID: PMC4487613 DOI: 10.1517/21678707.2015.1030393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Inherited retinal degenerations (IRDs) have long been considered untreatable and incurable. Recently, one form of early-onset autosomal recessive IRD, Leber congenital amaurosis (LCA) caused by mutations in RPE65 (retinal pigment epithelium-specific protein 65 kDa) gene, has responded with some improvement of vision to gene augmentation therapy and oral retinoid administration. This early success now requires refinement of such therapeutics to fully realize the impact of these major scientific and clinical advances. Areas covered: Progress toward human therapy for RPE65-LCA is detailed from the understanding of molecular mechanisms to preclinical proof-of-concept research to clinical trials. Unexpected positive and complicating results in the patients receiving treatment are explained. Logical next steps to advance the clinical value of the therapeutics are suggested. Expert opinion: The first molecularly based early-phase therapies for an IRD are remarkably successful in that vision has improved and adverse events are mainly associated with surgical delivery to the subretinal space. Yet, there are features of the gene augmentation therapeutic response, such as slowed kinetics of night vision, lack of foveal cone function improvement and relentlessly progressive retinal degeneration despite therapy, that still require research attention.
Collapse
Affiliation(s)
- Samuel G Jacobson
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Artur V Cideciyan
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Gustavo D Aguirre
- University of Pennsylvania, School of Veterinary Medicine, Section of Ophthalmology , Philadelphia, PA, USA
| | - Alejandro J Roman
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | - Alexander Sumaroka
- University of Pennsylvania, Scheie Eye Institute, Perelman School of Medicine, Department of Ophthalmology , Philadelphia, PA, USA
| | | | - Krzysztof Palczewski
- Case Western University, School of Medicine, Cleveland Center for Membrane and Structural Biology, Department of Pharmacology , Cleveland, OH, USA
| |
Collapse
|
25
|
Li S, Hu J, Jin RJ, Aiyar A, Jacobson SG, Bok D, Jin M. Temperature-sensitive retinoid isomerase activity of RPE65 mutants associated with Leber Congenital Amaurosis. J Biochem 2015; 158:115-25. [PMID: 25752820 DOI: 10.1093/jb/mvv028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
RPE65 is a membrane-associated retinoid isomerase involved in the visual cycle responsible for sustaining vision. Many mutations in the human RPE65 gene are associated with distinct forms of retinal degenerative diseases. The pathogenic mechanisms for most of these mutations remain poorly understood. Here, we show that three Leber congenital amaurosis -associated RPE65 mutants (R91W, Y249C and R515W) undergo rapid proteasomal degradation mediated by the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13) in cultured human retinal pigment epithelium (RPE) cells. These mutant proteins formed cytosolic inclusion bodies or high molecular weight complexes via disulfide bonds. The mutations are mapped on non-active sites but severely reduced isomerase activity of RPE65. At 30°C, however, the enzymatic function and membrane-association of the mutant RPE65s are significantly rescued possibly due to proper folding. In addition, PSMD13 displayed a drastically decreased effect on degradation of the mutant proteins in the cells grown at 30°C. These results suggest that PSMD13 plays a critical role in regulating pathogenicity of the mutations and the molecular basis for the PSMD13-mediated rapid degradation and loss of function of the mutants is misfolding of RPE65.
Collapse
Affiliation(s)
- Songhua Li
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Jane Hu
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, CA 90095 USA
| | - Robin J Jin
- State University of New York at Buffalo, Buffalo, NY 14214 USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA; and
| | - Samuel G Jacobson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dean Bok
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, CA 90095 USA
| | - Minghao Jin
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA;
| |
Collapse
|
26
|
Wright CB, Redmond TM, Nickerson JM. A History of the Classical Visual Cycle. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:433-48. [DOI: 10.1016/bs.pmbts.2015.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Li S, Izumi T, Hu J, Jin HH, Siddiqui AAA, Jacobson SG, Bok D, Jin M. Rescue of enzymatic function for disease-associated RPE65 proteins containing various missense mutations in non-active sites. J Biol Chem 2014; 289:18943-56. [PMID: 24849605 PMCID: PMC4081934 DOI: 10.1074/jbc.m114.552117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over 70 different missense mutations, including a dominant mutation, in RPE65 retinoid isomerase are associated with distinct forms of retinal degeneration; however, the disease mechanisms for most of these mutations have not been studied. Although some mutations have been shown to abolish enzyme activity, the molecular mechanisms leading to the loss of enzymatic function and retinal degeneration remain poorly understood. Here we show that the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13), a newly identified negative regulator of RPE65, plays a critical role in regulating pathogenicity of three mutations (L22P, T101I, and L408P) by mediating rapid degradation of mutated RPE65s via a ubiquitination- and proteasome-dependent non-lysosomal pathway. These mutant RPE65s were misfolded and formed aggregates or high molecular complexes via disulfide bonds. Interaction of PSMD13 with mutant RPE65s promoted degradation of misfolded but not properly folded mutant RPE65s. Many mutations, including L22P, T101I, and L408P, were mapped on non-active sites. Although their activities were very low, these mutant RPE65s were catalytically active and could be significantly rescued at low temperature, whereas mutant RPE65s with a distinct active site mutation could not be rescued under the same conditions. Sodium 4-phenylbutyrate and glycerol displayed a significant synergistic effect on the low temperature rescue of the mutant RPE65s by promoting proper folding, reducing aggregation, and increasing membrane association. Our results suggest that a low temperature eye mask and sodium 4-phenylbutyrate, a United States Food and Drug Administration-approved oral medicine, may provide a promising "protein repair therapy" that can enhance the efficacy of gene therapy by reducing the cytotoxic effect of misfolded mutant RPE65s.
Collapse
Affiliation(s)
- Songhua Li
- From the Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Tadahide Izumi
- Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Jane Hu
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, California 90095
| | - Heather H Jin
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | - Samuel G Jacobson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dean Bok
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, California 90095
| | - Minghao Jin
- From the Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112,
| |
Collapse
|
28
|
Wright CB, Chrenek MA, Feng W, Getz SE, Duncan T, Pardue MT, Feng Y, Redmond TM, Boatright JH, Nickerson JM. The Rpe65 rd12 allele exerts a semidominant negative effect on vision in mice. Invest Ophthalmol Vis Sci 2014; 55:2500-15. [PMID: 24644049 PMCID: PMC3993890 DOI: 10.1167/iovs.13-13574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/10/2014] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The rd12 mouse was reported as a recessively inherited Rpe65 mutation. We asked if the rd12 mutation resides in Rpe65 and how the mutation manifests itself. METHODS A complementation test was performed by mating Rpe65(KO) (KO/KO) and rd12 mice together to determine if the rd12 mutation is in the Rpe65 gene. Visual function of wild-type (+/+), KO/+, rd12/+, KO/KO, rd12/rd12, and KO/rd12 mice was measured by optokinetic tracking (OKT) and ERG. Morphology was assessed by retinal cross section. qRT-PCR quantified Rpe65 mRNA levels. Immunoblotting measured the size and level of RPE65 protein. Rpe65 mRNA localization was visualized with RNA fluorescence in situ hybridization (FISH). Fractions of Rpe65 mRNA-bound proteins were separated by linear sucrose gradient fractionation. RESULTS The KO and rd12 alleles did not complement. The rd12 allele induced a negative semidominant effect on visual function; OKT responses became undetectable 120 days earlier in rd12/rd12 mice compared with KO/KO mice. rd12/+ mice lost approximately 21% visual acuity by P210. rd12/rd12 mice had fewer cone photoreceptor nuclei than KO/KO mice at P60. rd12/rd12 mice expressed 71% +/+ levels of Rpe65 mRNA, but protein was undetectable. Mutant mRNA was appropriately spliced, exported to the cytoplasm, trafficked, and contained no other coding mutation aside from the known nonsense mutation. Mutant mRNA was enriched on ribosome-free messenger ribonucleoproteins (mRNPs), whereas wild-type mRNA was enriched on actively translating polyribosomes. CONCLUSIONS The rd12 lesion is in Rpe65. The rd12 mutant phenotype inherits in a semidominant manner. The effects of the mutant mRNA on visual function may result from inefficient binding to ribosomes for translation.
Collapse
Affiliation(s)
- Charles B. Wright
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Wei Feng
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Shannon E. Getz
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Machelle T. Pardue
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
- Rehabiliation Research and Development Center of Excellence, Atlanta VA Medical Center, Decatur, Georgia, United States
| | - Yue Feng
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - T. Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
29
|
Wright CB, Chrenek MA, Foster SL, Duncan T, Redmond TM, Pardue MT, Boatright JH, Nickerson JM. Complementation test of Rpe65 knockout and tvrm148. Invest Ophthalmol Vis Sci 2013; 54:5111-22. [PMID: 23778877 DOI: 10.1167/iovs.13-12336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A mouse mutation, tvrm148, was previously reported as resulting in retinal degeneration. Tvrm148 and Rpe65 map between markers D3Mit147 and D3Mit19 on a genetic map, but the physical map places RPE65 outside the markers. We asked if Rpe65 or perhaps another nearby gene is mutated and if the mutant reduced 11-cis-retinal levels. We studied the impact of the tvrm148 mutation on visual function, morphology, and retinoid levels. METHODS Normal phase HPLC was used to measure retinoid levels. Rpe65(+/+), tvrm148/+ (T(+/-)), tvrm148/tvrm148 (T(-/-)), RPE65(KO/KO) (Rpe65(-/-)), and Rpe65(T/-) mice visual function was measured by optokinetic tracking (OKT) and electroretinography (ERG). Morphology was assessed by light microscopy and transmission electron microscopy (TEM). qRT-PCR was used to measure Rpe65 mRNA levels. Immunoblotting measured the size and amount of RPE65 protein. RESULTS The knockout and tvrm148 alleles did not complement. No 11-cis-retinal was detected in T(-/-) or Rpe65(-/-) mice. Visual acuity in Rpe65(+/+) and T(+/-) mouse was -0.382 c/d, but 0.037 c/d in T(-/-) mice at postnatal day 210 (P210). ERG response in T(-/-) mice was undetectable except at bright flash intensities. Outer nuclear layer (ONL) thickness in T(-/-) mice was -70% of Rpe65(+/+) by P210. Rpe65 mRNA levels in T(-/-) mice were unchanged, yet 14.5% of Rpe65(+/+) protein levels was detected. Protein size was unchanged. CONCLUSIONS A complementation test revealed the RPE65 knockout and tvrm148 alleles do not complement, proving that the tvrm148 mutation is in Rpe65. Behavioral, physiological, molecular, biochemical, and histological approaches indicate that tvrm148 is a null allele of Rpe65.
Collapse
Affiliation(s)
- Charles B Wright
- Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fatty acid transport protein 4 (FATP4) prevents light-induced degeneration of cone and rod photoreceptors by inhibiting RPE65 isomerase. J Neurosci 2013; 33:3178-89. [PMID: 23407971 DOI: 10.1523/jneurosci.2428-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65, which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis-retinol (11cROL) in the visual cycle, controls the rhodopsin regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expression screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase (VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11cROL. We further found that competition of FATP4 with RPE65 for the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regeneration rate of 11-cis-retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice. Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hypersusceptibility to light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage.
Collapse
|
31
|
|
32
|
Lopes VS, Gibbs D, Libby RT, Aleman TS, Welch DL, Lillo C, Jacobson SG, Radu RA, Steel KP, Williams DS. The Usher 1B protein, MYO7A, is required for normal localization and function of the visual retinoid cycle enzyme, RPE65. Hum Mol Genet 2011; 20:2560-70. [PMID: 21493626 PMCID: PMC3110002 DOI: 10.1093/hmg/ddr155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B. In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place. We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle. We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells. This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light. RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels. Following a 50–60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity. Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction. Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision.
Collapse
Affiliation(s)
- Vanda S Lopes
- Jules Stein Eye Institute and Department of Neurobiology, UCLA School of Medicine, University of California-Los Angeles, 200 Stein Plaza, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Deveault C, Billingsley G, Duncan JL, Bin J, Theal R, Vincent A, Fieggen KJ, Gerth C, Noordeh N, Traboulsi EI, Fishman GA, Chitayat D, Knueppel T, Millán JM, Munier FL, Kennedy D, Jacobson SG, Innes AM, Mitchell GA, Boycott K, Héon E. BBS genotype-phenotype assessment of a multiethnic patient cohort calls for a revision of the disease definition. Hum Mutat 2011; 32:610-9. [PMID: 21344540 DOI: 10.1002/humu.21480] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/01/2011] [Indexed: 01/15/2023]
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, polydactyly, renal abnormalities, and cognitive impairment for which 15 causative genes have been identified. Here we present the results of a mutational analysis of our multiethnic cohort of 83 families (105 cases); 75.9% of them have their mutations identified including 26 novel changes. Comprehensive phenotyping of these patients demonstrate that the spectrum of clinical features is greater than expected and overlapped with the features of other ciliopathies; specifically Alström and McKusick-Kauffman syndromes.
Collapse
Affiliation(s)
- Catherine Deveault
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sparrow JR, Hicks D, Hamel CP. The retinal pigment epithelium in health and disease. Curr Mol Med 2011; 10:802-23. [PMID: 21091424 DOI: 10.2174/156652410793937813] [Citation(s) in RCA: 421] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 09/13/2010] [Indexed: 12/15/2022]
Abstract
Retinal pigment epithelial cells (RPE) constitute a simple layer of cuboidal cells that are strategically situated behind the photoreceptor (PR) cells. The inconspicuousness of this monolayer contrasts sharply with its importance [1]. The relationship between the RPE and PR cells is crucial to sight; this is evident from basic and clinical studies demonstrating that primary dysfunctioning of the RPE can result in visual cell death and blindness. RPE cells carry out many functions including the conversion and storage of retinoid, the phagocytosis of shed PR outer segment membrane, the absorption of scattered light, ion and fluid transport and RPE-PR apposition. The magnitude of the demands imposed on this single layer of cells in order to execute these tasks, will become apparent to the reader of this review as will the number of clinical disorders that take origin from these cells.
Collapse
Affiliation(s)
- J R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
35
|
Shchelochkov OA, Li FY, Wang J, Zhan H, Towbin JA, Jefferies JL, Wong LJ, Scaglia F. Milder clinical course of Type IV 3-methylglutaconic aciduria due to a novel mutation in TMEM70. Mol Genet Metab 2010; 101:282-5. [PMID: 20728387 DOI: 10.1016/j.ymgme.2010.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial disorders are a large and genetically heterogeneous group of disorders posing a significant diagnostic challenge. Only approximately 10-20% of patients have identifiable alterations in their mitochondrial DNA (mtDNA). The remaining ~80-90% of affected patients likely harbor mutations in nuclear genes, most of which are still poorly characterized, and therefore not amenable to efficient screening using currently available molecular methods. Here we present a patient, who has been followed since birth after presenting with neonatal hyperammonemia, lactic acidosis, Reye-like syndrome episodes, and ventricular tachyarrhythmia. Initial biochemical work-up revealed hyperalaninemia, normal plasma glutamine, mild orotic aciduria and significant amounts of urinary 3-methylglutaconic (3-MGC) and 3-methylglutaric (3-MGA) acids. Muscle biopsy demonstrated the presence of ragged-red fibers and non-specific structural abnormalities of mitochondria. The activities of respiratory chain enzymes (complexes I-IV) showed no deficiency. Mutational analysis of the entire mitochondrial genome did not reveal deleterious point mutations or large deletions. Long-term follow-up was significant for a later-onset hypertrophic cardiomyopathy, muscle weakness, and exercise intolerance. Although she had frequent episodes of Reye-like episodes in infancy and early childhood, mostly triggered by illnesses, these symptoms improved significantly with the onset of puberty. In the light of recent reports linking cases of type IV 3-methylglutaconic aciduria (3-MGCA) and hypertrophic cardiomyopathy to mutations in TMEM70, we proceeded with sequencing analysis of this gene. We identified one previously reported splice site mutation, c.317-2A>G and a novel mutation c.494G>A (p.G165D) in an evolutionarily conserved region predicted to be deleterious. This variant was not identified in 100 chromosomes of healthy control subjects and 200 chromosomes of patients with cardiomyopathies. Western blotting using a polyclonal antibody against ATP5J, subunit F6 of ATP synthase, on patient's skin fibroblasts showed undetectable amount of the ATP5J protein. In comparison to the previously reported cases, we note that our patient had normal growth parameters and cognitive development, absence of structural heart and urinary tract defects, no dysmorphic features, improvement of symptoms with age, and persistence of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Oleg A Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res 2010; 29:398-427. [PMID: 20399883 DOI: 10.1016/j.preteyeres.2010.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leber congenital amaurosis (LCA) is a rare hereditary retinal degeneration caused by mutations in more than a dozen genes. RPE65, one of these mutated genes, is highly expressed in the retinal pigment epithelium where it encodes the retinoid isomerase enzyme essential for the production of chromophore which forms the visual pigment in rod and cone photoreceptors of the retina. Congenital loss of chromophore production due to RPE65-deficiency together with progressive photoreceptor degeneration cause severe and progressive loss of vision. RPE65-associated LCA recently gained recognition outside of specialty ophthalmic circles due to early success achieved by three clinical trials of gene therapy using recombinant adeno-associated virus (AAV) vectors. The trials were built on multitude of basic, pre-clinical and clinical research defining the pathophysiology of the disease in human subjects and animal models, and demonstrating the proof-of-concept of gene (augmentation) therapy. Substantial gains in visual function of clinical trial participants provided evidence for physiologically relevant biological activity resulting from a newly introduced gene. This article reviews the current knowledge on retinal degeneration and visual dysfunction in animal models and human patients with RPE65 disease, and examines the consequences of gene therapy in terms of improvement of vision reported.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, University of Pennsylvania, 51 North 39th St, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Drack AV, Lambert SR, Stone EM. From the laboratory to the clinic: molecular genetic testing in pediatric ophthalmology. Am J Ophthalmol 2010; 149:10-17. [PMID: 20103038 DOI: 10.1016/j.ajo.2009.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 11/29/2022]
Abstract
PURPOSE To review the current state of molecular genetic testing as it relates to pediatric ophthalmology and to discuss its uses. DESIGN Review and evaluation of available molecular genetic testing. METHODS Literature review and discussion of testing in practice based on the authors' clinical and laboratory experience. RESULTS Fee-for-service testing for many genetic eye diseases now is available. A report is always generated for fee-for-service testing. Detection of DNA variants in genes known to cause eye disease must be interpreted taking into account the variability of the human genome, the presence of benign variants (polymorphisms), and the carrier frequency of recessive alleles. Negative results in genetic testing are helpful in some disorders for which most of the causative genes are known and many disease-causing variants have already been reported, but are less helpful in those that currently have many undiscovered causative genes or novel mutations. Research-based testing also is available, but does not always yield a result. Patients with RPE65-associated Leber congenital amaurosis may be eligible for the current gene therapy trial. Patients with a variety of disorders may benefit from improved surveillance if their genetic diagnosis is known. CONCLUSIONS Entry into the genetic testing system often is via the patient's ophthalmologist. Collaboration with geneticists and genetic counselors, use of web sites to keep up with the ever-changing availability and detection rates, and knowledge of clinical trials, when combined with excellent clinical diagnosis, can improve diagnosis and allow eligible patients to participate in treatment trials.
Collapse
Affiliation(s)
- Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
38
|
Nikolaeva O, Takahashi Y, Moiseyev G, Ma JX. Negative charge of the glutamic acid 417 residue is crucial for isomerohydrolase activity of RPE65. Biochem Biophys Res Commun 2009; 391:1757-61. [PMID: 20043869 DOI: 10.1016/j.bbrc.2009.12.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/24/2009] [Indexed: 11/15/2022]
Abstract
RPE65 is the isomerohydrolase essential for regeneration of 11-cis retinal, the chromophore of visual pigments. Here we compared the impacts of two mutations in RPE65, E417Q identified in patients with Leber congenital amaurosis (LCA), and E417D on isomerohydrolase activity. Although both mutations decreased the stability of RPE65 and altered its sub-cellular localization, E417Q abolished isomerohydrolase activity whereas the E417D mutant retained partial enzymatic activity suggesting that the negative charge of E417 is important for RPE65 catalytic activity. Loss of charge at this position may represent a mechanism by which the E417Q mutation causes blindness in LCA patients.
Collapse
Affiliation(s)
- Olga Nikolaeva
- Department of Medicine Endocrinology, Harold Hamm Oklahoma Diabetes Center, The University of Oklahoma Health Sciences Center, 941 Stanton L Young Blvd, BSEB302, Oklahoma City, OK 73104, United States
| | | | | | | |
Collapse
|