1
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
2
|
Martinez AE, Weissberger G, Kuklenyik Z, He X, Meuret C, Parekh T, Rees JC, Parks BA, Gardner MS, King SM, Collier TS, Harrington MG, Sweeney MD, Wang X, Zlokovic BV, Joe E, Nation DA, Schneider LS, Chui HC, Barr JR, Han SD, Krauss RM, Yassine HN. The small HDL particle hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:391-404. [PMID: 35416404 PMCID: PMC10563117 DOI: 10.1002/alz.12649] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 01/03/2023]
Abstract
We propose the hypothesis that small high-density lipoprotein (HDL) particles reduce the risk of Alzheimer's disease (AD) by virtue of their capacity to exchange lipids, affecting neuronal membrane composition and vascular and synaptic functions. Concentrations of small HDLs in cerebrospinal fluid (CSF) and plasma were measured in 180 individuals ≥60 years of age using ion mobility methodology. Small HDL concentrations in CSF were positively associated with performance in three domains of cognitive function independent of apolipoprotein E (APOE) ε4 status, age, sex, and years of education. Moreover, there was a significant correlation between levels of small HDLs in CSF and plasma. Further studies will be aimed at determining whether specific components of small HDL exchange across the blood, brain, and CSF barriers, and developing approaches to exploit small HDLs for therapeutic purposes.
Collapse
Affiliation(s)
- Ashley E. Martinez
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gali Weissberger
- The Interdisciplinary Department of Social Sciences, Bar Ilan University, Israel
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xulei He
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cristiana Meuret
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trusha Parekh
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jon C. Rees
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bryan A. Parks
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael S. Gardner
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah M. King
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | | | - Michael G. Harrington
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Joe
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Daniel A. Nation
- Irvine, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Lon S. Schneider
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, USA
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - John R. Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. Duke Han
- Department of Family Medicine, University of Southern California, Los Angeles, California, USA
| | - Ronald M. Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | - Hussein N. Yassine
- Department of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer's Disease. Mol Neurobiol 2020; 58:1564-1582. [PMID: 33215389 DOI: 10.1007/s12035-020-02211-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of Alzheimer's disease (AD) worldwide has been progressively accelerating at an alarming rate, without any successful therapeutic strategy for the disease mitigation. The complexity of AD pathogenesis needs to be targeted with an alternative approach, as provided by the superfamily of ATP-binding cassette (ABC) transporters, which constitutes an extensive range of proteins, capable of transporting molecular entities across biological membranes. These protein moieties have been implicated in AD, based upon their potential in lipid transportation, resulting in maintenance of cholesterol homeostasis. These transporters have been reported to target the primary hallmark of AD pathogenesis, namely, beta-amyloid hypothesis, which is associated with accumulation of beta-amyloid (Aβ) plaques in AD patients. The ABC transporters have been observed to be localized to the capillary endothelial cells of the blood-brain barrier and neural parenchymal cells, where they exhibit different roles, consequently influencing the neuronal expression of Aβ peptides. The review highlights different families of ABC transporters, ABCB1 (P-glycoprotein), ABCA (ABCA1, ABCA2, and ABCA7), ABCG2 (BCRP; breast cancer resistance protein), ABCG1 and ABCG4, as well as ABCC1 (MRP; multidrug resistance protein) in the CNS, and their interplay in regulating cholesterol metabolism and Aβ peptide load in the brain, simultaneously exerting protective effects against neurotoxic substrates and xenobiotics. The authors aim to establish the significance of this alternative approach as a novel therapeutic target in AD, to provide the researchers an opportunity to evaluate the potential aspects of ABC transporters in AD treatment.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Over the last decade over 40 loci have been associated with risk of Alzheimer's disease (AD). However, most studies have either focused on identifying risk loci or performing unbiased screens without a focus on protective variation in AD. Here, we provide a review of known protective variants in AD and their putative mechanisms of action. Additionally, we recommend strategies for finding new protective variants. RECENT FINDINGS Recent Genome-Wide Association Studies have identified both common and rare protective variants associated with AD. These include variants in or near APP, APOE, PLCG2, MS4A, MAPT-KANSL1, RAB10, ABCA1, CCL11, SORL1, NOCT, SCL24A4-RIN3, CASS4, EPHA1, SPPL2A, and NFIC. SUMMARY There are very few protective variants with functional evidence and a derived allele with a frequency below 20%. Additional fine mapping and multi-omic studies are needed to further validate and characterize known variants as well as specialized genome-wide scans to identify novel variants.
Collapse
Affiliation(s)
- Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Brian Fulton-Howard
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Equal first author
| | - Alison Goate
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Fan J, Zhao RQ, Parro C, Zhao W, Chou HY, Robert J, Deeb TZ, Raynoschek C, Barichievy S, Engkvist O, Maresca M, Hicks R, Meuller J, Moss SJ, Brandon NJ, Wood MW, Kulic I, Wellington CL. Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. J Lipid Res 2018; 59:830-842. [PMID: 29563219 DOI: 10.1194/jlr.m081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
apoE is the primary lipid carrier within the CNS and the strongest genetic risk factor for late onset Alzheimer's disease (AD). apoE is primarily lipidated via ABCA1, and both are under transcriptional regulation by the nuclear liver X receptor (LXR). Considerable evidence from genetic (using ABCA1 overexpression) and pharmacological (using synthetic LXR agonists) studies in AD mouse models suggests that increased levels of lipidated apoE can improve cognitive performance and, in some strains, can reduce amyloid burden. However, direct synthetic LXR ligands have hepatotoxic side effects that limit their clinical use. Here, we describe a set of small molecules, previously annotated as antagonists of the purinergic receptor, P2X7, which enhance ABCA1 expression and activity as well as apoE secretion, and are not direct LXR ligands. Furthermore, P2X7 is not required for these molecules to induce ABCA1 upregulation and apoE secretion, demonstrating that the ABCA1 and apoE effects are mechanistically independent of P2X7 inhibition. Hence, we have identified novel dual activity compounds that upregulate ABCA1 across multiple CNS cell types, including human astrocytes, pericytes, and microglia, through an indirect LXR mechanism and that also independently inhibit P2X7 receptor activity.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Qi Zhao
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cameron Parro
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsien-Ya Chou
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tarek Z Deeb
- Tufts-AstraZeneca Laboratory for Basic and Translational Neuroscience, Boston, MA
| | - Carina Raynoschek
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Samantha Barichievy
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ola Engkvist
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Johan Meuller
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stephen J Moss
- Tufts-AstraZeneca Laboratory for Basic and Translational Neuroscience, Boston, MA.,Department of Neuroscience, Tufts University School of Medicine, Boston, MA and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Nicholas J Brandon
- Neuroscience, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Boston, MA
| | - Michael W Wood
- Neuroscience, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Boston, MA
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Fehér Á, Giricz Z, Juhász A, Pákáski M, Janka Z, Kálmán J. ABCA1 rs2230805 and rs2230806 common gene variants are associated with Alzheimer’s disease. Neurosci Lett 2018; 664:79-83. [DOI: 10.1016/j.neulet.2017.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
|
8
|
Heinsinger NM, Gachechiladze MA, Rebeck GW. Apolipoprotein E Genotype Affects Size of ApoE Complexes in Cerebrospinal Fluid. J Neuropathol Exp Neurol 2016; 75:918-924. [PMID: 27516118 DOI: 10.1093/jnen/nlw067] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Apolipoprotein E (apoE) is associated with lipoproteins in the cerebrospinal fluid (CSF). APOE4 increases and APOE2 decreases the risk for Alzheimer disease (AD) compared to the risk associated with APOE3 Because apoE4 is less efficient at cholesterol efflux than apoE2 or apoE3 in vitro, we hypothesized that APOE genotype may affect apoE particle size in vivo and that these size differences may be related to AD risk. We used nondenaturing gel electrophoresis to test for differences in the size of apoE complexes in human CSF samples of various APOE genotypes and created profiles of each sample to compare the patterns of apoE distribution. For middle-aged adults with no dementia, APOE 2.3 individuals had significantly larger apoE complexes than APOE 3.3 subjects, who had significantly larger apoE complexes than APOE 3.4 and APOE 4.4 individuals. Similarly, in an independent cohort of older adults, CSF apoE complexes of APOE4-positive individuals were smaller than those of the APOE4-negative individuals. Compared to individuals with no dementia, those with the mildest stages of dementia had similar sized CSF apoE complexes. These results identify a novel phenotypic difference in the size of CSF apoE complexes in middle age that correlate with the risk of AD later in life.
Collapse
Affiliation(s)
- Nicolette Mary Heinsinger
- From the Department of Biology (NMH, MAG); and Department of Neuroscience, Georgetown University (GWR), Washington, District of Columbia
| | - Mariam Alexandra Gachechiladze
- From the Department of Biology (NMH, MAG); and Department of Neuroscience, Georgetown University (GWR), Washington, District of Columbia
| | - G William Rebeck
- From the Department of Biology (NMH, MAG); and Department of Neuroscience, Georgetown University (GWR), Washington, District of Columbia
| |
Collapse
|
9
|
Yassine HN, Feng Q, Chiang J, Petrosspour LM, Fonteh AN, Chui HC, Harrington MG. ABCA1-Mediated Cholesterol Efflux Capacity to Cerebrospinal Fluid Is Reduced in Patients With Mild Cognitive Impairment and Alzheimer's Disease. J Am Heart Assoc 2016; 5:JAHA.115.002886. [PMID: 26873692 PMCID: PMC4802440 DOI: 10.1161/jaha.115.002886] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Animal and human studies indicate that ABCA1‐mediated cholesterol transport is important in Alzheimer's disease (AD). We hypothesized that the efficiency of cerebrospinal fluid (CSF) to facilitate ABCA1‐mediated cholesterol efflux would be reduced in participants with mild cognitive impairment (MCI) or AD compared with cognitively healthy participants. Methods and Results CSF was collected from a cross‐sectional study of cognitively healthy participants (n=47) and participants with MCI (n=35) or probable AD (n=26).The capacity of CSF to mediate cholesterol transport was assessed using a BHK cell line that can be induced to express the ABCA1 transporter. ABCA1‐mediated cholesterol efflux capacity was 30% less in participants with MCI or AD compared with cognitively healthy participants (P<0.001 for both). Cholesterol efflux capacity correlated with CSF cholesterol content (r=0.37, P<0.001). CSF phosphatidylcholine decreased in participants with MCI and AD compared with cognitively healthy participants (9% less in MCI and 27% less in AD compared with cognitively healthy participants, P=0.01) and correlated with CSF efflux capacity (r=0.3, P=0.001). CSF sphingomyelin also correlated with the efflux capacity (r=0.24, P=0.02). Concentrations of CSF apoA‐I and apoE did not significantly correlate with measures of efflux capacity. Conclusions In people with MCI and AD, the capacity of CSF to facilitate ABCA1‐mediated cholesterol efflux is impaired. This lesser cholesterol efflux in MCI supports a pathophysiological role for ABCA1‐mediated cholesterol transport in early neurodegeneration.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA
| | - Qingru Feng
- Department of Medicine, University of Southern California, Los Angeles, CA
| | - Jiarong Chiang
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA
| | - Larissa M Petrosspour
- Department of Medicine, University of Southern California, Los Angeles, CA Department of Neurology, University of Southern California, Los Angeles, CA
| | - Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA
| | - Helena C Chui
- Department of Neurology, University of Southern California, Los Angeles, CA
| | - Michael G Harrington
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA
| |
Collapse
|
10
|
Carlson JOE, Gatz M, Pedersen NL, Graff C, Nennesmo I, Lindström AK, Gerritsen L. Antemortem Prediction of Braak Stage. J Neuropathol Exp Neurol 2015; 74:1061-70. [PMID: 26469248 PMCID: PMC4610255 DOI: 10.1097/nen.0000000000000251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We examined the extent to which tauopathy distribution, as determined by Braak staging, might be predicted by various risk factors in older individuals. The Swedish Twin Registry provided extensive information on neuropsychological function, lifestyle, and cardiovascular risk factors of 128 patients for whom autopsy data including Braak staging were available. Logistic regression was used to develop a prognostic model that targeted discrimination between Braak stages 0 to II and III to VI. The analysis showed that Braak stages III to VI were significantly predicted by having 1 or more APOE ε4 alleles, older age, high total cholesterol, absence of diabetes and cardiovascular disease, and poorer scores on the Wechsler Adult Intelligence Score Information test, verbal fluency, and recognition memory but better verbal recall. The algorithm predicted Braak stages III to VI well (receiver-operating characteristic area under curve, 0.897; 95% confidence interval, 0.842-0.951). Using a cutoff of 50% risk or more, the sensitivity was 85%, the specificity was 70%, and the negative predictive value was 69%. This study demonstrates that tauopathy distribution can be accurately predicted using a combination of antemortem patient data. These results provide further insight into tauopathy development and AD-related disease mechanisms and suggest a prognostic model that predicts the spread of neurofibrillary tangles above the transentorhinal stage.
Collapse
Affiliation(s)
| | - Margaret Gatz
- Karolinska Institutet, Stockholm, Sweden
- University of Southern California, Los Angeles, California
| | - Nancy L. Pedersen
- Karolinska Institutet, Stockholm, Sweden
- University of Southern California, Los Angeles, California
| | | | | | | | - Lotte Gerritsen
- Karolinska Institutet, Stockholm, Sweden
- VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Nordestgaard LT, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Loss-of-function mutation in ABCA1 and risk of Alzheimer's disease and cerebrovascular disease. Alzheimers Dement 2015; 11:1430-1438. [PMID: 26079414 DOI: 10.1016/j.jalz.2015.04.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 04/16/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The adenosine triphosphate-binding cassette transporter A1 (ABCA1) is a major cholesterol transporter highly expressed in the liver and brain. In the brain, ABCA1 lipidates apolipoprotein E (apoE), facilitates clearance of amyloid-β, and may be involved in maintenance of the blood-brain barrier via apoE-mediated pathways. METHODS We tested whether a loss-of-function mutation in ABCA1, N1800H, is associated with plasma levels of apoE and with risk of Alzheimer's disease (AD) in 92,726 individuals and with risk of cerebrovascular disease in 64,181 individuals. RESULTS N1800H AC (0.2%) versus AA (99.8%) was associated with a 13% lower plasma level of apoE (P = 1 × 10(-11)). Multifactorially adjusted hazard ratios for N1800H AC versus AA were 4.13 (95% confidence interval, 1.32-12.9) for AD, 2.46 (1.10-5.50) for cerebrovascular disease, and 8.28 (2.03-33.7) for the hemorrhagic stroke subtype. DISCUSSION A loss-of-function mutation in ABCA1, present in 1:500 individuals, was associated with low plasma levels of apoE and with high risk of AD and cerebrovascular disease in the general population.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospitals, Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Koldamova R, Fitz NF, Lefterov I. ATP-binding cassette transporter A1: from metabolism to neurodegeneration. Neurobiol Dis 2014; 72 Pt A:13-21. [PMID: 24844148 PMCID: PMC4302328 DOI: 10.1016/j.nbd.2014.05.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoprotein A-I (apoA-I) and apolipoprotein E (apoE). ABCA1 is an essential regulator of high density lipoproteins (HDL) and reverse cholesterol transport - a role that determines its importance for atherosclerosis. Over the last 10 years studies have provided convincing evidence that ABCA1, via its control of apoE lipidation, also has a role in Alzheimer's disease (AD). A series of reports have revealed a significant impact of ABCA1 on Aβ deposition and clearance in AD model mice, as well as an association of common and rare ABCA1 gene variants with the risk for AD. Since APOE is the major genetic risk factor for late onset AD, the regulation of apoE level or its functionality by ABCA1 may prove significant for AD pathogenesis. ABCA1 is transcriptionally regulated by Liver X Receptors (LXR) and Retinoic X Receptors (RXR) which provides a starting point for drug discovery and development of synthetic LXR and RXR agonists for treatment of metabolic and neurodegenerative disorders. This review summarizes the recent results of research on ABCA1, particularly relevant to atherosclerosis and AD.
Collapse
Affiliation(s)
- Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Nicholas F Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
13
|
Pahnke J, Fröhlich C, Paarmann K, Krohn M, Bogdanovic N, Årsland D, Winblad B. Cerebral ABC Transporter-common Mechanisms May Modulate Neurodegenerative Diseases and Depression in Elderly Subjects. Arch Med Res 2014; 45:738-43. [DOI: 10.1016/j.arcmed.2014.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/29/2014] [Indexed: 12/21/2022]
|
14
|
Song C, Pedersen NL, Reynolds CA, Sabater-Lleal M, Kanoni S, Willenborg C, Syvänen AC, Watkins H, Hamsten A, Prince JA, Ingelsson E. Genetic variants from lipid-related pathways and risk for incident myocardial infarction. PLoS One 2013; 8:e60454. [PMID: 23555974 PMCID: PMC3612051 DOI: 10.1371/journal.pone.0060454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 02/26/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Circulating lipids levels, as well as several familial lipid metabolism disorders, are strongly associated with initiation and progression of atherosclerosis and incidence of myocardial infarction (MI). OBJECTIVES We hypothesized that genetic variants associated with circulating lipid levels would also be associated with MI incidence, and have tested this in three independent samples. SETTING AND SUBJECTS Using age- and sex-adjusted additive genetic models, we analyzed 554 single nucleotide polymorphisms (SNPs) in 41 candidate gene regions proposed to be involved in lipid-related pathways potentially predisposing to incidence of MI in 2,602 participants of the Swedish Twin Register (STR; 57% women). All associations with nominal P<0.01 were further investigated in the Uppsala Longitudinal Study of Adult Men (ULSAM; N = 1,142). RESULTS In the present study, we report associations of lipid-related SNPs with incident MI in two community-based longitudinal studies with in silico replication in a meta-analysis of genome-wide association studies. Overall, there were 9 SNPs in STR with nominal P-value <0.01 that were successfully genotyped in ULSAM. rs4149313 located in ABCA1 was associated with MI incidence in both longitudinal study samples with nominal significance (hazard ratio, 1.36 and 1.40; P-value, 0.004 and 0.015 in STR and ULSAM, respectively). In silico replication supported the association of rs4149313 with coronary artery disease in an independent meta-analysis including 173,975 individuals of European descent from the CARDIoGRAMplusC4D consortium (odds ratio, 1.03; P-value, 0.048). CONCLUSIONS rs4149313 is one of the few amino acid changing variants in ABCA1 known to associate with reduced cholesterol efflux. Our results are suggestive of a weak association between this variant and the development of atherosclerosis and MI.
Collapse
Affiliation(s)
- Ci Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Chandra A. Reynolds
- University of California Riverside, Riverside, California, United States of America
| | - Maria Sabater-Lleal
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Christina Willenborg
- Universität zu Lübeck, Medizinische Klinik II, Lübeck, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Lübeck, Germany
| | | | | | - Hugh Watkins
- Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Anders Hamsten
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan A. Prince
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik Ingelsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Sortilin receptor 1 predicts longitudinal cognitive change. Neurobiol Aging 2013; 34:1710.e11-8. [PMID: 23318115 DOI: 10.1016/j.neurobiolaging.2012.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 11/22/2022]
Abstract
The gene encoding sortilin receptor 1 (SORL1) has been associated with Alzheimer's disease risk. We examined 15 SORL1 variants and single nucleotide polymorphism (SNP) set risk scores in relation to longitudinal verbal, spatial, memory, and perceptual speed performance, testing for age trends and sex-specific effects. Altogether, 1609 individuals from 3 population-based Swedish twin studies were assessed up to 5 times across 16 years. Controlling for apolipoprotein E genotype (APOE), multiple simple and sex-moderated associations were observed for spatial, episodic memory, and verbal trajectories (p = 1.25E-03 to p = 4.83E-02). Five variants (rs11600875, rs753780, rs7105365, rs11820794, rs2070045) were associated across domains. Notably, in those homozygous for the rs2070045 risk allele, men demonstrated initially favorable performance but accelerating declines, and women showed overall lower performance. SNP set risk scores predicted spatial (Card Rotations, p = 5.92E-03) and episodic memory trajectories (Thurstone Picture Memory, p = 3.34E-02), where higher risk scores benefited men's versus women's performance up to age 75 but with accelerating declines. SORL1 is associated with cognitive aging, and might contribute differentially to change in men and women.
Collapse
|
16
|
Reitz C. Dyslipidemia and dementia: current epidemiology, genetic evidence, and mechanisms behind the associations. J Alzheimers Dis 2012; 30 Suppl 2:S127-45. [PMID: 21965313 DOI: 10.3233/jad-2011-110599] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of cholesterol in the etiology of Alzheimer's disease (AD) is still controversial. Some studies exploring the association between lipids and/or lipid lowering treatment and AD indicate a harmful effect of dyslipidemia and a beneficial effect of statin therapy on AD risk. The findings are supported by genetic linkage and association studies that have clearly identified several genes involved in cholesterol metabolism or transport as AD susceptibility genes, including apolipoprotein E, apolipoprotein J, and the sortilin-related receptor. Functional cell biology studies support a critical involvement of lipid raft cholesterol in the modulation of amyloid-β protein precursor (AβPP) processing by β- and γ-secretase resulting in altered amyloid-β production. Contradictory evidence comes from epidemiological studies showing no or controversial association between dyslipidemia and AD risk. Additionally, cell biology studies suggest that there is little exchange between circulating and brain cholesterol, that increased membrane cholesterol is protective by inhibiting loss of membrane integrity through amyloid cytotoxicity, and that cellular cholesterol inhibits co-localization of BACE1 and AβPP in non-raft membrane domains, thereby increasing generation of plasmin, an amyloid-β-degrading enzyme. The aim of this review is to summarize the findings of epidemiological and cell biological studies to elucidate the role of cholesterol in AD etiology.
Collapse
Affiliation(s)
- Christiane Reitz
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and The Aging Brain New York, NY, USA.
| |
Collapse
|
17
|
Abca1 deficiency affects Alzheimer's disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci 2012; 32:13125-36. [PMID: 22993429 DOI: 10.1523/jneurosci.1937-12.2012] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) transporter regulates cholesterol efflux and is an essential mediator of high-density lipoprotein (HDL) formation. In amyloid precursor protein (APP) transgenic mice, Abca1 deficiency increased amyloid deposition in the brain paralleled by decreased levels of Apolipoprotein E (ApoE). The APOEε4 allele is the major genetic risk factor of sporadic Alzheimer's disease (AD). Here, we reveal the effect of Abca1 deficiency on phenotype in mice expressing human ApoE3 or ApoE4. We used APP/E3 and APP/E4 mice generated by crossing APP/PS1ΔE9 transgenic mice to human APOE3- and APOE4-targeted replacement mice and examined Abca1 gene dose effect on amyloid deposition and cognition. The results from two behavior tests demonstrate that lack of one copy of Abca1 significantly exacerbates memory deficits in APP/E4/Abca1(-/+) but not in APP/E3/Abca1(-/+) mice. The data for amyloid plaques and insoluble amyloid-β (Aβ) also show that Abca1 hemizygosity increases Aβ deposition only in APP/E4/Abca1(-/+) but not in APP/E3/Abca1(-/+) mice. Our in vivo microdialysis assays indicate that Abca1 deficiency significantly decreases Aβ clearance in ApoE4-expressing mice, while the effect of Abca1 on Aβ clearance in ApoE3-expressing mice was insignificant. In addition, we demonstrate that plasma HDL and Aβ42 levels in APP/E4/Abca1(-/+) mice are significantly decreased, and there is a negative correlation between plasma HDL and amyloid plaques in brain, suggesting that plasma lipoproteins may be involved in Aβ clearance. Overall, our results prove that the presence of functional Abca1 significantly influences the phenotype of APP mice expressing human ApoE4 and further substantiate therapeutic approaches in AD based on ABCA1-APOE regulatory axis.
Collapse
|
18
|
Kundu A, Ramaiah S, Anbarasu A. Mutation in angiotensin II type 1 receptor disrupts its binding to angiotensin II leading to hypotension: An insight into hydrogen bonding patterns. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1241-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
|
20
|
Hong MG, Reynolds CA, Feldman AL, Kallin M, Lambert JC, Amouyel P, Ingelsson E, Pedersen NL, Prince JA. Genome-wide and gene-based association implicates FRMD6 in Alzheimer disease. Hum Mutat 2012; 33:521-9. [PMID: 22190428 PMCID: PMC3326347 DOI: 10.1002/humu.22009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 12/02/2011] [Indexed: 12/29/2022]
Abstract
Genome-wide association studies (GWAS) that allow for allelic heterogeneity may facilitate the discovery of novel genes not detectable by models that require replication of a single variant site. One strategy to accomplish this is to focus on genes rather than markers as units of association, and so potentially capture a spectrum of causal alleles that differ across populations. Here, we conducted a GWAS of Alzheimer disease (AD) in 2,586 Swedes and performed gene-based meta-analysis with three additional studies from France, Canada, and the United States, in total encompassing 4,259 cases and 8,284 controls. Implementing a newly designed gene-based algorithm, we identified two loci apart from the region around APOE that achieved study-wide significance in combined samples, the strongest finding being for FRMD6 on chromosome 14q (P = 2.6 × 10(-14)) and a weaker signal for NARS2 that is immediately adjacent to GAB2 on chromosome 11q (P = 7.8 × 10(-9)). Ontology-based pathway analyses revealed significant enrichment of genes involved in glycosylation. Results suggest that gene-based approaches that accommodate allelic heterogeneity in GWAS can provide a complementary avenue for gene discovery and may help to explain a portion of the missing heritability not detectable with single nucleotide polymorphisms (SNPs) derived from marker-specific meta-analysis.
Collapse
Affiliation(s)
- Mun-Gwan Hong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Chandra A. Reynolds
- Department of Psychology, University of California at Riverside, 92521 Riverside, USA
| | - Adina L. Feldman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Mikael Kallin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jean-Charles Lambert
- Inserm U744, F-59019 Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
- Université de Lille Nord de France, F-59000 Lille, France
| | - Philippe Amouyel
- Inserm U744, F-59019 Lille, France
- Institut Pasteur de Lille, F-59019 Lille, France
- Université de Lille Nord de France, F-59000 Lille, France
| | - Erik Ingelsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jonathan A. Prince
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Abdul-Rahman O, Sasvari-Szekely M, Ver A, Rosta K, Szasz BK, Kereszturi E, Keszler G. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats. BMC Genomics 2012; 13:81. [PMID: 22369239 PMCID: PMC3299604 DOI: 10.1186/1471-2164-13-81] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 02/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. RESULTS Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1), CD47 (Cluster of Differentiation 47) and the RET (Rearranged During Transfection) protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. CONCLUSIONS According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes.
Collapse
Affiliation(s)
- Omar Abdul-Rahman
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
22
|
Piehler AP, Ozcürümez M, Kaminski WE. A-Subclass ATP-Binding Cassette Proteins in Brain Lipid Homeostasis and Neurodegeneration. Front Psychiatry 2012; 3:17. [PMID: 22403555 PMCID: PMC3293240 DOI: 10.3389/fpsyt.2012.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/19/2012] [Indexed: 12/24/2022] Open
Abstract
The A-subclass of ATP-binding cassette (ABC) transporters comprises 12 structurally related members of the evolutionarily highly conserved superfamily of ABC transporters. ABCA transporters represent a subgroup of "full-size" multispan transporters of which several members have been shown to mediate the transport of a variety of physiologic lipid compounds across membrane barriers. The importance of ABCA transporters in human disease is documented by the observations that so far four members of this protein family (ABCA1, ABCA3, ABCA4, ABCA12) have been causatively linked to monogenetic disorders including familial high-density lipoprotein deficiency, neonatal surfactant deficiency, degenerative retinopathies, and congenital keratinization disorders. Recent research also point to a significant contribution of several A-subfamily ABC transporters to neurodegenerative diseases, in particular Alzheimer's disease (AD). This review will give a summary of our current knowledge of the A-subclass of ABC transporters with a special focus on brain lipid homeostasis and their involvement in AD.
Collapse
|
23
|
Wolf A, Bauer B, Hartz AMS. ABC Transporters and the Alzheimer's Disease Enigma. Front Psychiatry 2012; 3:54. [PMID: 22675311 PMCID: PMC3366330 DOI: 10.3389/fpsyt.2012.00054] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/15/2012] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is considered the "disease of the twenty-first century." With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable. This represents an unmet need resulting in clinical, social, and economic problems. Over the last decade, a new AD research focus has emerged: ATP-binding cassette (ABC) transporters. In this article, we provide an overview of the ABC transporters ABCA1, ABCA2, P-glycoprotein (ABCB1), MRP1 (ABCC1), and BCRP (ABCG2), all of which are expressed in the brain and have been implicated in AD. We summarize recent findings on the role of these five transporters in AD, and discuss their potential to serve as therapeutic targets.
Collapse
Affiliation(s)
- Andrea Wolf
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, MN, USA
| | | | | |
Collapse
|
24
|
Reynolds CA, Gatz M, Pedersen NL, Prince JA. An assessment of CETP sequence variation in relation to cognitive decline and dementia risk. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2011; 2:122-129. [PMID: 21686126 PMCID: PMC3110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/25/2011] [Indexed: 05/30/2023]
Abstract
The gene encoding the cholesteryl ester transfer protein (CETP) plays an integral role in lipid metabolism. We evaluated common genetic variation spanning CETP for association with cognitive decline as well as incident and prevalent dementia and Alzheimer disease risk. Data from four population-based twin studies and a case-control sample were included, encompassing an analysis sample of 1513 dementia cases and 2137 controls with available CETP genotypes and covariates. Memory and perceptual speed performance was assessed over 16 years in up to 1540 participants. Only sporadic associations were observed across 26 markers and were largely consistent with statistical noise. Polymorphism in CETP is unlikely to contribute to cognitive change or dementia risk.
Collapse
|
25
|
Eriksson UK, Pedersen NL, Reynolds CA, Hong MG, Prince JA, Gatz M, Dickman PW, Bennet AM. Associations of gene sequence variation and serum levels of C-reactive protein and interleukin-6 with Alzheimer's disease and dementia. J Alzheimers Dis 2011; 23:361-9. [PMID: 21116047 PMCID: PMC3237048 DOI: 10.3233/jad-2010-101671] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inflammatory mechanisms have been implicated in Alzheimer's disease (AD) and dementia. We therefore sought to study DNA sequence variation and serum levels of the potent inflammatory mediators Interleukin-6 (IL6) and C-reactive protein (CRP) in relation to AD and dementia. Tagging single nucleotide polymorphisms (tagSNPs) were chosen to capture most variation in and around CRP and IL6 in 3937 elderly Swedish men and women (1,265 AD cases). A sub-set of the population (n = 723) with serum measurements of CRP and IL6 was included in 1) a nested case-control study of incident dementia cases, and 2) a case-control study of prevalent dementia cases. None of the SNPs or haplotypes was significantly associated with AD or dementia after correcting for multiple testing nor were elevated baseline levels of hsCRP or IL6 (measured on average 4.3 years before dementia onset) significantly associated with risk of future AD or dementia. However, prevalent AD cases had higher levels of IL6 (measured on average 5.5 years after dementia onset) than age- and gender-matched controls, OR 2.24 (95% CI 1.27-3.95), p-value 0.006. In summary, this data suggests that AD patients have an altered immune profile with higher circulating levels of IL6 than age- and gender-matched controls. However, neither variation in the CRP and IL6 genes nor circulating levels of their respective protein products were associated with an increased risk of developing late-life dementias.
Collapse
Affiliation(s)
- Ulrika K. Eriksson
- Dept. of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L. Pedersen
- Dept. of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Dept. of Psychology, University of Southern California, Los Angeles, California, USA
| | - Chandra A. Reynolds
- Dept. of Psychology, University of California at Riverside, Riverside, California, USA
| | - Mun-Gwan Hong
- Dept. of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan A. Prince
- Dept. of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Margaret Gatz
- Dept. of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Dept. of Psychology, University of Southern California, Los Angeles, California, USA
| | - Paul W. Dickman
- Dept. of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna M. Bennet
- Dept. of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Bennet AM, Reynolds CA, Eriksson UK, Hong MG, Blennow K, Gatz M, Alexeyenko A, Pedersen NL, Prince JA. Genetic association of sequence variants near AGER/NOTCH4 and dementia. J Alzheimers Dis 2011; 24:475-84. [PMID: 21297263 PMCID: PMC3477600 DOI: 10.3233/jad-2011-101848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed a survey of sequence variation in a series of 20 genes involved in inflammation-related pathways for association with dementia risk in twin and unrelated case-control samples consisting in total of 1462 Swedish dementia casesand 1929 controls. For a total of 218 tested genetic markers, strong evidence was obtained implicating a region near AGER and NOTCH4 on chromosome 6p with replication across both samples and maximum combined significance at marker rs1800625 (OR = 1.37, 95% CI 1.19–1.56, p = 1.36×10(–6)). Imputation of the associated genomic interval provided an improved signal atrs8365, near the 3UTR of AGER (p = 7.34×10(–7)). The associated region extends 120 kb encompassing 11 candidate genes.While AGER encodes a key receptor for amyloid-β protein, an analysis of network context based upon genes now confirmed to contribute to dementia risk (AβPP, PSEN1, PSEN2, CR1, CLU, PICALM, and APOE) suggested strong functional coupling to NOTCH4, with no significant coupling to the remaining candidates. The implicated region occurs in the broad HLA locus on chromosome 6p, but associated markers were not in strong LD with known variants that regulate HLA gene function, suggesting that this may represent a signal distinct from immune-system pathways.
Collapse
Affiliation(s)
- Anna M. Bennet
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Chandra A. Reynolds
- Department of Psychology, University of California at Riverside, Riverside, CA 92521, USA
| | - Ulrika K. Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mun-gwan Hong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 80 Mölndal, Sweden
| | - Margaret Gatz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Andrey Alexeyenko
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Jonathan A. Prince
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
27
|
Schreurs BG. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev 2010; 34:1366-79. [PMID: 20470821 PMCID: PMC2900496 DOI: 10.1016/j.neubiorev.2010.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 02/07/2023]
Abstract
Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute and Department of Physiology and Pharmacology, West Virginia University School of Medicine, BRNI Building, Morgantown, WV 26505-3409-08, USA.
| |
Collapse
|
28
|
Koldamova R, Fitz NF, Lefterov I. The role of ATP-binding cassette transporter A1 in Alzheimer's disease and neurodegeneration. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:824-30. [PMID: 20188211 DOI: 10.1016/j.bbalip.2010.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 01/03/2023]
Abstract
ATP-binding cassette transporter A1 - ABCA1, is the most extensively studied transporter in human pathology. ABCA1 became a primary subject of research in many academic and pharmaceutical laboratories immediately after the discovery that mutations at the gene locus cause severe familial High Density Lipoprotein (HDL) deficiency and, in the homozygous form - Tangier disease. The protein is the major regulator of intracellular cholesterol efflux which is the initial and essential step in the biogenesis and formation of nascent HDL particles. The transcriptional regulation of ABCA1 by nuclear Liver X Receptors (LXR) provided a starting point for drug discovery and development of synthetic LXR ligands/ABCA1 activators for treatment of arteriosclerosis. A series of reports that revealed the role of ABCA1 in Abeta deposition and clearance, as well as the possibility for association of some ABCA1 genetic variants with risk for Alzheimer's disease (AD) brought a new dimension to ABCA1 research. The LXR-ABCA1-APOE regulatory axis is now considered a promising therapeutic target in AD, which includes the only proven risk factor for AD - APOE, at two distinct levels - transcriptional regulation by LXR, and ABCA1 controlled lipidation which can influence Abeta aggregation and amyloid clearance. This review will summarize the results of research on ABCA1, particularly related to AD and neurodegeneration.
Collapse
Affiliation(s)
- Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | | | | |
Collapse
|
29
|
Reynolds CA, Hong MG, Eriksson UK, Blennow K, Wiklund F, Johansson B, Malmberg B, Berg S, Alexeyenko A, Grönberg H, Gatz M, Pedersen NL, Prince JA. Analysis of lipid pathway genes indicates association of sequence variation near SREBF1/TOM1L2/ATPAF2 with dementia risk. Hum Mol Genet 2010; 19:2068-78. [PMID: 20167577 DOI: 10.1093/hmg/ddq079] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We conducted dense linkage disequilibrium (LD) mapping of a series of 25 genes putatively involved in lipid metabolism in 1567 dementia cases [including 1270 with Alzheimer disease (AD)] and 2203 Swedish controls. Across a total of 448 tested genetic markers, the strongest evidence of association was as anticipated for APOE (rs429358 at P approximately 10(-72)) followed by a previously reported association of ABCA1 (rs2230805 at P approximately 10(-8)). In the present study, we report two additional markers near the SREBF1 locus on chromosome 17p that were also significant after multiple testing correction (best P = 3.1 x 10(-6) for marker rs3183702). There was no convincing evidence of association for remaining genes, including candidates highlighted from recent genome-wide association studies of plasma lipids (CELSR2/PSRC1/SORT1, MLXIPL, PCSK9, GALNT2 and GCKR). The associated markers near SREBF1 reside in a large LD block, extending more than 400 kb across seven candidate genes. Secondary analyses of gene expression levels of candidates spanning the LD region together with an investigation of gene network context highlighted two possible susceptibility genes including ATPAF2 and TOM1L2. Several markers in strong LD (r(2) > 0.7) with rs3183702 were found to be significantly associated with AD risk in recent genome-wide association studies with similar effect sizes, providing independent support of the current findings.
Collapse
Affiliation(s)
- Chandra A Reynolds
- Department of Psychology, University of California at Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Akram A, Schmeidler J, Katsel P, Hof PR, Haroutunian V. Increased expression of cholesterol transporter ABCA1 is highly correlated with severity of dementia in AD hippocampus. Brain Res 2010; 1318:167-77. [PMID: 20079340 DOI: 10.1016/j.brainres.2010.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 12/30/2009] [Accepted: 01/01/2010] [Indexed: 01/21/2023]
Abstract
To gain insight into ATP-binding cassette transporter A1 (ABCA1) function and its potential role in AD pathology, we analyzed the expression of the cholesterol transporter ABCA1 in postmortem hippocampus from persons at different stages of dementia and AD associated neuropathology relative to cognitively intact normal donors by quantitative polymerase chain reaction (qPCR) and Western blot. In this study clinical dementia rating (CDR) scores were used as a measure of dementia severity, whereas, Braak neuropathological staging and neuritic plaque density were used as an index of the neuropathological progression of AD. Correlation analysis showed that ABCA1 mRNA expression was significantly elevated at the earliest recognizable stage of dementia compared to persons with intact cognition. ABCA1 mRNA was also positively correlated with Braak neuropathological stages and neuritic plaque density counts. Additionally, ABCA1 mRNA levels showed robust correlation with dementia severity even after controlling for the confounding contribution of accompanying neuropathological parameters to ABCA1 mRNA expression. Western blot analyses showed that the differential expression observed at the transcriptional level is also reflected at the protein level. Thus, our study provides transcriptional and translational evidence that the expression of ABCA1, a key modulator of cholesterol transport across the plasma membrane, is dysregulated in the AD brain and that this dysregulation is associated with increasing severity of AD, whether measured functionally as dementia severity or neuropathologically as increased neuritic plaque and neurofibrillary tangle density.
Collapse
Affiliation(s)
- Afia Akram
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
31
|
Bennet AM, Reynolds CA, Gatz M, Blennow K, Pedersen NL, Prince JA. Pleiotropy in the presence of allelic heterogeneity: alternative genetic models for the influence of APOE on serum LDL, CSF amyloid-β42, and dementia. J Alzheimers Dis 2010; 22:129-34. [PMID: 20847432 PMCID: PMC3547982 DOI: 10.3233/jad-2010-100864] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The two genetic polymorphisms, rs7412 and rs429358, that collectively form the e2, e3, and e4 alleles of apolipoprotein E (APOE) are among the most widely studied sequence variants in the genome. The predominant model for testing APOE involves the haplotype combinations of e2, e3, and e4 and has been basis of associations with dementia, atherosclerosis, and serum lipid levels. Here, we demonstrate the functional independence of these two component sites, with rs7412 contributing to the majority of variance in serum LDL (p=10-20), whereas rs429358 alone influences variance in CSF amyloid-ß42 (Aß42) (p=10(-17)). This latter relationship is also reflected in the association of APOE with dementia, where rs429358 strongly influences disease (p=10(-67)), but rs7412 does not. Models based upon e2, e3, and e4 explained less variance for both dementia risk and CSF Aß42 than did rs429358 alone. When adjusted for CSF Aß42, the association of rs429358 with dementia is greatly reduced but remains significant indicating that APOE polymorphism influences disease by additional mechanisms distinct from Aß42 metabolism. We reach four principal conclusion from this study: 1) rs429358 alone is responsible for the association of APOE with dementia; 2) The association of APOE with dementia is substantially mediated by its effect on CNS Aß42 levels; 3) The association of APOE with dementia is not mediated by its impact on peripheral lipid metabolism; and 4) The dichotomy of effects of rs429358 and rs7412 represents one of the best examples of genetic pleiotropy for complex traits known and illustrates the importance of allelic heterogeneity in APOE.
Collapse
Affiliation(s)
- Anna M. Bennet
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Chandra A. Reynolds
- Department of Psychology, University of California at Riverside, Riverside, CA 92521, USA
| | - Margaret Gatz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 80 Mölndal, Sweden
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061, USA
| | - Jonathan A. Prince
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|