1
|
Ali AE, Li LL, Courtney MJ, Pentikäinen OT, Postila PA. Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1. Brief Bioinform 2024; 25:bbae458. [PMID: 39311700 PMCID: PMC11418247 DOI: 10.1093/bib/bbae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
De novo mutations in the synaptic GTPase activating protein (SynGAP) are associated with neurological disorders like intellectual disability, epilepsy, and autism. SynGAP is also implicated in Alzheimer's disease and cancer. Although pathogenic variants are highly penetrant in neurodevelopmental conditions, a substantial number of them are caused by missense mutations that are difficult to diagnose. Hence, in silico mutagenesis was performed for probing the missense effects within the N-terminal region of SynGAP structure. Through extensive molecular dynamics simulations, encompassing three 150-ns replicates for 211 variants, the impact of missense mutations on the protein fold was assessed. The effect of the mutations on the folding stability was also quantitatively assessed using free energy calculations. The mutations were categorized as potentially pathogenic or benign based on their structural impacts. Finally, the study introduces wild-type-SynGAP in complex with RasGTPase at the inner membrane, while considering the potential effects of mutations on these key interactions. This study provides structural perspective to the clinical assessment of SynGAP missense variants and lays the foundation for future structure-based drug discovery.
Collapse
Affiliation(s)
- Aliaa E Ali
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Li-Li Li
- Neuronal Signalling Laboratory and Turku Screening Unit, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Michael J Courtney
- Neuronal Signalling Laboratory and Turku Screening Unit, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Olli T Pentikäinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Pekka A Postila
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
2
|
Wu B, Liu S. Structural Insights into the Mechanisms Underlying Polyaminopathies. Int J Mol Sci 2024; 25:6340. [PMID: 38928047 PMCID: PMC11203672 DOI: 10.3390/ijms25126340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamines are ubiquitous in almost all biological entities and involved in various crucial physiological processes. They are also closely associated with the onset and progression of many diseases. Polyaminopathies are a group of rare genetic disorders caused by alterations in the function of proteins within the polyamine metabolism network. Although the identified polyaminopathies are all rare diseases at present, they are genetically heritable, rendering high risks not only to the carriers but also to their descendants. Meanwhile, more polyaminopathic patients might be discovered with the increasing accessibility of gene sequencing. This review aims to provide a comprehensive overview of the structural variations of mutated proteins in current polyaminopathies, in addition to their causative genes, types of mutations, clinical symptoms, and therapeutic approaches. We focus on analyzing how alterations in protein structure lead to protein dysfunction, thereby facilitating the onset of diseases. We hope this review will offer valuable insights and references for the future clinical diagnosis and precision treatment of polyaminopathies.
Collapse
Affiliation(s)
- Bing Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Akinyele O, Munir A, Johnson MA, Perez MS, Gao Y, Foley JR, Nwafor A, Wu Y, Murray-Stewart T, Casero RA, Bayir H, Kemaladewi DU. Impaired polyamine metabolism causes behavioral and neuroanatomical defects in a mouse model of Snyder-Robinson syndrome. Dis Model Mech 2024; 17:dmm050639. [PMID: 38463005 PMCID: PMC11103582 DOI: 10.1242/dmm.050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.
Collapse
Affiliation(s)
- Oluwaseun Akinyele
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Anushe Munir
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marie A. Johnson
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Megan S. Perez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuan Gao
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jackson R. Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Ashley Nwafor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Hülya Bayir
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Dwi U. Kemaladewi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
4
|
Stewart TM, Foley JR, Holbert CE, Khomutov M, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome. EMBO Mol Med 2023; 15:e17833. [PMID: 37702369 PMCID: PMC10630878 DOI: 10.15252/emmm.202317833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Snyder-Robinson syndrome (SRS) results from mutations in spermine synthase (SMS), which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonia, and seizures. Symptom management is the only treatment. Reduced SMS activity causes spermidine accumulation while spermine levels are reduced. The resulting exaggerated spermidine:spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this imbalance as a therapeutic strategy for SRS. Here we report the repurposing of 2-difluoromethylornithine (DFMO), an FDA-approved inhibitor of polyamine biosynthesis, in rebalancing spermidine:spermine ratios in SRS patient cells. Mechanistic in vitro studies demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of spermidine into spermine in hypomorphic SMS cells and induces uptake of exogenous spermine, altogether reducing the aberrant ratios. In a Drosophila SRS model characterized by reduced lifespan, DFMO improves longevity. As nearly all SRS patient mutations are hypomorphic, these studies form a strong foundation for translational studies with significant therapeutic potential.
Collapse
Affiliation(s)
- Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Jackson R Foley
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Maxim Khomutov
- Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
| | - Noushin Rastkari
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Xianzun Tao
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Alex R Khomutov
- Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
| | - R Grace Zhai
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMDUSA
| |
Collapse
|
5
|
Tollefson MR, Gogal RA, Weaver AM, Schaefer AM, Marini RJ, Azaiez H, Kolbe DL, Wang D, Weaver AE, Casavant TL, Braun TA, Smith RJH, Schnieders MJ. Assessing variants of uncertain significance implicated in hearing loss using a comprehensive deafness proteome. Hum Genet 2023; 142:819-834. [PMID: 37086329 PMCID: PMC10182131 DOI: 10.1007/s00439-023-02559-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.
Collapse
Affiliation(s)
- Mallory R Tollefson
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Rose A Gogal
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - A Monique Weaver
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Amanda M Schaefer
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Robert J Marini
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Donghong Wang
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Amy E Weaver
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Thomas L Casavant
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Terry A Braun
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.
| | - Michael J Schnieders
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
Ogun OJ, Soremekun OS, Thaller G, Becker D. An In Silico Functional Analysis of Non-Synonymous Single-Nucleotide Polymorphisms of Bovine CMAH Gene and Potential Implication in Pathogenesis. Pathogens 2023; 12:pathogens12040591. [PMID: 37111477 PMCID: PMC10142285 DOI: 10.3390/pathogens12040591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The sugar molecule N-glycolylneuraminic acid (Neu5Gc) is one of the most common sialic acids discovered in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) catalyses the conversion of N-acetylneuraminic acid (Neu5Ac) to Neu5Gc, and it is encoded by the CMAH gene. On the one hand, food metabolic incorporation of Neu5Gc has been linked to specific human diseases. On the other hand, Neu5Gc has been shown to be highly preferred by some pathogens linked to certain bovine diseases. We used various computational techniques to perform an in silico functional analysis of five non-synonymous single-nucleotide polymorphisms (nsSNPs) of the bovine CMAH (bCMAH) gene identified from the 1000 Bull Genomes sequence data. The c.1271C>T (P424L) nsSNP was predicted to be pathogenic based on the consensus result from different computational tools. The nsSNP was also predicted to be critical based on sequence conservation, stability, and post-translational modification site analysis. According to the molecular dynamic simulation and stability analysis, all variations promoted stability of the bCMAH protein, but mutation A210S significantly promoted CMAH stability. In conclusion, c.1271C>T (P424L) is expected to be the most harmful nsSNP among the five detected nsSNPs based on the overall studies. This research could pave the way for more research associating pathogenic nsSNPs in the bCMAH gene with diseases.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Opeyemi S Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe 5159, Uganda
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
7
|
Stewart TRM, Foley JR, Holbert CE, Khomutov MA, Rastkari N, Tao X, Khomutov AR, Zhai RG, Casero RA. Difluoromethylornithine rebalances aberrant polyamine ratios in Snyder-Robinson syndrome: mechanism of action and therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534977. [PMID: 37034775 PMCID: PMC10081208 DOI: 10.1101/2023.03.30.534977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Snyder-Robinson Syndrome (SRS) is caused by mutations in the spermine synthase (SMS) gene, the enzyme product of which converts the polyamine spermidine into spermine. Affecting primarily males, common manifestations of SRS include intellectual disability, osteoporosis, hypotonic musculature, and seizures, along with other more variable symptoms. Currently, medical management focuses on treating these symptoms without addressing the underlying molecular cause of the disease. Reduced SMS catalytic activity in cells of SRS patients causes the accumulation of spermidine, while spermine levels are reduced. The resulting exaggeration in spermidine-to-spermine ratio is a biochemical hallmark of SRS that tends to correlate with symptom severity in the patient. Our studies aim to pharmacologically manipulate polyamine metabolism to correct this polyamine imbalance and investigate the potential of this approach as a therapeutic strategy for affected individuals. Here we report the use of difluoromethylornithine (DFMO; eflornithine), an FDA-approved inhibitor of polyamine biosynthesis, in re-establishing normal spermidine-to-spermine ratios in SRS patient cells. Through mechanistic studies, we demonstrate that, while reducing spermidine biosynthesis, DFMO also stimulates the conversion of existing spermidine into spermine in cell lines with hypomorphic variants of SMS. Further, DFMO treatment induces a compensatory uptake of exogenous polyamines, including spermine and spermine mimetics, cooperatively reducing spermidine and increasing spermine levels. In a Drosophila SRS model characterized by reduced lifespan, adding DFMO to the feed extended lifespan. As nearly all known SRS patient mutations are hypomorphic, these studies form a foundation for future translational studies with significant therapeutic potential.
Collapse
|
8
|
Tollefson MR, Gogal RA, Weaver AM, Schaefer AM, Marini RJ, Azaiez H, Kolbe DL, Wang D, Weaver AE, Casavant TL, Braun TA, Smith RJH, Schnieders M. Assessing Variants of Uncertain Significance Implicated in Hearing Loss Using a Comprehensive Deafness Proteome. RESEARCH SQUARE 2023:rs.3.rs-2508462. [PMID: 36778238 PMCID: PMC9915777 DOI: 10.21203/rs.3.rs-2508462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.
Collapse
|
9
|
Gao Y, Wang B, Hu S, Zhu T, Zhang JZH. An efficient method to predict protein thermostability in alanine mutation. Phys Chem Chem Phys 2022; 24:29629-29639. [PMID: 36449314 DOI: 10.1039/d2cp04236c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationship between protein sequence and its thermodynamic stability is a critical aspect of computational protein design. In this work, we present a new theoretical method to calculate the free energy change (ΔΔG) resulting from a single-point amino acid mutation to alanine in a protein sequence. The method is derived based on physical interactions and is very efficient in estimating the free energy changes caused by a series of alanine mutations from just a single molecular dynamics (MD) trajectory. Numerical calculations are carried out on a total of 547 alanine mutations in 19 diverse proteins whose experimental results are available. The comparison between the experimental ΔΔGexp and the calculated values shows a generally good correlation with a correlation coefficient of 0.67. Both the advantages and limitations of this method are discussed. This method provides an efficient and valuable tool for protein design and engineering.
Collapse
Affiliation(s)
- Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Bo Wang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Shiyu Hu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shenzhen Institute of Synthetic Biology, Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
10
|
Electrostatics in Computational Biophysics and Its Implications for Disease Effects. Int J Mol Sci 2022; 23:ijms231810347. [PMID: 36142260 PMCID: PMC9499338 DOI: 10.3390/ijms231810347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
This review outlines the role of electrostatics in computational molecular biophysics and its implication in altering wild-type characteristics of biological macromolecules, and thus the contribution of electrostatics to disease mechanisms. The work is not intended to review existing computational approaches or to propose further developments. Instead, it summarizes the outcomes of relevant studies and provides a generalized classification of major mechanisms that involve electrostatic effects in both wild-type and mutant biological macromolecules. It emphasizes the complex role of electrostatics in molecular biophysics, such that the long range of electrostatic interactions causes them to dominate all other forces at distances larger than several Angstroms, while at the same time, the alteration of short-range wild-type electrostatic pairwise interactions can have pronounced effects as well. Because of this dual nature of electrostatic interactions, being dominant at long-range and being very specific at short-range, their implications for wild-type structure and function are quite pronounced. Therefore, any disruption of the complex electrostatic network of interactions may abolish wild-type functionality and could be the dominant factor contributing to pathogenicity. However, we also outline that due to the plasticity of biological macromolecules, the effect of amino acid mutation may be reduced, and thus a charge deletion or insertion may not necessarily be deleterious.
Collapse
|
11
|
Nisar A, Kayani MA, Nasir W, Mehmood A, Ahmed MW, Parvez A, Mahjabeen I. Fyn and Lyn gene polymorphisms impact the risk of thyroid cancer. Mol Genet Genomics 2022; 297:1649-1659. [PMID: 36058999 DOI: 10.1007/s00438-022-01946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
Thyroid cancer is the most common malignancy of the endocrine glands, and during last couple of decades, its incidence has risen alarmingly, across the globe. Etiology of thyroid cancer is still debatable. There are a few worth mentioning risk factors which contribute to initiation of abnormalities in thyroid gland leading to cancer. Genetic instability is major risk factors in thyroid carcinogenesis. Among the genetic factors, the Src family of genes (Src, Yes1, Fyn and Lyn) have been implicated in many cancers but there is little data regarding the association of these (Src, Yes1, Fyn and Lyn) genes with thyroid carcinogenesis. Fyn and Lyn genes of Src family found engaged in proliferation, migration, invasion, angiogenesis, and metastasis in different cancers. This study was planned to examine the effect of Fyn and Lyn SNPs on thyroid cancer risk in Pakistani population in 500 patients and 500 controls. Three polymorphisms of Fyn gene (rs6916861, rs2182644 and rs12910) and three polymorphisms of Lyn gene (rs2668011, rs45587541 and rs45489500) were analyzed using Tetra-primer ARMS-PCR followed by DNA sequencing. SNP rs6916861 of Fyn gene mutant genotype (CC) showed statistically significant threefold increased risk of thyroid cancer (P < 0.0001). In case of rs2182644 of Fyn gene, mutant genotype (AA) indicated statistically significant 17-fold increased risk of thyroid cancer (P < 0.0001). Statistically significant threefold increased risk of thyroid cancer was observed in genotype AC (P < 0.0001) of Fyn gene polymorphism rs12910. In SNP rs2668011 of Lyn gene, TT genotype showed statistically significant threefold increased risk of thyroid cancer (P < 0.0001). In case of rs45587541 of Lyn gene, GA genotypes showed statistically significant 11-fold increased risk in thyroid cancer (P < 0.0001). Haplotype analysis revealed that AAATAG*, AGACAG*, AGCCAA*, AGCCAG*, CAATAG*, CGCCAG* and CGCCGA* haplotypes of Fyn and Lyn polymorphisms are associated with increased thyroid cancer risk. These results showed that genotypes and allele distribution of Fyn and Lyn are significantly linked with increased thyroid cancer risk and could be genetic adjuster for said disease.
Collapse
Affiliation(s)
- Asif Nisar
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Wajiha Nasir
- Department of Radiation, Nuclear Oncology Radiation Institute, Islamabad, Pakistan
| | - Azhar Mehmood
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Malik Waqar Ahmed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan.,Pakistan Institute of Rehabilitation Sciences (PIRS), Isra University Islamabad Campus, Islamabad, Pakistan
| | - Aamir Parvez
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan.
| |
Collapse
|
12
|
Ducich NH, Mears JA, Bedoyan JK. Solvent accessibility of E1α and E1β residues with known missense mutations causing pyruvate dehydrogenase complex (PDC) deficiency: Impact on PDC-E1 structure and function. J Inherit Metab Dis 2022; 45:557-570. [PMID: 35038180 PMCID: PMC9297371 DOI: 10.1002/jimd.12477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/08/2022]
Abstract
Pyruvate dehydrogenase complex deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. PDHA1 mutations are responsible for >82% of cases. The E1 component of PDC is a symmetric dimer of heterodimers (αβ/α'β') encoded by PDHA1 and PDHB. We measured solvent accessibility surface area (SASA), utilized nearest-neighbor analysis, incorporated sequence changes using mutagenesis tool in PyMOL, and performed molecular modeling with SWISS-MODEL, to investigate the impact of residues with disease-causing missense variants (DMVs) on E1 structure and function. We reviewed 166 and 13 genetically resolved cases due to PDHA1 and PDHB, respectively, from variant databases. We expanded on 102 E1α and 13 E1β nonduplicate DMVs. DMVs of E1α Arg112-Arg224 stretch (exons 5-7) and of E1α Arg residues constituted 40% and 39% of cases, respectively, with invariant Arg349 accounting for 22% of arginine replacements. SASA analysis showed that 86% and 84% of residues with nonduplicate DMVs of E1α and E1β, respectively, are solvent inaccessible ("buried"). Furthermore, 30% of E1α buried residues with DMVs are deleterious through perturbation of subunit-subunit interface contact (SSIC), with 73% located in the Arg112-Arg224 stretch. E1α Arg349 represented 74% of buried E1α Arg residues involved in SSIC. Structural perturbations resulting from residue replacements in some matched neighboring pairs of amino acids on different subunits involved in SSIC at 2.9-4.0 Å interatomic distance apart, exhibit similar clinical phenotype. Collectively, this work provides insight for future target-based advanced molecular modeling studies, with implications for development of novel therapeutics for specific recurrent DMVs of E1α.
Collapse
Affiliation(s)
- Nicole H. Ducich
- Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Jason A. Mears
- Department of Pharmacology, CWRU, Cleveland, Ohio, USA
- Center for Mitochondrial Diseases, CWRU, Cleveland, Ohio, USA
| | - Jirair K. Bedoyan
- Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
An K, Zhou JB, Xiong Y, Han W, Wang T, Ye ZQ, Wu YD. Computational Studies of the Structural Basis of Human RPS19 Mutations Associated With Diamond-Blackfan Anemia. Front Genet 2021; 12:650897. [PMID: 34108988 PMCID: PMC8181406 DOI: 10.3389/fgene.2021.650897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Diamond-Blackfan Anemia (DBA) is an inherited rare disease characterized with severe pure red cell aplasia, and it is caused by the defective ribosome biogenesis stemming from the impairment of ribosomal proteins. Among all DBA-associated ribosomal proteins, RPS19 affects most patients and carries most DBA mutations. Revealing how these mutations lead to the impairment of RPS19 is highly demanded for understanding the pathogenesis of DBA, but a systematic study is currently lacking. In this work, based on the complex structure of human ribosome, we comprehensively studied the structural basis of DBA mutations of RPS19 by using computational methods. Main structure elements and five conserved surface patches involved in RPS19-18S rRNA interaction were identified. We further revealed that DBA mutations would destabilize RPS19 through disrupting the hydrophobic core or breaking the helix, or perturb the RPS19-18S rRNA interaction through destroying hydrogen bonds, introducing steric hindrance effect, or altering surface electrostatic property at the interface. Moreover, we trained a machine-learning model to predict the pathogenicity of all possible RPS19 mutations. Our work has laid a foundation for revealing the pathogenesis of DBA from the structural perspective.
Collapse
Affiliation(s)
- Ke An
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jing-Bo Zhou
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yao Xiong
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Wang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhi-Qiang Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
14
|
Petrosino M, Novak L, Pasquo A, Chiaraluce R, Turina P, Capriotti E, Consalvi V. Analysis and Interpretation of the Impact of Missense Variants in Cancer. Int J Mol Sci 2021; 22:ijms22115416. [PMID: 34063805 PMCID: PMC8196604 DOI: 10.3390/ijms22115416] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Large scale genome sequencing allowed the identification of a massive number of genetic variations, whose impact on human health is still unknown. In this review we analyze, by an in silico-based strategy, the impact of missense variants on cancer-related genes, whose effect on protein stability and function was experimentally determined. We collected a set of 164 variants from 11 proteins to analyze the impact of missense mutations at structural and functional levels, and to assess the performance of state-of-the-art methods (FoldX and Meta-SNP) for predicting protein stability change and pathogenicity. The result of our analysis shows that a combination of experimental data on protein stability and in silico pathogenicity predictions allowed the identification of a subset of variants with a high probability of having a deleterious phenotypic effect, as confirmed by the significant enrichment of the subset in variants annotated in the COSMIC database as putative cancer-driving variants. Our analysis suggests that the integration of experimental and computational approaches may contribute to evaluate the risk for complex disorders and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Maria Petrosino
- Dipartimento Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy; (M.P.); (L.N.); (R.C.)
| | - Leonore Novak
- Dipartimento Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy; (M.P.); (L.N.); (R.C.)
| | - Alessandra Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory FSN-TECFIS-DIM, 00044 Frascati, Italy;
| | - Roberta Chiaraluce
- Dipartimento Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy; (M.P.); (L.N.); (R.C.)
| | - Paola Turina
- Dipartimento di Farmacia e Biotecnologie (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Emidio Capriotti
- Dipartimento di Farmacia e Biotecnologie (FaBiT), University of Bologna, 40126 Bologna, Italy;
- Correspondence: (E.C.); (V.C.)
| | - Valerio Consalvi
- Dipartimento Scienze Biochimiche “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Roma, Italy; (M.P.); (L.N.); (R.C.)
- Correspondence: (E.C.); (V.C.)
| |
Collapse
|
15
|
Dontaine P, Kottos E, Dassonville M, Balasel O, Catros V, Soblet J, Perlot P, Vilain C. Digestive involvement in a severe form of Snyder-Robinson syndrome: Possible expansion of the phenotype. Eur J Med Genet 2020; 64:104097. [PMID: 33186760 DOI: 10.1016/j.ejmg.2020.104097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
Snyder-Robinson syndrome (OMIM #309583) is a rare X-linked condition, caused by mutation in the SMS gene (MIM *300105), characterized by a wide spectrum of clinical signs including developmental delay, epilepsy, asthenic habitus, dysmorphism, osteopenia, and renal or genital anomalies. Here we describe two maternal half-brothers who both presented with severe neurodevelopmental delay, seizures, hearing loss, facial dysmorphism, renal and ophthalmologic anomalies, failure to thrive and premature death. A novel p.(Gly203Asp) variant was found at the hemizygous state in the two boys, and an elevated Spermidine/Spermine ratio confirmed the diagnosis of Snyder-Robinson syndrome. One of the brothers presented with gastrointestinal symptoms, with jejunal stenosis, enteral feeding intolerance, failure to thrive due to a dysfunctional gastrointestinal system, cholestasis and exocrine pancreatic insufficiency. Although more studies will be needed to understand its mechanisms, this observation lends further support to the possibility of severe digestive involvement in Snyder Robinson syndrome.
Collapse
Affiliation(s)
- Pauline Dontaine
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium
| | - Elisa Kottos
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium
| | - Martine Dassonville
- Department of Pediatric Surgery, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Ovidiu Balasel
- Department of Neonatalogy, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Véronique Catros
- Univ Rennes, Inserm, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), CRB Santé Rennes, F-35000, Rennes, France
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Pascale Perlot
- Department of Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Universite Libre de Bruxelles, Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium; Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
16
|
Hossain MS, Roy AS, Islam MS. In silico analysis predicting effects of deleterious SNPs of human RASSF5 gene on its structure and functions. Sci Rep 2020; 10:14542. [PMID: 32884013 PMCID: PMC7471297 DOI: 10.1038/s41598-020-71457-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022] Open
Abstract
Ras association domain-containing protein 5 (RASSF5), one of the prospective biomarkers for tumors, generally plays a crucial role as a tumor suppressor. As deleterious effects can result from functional differences through SNPs, we sought to analyze the most deleterious SNPs of RASSF5 as well as predict the structural changes associated with the mutants that hamper the normal protein-protein interactions. We adopted both sequence and structure based approaches to analyze the SNPs of RASSF5 protein. We also analyzed the putative post translational modification sites as well as the altered protein-protein interactions that encompass various cascades of signals. Out of all the SNPs obtained from the NCBI database, only 25 were considered as highly deleterious by six in silico SNP prediction tools. Among them, upon analyzing the effect of these nsSNPs on the stability of the protein, we found 17 SNPs that decrease the stability. Significant deviation in the energy minimization score was observed in P350R, F321L, and R277W. Besides this, docking analysis confirmed that P350R, A319V, F321L, and R277W reduce the binding affinity of the protein with H-Ras, where P350R shows the most remarkable deviation. Protein-protein interaction analysis revealed that RASSF5 acts as a hub connecting two clusters consisting of 18 proteins and alteration in the RASSF5 may lead to disassociation of several signal cascades. Thus, based on these analyses, our study suggests that the reported functional SNPs may serve as potential targets for different proteomic studies, diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Arpita Singha Roy
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Sajedul Islam
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh.
| |
Collapse
|
17
|
Tanwar H, Kumar DT, Doss CGP, Zayed H. Bioinformatics classification of mutations in patients with Mucopolysaccharidosis IIIA. Metab Brain Dis 2019; 34:1577-1594. [PMID: 31385193 PMCID: PMC6858298 DOI: 10.1007/s11011-019-00465-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Mucopolysaccharidosis (MPS) IIIA, also known as Sanfilippo syndrome type A, is a severe, progressive disease that affects the central nervous system (CNS). MPS IIIA is inherited in an autosomal recessive manner and is caused by a deficiency in the lysosomal enzyme sulfamidase, which is required for the degradation of heparan sulfate. The sulfamidase is produced by the N-sulphoglucosamine sulphohydrolase (SGSH) gene. In MPS IIIA patients, the excess of lysosomal storage of heparan sulfate often leads to mental retardation, hyperactive behavior, and connective tissue impairments, which occur due to various known missense mutations in the SGSH, leading to protein dysfunction. In this study, we focused on three mutations (R74C, S66W, and R245H) based on in silico pathogenic, conservation, and stability prediction tool studies. The three mutations were further subjected to molecular dynamic simulation (MDS) analysis using GROMACS simulation software to observe the structural changes they induced, and all the mutants exhibited maximum deviation patterns compared with the native protein. Conformational changes were observed in the mutants based on various geometrical parameters, such as conformational stability, fluctuation, and compactness, followed by hydrogen bonding, physicochemical properties, principal component analysis (PCA), and salt bridge analyses, which further validated the underlying cause of the protein instability. Additionally, secondary structure and surrounding amino acid analyses further confirmed the above results indicating the loss of protein function in the mutants compared with the native protein. The present results reveal the effects of three mutations on the enzymatic activity of sulfamidase, providing a molecular explanation for the cause of the disease. Thus, this study allows for a better understanding of the effect of SGSH mutations through the use of various computational approaches in terms of both structure and functions and provides a platform for the development of therapeutic drugs and potential disease treatments.
Collapse
Affiliation(s)
- Himani Tanwar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - D Thirumal Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
18
|
Koirala M, Alexov E. Computational chemistry methods to investigate the effects caused by DNA variants linked with disease. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619300015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational chemistry offers variety of tools to study properties of biological macromolecules. These tools vary in terms of levels of details from quantum mechanical treatment to numerous macroscopic approaches. Here, we provide a review of computational chemistry algorithms and tools for modeling the effects of genetic variations and their association with diseases. Particular emphasis is given on modeling the effects of missense mutations on stability, conformational dynamics, binding, hydrogen bond network, salt bridges, and pH-dependent properties of the corresponding macromolecules. It is outlined that the disease may be caused by alteration of one or several of above-mentioned biophysical characteristics, and a successful prediction of pathogenicity requires detailed analysis of how the alterations affect the function of involved macromolecules. The review provides a short list of most commonly used algorithms to predict the molecular effects of mutations as well.
Collapse
Affiliation(s)
- Mahesh Koirala
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29630, USA
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29630, USA
| |
Collapse
|
19
|
Larcher L, Norris JW, Lejeune E, Buratti J, Mignot C, Garel C, Keren B, Schwartz CE, Whalen S. The complete loss of function of the SMS gene results in a severe form of Snyder-Robinson syndrome. Eur J Med Genet 2019; 63:103777. [PMID: 31580924 DOI: 10.1016/j.ejmg.2019.103777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023]
Abstract
Snyder-Robinson syndrome (SRS) is an X-linked syndromic intellectual disability condition caused by variants in the spermine synthase gene (SMS). The syndrome is characterized by facial dysmorphism, thin body build, kyphoscoliosis, osteoporosis, hypotonia, developmental delay and associated neurological features (seizures, unsteady gait, abnormal speech). Until now, only missense variants with a functionally characterized partial loss of function (LoF) have been described. Here we describe the first complete LoF variant, Met303Lysfs*, in a male patient with a severe form of Snyder-Robinson syndrome. He presented with multiple malformations and severly delayed development, and died at 4 months of age. Functional in vitro assays showed a complete absence of functional SMS protein. Taken together, our findings and those of previously reported patients confirm that pathogenic variants of SMS are indeed LoF and that there might exist a genotype-phenotype correlation between the type of variant and the severity of the syndrome.
Collapse
Affiliation(s)
- Lise Larcher
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France.
| | - Joy W Norris
- JC Self Research Institute Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC, 29649, USA
| | - Elodie Lejeune
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Julien Buratti
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Cyril Mignot
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France; APHP, UF de Génétique clinique, Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Hôpital Armand Trousseau, Paris, France
| | - Catherine Garel
- APHP, Service de Radiologie, Hôpital Armand Trousseau, Paris, France
| | - Boris Keren
- APHP, Département de Génétique, Centre de Référence Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié Salpêtrière et GHUEP Hôpital Trousseau, Sorbonne Université, GRC "Déficience Intellectuelle et Autisme", Paris, France
| | - Charles E Schwartz
- JC Self Research Institute Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC, 29649, USA
| | - Sandra Whalen
- APHP, UF de Génétique clinique, Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Hôpital Armand Trousseau, Paris, France
| |
Collapse
|
20
|
Peng Y, Yang Y, Li L, Jia Z, Cao W, Alexov E. DFMD: Fast and Effective DelPhiForce Steered Molecular Dynamics Approach to Model Ligand Approach Toward a Receptor: Application to Spermine Synthase Enzyme. Front Mol Biosci 2019; 6:74. [PMID: 31552265 PMCID: PMC6737077 DOI: 10.3389/fmolb.2019.00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Here we report a novel approach, the DelPhiForce Molecular Dynamics (DFMD) method, for steered molecular dynamics simulations to model receptor-ligand association involving charged species. The main purpose of developing DFMD is to simulate ligand's trajectory toward the receptor and thus to predict the "entrance" of the binding pocket and conformational changes associated with the binding. We demonstrate that the DFMD is superior compared with molecular dynamics simulations applying standard cut-offs, provides correct binding forces, allows for modeling the ligand approach at long distances and thus guides the ligand toward the correct binding spot, and it is very fast (frequently the binding is completed in <1 ns). The DFMD is applied to model the binding of two ligands to a receptor (spermine synthase) and it is demonstrated that it guides the ligands toward the corresponding pockets despite of the initial ligand's position with respect to the receptor. Predicted conformational changes and the order of ligand binding are experimentally verified.
Collapse
Affiliation(s)
- Yunhui Peng
- Computational Biophysics and Bioinformatics Lab, Department of Physics, Clemson University, Clemson, SC, United States
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Lin Li
- Department of Physics, University of Texas, El Paso, TX, United States
| | - Zhe Jia
- Computational Biophysics and Bioinformatics Lab, Department of Physics, Clemson University, Clemson, SC, United States
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Emil Alexov
- Computational Biophysics and Bioinformatics Lab, Department of Physics, Clemson University, Clemson, SC, United States,*Correspondence: Emil Alexov
| |
Collapse
|
21
|
Parveen A, Mirza MU, Vanmeert M, Akhtar J, Bashir H, Khan S, Shehzad S, Froeyen M, Ahmed W, Ansar M, Wasif N. A novel pathogenic missense variant in CNNM4 underlying Jalili syndrome: Insights from molecular dynamics simulations. Mol Genet Genomic Med 2019; 7:e902. [PMID: 31347285 PMCID: PMC6732295 DOI: 10.1002/mgg3.902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background Jalili syndrome (JS) is a rare cone‐rod dystrophy (CRD) associated with amelogenesis imperfecta (AI). The first clinical presentation of JS patients was published in 1988 by Jalili and Smith. Pathogenic mutations in the Cyclin and CBS Domain Divalent Metal Cation Transport Mediator 4 (CNNM4) magnesium transporter protein have been reported as the leading cause of this anomaly. Methods In the present study, a clinical and genetic investigation was performed in a consanguineous family of Pakistani origin, showing characteristic features of JS. Sanger sequencing was successfully used to identify the causative variant in CNNM4. Molecular dynamics (MD) simulations were performed to study the effect of amino acid change over CNNM4 protein. Results Sequence analysis of CNNM4 revealed a novel missense variant (c.1220G>T, p.Arg407Leu) in exon‐1 encoding cystathionine‐β‐synthase (CBS) domain. To comprehend the mutational consequences in the structure, the mutant p.Arg407Leu was modeled together with a previously reported variant (c.1484C>T, p.Thr495Ile) in the same domain. Additionally, docking analysis deciphered the binding mode of the adenosine triphosphate (ATP) cofactor. Furthermore, 60ns MD simulations were carried out on wild type (p.Arg407/p.Thr495) and mutants (p.Arg407Leu/p.Thr495Ile) to understand the structural and energetic changes in protein structure and its dynamic behavior. An evident conformational shift of ATP in the binding site was observed in simulated mutants disrupting the native ATP‐binding mode. Conclusion The novel identified variant in CNNM4 is the first report from the Pakistani population. Overall, the study is valuable and may give a novel insight into metal transport in visual function and biomineralization.
Collapse
Affiliation(s)
- Asia Parveen
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Muhammad U Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Javed Akhtar
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan
| | - Hina Bashir
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Department of Biochemistry, Sharif Medical and Dental College, Lahore, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Saqib Shehzad
- Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Wasim Ahmed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Wasif
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Institute of Human Genetics, University of Ulm & University Hospital, Ulm, Germany.,Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
22
|
Assessment of structurally and functionally high-risk nsSNPs impacts on human bone morphogenetic protein receptor type IA (BMPR1A) by computational approach. Comput Biol Chem 2019; 80:31-45. [DOI: 10.1016/j.compbiolchem.2019.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
|
23
|
Myosin Va and spermine synthase: partners in exosome transport. Biosci Rep 2019; 39:BSR20190326. [PMID: 30967493 PMCID: PMC6488853 DOI: 10.1042/bsr20190326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
A recent paper in Bioscience Reports (BSR20182189) describes the discovery of an
interaction between the motor protein myosin Va and the metabolic enzyme
spermine synthase. Myosin Va is a molecular motor which plays a key role in
vesicle transport. Mutations in the gene which encodes this protein are
associated with Griscelli syndrome type 1 and the ‘dilute’
phenotype in animals. Spermine synthase catalyzes the conversion of spermidine
to spermine. This largely cytoplasmic enzyme can also be localized to the
soluble fraction in exosomes. Mutations in the spermine synthase gene are
associated with Snyder Robinson mental retardation syndrome. The interaction
between the two proteins was detected using the yeast two hybrid method and
verified by microscale thermophoresis of recombinant proteins. Knockdown of the
MYO5A gene reduced the expression of mRNA coding for
spermine synthase. The amount of this transcript was also reduced in cells
derived from a patient with Griscelli syndrome type 1. This suggests that, in
addition to a direct physical interaction between the two proteins, myosin Va
also modulates the transcription of the spermine synthase gene. The mechanism
for this modulation is currently unknown. These findings have implications for
Griscelli syndrome type 1 and Snyder Robinson mental retardation syndrome. They
also suggest that interactions between myosin Va and soluble exosome proteins
such as spermine synthase may be important in the mechanism of exosome
transport.
Collapse
|
24
|
Peng Y, Michonova E. Long-range effect of a single mutation in spermine synthase. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s021963361850030x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spermine synthase (SpmSyn) is an enzyme critical for maintaining the balance of spermine/spermidine in the cell. The amino acid sequence of SpmSyn is highly conserved among the species. Most of the mutations found in the human population are shown to be causing Snyder–Robinson syndrome, a severe mental disorder, while not so many are neutral. This is intriguing since SpmSyn is a relatively large protein and less than 10% of its amino acids are directly involved in the catalysis. Here, we demonstrated that a mutation (G191S) at a site far away from the active pocket affects the active site dynamics and thus the functionality of SpmSyn. This suggests that SpmSyn functionality is regulated by networks of interacting residues and thus expands the functional and structural importance beyond the amino acids directly involved in the catalysis. Comparing the calculated effects of G191S and a nine-residue deletion shown to decrease SpmSyn activity [Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN, Crystal structure of human spermine synthase: Implications of substrate binding and catalytic mechanism, J Biol Chem 283:16135–16146, 2008], we predict that G191S mutation also decreases SpmSyn activity and may be causing disease.
Collapse
Affiliation(s)
- Yunhui Peng
- Department of Physics and Astronomy, Clemson University, Clemson SC 29634, USA
| | - Ekaterina Michonova
- Department of Chemistry and Physics, Erskine College, Due West SC 29639, USA
| |
Collapse
|
25
|
Computational Approaches to Prioritize Cancer Driver Missense Mutations. Int J Mol Sci 2018; 19:ijms19072113. [PMID: 30037003 PMCID: PMC6073793 DOI: 10.3390/ijms19072113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a complex disease that is driven by genetic alterations. There has been a rapid development of genome-wide techniques during the last decade along with a significant lowering of the cost of gene sequencing, which has generated widely available cancer genomic data. However, the interpretation of genomic data and the prediction of the association of genetic variations with cancer and disease phenotypes still requires significant improvement. Missense mutations, which can render proteins non-functional and provide a selective growth advantage to cancer cells, are frequently detected in cancer. Effects caused by missense mutations can be pinpointed by in silico modeling, which makes it more feasible to find a treatment and reverse the effect. Specific human phenotypes are largely determined by stability, activity, and interactions between proteins and other biomolecules that work together to execute specific cellular functions. Therefore, analysis of missense mutations’ effects on proteins and their complexes would provide important clues for identifying functionally important missense mutations, understanding the molecular mechanisms of cancer progression and facilitating treatment and prevention. Herein, we summarize the major computational approaches and tools that provide not only the classification of missense mutations as cancer drivers or passengers but also the molecular mechanisms induced by driver mutations. This review focuses on the discussion of annotation and prediction methods based on structural and biophysical data, analysis of somatic cancer missense mutations in 3D structures of proteins and their complexes, predictions of the effects of missense mutations on protein stability, protein-protein and protein-nucleic acid interactions, and assessment of conformational changes in protein conformations induced by mutations.
Collapse
|
26
|
Muthusamy K, Nagamani S. Vitamin D receptor (VDR) non-synonymous single nucleotide polymorphisms (nsSNPs) affect the calcitriol drug response - A theoretical insight. J Mol Graph Model 2018; 81:14-24. [PMID: 29476931 DOI: 10.1016/j.jmgm.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/30/2017] [Accepted: 02/05/2018] [Indexed: 11/19/2022]
Abstract
Pharmacogenetics and pharmacogenomics have become presumptive with advancements in next-generation sequencing technology. In complex diseases, distinguishing the feasibility of pathogenic and neutral disease-causing variants is a time consuming and expensive process. Recent drug research and development processes mainly rely on the relationship between the genotype and phenotype through Single nucleotide polymorphisms (SNPs). The SNPs play an indispensable role in elucidating the individual's vulnerability to disease and drug response. The understanding of the interplay between these leads to the establishment of personalized medicine. In order to address this issue, we developed a computational pipeline of vitamin D receptor (VDR) for SNP centered study by application of elegant molecular docking and molecular dynamics simulation approaches. In a few SNPs the volume of the binding cavities has increased in mutant structures when compared to the wild type, indicating a weakening in interaction (699.1 Å3 in wild type Vs. 738.8 in Leu230Val, 820.7 Å3 in Arg247Leu). This also differently reflected in the H-bond interactions and binding free energies -169.93 kcal/mol (wild type) Vs -156.43 kcal/mol (R154W), -105.49 kcal/mol (R274L) in Leu230Val and Arg247Leu respectively. Although we could not find noteworthy changes in the binding free energies and binding pocket in the remaining mutations, the H-bond interactions made these SNPs deleterious. Thus, we further analyzed the H-bond interactions and distances using molecular dynamics (MD) simulation studies.
Collapse
Affiliation(s)
| | - Selvaraman Nagamani
- Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, India
| |
Collapse
|
27
|
Tanwar H, George Priya Doss C. An Integrated Computational Framework to Assess the Mutational Landscape of α-L-Iduronidase IDUA Gene. J Cell Biochem 2017; 119:555-565. [PMID: 28608934 DOI: 10.1002/jcb.26214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/12/2017] [Indexed: 01/12/2023]
Abstract
Mucopolysaccharidosis type I is a lysosomal genetic disorder caused due to the deficiency of the α-L-iduronidase enzyme (IDUA). Mutations associated with IDUA lead to mild to severe forms of diseases characterized by different clinical features. In the present study, we first performed a comprehensive analysis using various in silico prediction tools to screen and prioritize the missense mutations or nonsynonymous SNPs (nsSNPs) associated with IDUA. Subsequently, statistical analysis was empowered to examine the predictive ability and accuracy of the in silico prediction tool results supporting the disease phenotype ranging from mild to severe. Till date, no study has been carried out in IDUA in analyzing the impact of the nsSNPs at the structural level. In this context with the aid of pathogenic and stability prediction in silico tools, we identified nsSNPs R89Q, R89W, and P533R to be most deleterious and disease-causing having impact on the function of the protein. Extensive molecular dynamics analysis was performed using Gromacs to understand the deleterious nature of the mutants. Variations observed between the trajectory files of native and mutants R89Q, R89W, and P533R using Gromacs utilities enabled us to measure the adverse effects on the protein and could be the underlying reasons for the disease pathogenesis. These findings may be helpful in understanding the genotype-phenotype relationship and molecular basis of the disease to design drugs for better treatment. J. Cell. Biochem. 119: 555-565, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Himani Tanwar
- Department of Integrative Biology, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
28
|
ULLAH I, NASIR A, MEHMOOD S, AHMED S, ULLAH MI, ULLAH A, AZIZ A, RAZA SI, SHAH K, KHAN S, HASSAN MJ, AHMAD W. Identification and in silico analysis of GALNS mutations causing Morquio A syndrome in eight consanguineous families. Turk J Biol 2017. [DOI: 10.3906/biy-1607-81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
29
|
Bonito CA, Nunes J, Leandro J, Louro F, Leandro P, Ventura FV, Guedes RC. Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches. Biochemistry 2016; 55:7086-7098. [PMID: 27976856 DOI: 10.1021/acs.biochem.6b00759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FAD cofactor, necessary for the enzyme's activity. The most frequent mutation in MCADD results from the substitution of a lysine with a glutamate in position 304 of mature hMCAD (p.K329E in the precursor protein). Here, we combined in vitro and in silico approaches to assess the impact of the p.K329E mutation on the protein's structure and function. Our in silico results demonstrated for the first time that the p.K329E mutation, despite lying at the dimer-dimer interface and being deeply buried inside the tetrameric core, seems to affect the tetramer surface, especially the β-domain that forms part of the catalytic pocket wall. Additionally, the molecular dynamics data indicate a stronger impact of the mutation on the protein's motions in dimer A/B, while dimer C/D remains similar to the wild type. For dimer A/B, severe disruptions in the architecture of the pockets and in the FAD and octanoyl-CoA binding affinities were also observed. The presence of unaffected pockets (C/D) in the in silico studies may explain the decreased enzymatic activity determined for the variant protein (46% residual activity). Moreover, the in silico structural changes observed for the p.K329E variant protein provide an explanation for the structural instability observed experimentally, namely, the disturbed oligomeric profile, thermal stability, and conformational flexibility, with respect to the wild-type.
Collapse
Affiliation(s)
- Cátia A Bonito
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana Nunes
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Leandro
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Filipa Louro
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Paula Leandro
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Fátima V Ventura
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- Department of Biochemistry and Human Biology, §Medicinal Chemistry, Research Institute for Medicines, iMed.ULisboa, ‡Metabolism and Genetics Group, Research Institute for Medicines, iMed.ULisboa, and ∥Department of Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa , Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
30
|
Petukh M, Dai L, Alexov E. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations. Int J Mol Sci 2016; 17:547. [PMID: 27077847 PMCID: PMC4849003 DOI: 10.3390/ijms17040547] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/01/2022] Open
Abstract
Predicting the effect of amino acid substitutions on protein–protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.
Collapse
Affiliation(s)
- Marharyta Petukh
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, SC 29634, USA.
| | - Luogeng Dai
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, SC 29634, USA.
- Department of Computer Sciences, Clemson University, Clemson, SC 29634, USA.
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
31
|
SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach. Int J Mol Sci 2016; 17:512. [PMID: 27070572 PMCID: PMC4848968 DOI: 10.3390/ijms17040512] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 11/16/2022] Open
Abstract
Folding free energy is an important biophysical characteristic of proteins that reflects the overall stability of the 3D structure of macromolecules. Changes in the amino acid sequence, naturally occurring or made in vitro, may affect the stability of the corresponding protein and thus could be associated with disease. Several approaches that predict the changes of the folding free energy caused by mutations have been proposed, but there is no method that is clearly superior to the others. The optimal goal is not only to accurately predict the folding free energy changes, but also to characterize the structural changes induced by mutations and the physical nature of the predicted folding free energy changes. Here we report a new method to predict the Single Amino Acid Folding free Energy Changes (SAAFEC) based on a knowledge-modified Molecular Mechanics Poisson-Boltzmann (MM/PBSA) approach. The method is comprised of two main components: a MM/PBSA component and a set of knowledge based terms delivered from a statistical study of the biophysical characteristics of proteins. The predictor utilizes a multiple linear regression model with weighted coefficients of various terms optimized against a set of experimental data. The aforementioned approach yields a correlation coefficient of 0.65 when benchmarked against 983 cases from 42 proteins in the ProTherm database. Availability: the webserver can be accessed via http://compbio.clemson.edu/SAAFEC/.
Collapse
|
32
|
Skolnik K, Tsai WH, Dornan K, Perrier R, Burrowes PW, Davidson WJ. Birt-Hogg-Dubé syndrome: a large single family cohort. Respir Res 2016; 17:22. [PMID: 26928018 PMCID: PMC4770529 DOI: 10.1186/s12931-016-0339-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/19/2016] [Indexed: 12/23/2022] Open
Abstract
Background Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant condition characterized by dermatologic lesions, pulmonary manifestations, and renal tumors. The syndrome arises from germline mutations in the folliculin (FLCN) gene. We present findings from the single largest family BHD cohort described to date. Primary objectives were to characterize cystic lung changes on computed tomography (CT) chest scanning and identify features that stratify patients at higher risk of pneumothorax. Secondary objectives entailed description of the following: type and natural history of BHD-associated pneumothorax, pulmonary function characteristics, and relationship between cystic lung changes and pulmonary function. Methods The study was a retrospective chart review for a case series of a single family. Over 70 family members of a proband with documented BHD were identified, 68 of which consented to genetic testing. All those with confirmed BHD were offered a clinical assessment by the Medical Genetics and Pulmonary services which included a history, physical exam, complete pulmonary function tests, and computed tomography (CT) scan of the chest and abdomen. Results Thirty-six individuals had a heterozygous mutation in the FLCN gene (c.59delT). Of these, 100 % (28/28) had pulmonary cysts, 41 % (13/32) had spontaneous pneumothoraces, 26 % (8/31) had kidney cysts, 3 % (1/31) had renal tumors, and 53 % (18/34) had dermatologic manifestations. Recurrent pneumothoraces were common (40 %). Cyst size (OR 3.23, 95 % CI 1.35–7.73) and extent of lower lung zone disease (OR 6.43, 95 % CI 1.41–29.2) were the only findings associated with pneumothorax. The size or extent of cystic disease did not correlate with lung function results. Conclusions This is the largest single family cohort of patients with BHD syndrome documented to date. We found that all individuals had pulmonary cysts, pneumothoraces were common, and cyst size and lower lobe predominant disease were associated with pneumothorax. Lung function was generally preserved and not affected by a high cyst burden.
Collapse
Affiliation(s)
- Kate Skolnik
- Department of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Willis H Tsai
- Department of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| | - Kimberly Dornan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.
| | - Renée Perrier
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.
| | - Paul W Burrowes
- Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada.
| | - Warren J Davidson
- Department of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
33
|
Mirzaei N, Poursina F, Moghim S, Ghaempanah AM, Safaei HG. The Bioinformatics Report of Mutation Outcome on NADPH Flavin Oxidoreductase Protein Sequence in Clinical Isolates of H. pylori. Curr Microbiol 2016; 72:596-605. [PMID: 26821239 DOI: 10.1007/s00284-016-0992-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/14/2015] [Indexed: 12/23/2022]
Abstract
frxA gene has been implicated in the metronidazole nitro reduction by H. pylori. Alternatively, frxA is expected to contribute to the protection of urease and to the in vivo survival of H. pylori. The aim of present study is to report the mutation effects on the frxA protein sequence in clinical isolates of H. pylori in our community. Metronidazole resistance was proven in 27 of 48 isolates. glmM and frxA genes were used for molecular confirmation of H. pylori isolates. The primer set for detection of whole sequence of frxA gene for the effect of mutation on protein sequence was used. DNA and protein sequence evaluation and analysis were done by blast, Clustal Omega, and T COFFEE programs. Then, FrxA protein sequences from six metronidazole-resistant clinical isolates were analyzed by web-based bioinformatics tools. The result of six metronidazole-resistant clinical isolates in comparison with strain 26695 showed ten missense mutations. The result with the STRING program revealed that no change was seen after alterations in these sequences. According to consensus data involving four methods, residue substitutions at 40, 13, and 141 increase the stability of protein sequence after mutation, while other alterations decrease. Residue substitutions at 40, 43, 141, 138, 169, and 179 are deleterious, while, V7I, Q10R, V34I, and V96I alterations are neutral. As FrxA contribute to survival of bacterium and in regard to the effect of mutations on protein function, it might affect the survival and bacterium phenotype and it need to be studied more. Also, none of the stability prediction tool is perfect; iStable is the best predictor method among all methods.
Collapse
Affiliation(s)
- Nasrin Mirzaei
- Department of Microbiology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farkhondeh Poursina
- Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | |
Collapse
|
34
|
Minervini G, Quaglia F, Tosatto SCE. Computational analysis of prolyl hydroxylase domain-containing protein 2 (PHD2) mutations promoting polycythemia insurgence in humans. Sci Rep 2016; 6:18716. [PMID: 26754054 PMCID: PMC4709589 DOI: 10.1038/srep18716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Idiopathic erythrocytosis is a rare disease characterized by an increase in red blood cell mass due to mutations in proteins of the oxygen-sensing pathway, such as prolyl hydroxylase 2 (PHD2). Here, we present a bioinformatics investigation of the pathological effect of twelve PHD2 mutations related to polycythemia insurgence. We show that few mutations impair the PHD2 catalytic site, while most localize to non-enzymatic regions. We also found that most mutations do not overlap the substrate recognition site, suggesting a novel PHD2 binding interface. After a structural analysis of both binding partners, we suggest that this novel interface is responsible for PHD2 interaction with the LIMD1 tumor suppressor.
Collapse
Affiliation(s)
- Giovanni Minervini
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Federica Quaglia
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.,CNR Institute of Neuroscience, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
35
|
Peng Y, Alexov E. Investigating the linkage between disease-causing amino acid variants and their effect on protein stability and binding. Proteins 2016; 84:232-9. [PMID: 26650512 DOI: 10.1002/prot.24968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
Single amino acid variations (SAV) occurring in human population result in natural differences between individuals or cause diseases. It is well understood that the molecular effect of SAV can be manifested as changes of the wild type characteristics of the corresponding protein, among which are the protein stability and protein interactions. Typically the effect of SAV on protein stability and interactions was assessed via the changes of the wild type folding and binding free energies. However, in terms of SAV affecting protein functionally and disease susceptibility, one wants to know to what extend the wild type function is perturbed by the SAV. Here it is demonstrated that relative, rather than the absolute, change of the folding and binding free energy serves as a good indicator for SAV association with disease. Using HumVar as a source for disease-causing SAV and experimentally determined free energy changes from ProTherm and SKEMPI databases, correlation coefficients (CC) between the disease index (Pd) and relative folding (Ppr,f) and binding (Ppr,b) probability indexes, respectively, was achieved. The obtained CCs demonstrated the applicability of the proposed approach and it served as good indicator for SAV association with disease.
Collapse
Affiliation(s)
- Yunhui Peng
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, South Carolina, 29634
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
36
|
Revealing the Effects of Missense Mutations Causing Snyder-Robinson Syndrome on the Stability and Dimerization of Spermine Synthase. Int J Mol Sci 2016; 17:ijms17010077. [PMID: 26761001 PMCID: PMC4730321 DOI: 10.3390/ijms17010077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/28/2022] Open
Abstract
Missense mutations in spermine synthase (SpmSyn) protein have been shown to cause the Snyder-Robinson syndrome (SRS). Depending on the location within the structure of SpmSyn and type of amino acid substitution, different mechanisms resulting in SRS were proposed. Here we focus on naturally occurring amino acid substitutions causing SRS, which are situated away from the active center of SpmSyn and thus are not directly involved in the catalysis. Two of the mutations, M35R and P112L, are reported for the first time in this study. It is demonstrated, both experimentally and computationally, that for such mutations the major effect resulting in dysfunctional SpmSyn is the destabilization of the protein. In vitro experiments indicated either no presence or very little amount of the mutant SpmSyn in patient cells. In silico modeling predicted that all studied mutations in this work destabilize SpmSyn and some of them abolish homo-dimer formation. Since dimerization and structural stability are equally important for the wild type function of SpmSyn, it is proposed that the SRS caused by mutations occurring in the N-domain of SpmSyn is a result of dysfunctional mutant proteins being partially unfolded and degraded by the proteomic machinery of the cell or being unable to form a homo-dimer.
Collapse
|
37
|
Mutations in the KDM5C ARID Domain and Their Plausible Association with Syndromic Claes-Jensen-Type Disease. Int J Mol Sci 2015; 16:27270-87. [PMID: 26580603 PMCID: PMC4661880 DOI: 10.3390/ijms161126022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 11/30/2022] Open
Abstract
Mutations in KDM5C gene are linked to X-linked mental retardation, the syndromic Claes-Jensen-type disease. This study focuses on non-synonymous mutations in the KDM5C ARID domain and evaluates the effects of two disease-associated missense mutations (A77T and D87G) and three not-yet-classified missense mutations (R108W, N142S, and R179H). We predict the ARID domain’s folding and binding free energy changes due to mutations, and also study the effects of mutations on protein dynamics. Our computational results indicate that A77T and D87G mutants have minimal effect on the KDM5C ARID domain stability and DNA binding. In parallel, the change in the free energy unfolding caused by the mutants A77T and D87G were experimentally measured by urea-induced unfolding experiments and were shown to be similar to the in silico predictions. The evolutionary conservation analysis shows that the disease-associated mutations are located in a highly-conserved part of the ARID structure (N-terminal domain), indicating their importance for the KDM5C function. N-terminal residues’ high conservation suggests that either the ARID domain utilizes the N-terminal to interact with other KDM5C domains or the N-terminal is involved in some yet unknown function. The analysis indicates that, among the non-classified mutations, R108W is possibly a disease-associated mutation, while N142S and R179H are probably harmless.
Collapse
|
38
|
Kumar DT, Doss CGP. Investigating the Inhibitory Effect of Wortmannin in the Hotspot Mutation at Codon 1047 of PIK3CA Kinase Domain: A Molecular Docking and Molecular Dynamics Approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 102:267-97. [PMID: 26827608 DOI: 10.1016/bs.apcsb.2015.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oncogenic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) are the most frequently reported in association with various forms of cancer. Several studies have reported the significance of hotspot mutations in a catalytic subunit of PIK3CA in association with breast cancer. Mutations are frequently observed in the highly conserved region of the kinase domain (797-1068 amino acids) of PIK3CA are activating or gain-of-function mutations. Mutation in codon 1047 occurs in the C-terminal region of the kinase domain with histidine (H) replaced by arginine (R), lysine (L), and tyrosine (Y). Pathogenicity and protein stability predictors PhD-SNP, Align GVGD, HANSA, iStable, and MUpro classified H1047R as highly deleterious when compared to H1047L and H1047Y. To explore the inhibitory activity of Wortmannin toward PIK3CA, the three-dimensional structure of the mutant protein was determined using homology modeling followed by molecular docking and molecular dynamics analysis. Docking studies were performed for the three mutants and native with Wortmannin to measure the differences in their binding pattern. Comparative docking study revealed that H1047R-Wortmannin complex has a higher number of hydrogen bonds as well as the best binding affinity next to the native protein. Furthermore, 100 ns molecular dynamics simulation was initiated with the docked complexes to understand the various changes induced by the mutation. Though Wortmannin was found to nullify the effect of H1047R over the protein, further studies are required for designing a better compound. As SNPs are major genetic variations observed in disease condition, personalized medicine would provide enhanced drug therapy.
Collapse
Affiliation(s)
- D Thirumal Kumar
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
39
|
May M, Hwang KS, Miles J, Williams C, Niranjan T, Kahler SG, Chiurazzi P, Steindl K, Van Der Spek PJ, Swagemakers S, Mueller J, Stefl S, Alexov E, Ryu JI, Choi JH, Kim HT, Tarpey P, Neri G, Holloway L, Skinner C, Stevenson RE, Dorsky RI, Wang T, Schwartz CE, Kim CH. ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons. Hum Mol Genet 2015; 24:4848-61. [PMID: 26056227 PMCID: PMC4527488 DOI: 10.1093/hmg/ddv208] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/01/2015] [Indexed: 12/02/2022] Open
Abstract
Miles–Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits.
Collapse
Affiliation(s)
- Melanie May
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Kyu-Seok Hwang
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Judith Miles
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Charlie Williams
- Division of Genetics and Metabolism, University of Florida College of Medicine, Gainesville, FL 33612, USA
| | - Tejasvi Niranjan
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Pietro Chiurazzi
- Institute of Medical Genetics, Catholic University, Rome 00-168, Italy
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schwerzenbach 8006, Switzerland
| | - Peter J Van Der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam 3015, Netherlands
| | - Sigrid Swagemakers
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam 3015, Netherlands
| | - Jennifer Mueller
- Division of Genetics and Metabolism, University of Florida College of Medicine, Gainesville, FL 33612, USA
| | - Shannon Stefl
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Jeong-Im Ryu
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jung-Hwa Choi
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Hyun-Taek Kim
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Patrick Tarpey
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK and
| | - Giovanni Neri
- Institute of Medical Genetics, Catholic University, Rome 00-168, Italy
| | | | | | | | - Richard I Dorsky
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea,
| |
Collapse
|
40
|
Petukh M, Kucukkal TG, Alexov E. On human disease-causing amino acid variants: statistical study of sequence and structural patterns. Hum Mutat 2015; 36:524-534. [PMID: 25689729 DOI: 10.1002/humu.22770] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 12/28/2022]
Abstract
Statistical analysis was carried out on large set of naturally occurring human amino acid variations, and it was demonstrated that there is a preference for some amino acid substitutions to be associated with diseases. At an amino acid sequence level, it was shown that the disease-causing variants frequently involve drastic changes in amino acid physicochemical properties of proteins such as charge, hydrophobicity, and geometry. Structural analysis of variants involved in diseases and being frequently observed in human population showed similar trends: disease-causing variants tend to cause more changes in hydrogen bond network and salt bridges as compared with harmless amino acid mutations. Analysis of thermodynamics data reported in the literature, both experimental and computational, indicated that disease-causing variants tend to destabilize proteins and their interactions, which prompted us to investigate the effects of amino acid mutations on large databases of experimentally measured energy changes in unrelated proteins. Although the experimental datasets were linked neither to diseases nor exclusory to human proteins, the observed trends were the same: amino acid mutations tend to destabilize proteins and their interactions. Having in mind that structural and thermodynamics properties are interrelated, it is pointed out that any large change in any of them is anticipated to cause a disease.
Collapse
Affiliation(s)
- Marharyta Petukh
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| | - Tugba G Kucukkal
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29642, USA
| |
Collapse
|
41
|
Structural and physico-chemical effects of disease and non-disease nsSNPs on proteins. Curr Opin Struct Biol 2015; 32:18-24. [PMID: 25658850 DOI: 10.1016/j.sbi.2015.01.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/20/2014] [Accepted: 01/09/2015] [Indexed: 11/23/2022]
Abstract
This review emphasizes the effects of naturally occurring mutations on structural features and physico-chemical properties of proteins. The basic protein characteristics considered are stability, dynamics, and the binding of proteins and methods for assessing effects of mutations on these macromolecular characteristics are briefly outlined. It is emphasized that the above entities mostly reflect global characteristics of considered macromolecules, while given mutations may alter the local structural features such as salt bridges and hydrogen bonds without affecting the global ones. Furthermore, it is pointed out that disease-causing mutations frequently involve a drastic change of amino acid physico-chemical properties such as charge, hydrophobicity, and geometry, and are less surface exposed than polymorphic mutations.
Collapse
|
42
|
Schutt TC, Bharadwaj VS, Granum DM, Maupin CM. The impact of active site protonation on substrate ring conformation in Melanocarpus albomyces cellobiohydrolase Cel7B. Phys Chem Chem Phys 2015; 17:16947-58. [DOI: 10.1039/c5cp01801c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding how the protonation state of active site residues impacts the enzyme's structure and substrate conformation is important for improving the efficiency and economic viability of the degradation of cellulosic materials as feedstock for liquid fuel and value-added chemicals.
Collapse
Affiliation(s)
- Timothy C. Schutt
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - Vivek S. Bharadwaj
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - David M. Granum
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| | - C. Mark Maupin
- Chemical and Biological Engineering Department
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
43
|
Petukh M, Wu B, Stefl S, Smith N, Hyde-Volpe D, Wang L, Alexov E. Chronic Beryllium Disease: revealing the role of beryllium ion and small peptides binding to HLA-DP2. PLoS One 2014; 9:e111604. [PMID: 25369028 PMCID: PMC4219729 DOI: 10.1371/journal.pone.0111604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023] Open
Abstract
Chronic Beryllium (Be) Disease (CBD) is a granulomatous disorder that predominantly affects the lung. The CBD is caused by Be exposure of individuals carrying the HLA-DP2 protein of the major histocompatibility complex class II (MHCII). While the involvement of Be in the development of CBD is obvious and the binding site and the sequence of Be and peptide binding were recently experimentally revealed [1], the interplay between induced conformational changes and the changes of the peptide binding affinity in presence of Be were not investigated. Here we carry out in silico modeling and predict the Be binding to be within the acidic pocket (Glu26, Glu68 and Glu69) present on the HLA-DP2 protein in accordance with the experimental work [1]. In addition, the modeling indicates that the Be ion binds to the HLA-DP2 before the corresponding peptide is able to bind to it. Further analysis of the MD generated trajectories reveals that in the presence of the Be ion in the binding pocket of HLA-DP2, all the different types of peptides induce very similar conformational changes, but their binding affinities are quite different. Since these conformational changes are distinctly different from the changes caused by peptides normally found in the cell in the absence of Be, it can be speculated that CBD can be caused by any peptide in presence of Be ion. However, the affinities of peptides for Be loaded HLA-DP2 were found to depend of their amino acid composition and the peptides carrying acidic group at positions 4 and 7 are among the strongest binders. Thus, it is proposed that CBD is caused by the exposure of Be of an individual carrying the HLA-DP2*0201 allele and that the binding of Be to HLA-DP2 protein alters the conformational and ionization properties of HLA-DP2 such that the binding of a peptide triggers a wrong signaling cascade.
Collapse
Affiliation(s)
- Marharyta Petukh
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| | - Bohua Wu
- School of Nursing, Clemson University, Clemson, South Carolina, United States of America
| | - Shannon Stefl
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
| | - Nick Smith
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
| | - David Hyde-Volpe
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Li Wang
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
44
|
Rational design of small-molecule stabilizers of spermine synthase dimer by virtual screening and free energy-based approach. PLoS One 2014; 9:e110884. [PMID: 25340632 PMCID: PMC4207787 DOI: 10.1371/journal.pone.0110884] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
Snyder-Robinson Syndrome (SRS) is a rare mental retardation disorder which is caused by the malfunctioning of an enzyme, the spermine synthase (SMS), which functions as a homo-dimer. The malfunctioning of SMS in SRS patients is associated with several identified missense mutations that occur away from the active site. This investigation deals with a particular SRS-causing mutation, the G56S mutation, which was shown computationally and experimentally to destabilize the SMS homo-dimer and thus to abolish SMS enzymatic activity. As a proof-of-concept, we explore the possibility to restore the enzymatic activity of the malfunctioning SMS mutant G56S by stabilizing the dimer through small molecule binding at the mutant homo-dimer interface. For this purpose, we designed an in silico protocol that couples virtual screening and a free binding energy-based approach to identify potential small-molecule binders on the destabilized G56S dimer, with the goal to stabilize it and thus to increase SMS G56S mutant activity. The protocol resulted in extensive list of plausible stabilizers, among which we selected and tested 51 compounds experimentally for their capability to increase SMS G56S mutant enzymatic activity. In silico analysis of the experimentally identified stabilizers suggested five distinctive chemical scaffolds. This investigation suggests that druggable pockets exist in the vicinity of the mutation sites at protein-protein interfaces which can be used to alter the disease-causing effects by small molecule binding. The identified chemical scaffolds are drug-like and can serve as original starting points for development of lead molecules to further rescue the disease-causing effects of the Snyder-Robinson syndrome for which no efficient treatment exists up to now.
Collapse
|
45
|
Advances in Human Biology: Combining Genetics and Molecular Biophysics to Pave the Way for Personalized Diagnostics and Medicine. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/471836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in several biology-oriented initiatives such as genome sequencing and structural genomics, along with the progress made through traditional biological and biochemical research, have opened up a unique opportunity to better understand the molecular effects of human diseases. Human DNA can vary significantly from person to person and determines an individual’s physical characteristics and their susceptibility to diseases. Armed with an individual’s DNA sequence, researchers and physicians can check for defects known to be associated with certain diseases by utilizing various databases. However, for unclassified DNA mutations or in order to reveal molecular mechanism behind the effects, the mutations have to be mapped onto the corresponding networks and macromolecular structures and then analyzed to reveal their effect on the wild type properties of biological processes involved. Predicting the effect of DNA mutations on individual’s health is typically referred to as personalized or companion diagnostics. Furthermore, once the molecular mechanism of the mutations is revealed, the patient should be given drugs which are the most appropriate for the individual genome, referred to as pharmacogenomics. Altogether, the shift in focus in medicine towards more genomic-oriented practices is the foundation of personalized medicine. The progress made in these rapidly developing fields is outlined.
Collapse
|
46
|
Integrating in silico prediction methods, molecular docking, and molecular dynamics simulation to predict the impact of ALK missense mutations in structural perspective. BIOMED RESEARCH INTERNATIONAL 2014; 2014:895831. [PMID: 25054154 PMCID: PMC4098886 DOI: 10.1155/2014/895831] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 01/13/2023]
Abstract
Over the past decade, advancements in next generation sequencing technology have placed personalized genomic medicine upon horizon. Understanding the likelihood of disease causing mutations in complex diseases as pathogenic or neutral remains as a major task and even impossible in the structural context because of its time consuming and expensive experiments. Among the various diseases causing mutations, single nucleotide polymorphisms (SNPs) play a vital role in defining individual's susceptibility to disease and drug response. Understanding the genotype-phenotype relationship through SNPs is the first and most important step in drug research and development. Detailed understanding of the effect of SNPs on patient drug response is a key factor in the establishment of personalized medicine. In this paper, we represent a computational pipeline in anaplastic lymphoma kinase (ALK) for SNP-centred study by the application of in silico prediction methods, molecular docking, and molecular dynamics simulation approaches. Combination of computational methods provides a way in understanding the impact of deleterious mutations in altering the protein drug targets and eventually leading to variable patient's drug response. We hope this rapid and cost effective pipeline will also serve as a bridge to connect the clinicians and in silico resources in tailoring treatments to the patients' specific genotype.
Collapse
|
47
|
Computational Identification of Pathogenic Associated nsSNPs and its Structural Impact in UROD Gene: A Molecular Dynamics Approach. Cell Biochem Biophys 2014; 70:735-46. [DOI: 10.1007/s12013-014-9975-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Li M, Petukh M, Alexov E, Panchenko AR. Predicting the Impact of Missense Mutations on Protein-Protein Binding Affinity. J Chem Theory Comput 2014; 10:1770-1780. [PMID: 24803870 PMCID: PMC3985714 DOI: 10.1021/ct401022c] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 01/22/2023]
Abstract
The crucial prerequisite for proper biological function is the protein's ability to establish highly selective interactions with macromolecular partners. A missense mutation that alters the protein binding affinity may cause significant perturbations or complete abolishment of the function, potentially leading to diseases. The availability of computational methods to evaluate the impact of mutations on protein-protein binding is critical for a wide range of biomedical applications. Here, we report an efficient computational approach for predicting the effect of single and multiple missense mutations on protein-protein binding affinity. It is based on a well-tested simulation protocol for structure minimization, modified MM-PBSA and statistical scoring energy functions with parameters optimized on experimental sets of several thousands of mutations. Our simulation protocol yields very good agreement between predicted and experimental values with Pearson correlation coefficients of 0.69 and 0.63 and root-mean-square errors of 1.20 and 1.90 kcal mol-1 for single and multiple mutations, respectively. Compared with other available methods, our approach achieves high speed and prediction accuracy and can be applied to large datasets generated by modern genomics initiatives. In addition, we report a crucial role of water model and the polar solvation energy in estimating the changes in binding affinity. Our analysis also reveals that prediction accuracy and effect of mutations on binding strongly depends on the type of mutation and its location in a protein complex.
Collapse
Affiliation(s)
- Minghui Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , Bethesda, Maryland 20894, United States
| | - Marharyta Petukh
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University , Clemson, South Carolina 29634, United States
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics, Clemson University , Clemson, South Carolina 29634, United States
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health , Bethesda, Maryland 20894, United States
| |
Collapse
|
49
|
Juang JMJ, Lu TP, Lai LC, Hsueh CH, Liu YB, Tsai CT, Lin LY, Yu CC, Hwang JJ, Chiang FT, Yeh SSF, Chen WP, Chuang EY, Lai LP, Lin JL. Utilizing multiple in silico analyses to identify putative causal SCN5A variants in Brugada syndrome. Sci Rep 2014; 4:3850. [PMID: 24463578 PMCID: PMC3902491 DOI: 10.1038/srep03850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/03/2014] [Indexed: 01/20/2023] Open
Abstract
Brugada syndrome (BrS) is an inheritable sudden cardiac death disease mainly caused by SCN5A mutations. Traditional approaches can be costly and time-consuming if all candidate variants need to be validated through in vitro studies. Therefore, we developed a new approach by combining multiple in silico analyses to predict functional and structural changes of candidate SCN5A variants in BrS before conducting in vitro studies. Five SCN5A non-synonymous variants (1651G>A, 1776C>G, 1673A>G, 3269C>T and 3578G>A) were identified in 14 BrS patients using direct DNA sequencing. Several bioinformatics algorithms were applied and predicted that 1651G>A (A551T) and 1776C>G (N592K) were high-risk SCN5A variants (odds ratio 59.59 and 23.93). The results were validated by Mass spectrometry and in vitro electrophysiological assays. We concluded that integrating sequence-based information and secondary protein structures elements may help select highly potential variants in BrS before conducting time-consuming electrophysiological studies and two novel SCN5A mutations were validated.
Collapse
Affiliation(s)
- Jyh-Ming Jimmy Juang
- 1] Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan [2] Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Pin Lu
- YongLin Biomedical Engineering Center, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsiang Hsueh
- Department of Medicine, Krannert Institute of Cardiology and Division of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yen-Bin Liu
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Ti Tsai
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lian-Yu Lin
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Chieh Yu
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Juey-Jen Hwang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Tien Chiang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sherri Shih-Fan Yeh
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- 1] YongLin Biomedical Engineering Center, National Taiwan University, Taipei, Taiwan [2] Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ling-Ping Lai
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jiunn-Lee Lin
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
50
|
Improvement of catalytic efficiency and thermostability of recombinant Streptomyces griseus trypsin by introducing artificial peptide. World J Microbiol Biotechnol 2014; 30:1819-27. [DOI: 10.1007/s11274-014-1608-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/17/2014] [Indexed: 10/25/2022]
|