1
|
Garrido-Torres N, Marqués Rodríguez R, Alemany-Navarro M, Sánchez-García J, García-Cerro S, Ayuso MI, González-Meneses A, Martinez-Mir A, Ruiz-Veguilla M, Crespo-Facorro B. Exploring genetic testing requests, genetic alterations and clinical associations in a cohort of children with autism spectrum disorder. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02413-x. [PMID: 38587680 DOI: 10.1007/s00787-024-02413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Several studies show great heterogeneity in the type of genetic test requested and in the clinicopathological characteristics of patients with ASD. The following study aims, firstly, to explore the factors that might influence professionals' decisions about the appropriateness of requesting genetic testing for their patients with ASD and, secondly, to determine the prevalence of genetic alterations in a representative sample of children with a diagnosis of ASD. Methods: We studied the clinical factors associated with the request for genetic testing in a sample of 440 children with ASD and the clinical factors of present genetic alterations. Even though the main guidelines recommend genetic testing all children with an ASD diagnosis, only 56% of children with an ASD diagnosis were genetically tested. The prevalence of genetic alterations was 17.5%. These alterations were more often associated with intellectual disability and dysmorphic features. There are no objective data to explicitly justify the request for genetic testing, nor are there objective data to justify requesting one genetic study versus multiple studies. Remarkably, only 28% of males were genetically tested with the recommended tests (fragile X and CMA). Children with dysmorphic features and organic comorbidities were more likely to be genetic tested than those without. Previous diagnosis of ASD (family history of ASD) and attendance at specialist services were also associated with Genetically tested Autism Spectrum Disorder GTASD. Our findings emphasize the importance of establishing algorithms to facilitate targeted genetic consultation for individuals with ASD who are likely to benefit, considering clinical phenotypes, efficiency, ethics, and benefits.
Collapse
Affiliation(s)
- Nathalia Garrido-Torres
- Instituto de Biomedicina de Sevilla, Seville, Spain
- University of Seville, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
- Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - María Alemany-Navarro
- Instituto de Biomedicina de Sevilla, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - Javier Sánchez-García
- Instituto de Biomedicina de Sevilla, Seville, Spain
- University of Seville, Seville, Spain
- Hospital Universitario Virgen del Rocío, Seville, Spain
- Department of Maternofetal Medicine, Genetics and Reproduction, Seville, Spain
- Spanish National Research Council (CSIC), Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Susana García-Cerro
- Instituto de Biomedicina de Sevilla, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - María Irene Ayuso
- Instituto de Biomedicina de Sevilla, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | | | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla, Seville, Spain
- University of Seville, Seville, Spain
- Hospital Universitario Virgen del Rocío, Seville, Spain
- Spanish National Research Council (CSIC), Seville, Spain
| | - Miguel Ruiz-Veguilla
- Instituto de Biomedicina de Sevilla, Seville, Spain
- University of Seville, Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
- Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Benedicto Crespo-Facorro
- Instituto de Biomedicina de Sevilla, Seville, Spain.
- University of Seville, Seville, Spain.
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain.
- Hospital Universitario Virgen del Rocío, Seville, Spain.
| |
Collapse
|
2
|
Oketch DJA, Giulietti M, Piva F. Copy Number Variations in Pancreatic Cancer: From Biological Significance to Clinical Utility. Int J Mol Sci 2023; 25:391. [PMID: 38203561 PMCID: PMC10779192 DOI: 10.3390/ijms25010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral heterogeneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC prognosis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable source of inter-individual variation in genomic sequence. In this review, we outline the origin, main characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC, including those that have been clearly shown to have a pathogenic role, and further highlight some key examples of their involvement in tumor development and progression. The ability to efficiently identify and analyze CNVs in tumor samples is important to support translational research and foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We provide insights into understanding the CNV landscapes and the role of both somatic and germline CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment. Although there has been significant progress in this field, understanding the full contribution of CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays such as single-cell techniques and larger cohorts than have been performed to date.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Streață I, Caramizaru A, Riza AL, Șerban-Sosoi S, Pîrvu A, Cara ML, Cucu MG, Dobrescu AM, Shelby ES, Albeanu A, Burada F, Ioana M. Pathogenic Copy Number Variations Involved in the Genetic Etiology of Syndromic and Non-Syndromic Intellectual Disability-Data from a Romanian Cohort. Diagnostics (Basel) 2022; 12:diagnostics12123137. [PMID: 36553144 PMCID: PMC9777762 DOI: 10.3390/diagnostics12123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The investigation of unexplained global developmental delay (GDD)/intellectual disability (ID) is challenging. In low resource settings, patients may not follow a standardized diagnostic process that makes use of the benefits of advanced technologies. Our study aims to explore the contribution of chromosome microarray analysis (CMA) in identifying the genetic etiology of GDD/ID. A total of 371 Romanian patients with syndromic or non-syndromic GDD/ID, without epilepsy, were routinely evaluated in tertiary clinics. A total of 234 males (63.07%) and 137 (36.93%) females, with ages ranging from 6 months to 40 years (median age of 5.5 years), were referred for genetic diagnosis between 2015 and 2022; testing options included CMA and/or karyotyping. Agilent Technologies and Oxford Gene Technology CMA workflows were used. Pathogenic/likely pathogenic copy number variations (pCNVs) were identified in 79 patients (21.29%). Diagnosis yield was comparable between mild ID (17.05%, 22/129) and moderate/severe ID 23.55% (57/242). Higher rates were found in cases where facial dysmorphism (22.97%, 71/309), autism spectrum disorder (ASD) (19.11%, 26/136) and finger anomalies (20%, 27/96) were associated with GDD/ID. GDD/ID plus multiple congenital anomalies (MCA) account for the highest detection rates at 27.42% (17/62). pCNVs represent a significant proportion of the genetic causes of GDD/ID. Our study confirms the utility of CMA in assessing GDD/ID with an uncertain etiology, especially in patients with associated comorbidities.
Collapse
Affiliation(s)
- Ioana Streață
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Alexandru Caramizaru
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Correspondence: (A.-L.R.); (F.B.)
| | - Simona Șerban-Sosoi
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Andrei Pîrvu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Monica-Laura Cara
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Department of Public Health, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihai-Gabriel Cucu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Amelia Mihaela Dobrescu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Ro-NMCA-ID Group
- The Ro-NMCA-ID (RoNetwork Multiple Congenital Abnormalities with ID) Member of European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA) [EU Framework Partnership Agreement ID: 3HP-HP-FPA ERN-01-2016/739516], 400011 Timisoara, Romania
| | | | | | - Elena-Silvia Shelby
- National University Center for Children’s Neurorehabilitation “Dr. Nicolae Robănescu”, 44 Dumitru Mincă Street, District 4, 041408 Bucharest, Romania
| | - Adriana Albeanu
- Department of Pediatric Neurology, Clinical Emergency Children Hospital Brasov, Nicopole Street No. 45, 500063 Brasov, Romania
| | - Florin Burada
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Correspondence: (A.-L.R.); (F.B.)
| | - Mihai Ioana
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
4
|
Du Y, Gu Z, Li Z, Yuan Z, Zhao Y, Zheng X, Bo X, Chen H, Wang C. Dynamic Interplay between Structural Variations and 3D Genome Organization in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200818. [PMID: 35570408 PMCID: PMC9218654 DOI: 10.1002/advs.202200818] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Indexed: 06/05/2023]
Abstract
Structural variations (SVs) are the greatest source of variations in the genome and can lead to oncogenesis. However, the identification and interpretation of SVs in human cancer remain technologically challenging. Here, long-read sequencing is first employed to depict the signatures of structural variations in carcinogenesis of human pancreatic ductal epithelium. Then widespread reprogramming of the 3D chromatin architecture is revealed by an in situ Hi-C technique. Integrative analyses indicate that the distribution pattern of SVs among the 3D genome is highly cell-type specific and the bulk remodeling effects of SVs in the chromatin organization partly depend on intercellular genomic heterogeneity. Meanwhile, contact domains tend to minimize these disrupting effects of SVs within local adjacent genomic regions to maintain overall stability. Notably, complex genomic rearrangements involving two key driver genes CDKN2A and SMAD4 are identified, and their influence on the expression of oncogenes MIR31HG, MYO5B, etc., are further elucidated from both a linear view and 3D perspective. Overall, this work provides a genome-wide resource and highlights the impact, complexity, and dynamicity of the interplay between structural variations and high-order chromatin organization, which expands the current understanding of the pathogenesis of SVs in human cancer.
Collapse
Affiliation(s)
- Yongxing Du
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zongting Gu
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zongze Li
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zan Yuan
- Annoroad Gene Technology Co. LtdBeijing100176P. R. China
| | - Yue Zhao
- Annoroad Gene Technology Co. LtdBeijing100176P. R. China
| | - Xiaohao Zheng
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xiaochen Bo
- Department of BiotechnologyInstitute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Hebing Chen
- Department of BiotechnologyInstitute of Health Service and Transfusion MedicineBeijing100850P. R. China
| | - Chengfeng Wang
- Department of Pancreatic and Gastric SurgeryNational Cancer Center/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
5
|
Wang ZQ, Zhang CC. A tRNA t 6A modification system contributes to the sensitivity towards the toxin β-N-methylamino-L-alanine (BMAA) in the cyanobacterium Anabaena sp. PCC 7120. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106121. [PMID: 35180454 DOI: 10.1016/j.aquatox.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are oxygen-evolving photosynthetic autotrophs essential for nutrient cycling in the environment. They possess multiple control mechanisms for their cellular activities in order to adapt to the environment. While protein translation is essential for cell survival and adaptation, the regulation and the flexibility of this process are poorly understood in cyanobacteria. β-N-methylamino-L-alanine (BMAA), an amino acid analog proposed as an environmental neurotoxin, is highly toxic to the filamentous diazotrophic cyanobacterium Anabaena PCC 7120. In this study, through genetic analysis of BMAA-resistant mutants, we demonstrate that the system responsible for modification of ANN-decoding tRNAs with N(6)-threonylcarbamoyl adenosine (t6A) is involved in BMAA sensitivity through the control of translation. Both BMAA and inactivation of the t6A biosynthesis pathway affect translational fidelity and ribosome assembly. However, the two factors display either additive effects on translational elongation, or attenuate each other over translational fidelity or the resistance/sensitivity to antibiotics that inhibit different steps of the translational process. BMAA has a broad effect on translation and transcription, and once BMAA enters the cells, the presence of the t6A biosynthesis pathway increases the sensitivity of the cells towards this toxin. BMAA-resistant mutants screening is an effective method for getting insight into the toxic mechanisms of BMAA. In addition, BMAA is a useful tool for probing translational flexibility of cyanobacteria, and the characterization of the corresponding resistant mutants should help us to reveal translational mechanism allowing cyanobacteria to adapt to changing environments.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, People's Republic of China; Institute WUT-AMU, Aix-Marseille University and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Sun C, Ma S, Chen Y, Kim NH, Kailas S, Wang Y, Gu W, Chen Y, Tuason JPW, Bhan C, Manem N, Huang Y, Cheng C, Zhou Z, Zhou Q, Zhu Y. Diagnostic Value, Prognostic Value, and Immune Infiltration of LOX Family Members in Liver Cancer: Bioinformatic Analysis. Front Oncol 2022; 12:843880. [PMID: 35311155 PMCID: PMC8931681 DOI: 10.3389/fonc.2022.843880] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Liver cancer (LC) is well known for its prevalence as well as its poor prognosis. The aberrant expression of lysyl oxidase (LOX) family is associated with liver cancer, but their function and prognostic value in LC remain largely unclear. This study aimed to explore the function and prognostic value of LOX family in LC through bioinformatics analysis and meta-analysis. Results The expression levels of all LOX family members were significantly increased in LC. Area under the receiver operating characteristic curve (AUC) of LOXL2 was 0.946 with positive predictive value (PPV) of 0.994. LOX and LOXL3 were correlated with worse prognosis. Meta-analysis also validated effect of LOX on prognosis. Nomogram of these two genes and other predictors was also plotted. There was insufficient data from original studies to conduct meta-analysis on LOXL3. The functions of LOX family members in LC were mostly involved in extracellular and functions and structures. The expressions of LOX family members strongly correlated with various immune infiltrating cells and immunomodulators in LC. Conclusions For LC patients, LOXL2 may be a potential diagnostic biomarker, while LOX and LOXL3 have potential prognostic and therapeutic values. Positive correlation between LOX family and infiltration of various immune cells and immunomodulators suggests the need for exploration of their roles in the tumor microenvironment and for potential immunotherapeutic to target LOX family proteins.
Collapse
Affiliation(s)
- Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yue Chen
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, Hefei, China
| | - Na Hyun Kim
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Sujatha Kailas
- Gastroenterology, AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Yichen Wang
- Mercy Internal Medicine Service, Trinity Health of New England, Springfield, MA, United States
| | - Wenchao Gu
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Chandur Bhan
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Nikitha Manem
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Yuting Huang
- University of Maryland Medical Center Midtown Campus, Baltimore, MD, United States
| | - Ce Cheng
- College of Medicine, The University of Arizona, Tucson, AZ, United States
- Banner-University Medical Center South, Tucson, AZ, United States
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Qin Zhou
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Yanzhe Zhu,
| |
Collapse
|
7
|
Wilson AC, Chiles J, Ashish S, Chanda D, Kumar PL, Mobley JA, Neptune ER, Thannickal VJ, McDonald MLN. Integrated bioinformatics analysis identifies established and novel TGFβ1-regulated genes modulated by anti-fibrotic drugs. Sci Rep 2022; 12:3080. [PMID: 35197532 PMCID: PMC8866468 DOI: 10.1038/s41598-022-07151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a leading cause of morbidity and mortality worldwide. Although fibrosis may involve different organ systems, transforming growth factor-β (TGFβ) has been established as a master regulator of fibrosis across organs. Pirfenidone and Nintedanib are the only currently-approved drugs to treat fibrosis, specifically idiopathic pulmonary fibrosis, but their mechanisms of action remain poorly understood. To identify novel drug targets and uncover potential mechanisms by which these drugs attenuate fibrosis, we performed an integrative 'omics analysis of transcriptomic and proteomic responses to TGFβ1-stimulated lung fibroblasts. Significant findings were annotated as associated with pirfenidone and nintedanib treatment in silico via Coremine. Integrative 'omics identified a co-expressed transcriptomic and proteomic module significantly correlated with TGFβ1 treatment that was enriched (FDR-p = 0.04) with genes associated with pirfenidone and nintedanib treatment. While a subset of genes in this module have been implicated in fibrogenesis, several novel TGFβ1 signaling targets were identified. Specifically, four genes (BASP1, HSD17B6, CDH11, and TNS1) have been associated with pirfenidone, while five genes (CLINT1, CADM1, MTDH, SYDE1, and MCTS1) have been associated with nintedanib, and MYDGF has been implicated with treatment using both drugs. Using the Clue Drug Repurposing Hub, succinic acid was highlighted as a metabolite regulated by the protein encoded by HSD17B6. This study provides new insights into the anti-fibrotic actions of pirfenidone and nintedanib and identifies novel targets for future mechanistic studies.
Collapse
Affiliation(s)
- Ava C. Wilson
- grid.265892.20000000106344187Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Joe Chiles
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Shah Ashish
- grid.265892.20000000106344187Department of Orthopedic Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Diptiman Chanda
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Preeti L. Kumar
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - James A. Mobley
- grid.265892.20000000106344187Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Enid R. Neptune
- grid.21107.350000 0001 2171 9311Department of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Victor J. Thannickal
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265219.b0000 0001 2217 8588John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Merry-Lynn N. McDonald
- grid.265892.20000000106344187Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
8
|
Tisserant E, Vitobello A, Callegarin D, Verdez S, Bruel AL, Aho Glele LS, Sorlin A, Viora-Dupont E, Konyukh M, Marle N, Nambot S, Moutton S, Racine C, Garde A, Delanne J, Tran-Mau-Them F, Philippe C, Kuentz P, Poulleau M, Payet M, Poe C, Thauvin-Robinet C, Faivre L, Mosca-Boidron AL, Thevenon J, Duffourd Y, Callier P. Copy number variants calling from WES data through eXome hidden Markov model (XHMM) identifies additional 2.5% pathogenic genomic imbalances smaller than 30 kb undetected by array-CGH. Ann Hum Genet 2022; 86:171-180. [PMID: 35141892 DOI: 10.1111/ahg.12459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
Abstract
It has been estimated that Copy Number Variants (CNVs) account for 10%-20% of patients affected by Developmental Disorder (DD)/Intellectual Disability (ID). Although array comparative genomic hybridization (array-CGH) represents the gold-standard for the detection of genomic imbalances, common Agilent array-CGH 4 × 180 kb arrays fail to detect CNVs smaller than 30 kb. Whole Exome sequencing (WES) is becoming the reference application for the detection of gene variants and makes it possible also to infer genomic imbalances at single exon resolution. However, the contribution of small CNVs in DD/ID is still underinvestigated. We made use of the eXome Hidden Markov Model (XHMM) software, a tool utilized by the ExAC consortium, to detect CNVs from whole exome sequencing data, in a cohort of 200 unsolved DD/DI patients after array-CGH and WES-based single nucleotide/indel variant analyses. In five out of 200 patients (2.5%), we identified pathogenic CNV(s) smaller than 30 kb, ranging from one to six exons. They included two heterozygous deletions in TCF4 and STXBP1 and three homozygous deletions in PPT1, CLCN2, and PIGN. After reverse phenotyping, all variants were reported as causative. This study shows the interest in applying sequencing-based CNV detection, from available WES data, to reduce the diagnostic odyssey of additional patients unsolved DD/DI patients and compare the CNV-detection yield of Agilent array-CGH 4 × 180kb versus whole exome sequencing.
Collapse
Affiliation(s)
- Emilie Tisserant
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France
| | - Antonio Vitobello
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Davide Callegarin
- Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Simon Verdez
- Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Ange-Line Bruel
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France
| | | | - Arthur Sorlin
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Eleonore Viora-Dupont
- Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Marina Konyukh
- Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Nathalie Marle
- Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Sophie Nambot
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Hospital Hygiene and Epidemiology Unit, Dijon University Hospital, Dijon Cedex, France
| | - Sébastien Moutton
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France.,Reference Center for Intellectual Disorders, Dijon University Hospital, Dijon, France
| | - Caroline Racine
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France.,Genetics Department and Reference Center for Developmental Disorders and Malformative Syndromes for East France, FHU TRANSLAD, Dijon University Hospital, Dijon, France
| | - Aurore Garde
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Julian Delanne
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Genetics Department and Reference Center for Developmental Disorders and Malformative Syndromes for East France, FHU TRANSLAD, Dijon University Hospital, Dijon, France
| | - Frédéric Tran-Mau-Them
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France
| | - Christophe Philippe
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Paul Kuentz
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France
| | - Marlène Poulleau
- Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Muriel Payet
- Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Charlotte Poe
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France
| | - Christel Thauvin-Robinet
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Genetics Department and Reference Center for Developmental Disorders and Malformative Syndromes for East France, FHU TRANSLAD, Dijon University Hospital, Dijon, France.,Reference Center for Intellectual Disorders, Dijon University Hospital, Dijon, France
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Genetics Department and Reference Center for Developmental Disorders and Malformative Syndromes for East France, FHU TRANSLAD, Dijon University Hospital, Dijon, France.,Reference Center for Intellectual Disorders, Dijon University Hospital, Dijon, France
| | - Anne-Laure Mosca-Boidron
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| | - Julien Thevenon
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Genetics Department and Reference Center for Developmental Disorders and Malformative Syndromes for East France, FHU TRANSLAD, Dijon University Hospital, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France
| | - Patrick Callier
- Inserm UMR 1231 GAD, Faculty of Health Sciences, University of Burgundy and Franche-Comté, Dijon, France.,Molecular and chromosomal genetics laboratory, Biology Transfer Platform, Dijon University Hospital, Dijon, France
| |
Collapse
|
9
|
Ke Y, Chen X, Su Y, Chen C, Lei S, Xia L, Wei D, Zhang H, Dong C, Liu X, Yin F. Low Expression of SLC7A11 Confers Drug Resistance and Worse Survival in Ovarian Cancer via Inhibition of Cell Autophagy as a Competing Endogenous RNA. Front Oncol 2021; 11:744940. [PMID: 34790572 PMCID: PMC8591223 DOI: 10.3389/fonc.2021.744940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is the main cause of chemotherapy failure in ovarian cancer (OC), and identifying potential druggable targets of autophagy is a novel and promising approach to overcoming drug resistance. In this study, 131 genes associated with autophagy were identified from three autophagy-related databases, and of these, 14 were differentially expressed in 90 drug-resistant OC tissues versus 197 sensitive tissues according to the Cancer Genome Atlas ovarian cancer cohort. Among these 14 genes, SLC7A11 was significantly decreased in two paclitaxel-resistant OC cells (HeyA8-R and SKOV3-R) and in 90 drug-resistant tissues compared with their controls. In vitro overexpression of SLC7A11 significantly increased the sensitivity of HeyA8-R cells to paclitaxel, inhibited colony formation, induced apoptosis, and arrested cell cycle. Further, low SLC7A11 expression was correlated with poor overall survival (OS), progression-free survival (PFS), and post-progression survival (PPS) in 1815 OC patients. Mechanistically, SLC7A11 strongly regulated cell autophagy as a competing endogenous RNA (ceRNA) based on pan-cancer analyses of 32 tumor types. Specifically, as a ceRNA for autophagy genes STX17, RAB33B, and UVRAG, SLC7A11 was strongly and positively co-expressed with these three genes in 20, 12, and 12 different tumors, respectively, in 379 OC tissues and in 90 drug-resistant OC tissues, and the former two were significantly upregulated in SLC7A11-overexpressed HeyA8-R cells. Further, SLC7A11 induced the protein expression of other autophagy genes, such as LC3, Atg16L1, and Atg7, and the expression of the respective proteins was further increased when the cells were treated with paclitaxel. The results strongly suggest that SLC7A11 regulates autophagy via ceRNA interactions with the three abovementioned genes in pan-cancer and in drug-resistant OC. Moreover, low expression of STX17 and UVRAG also significantly predicted low OS, PFS, and PPS. The combination of SLC7A11 with STX17 was more predictive of OS and PFS than either individually, and the combination of SLC7A11 with UVRAG was highly predictive of OS and PPS. The above results indicated that decreased SLC7A11 resulted in drug resistance and effected low rates of survival in OC patients, probably via ceRNA interactions with autophagy genes, and thus the gene could serve as a therapeutic target and potential biomarker in OC.
Collapse
Affiliation(s)
- Yao Ke
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Xiaoying Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Yuting Su
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Shunmei Lei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Lianping Xia
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Dan Wei
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Han Zhang
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| |
Collapse
|
10
|
Findley TO, Crain AK, Mahajan S, Deniwar A, Davis J, Solis Zavala AS, Corno AF, Rodriguez-Buritica D. Congenital heart defects and copy number variants associated with neurodevelopmental impairment. Am J Med Genet A 2021; 188:13-23. [PMID: 34472185 DOI: 10.1002/ajmg.a.62484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 01/21/2023]
Abstract
A genetic etiology is identifiable in 20%-30% of patients with congenital heart defects (CHD). Chromosomal microarray analysis (CMA) can detect copy number variants (CNV) associated with CHD. In previous studies, the diagnostic yield of postnatal CMA testing ranged from 4% to 28% in CHD patients. However, incidental pathogenic CNV and variants of unknown significance are often discovered without any known association with CHD. The study objective was to describe the rate of pathogenic CNV associated with neurodevelopmental impairment (NDI) and compare clinical findings in CHD neonates with genetic results. A single-center retrospective review was performed on all consecutive newborns with CHD admitted to a tertiary neonatal intensive care unit from January 2013 to March 2019 (n = 525). CHD phenotypes were classified as per the National Birth Defect Prevention Study. CMA detected pathogenic CNV in 21.3% (61/287) of neonates, and karyotype or fluorescence in situ hybridization detected aneuploidies in an additional 11% of the overall cohort (58/525). Atrioventricular septal defects and conotruncal defects showed the highest diagnostic yield by CMA (28.6% and 27.2%, respectively). Among neonates with pathogenic CNV on CMA, 78.7% (48/61) were associated with NDI. Neonates with pathogenic CNV were smaller in length at birth compared to those with benign CNV or variants of unknown significance (p = 0.005) and were more likely to be discharged with an enteral feeding tube (p = 0.027). CMA can discover genetic variants associated with NDI and are common in neonates with CHD. Genetic testing in the neonatal period can heighten awareness of genetic risk for NDI.
Collapse
Affiliation(s)
- Tina O Findley
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alyssa K Crain
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Smridhi Mahajan
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ahmed Deniwar
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Children's Heart Institute, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jessica Davis
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ana S Solis Zavala
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Antonio F Corno
- Children's Heart Institute, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David Rodriguez-Buritica
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Lo Faro V, Ten Brink JB, Snieder H, Jansonius NM, Bergen AA. Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma. BMC Genomics 2021; 22:590. [PMID: 34348663 PMCID: PMC8336345 DOI: 10.1186/s12864-021-07846-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. RESULTS We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p-value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. CONCLUSIONS Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease. Additional genetic and functional studies are warranted to ascertain the contribution of CNVs in POAG.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arthur A Bergen
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Department of Ophthalmology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands. .,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Wen S, Zhong Z, He L, Zhao D, Chen X, Mi H, Liu F. Network pharmacology dissection of multiscale mechanisms for jiaoqi powder in treating ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114109. [PMID: 33845143 DOI: 10.1016/j.jep.2021.114109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of ulcerative colitis (UC) is increasing worldwide, making it a serious public health challenge. Currently, there are no accepted curative treatments for UC. As such, the exploration of new therapeutic strategies for UC treatment is of considerable clinical importance. Jiaoqi powder (JQP) is a classic Chinese medicinal formula commonly used as a complementary and alternative medicine for treating gastrointestinal bleeding. JQP is thus a potential alternative medicine for UC treatment. However, the protective mechanism underlying the action of JQP has not been elucidated, thereby, necessitating further studies to decipher the mechanisms involved in the complex interplay among its components. AIM OF THE STUDY To explore the protective effect of JQP against UC and to further investigate its mechanism in silico and in vivo using a systems pharmacology approach. MATERIALS AND METHODS A systems pharmacology approach was used to predict the active components of JQP. Putative targets and the potential mechanism of JQP on UC were obtained through target fishing, network construction, and enrichment analyses. An animal-based model of dextran sodium sulfate (DSS)-induced colitis in C57BL/6 mice was further used to validate the treatment mechanisms of JQP. The underlying pharmacological mechanisms of JQP in UC were determined using polymerase chain reaction tests, histological staining, immunohistochemistry, enzyme-linked immunoassays, and flow cytometry analysis. RESULTS In this study, 17 effective components and 941 potential targets of JQP were identified. Similarly, 2104 UC-related targets were also identified. Construction of PPI networks led to the identification of 184 putative therapeutic targets of JQP. Sixty-nine core targets among these 184 were further screened based on their DC values. Gene ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the core targets were primarily enriched in immune response and inflammatory signalling pathways. Subsequent animal-based in vivo experiments revealed that JQP ameliorated symptoms and histological changes in DSS colitis by significantly impairing DSS's ability to induce high expression levels of NF-κB/p65, IL-1β, IL-6, and TNF-α. JQP also reduced the levels of COX-2, CCL2, CXCL2, HIF-1α, MMP3 and MMP9 and regulated the Th17/Treg cell balance in DSS-induced mice. CONCLUSIONS This study demonstrated that JQP could treat UC by improving the mucosal inflammatory response, repairing the intestinal barrier, and modulating the Th17/Treg immune balance. The results of this study provide new insights into UC treatment and further elucidate the theoretical and practical implications of the pharmaceutical development of TCMs.
Collapse
MESH Headings
- Animals
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/pathology
- Cytokines/metabolism
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/immunology
- Lymph Nodes/immunology
- Male
- Metabolic Networks and Pathways/drug effects
- Mice, Inbred C57BL
- Powders
- Protein Interaction Maps
- Spleen/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Shuting Wen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhuotai Zhong
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Long He
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Dike Zhao
- Basic Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xu Chen
- Department of Gastroenterology,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hong Mi
- Department of Gastroenterology,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Fengbin Liu
- Department of Gastroenterology,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
13
|
Bian YY, Yang LL, Zhang B, Li W, Li ZJ, Li WL, Zeng L. Identification of key genes involved in post-traumatic stress disorder: Evidence from bioinformatics analysis. World J Psychiatry 2020; 10:286-298. [PMID: 33392005 PMCID: PMC7754529 DOI: 10.5498/wjp.v10.i12.286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a serious stress-related disorder.
AIM To identify the key genes and pathways to uncover the potential mechanisms of PTSD using bioinformatics methods.
METHODS Gene expression profiles were obtained from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified by using GEO2R. Gene functional annotation and pathway enrichment were then conducted. The gene-pathway network was constructed with Cytoscape software. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was applied for validation, and text mining by Coremine Medical was used to confirm the connections among genes and pathways.
RESULTS We identified 973 DEGs including 358 upregulated genes and 615 downregulated genes in PTSD. A group of centrality hub genes and significantly enriched pathways (MAPK, Ras, and ErbB signaling pathways) were identified by using gene functional assignment and enrichment analyses. Six genes (KRAS, EGFR, NFKB1, FGF12, PRKCA, and RAF1) were selected to validate using qRT-PCR. The results of text mining further confirmed the correlation among hub genes and the enriched pathways. It indicated that these altered genes displayed functional roles in PTSD via these pathways, which might serve as key signatures in the pathogenesis of PTSD.
CONCLUSION The current study identified a panel of candidate genes and important pathways, which might help us deepen our understanding of the underlying mechanism of PTSD at the molecular level. However, further studies are warranted to discover the critical regulatory mechanism of these genes via relevant pathways in PTSD.
Collapse
Affiliation(s)
- Yao-Yao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Zhang
- Digestive Department, Ningbo Hospital of Traditional Chinese Medicine, Ningbo 315200, Zhejiang Province, China
| | - Wen Li
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Zheng-Jun Li
- Management School, University of St Andrews, St Andrews KY16 9AJ, United Kingdom
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
14
|
Godoy VCSMD, Bellucco FT, Colovati M, Oliveira-Junior HRD, Moysés-Oliveira M, Melaragno MI. Copy number variation (CNV) identification, interpretation, and database from Brazilian patients. Genet Mol Biol 2020; 43:e20190218. [PMID: 33306777 PMCID: PMC7783508 DOI: 10.1590/1678-4685-gmb-2019-0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/25/2020] [Indexed: 11/22/2022] Open
Abstract
Copy number variations (CNVs) constitute an important class of variation in the
human genome and the interpretation of their pathogenicity considering different
frequencies across populations is still a challenge for geneticists. Since the
CNV databases are predominantly composed of European and non-admixed
individuals, and Brazilian genetic constitution is admixed and ethnically
diverse, diagnostic screenings on Brazilian variants are greatly difficulted by
the lack of populational references. We analyzed a clinical sample of 268
Brazilian individuals, including patients with neurodevelopment disorders and/or
congenital malformations. The pathogenicity of CNVs was classified according to
their gene content and overlap with known benign and pathogenic variants. A
total of 1,504 autosomal CNVs (1,207 gains and 297 losses) were classified as
benign (92.9%), likely benign (1.6%), VUS (2.6%), likely pathogenic (0.2%) and
pathogenic (2.7%). Some of the CNVs were recurrent and with frequency increased
in our sample, when compared to populational open resources of structural
variants: 14q32.33, 22q11.22, 1q21.1, and 1p36.32 gains. Thus, these highly
recurrent CNVs classified as likely benign or VUS were considered non-pathogenic
in our Brazilian sample. This study shows the relevance of introducing CNV data
from diverse cohorts to improve on the interpretation of clinical impact of
genomic variations.
Collapse
Affiliation(s)
| | - Fernanda Teixeira Bellucco
- Universidade Federal de São Paulo, Departamento de Morfologia e Genética, Disciplina de Genética, São Paulo, SP, Brazil
| | - Mileny Colovati
- Universidade Federal de São Paulo, Departamento de Morfologia e Genética, Disciplina de Genética, São Paulo, SP, Brazil
| | | | - Mariana Moysés-Oliveira
- Universidade Federal de São Paulo, Departamento de Morfologia e Genética, Disciplina de Genética, São Paulo, SP, Brazil
| | - Maria Isabel Melaragno
- Universidade Federal de São Paulo, Departamento de Morfologia e Genética, Disciplina de Genética, São Paulo, SP, Brazil
| |
Collapse
|
15
|
Gorji-Bahri G, Moghimi HR, Hashemi A. RAB5A is associated with genes involved in exosome secretion: Integration of bioinformatics analysis and experimental validation. J Cell Biochem 2020; 122:425-441. [PMID: 33225526 DOI: 10.1002/jcb.29871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Exosomes, as cell-cell communicators with an endosomal origin, are involved in the progression of various diseases. RAB5A, a member of the small Rab GTPases family, which is well known as a key regulator of cellular endocytosis, is expected to be involved in exosome secretion. Here, we found the impact of RAB5A on exosome secretion from human hepatocellular carcinoma cell line using a rapid yet reliable bioinformatics approach followed by experimental analysis. Initially, RAB5A and exosome secretion-related genes were gathered from bioinformatics tools, namely, CTD, COREMINE, and GeneMANIA; and published papers. Protein-protein interaction (PPI) was then constructed by the Search Tool for Retrieval of Interacting Genes (STRING) database. Among them, several genes with different combined scores were validated by the real-time quantitative polymerase chain reaction (RT-qPCR) in stable RAB5A knockdown cells. Thereafter, to validate the bioinformatics results functionally, the impact of RAB5A knockdown on exosome secretion was evaluated. Bioinformatics analysis showed that RAB5A interacts with 37 genes involved in exosome secretion regulatory pathways. Validation by RT-qPCR confirmed the association of RAB5A with candidate interacted genes and interestingly showed that even medium to low combined scores of the STRING database could be experimentally valid. Moreover, the functional analysis demonstrated that the stable silencing of RAB5A could experimentally decrease exosome secretion. In conclusion, we suggest RAB5A as a regulator of exosome secretion based on our bioinformatics approach and experimental analysis. Also, we propose the usage of PPI-derived from the STRING database regardless of their combined scores in advanced bioinformatics analysis.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Cavole TR, Perrone E, de Faria Soares MDF, Dias da Silva MR, Maeda SS, Lazaretti-Castro M, Alvarez Perez AB. Overlapping phenotype comprising Kenny-Caffey type 2 and Sanjad-Sakati syndromes: The first case report. Am J Med Genet A 2020; 182:3029-3034. [PMID: 33010201 DOI: 10.1002/ajmg.a.61896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 11/07/2022]
Abstract
Kenny-Caffey syndrome (KCS) is a rare hereditary skeletal disorder involving hypoparathyroidism. The autosomal dominant form (KCS2), caused by heterozygous pathogenic variants in the FAM111A gene, is distinguished from the autosomal recessive form (KCS1) and Sanjad-Sakati syndrome (SSS), both caused by pathogenic variants in the tubulin folding cofactor E (TBCE) gene, by the absence of microcephaly and intellectual disability. We present a patient with KCS2 caused by a de novo pathogenic variant c.1706G>A (p.Arg569His) in FAM111A gene, presenting intellectual disability and microcephaly, which are considered to be typical signs of SSS. We suggest that KCS1, KCS2, and SSS may not represent mutually exclusive clinical entities, but possibly an overlapping spectrum.
Collapse
Affiliation(s)
- Thiago Rodrigues Cavole
- Department of Medical Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eduardo Perrone
- Department of Medical Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Magnus Régios Dias da Silva
- Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Setsuo Maeda
- Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Beatriz Alvarez Perez
- Department of Medical Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
McGregor-Schuerman M, Lo Fo Sang A, Bihari S, Ramdajal N, Suijkerbuijk RF, van Ravenswaaij-Arts CM. A child with complementary mosaic trisomy 8 and mosaic trisomy 21; clinical description of Warkany-Down syndrome and mechanism of origin. Eur J Med Genet 2020; 63:103922. [PMID: 32240827 DOI: 10.1016/j.ejmg.2020.103922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Aneuploidy mosaicism involving two complementary different autosomal trisomy cell lines is extremely rare. Although a mosaic double trisomy 8/trisomy 21 has been described in literature, this is the first report of Warkany (+8)-Down (+21) syndrome due to two complementary mosaic trisomy cell lines. The phenotype of the male patient with Warkany-Down syndrome includes upslanting palpebral fissures, hypertelorism, small low-set ears with unilateral aural stenosis, large and broad hands and feet with deep palmar and plantar creases, bilateral cryptorchidism, generalized mild hypotonia and transient neonatal thrombocytopenia. At the age of two years, his developmental quotient is around 50. His height, weight and head circumference are below the third centile. We speculate on the mechanism of origin of the complementary trisomy cell lines based on molecular cytogenetic studies that showed no evidence for a chimera.
Collapse
Affiliation(s)
| | | | - Santusha Bihari
- P.C. Flu Institute for Biomedical Sciences, Paramaribo, Suriname
| | - Natasja Ramdajal
- P.C. Flu Institute for Biomedical Sciences, Paramaribo, Suriname
| | - Ron F Suijkerbuijk
- University of Groningen, University Medical Center Groningen, Dept. of Genetics, Groningen, the Netherlands
| | | |
Collapse
|
18
|
Sudden Cardiac Death and Copy Number Variants: What Do We Know after 10 Years of Genetic Analysis? Forensic Sci Int Genet 2020; 47:102281. [PMID: 32248082 DOI: 10.1016/j.fsigen.2020.102281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Over the last ten years, analysis of copy number variants has increasingly been applied to the study of arrhythmogenic pathologies associated with sudden death, mainly due to significant advances in the field of massive genetic sequencing. Nevertheless, few published reports have focused on the prevalence of copy number variants associated with sudden cardiac death. As a result, the frequency of these genetic alterations in arrhythmogenic diseases as well as their genetic interpretation and clinical translation has not been established. This review summarizes the current available data concerning copy number variants in sudden cardiac death-related diseases.
Collapse
|
19
|
Dong C, Yin F, Zhu D, Cai X, Chen C, Liu X. NCALD affects drug resistance and prognosis by acting as a ceRNA of CX3CL1 in ovarian cancer. J Cell Biochem 2020; 121:4470-4483. [PMID: 32030795 DOI: 10.1002/jcb.29670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
Drug resistance, an impenetrable barrier in the treatment of ovarian cancer (OC), is often associated with poor outcomes. Hence, it is urgent to discover new factors controlling drug resistance and survival. The association between neurocalcin delta (NCALD) and cancer drug resistance is poorly understood. Here, we reveal that NCALD messenger RNA expression, probably regulated by DNA methylation and microRNAs, was significantly downregulated in at least three independent microarrays covering 633 ovarian carcinomas and 16 normal controls, which includes the Cancer Genome Atlas (TCGA) ovarian cohort. In the sub-groups of the TCGA cohort, NCALD was suppressed in 90 platinum-resistant tissues vs in 197 sensitive tissues. It is consistent with the quantitative reverse transcription polymerase chain reaction results revealing gene downregulation in carboplatin-resistant SKOV3 and HeyA8 OC cells as compared with that in controls. Low expression of NCALD predicted poor overall survival (OS) in sub-groups of 1656 patients, progression-free survival (PFS) in 1435 patients, and post-progression survival (PPS) in 782 patients according to Kaplan-Meier plotter covering 1815 OC patients. Comprehensive bioinformatic analyses strongly implicated NCALD in the regulation of drug resistance, probably via competing for endogenous RNA (ceRNA) interactions with CX3CL1 and tumor immune-microenvironment. NCALD acted as a ceRNA for CX3CL1 in 21 different cancers includes OC according to Starbase. These two genes negatively correlated with tumor purity and positively correlated with infiltration levels of neutrophils and dendritic cells in OC. The combined low expression of NCALD and CX3CL1 showed better prognosis potential for OS, PFS, and PPS in the 1815 OC patients than any of the individually tested genes. In summary, NCALD acts as a ceRNA for CX3CL1, and its downregulation may affect drug resistance and prognosis in OC. Thus, NCALD could be a new therapeutic target for anticancer therapy and a new biomarker for survival prediction in OC.
Collapse
Affiliation(s)
- Caihua Dong
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Dan Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangxue Cai
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Cuilan Chen
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Centre for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
20
|
de Souza LC, Dos Santos AP, Sgardioli IC, Viguetti-Campos NL, Marques Prota JR, de Oliveira-Sobrinho RP, Vieira TP, Gil-da-Silva-Lopes VL. Phenotype comparison among individuals with developmental delay/intellectual disability with or without genomic imbalances. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:1379-1389. [PMID: 30900361 DOI: 10.1111/jir.12615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The chromosomal microarray analysis (CMA) is recommended as a first-tier test for individuals with developmental delay (DD)/intellectual disability (ID) and/or multiple congenital anomalies. However, owing to high costs, this technique is not widely performed for diagnostic purposes in several countries. The aim of this study was to identify clinical features that could favour the hypothesis of genomic imbalances (GIs) in individuals with DD/ID. METHODS The sample consisted of 63 individuals, and all of them underwent a detailed evaluation by a clinical geneticist and were investigated by the CMA. They were divided into two groups. Group A composed of 20 individuals with pathogenic copy number variants (CNVs); and group B composed of 43 individuals with normal CMA results or variants of uncertain clinical significance (VUS). RESULTS Pathogenic GIs were found in 20 cases (32%), including 11 individuals with an abnormal karyotype, VUS was found in five individuals (8%) and the results were normal in 38 individuals (60%). Major anomalies were found in 15/20 (75%) individuals in group A against 35/43 (81%) in group B. Dysmorphisms (≥5) were found in 17/20 (85%) in group A and 41/43 (95%) in group B. The most frequent major anomalies detected in group A were congenital heart disease, epilepsy and renal malformation; and in group B, they were malformations of central nervous system, congenital heart disease, microcephaly, epilepsy and hearing impairment. There was no significant statistical difference among the frequencies in groups A and B. CONCLUSIONS Evidences point that every individual with DD/ID, with no specific clinical suspicion, should have screening for GIs as a first-tier test, regardless of the presence or absence of additional major anomalies or dysmorphisms. Future studies with a similar design would be helpful, especially in countries where the access to new technologies is still limited.
Collapse
Affiliation(s)
- L C de Souza
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - A P Dos Santos
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - I C Sgardioli
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - N L Viguetti-Campos
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - J R Marques Prota
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - R P de Oliveira-Sobrinho
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - T P Vieira
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - V L Gil-da-Silva-Lopes
- Department of Medical Genetics, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
21
|
Bai P, Zhang B, Zhao X, Li D, Yu Y, Zhang X, Huang B, Liu C. Decreased metabolism and increased tolerance to extreme environments in Staphylococcus warneri during long-term spaceflight. Microbiologyopen 2019; 8:e917. [PMID: 31414557 PMCID: PMC6925155 DOI: 10.1002/mbo3.917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 11/24/2022] Open
Abstract
Many studies have shown that the space environment can affect bacteria by causing a range of mutations. However, to date, few studies have explored the effects of long‐term spaceflight (>1 month) on bacteria. In this study, a Staphylococcus warneri strain that was isolated from the Shenzhou‐10 spacecraft and had experienced a spaceflight (15 days) was carried into space again. After a 64‐day flight, combined phenotypic, genomic, transcriptomic, and proteomic analyses were performed to compare the influence of the two spaceflights on this bacterium. Compared with short‐term spaceflight, long‐term spaceflight increased the biofilm formation ability of S. warneri and the cell wall resistance to external environmental stress but reduced the sensitivity to chemical stimulation. Further analysis showed that these changes might be associated with the significantly upregulated gene expression of the phosphotransferase system, which regulates the metabolism of sugars, including glucose, mannose, fructose, and cellobiose. The mutation of S. warneri caused by the 15‐day spaceflight was limited at the phenotype and gene level after cultivation on the ground. After 79 days of spaceflight, significant changes in S. warneri were observed. The phosphotransferase system of S. warneri was upregulated by long‐term space stimulation, which resulted in a series of changes in the cell wall, biofilm, and chemical sensitivity, thus enhancing the resistance and adaptability of the bacterium to the external environment.
Collapse
Affiliation(s)
- Po Bai
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory Diseases, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bin Zhang
- Medical College, Nankai University, Tianjin, China
| | - Xian Zhao
- Medical School of Chinese PLA, Beijing, China
| | - Diangeng Li
- Medical School of Chinese PLA, Beijing, China
| | - Yi Yu
- Medical School of Chinese PLA, Beijing, China
| | | | - Bing Huang
- Medical School of Chinese PLA, Beijing, China
| | - Changting Liu
- Medical School of Chinese PLA, Beijing, China.,Medical College, Nankai University, Tianjin, China
| |
Collapse
|
22
|
The clinical benefit of array-based comparative genomic hybridization for detection of copy number variants in Czech children with intellectual disability and developmental delay. BMC Med Genomics 2019; 12:111. [PMID: 31337399 PMCID: PMC6651926 DOI: 10.1186/s12920-019-0559-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 07/16/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Chromosomal microarray analysis has been shown to be a valuable and cost effective assay for elucidating copy number variants (CNVs) in children with intellectual disability and developmental delay (ID/DD). METHODS In our study, we performed array-based comparative genomic hybridization (array-CGH) analysis using oligonucleotide-based platforms in 542 Czech patients with ID/DD, autism spectrum disorders and multiple congenital abnormalities. Prior to the array-CGH analysis, all the patients were first examined karyotypically using G-banding. The presence of CNVs and their putative derivation was confirmed using fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and predominantly relative quantitative polymerase chain reaction (qPCR). RESULTS In total, 5.9% (32/542) patients were positive for karyotypic abnormalities. Pathogenic/likely pathogenic CNVs were identified in 17.7% of them (96/542), variants of uncertain significance (VOUS) were detected in 4.8% (26/542) and likely benign CNVs in 9.2% of cases (50/542). We identified 6.6% (36/542) patients with known recurrent microdeletion (24 cases) and microduplication (12 cases) syndromes, as well as 4.8% (26/542) patients with non-recurrent rare microdeletions (21 cases) and microduplications (5 cases). In the group of patients with submicroscopic pathogenic/likely pathogenic CNVs (13.3%; 68/510) we identified 91.2% (62/68) patients with one CNV, 5.9% (4/68) patients with two likely independent CNVs and 2.9% (2/68) patients with two CNVs resulting from cryptic unbalanced translocations. Of all detected CNVs, 21% (31/147) had a de novo origin, 51% (75/147) were inherited and 28% (41/147) of unknown origin. In our cohort pathogenic/likely pathogenic microdeletions were more frequent than microduplications (69%; 51/74 vs. 31%; 23/74) ranging in size from 0.395 Mb to 10.676 Mb (microdeletions) and 0.544 Mb to 8.156 Mb (microduplications), but their sizes were not significantly different (P = 0.83). The pathogenic/likely pathogenic CNVs (median 2.663 Mb) were significantly larger than benign CNVs (median 0.394 Mb) (P < 0.00001) and likewise the pathogenic/likely pathogenic CNVs (median 2.663 Mb) were significantly larger in size than VOUS (median 0.469 Mb) (P < 0.00001). CONCLUSIONS Our results confirm the benefit of array-CGH in the current clinical genetic diagnostics leading to identification of the genetic cause of ID/DD in affected children.
Collapse
|
23
|
Abstract
Structural and quantitative chromosomal rearrangements, collectively referred to as structural variation (SV), contribute to a large extent to the genetic diversity of the human genome and thus are of high relevance for cancer genetics, rare diseases and evolutionary genetics. Recent studies have shown that SVs can not only affect gene dosage but also modulate basic mechanisms of gene regulation. SVs can alter the copy number of regulatory elements or modify the 3D genome by disrupting higher-order chromatin organization such as topologically associating domains. As a result of these position effects, SVs can influence the expression of genes distant from the SV breakpoints, thereby causing disease. The impact of SVs on the 3D genome and on gene expression regulation has to be considered when interpreting the pathogenic potential of these variant types.
Collapse
Affiliation(s)
- Malte Spielmann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany. .,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
24
|
Affiliation(s)
- Ivan Y. Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow 117152, Russian Federation
| |
Collapse
|
25
|
Bian Y, Yang L, Zhao M, Li Z, Xu Y, Zhou G, Li W, Zeng L. Identification of Key Genes and Pathways in Post-traumatic Stress Disorder Using Microarray Analysis. Front Psychol 2019; 10:302. [PMID: 30873067 PMCID: PMC6403462 DOI: 10.3389/fpsyg.2019.00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: Post-traumatic stress disorder (PTSD) is characterized by impaired fear extinction, excessive anxiety, and depression. However, the potential pathogenesis and cause of PTSD are not fully understood. Hence, the purpose of this study was to identify key genes and pathway involved in PTSD and reveal underlying molecular mechanisms by using bioinformatics analysis. Methods: The mRNA microarray expression profile dataset was retrieved and downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were screened using GEO2R. Gene ontology (GO) was used for gene function annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was performed for enrichment analysis. Subsequently, protein-protein interaction (PPI) network and module analysis by the plugin MCODE were mapped by Cytoscape software. Finally, these key genes were verified in stress-exposed models by Real-Time quantitative (qRT-PCR). In addition, we performed text mining among the key genes and pathway with PTSD by using COREMINE. Results: A total of 1004 DEGs were identified. Gene functional annotations and enrichment analysis indicated that the most associated pathway was closely related to the Wnt signaling pathway. Using PPI network and module analysis, we identified a group of "seed" genes. These genes were further verified by qRT-PCR. In addition, text mining indicated that the altered CYP1A2, SYT1, and NLGN1 affecting PTSD might work via the Wnt signaling pathway. Conclusion: By using bioinformatics analysis, we identified a number of genes and relevant pathway which may represent key mechanisms associated with PTSD. However, these findings require verification in future experimental studies.
Collapse
Affiliation(s)
- Yaoyao Bian
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Zhao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengjun Li
- Management School, Lancaster University, Lancaster, United Kingdom
| | - Yuying Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guilian Zhou
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenlin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
26
|
Danyel M, Suk EK, Raile V, Gellermann J, Knaus A, Horn D. Familial Xp11.22 microdeletion including SHROOM4 and CLCN5 is associated with intellectual disability, short stature, microcephaly and Dent disease: a case report. BMC Med Genomics 2019; 12:6. [PMID: 30630535 PMCID: PMC6327553 DOI: 10.1186/s12920-018-0471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/28/2018] [Indexed: 11/18/2022] Open
Abstract
Background Two interstitial microdeletions Xp11.22 including the CLCN5 and SHROOM4 genes were recently reported in a male individual affected with Dent disease, short stature, psychomotor delay and minor facial anomalies. Dent disease, characterized by a specific renal phenotype, is caused by truncating mutations of CLCN5 in the majority of affected cases. Case presentation Here, we present clinical and molecular findings in a male patient with clinical signs of Dent disease, developmental delay, short stature, microcephaly, and facial dysmorphism. Using molecular karyotyping we identified a hemizygous interstitial microdeletion Xp11.23p.11.22 of about 700 kb, which was inherited from his asymptomatic mother. Among the six deleted genes is CLCN5, which explains the renal phenotype in our patient. SHROOM4, which is partially deleted in this patient, is involved in neuronal development and was shown to be associated with X-linked intellectual disability. This is a candidate gene, the loss of which is thought to be associated with his further clinical manifestations. To rule out mutations in other genes related to intellectual disability, whole exome sequencing was performed. No other pathogenic variants that could explain the phenotypic features, were found. Conclusion We compared the clinical findings of the patient presented here with the reported case with an Xp11.22 microdeletion including CLCN5 and SHROOM4 and re-defined the phenotypic spectrum associated with this microdeletion. Electronic supplementary material The online version of this article (10.1186/s12920-018-0471-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Danyel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun Kyung Suk
- Praxis für Humangenetik-Friedrichstrasse, Berlin, Germany
| | - Vera Raile
- Department of Pediatric Neurology, Sozialpädiatrisches Zentrum (SPZ), Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Germany, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jutta Gellermann
- Department of Pediatric Nephrology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Berlin, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
27
|
Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, Rack K, Hastings R. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet 2019; 27:1-16. [PMID: 30275486 PMCID: PMC6303289 DOI: 10.1038/s41431-018-0244-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/26/2018] [Accepted: 07/17/2018] [Indexed: 11/28/2022] Open
Abstract
With advancing technology and the consequent shift towards an increasing application of molecular genetic techniques (e.g., microarrays, next-generation sequencing) with the potential for higher resolution in specific contexts, as well as the application of combined testing strategies for the diagnosis of chromosomal disorders, it is crucial that cytogenetic/cytogenomic services keep up to date with technology and have documents that provide guidance in this constantly evolving scenario. These new guidelines therefore aim to provide an updated, practical and easily available document that will enable genetic laboratories to operate within acceptable standards and to maintain a quality service.
Collapse
Affiliation(s)
- Marisa Silva
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Nicole de Leeuw
- Department of Human Genetics, Nijmegen Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kathy Mann
- Genetics Department, Viapath Analytics, Guy's Hospital, London, SE1 9RT, UK
| | - Heleen Schuring-Blom
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sian Morgan
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff, Wales, UK
| | - Daniela Giardino
- Lab. Citogenetica Medica, Istituto Auxologico Italiano, Milano, Italy
| | - Katrina Rack
- CEQAS/GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Ros Hastings
- CEQAS/GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK.
| |
Collapse
|
28
|
Jiang Y, Yin F, Chen Y, Yue L, Li L. Discovery of microarray-identified genes associated with the progression of cervical intraepithelial neoplasia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5667-5681. [PMID: 31949653 PMCID: PMC6963088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To identify genes potentially associated with cervical intraepithelial neoplasia (CIN) progression through bioinformatic approaches and clinicopathological verification. METHODS mRNA expression microarray data related to CIN progression were screened from the Gene Expression Omnibus (GEO) database and re-analyzed using bioinformatics approaches. Tissue microarray immunohistochemistry was conducted to assess the significant identified genes in CIN, cervical cancer, and normal tissues. RESULTS Biological annotation and text mining showed that 14 differentially expressed genes were directly or indirectly related to CIN progression. The expression of 5 up-regulated differentially expressed genes, namely, CCND2, TGFBR2, PRKCB, SH3KBP1 and WNT2B, was examined by tissue microarray immunohistochemistry, with the known CIN progression genes P16 and Ki-67 as the internal reference. Expression of TGFBR2, SH3KBP1, and WNT2B were not detected in CIN and cervical carcinoma, whereas no significant difference in the expression rate of PRKCB was detected (P > 0.05). CCND2, P16, and Ki-67 expression showed a gradual increasing trend in normal, CIN, and cervical cancer. CONCLUSIONS 14 differentially expressed genes were associated with CIN progression, as indicated by the microarray data analysis results. CCND2 may be a new marker for the prediction of CIN progression in addition to P16 and Ki-67.
Collapse
Affiliation(s)
- Yanming Jiang
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning, Guangxi, China
- Department of Gynecology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical UniversityNanning, Guangxi, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of EducationNanning, Guangxi, China
| | - Yujie Chen
- Department of Gynecology, Liuzhou People’s HospitalLiuzhou, Guangxi, China
| | - Liang Yue
- Department of Pathology, Liuzhou People’s HospitalLiuzhou, Guangxi, China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical UniversityNanning, Guangxi, China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of EducationNanning, Guangxi, China
| |
Collapse
|
29
|
Li S, Zhao X, Chang S, Li Y, Guo M, Guan Y. ERp57‑small interfering RNA silencing can enhance the sensitivity of drug‑resistant human ovarian cancer cells to paclitaxel. Int J Oncol 2018; 54:249-260. [PMID: 30431082 DOI: 10.3892/ijo.2018.4628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/08/2018] [Indexed: 11/05/2022] Open
Abstract
ERp57 has been identified to be associated with the chemoresistance of human ovarian cancer. However, its biological roles in the chemoresistance phenotype remain unclear. In the present study, the association of ERp57 with paclitaxel‑resistant cellular behavior was investigated and the sensitivity enhancement of chemoresistant human ovarian cancer cells to paclitaxel was examined using ERp57‑small interfering (si)RNA silencing. Cell viability, cell proliferation, cell apoptosis and cell migration were detected using an MTT assay, clonogenic assay, flow cytometry analysis and transwell assay. Furthermore, mRNA expression levels of ERp57 and protein expression levels of ERp57, STAT3, phosphorylated STAT3, PCNA, nucelolin, TUBB3, P-gp, vimentin, Bcl-2, Bax, Bcl-xl, p53, MMP1, MMP2 and MMP9 of paclitaxel-sensitive human SKOV3 ovarian cancer cells were compared with paclitaxel-resistant counterpart SKOV3/tax using the real-time PCR and western blot analysis. ERp57 was highly expressed in the paclitaxel‑resistant SKOV3/tax cells, and experimental results concluded that the paclitaxel‑resistance phenotype was due primarily to the activation of the STAT3 signaling pathway. ERp57 overexpression by lentiviral particle infection decreased the sensitivity of SKOV3 cells to paclitaxel. Furthermore, ERp57‑siRNA silencing restored paclitaxel sensitivity of SKOV3/tax cells. Notably, the IC50 value of ERp57‑siRNA silenced SKOV3/tax cells was reduced to the original level and colony survival was significantly decreased in comparison with that of SKOV3/tax cells. Additionally, co‑treatment of ERp57‑siRNA silencing and paclitaxel could inhibit the STAT3 signaling pathway and downregulate the expression levels of downstream proteins. Notably, ERp57‑siRNA and 100 nM paclitaxel co‑treatment downregulated Bcl‑2, Bcl‑xl, MMP2, MMP9, TUBB3 and P‑gp expression levels and upregulated the expression of Bax protein. Furthermore, co‑treatment promoted change of the isoform of p53 to p53/p47. Bioinformatics analyses supported the experimental observations that ERp57 was associated with drug resistance in ovarian cancer. The present study implies that ERp57 is a potential therapeutic target for the treatment of paclitaxel‑resistant human ovarian cancer.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xiaoyun Zhao
- Department of Microbiology and Cell Biology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yanqiu Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Min Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
30
|
Li Y, Liu G, Zhang J, Zhong X, He Z. Identification of key genes in human airway epithelial cells in response to respiratory pathogens using microarray analysis. BMC Microbiol 2018; 18:58. [PMID: 29884128 PMCID: PMC5994059 DOI: 10.1186/s12866-018-1187-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 05/16/2018] [Indexed: 11/14/2022] Open
Abstract
Background Airway epithelium is the primary target for pathogens. It functions not only as a mechanical barrier, but also as an important sentinel of the innate immune system. However, the interactions and processes between host airway epithelium and pathogens are not fully understood. Results In this study, we identified responses of the human airway epithelium cells to respiratory pathogen infection. We retrieved three mRNA expression microarray datasets from the Gene Expression Omnibus database, and identified 116 differentially expressed genes common to all three datasets. Gene functional annotations were performed using Gene Ontology and pathway analyses. Using protein-protein interaction network analysis and text mining, we identified a subset of genes functioned as a group and associated with infection, inflammation, tissue adhesion, and receptor internalization in infected epithelial cells. These genes were further identified in BESE-2B cells in response to Talaromyces marneffei by Real-Time quantitative PCR (qRT-PCR). In addition, we performed an in silico prediction of microRNA-target interactions and examined our findings. Conclusions Using bioinformatics analysis, we identified several genes that may serve as biomarkers for the diagnosis or the surveillance of early respiratory tract infection, and identified additional genes and miRNAs that warrant further fundamental experimental research. Electronic supplementary material The online version of this article (10.1186/s12866-018-1187-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinghua Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guangnan Liu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiyi He
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
31
|
Huang R, Gu W, Sun B, Gao L. Identification of COL4A1 as a potential gene conferring trastuzumab resistance in gastric cancer based on bioinformatics analysis. Mol Med Rep 2018; 17:6387-6396. [PMID: 29512712 PMCID: PMC5928613 DOI: 10.3892/mmr.2018.8664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
Trastuzumab, the first targeted antibody against human epidermal growth factor receptor 2 (HER2), has been used to treat gastric cancer patients with HER2 overexpression. However, trastuzumab resistance often occurs following an initial period of benefits, and the underlying mechanisms remain largely unclear. The present study revealed that collagen type IV α1 chain (COL4A1), whose expression is upregulated in gastric cancer tissues and trastuzumab-resistant gastric cancer cells, may potentially confer trastuzumab resistance in gastric cancer. By performing bioinformatics analysis of 2 microarray datasets, the present study initially identified COL4A1, overexpressed in gastric cancer tissues and trastuzumab-resistant gastric cancer cells, as a potential candidate for inducing trastuzumab resistance. The drug resistance function of COL4A1 in gastric cancer was then validated by performing protein/gene interactions and biological process annotation analyses, and further validated by analyzing the functionality of microRNAs that target COL4A1 mRNA. Collectively, these data indicated that COL4A1 may confer trastuzumab resistance in gastric cancer.
Collapse
Affiliation(s)
- Ru Huang
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Wenchao Gu
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Bin Sun
- Department of Pharmacy, No. 210 Hospital of PLA, Dalian, Liaoning 116000, P.R. China
| | - Lei Gao
- Department of Heart Failure, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
32
|
Nowakowska B. Clinical interpretation of copy number variants in the human genome. J Appl Genet 2017; 58:449-457. [PMID: 28963714 PMCID: PMC5655614 DOI: 10.1007/s13353-017-0407-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
Molecular methods, by which copy number variants (CNVs) detection is available, have been gradually introduced into routine diagnostics over the last 15 years. Despite this, some CNVs continue to be a huge challenge when it comes to clinical interpretation. CNVs are an important source of normal and pathogenic variants, but, in many cases, their impact on human health depends on factors that are not yet known. Therefore, perception of their clinical consequences can change over time, as our knowledge grows. This review summarises guidelines that facilitate correct classification of identified changes and discusses difficulties with the interpretation of rare, small CNVs.
Collapse
Affiliation(s)
- Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.
| |
Collapse
|
33
|
RNA-seq analysis of the kidneys of broiler chickens fed diets containing different concentrations of calcium. Sci Rep 2017; 7:11740. [PMID: 28924246 PMCID: PMC5603577 DOI: 10.1038/s41598-017-11379-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/23/2017] [Indexed: 01/13/2023] Open
Abstract
Calcium (Ca) is required for normal growth and is involved in cellular physiology, signal transduction, and bone mineralization. In humans, inadequate Ca intake causes hypocalcaemia, and excessive Ca intake causes hypercalcemia. In chicken, Ca is also required for body weight gain and eggshell formation. However, transcriptomic responses to low/high Ca intake, and mechanisms affecting body weight have not been explored. In this study, we performed comparative RNA sequencing (RNA-seq) using the kidney of broiler chickens fed diets containing 0.8, 1.0, and 1.2% Ca. Annotation of RNA-seq data revealed a significant number of differentially expressed genes (DEGs) in the kidney via pairwise comparison using Cufflinks and edgeR. Using edgeR, we identified 12 DEGs; seven overlapped with those found by cufflinks. Seven DEGs were validated by real-time quantitative-PCR (qRT-PCR) in Ca-supplemented kidneys, and the results correlated with the RNA-seq data. DEGs identified by cufflinks/edgeR were subjected to pathway enrichment, protein/protein interaction, and co-occurrence analyses to determine their involvement in disease. The National Research Council (NRC) recommended Ca intake for 21-day post-hatch broilers is about 1.0%. Our findings suggest that higher-than-recommended Ca intake (1.2%) could reduce body weight gain in broilers, and that affected DEGs are related to stress-induced diseases, such as hypertension.
Collapse
|
34
|
Sandrock-Lang K, Bartsch I, Buechele N, Koehler U, Simon-Gabriel CP, Eckenweiler M, Zieger B. Novel mutation in two brothers with Hermansky Pudlak syndrome type 3. Blood Cells Mol Dis 2017; 67:75-80. [DOI: 10.1016/j.bcmd.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 11/26/2022]
|
35
|
Ozyilmaz B, Kirbiyik O, Koc A, Ozdemir TR, Kaya OO, Guvenc MS, Erdoğan KM, Kutbay YB. Experiences in microarray-based evaluation of developmental disabilities and congenital anomalies. Clin Genet 2017; 92:372-379. [PMID: 28128450 DOI: 10.1111/cge.12978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chromosomal microarray analysis is the first-tier test for the evaluation of developmental disabilities and congenital anomalies. In this report, we present CMA results of 971 patient and 301 parent samples. MATERIALS AND METHODS Among 971 patient samples, 133 (13.6%) had pathogenic variants. RESULTS While analyzing, an "in-house" variant database was also used besides other databases. Owing to this, we have found chance to report the most frequent benign variants in Turkish population. CONCLUSION With the additional data we acquired in this study, we also emphasized the high potential of CMA in revealing single gene disorders and novel gene-phenotype associations as well as copy number variations.
Collapse
Affiliation(s)
- B Ozyilmaz
- Department of Medical Genetics, Izmir Tepecik Education and Research Hospital, Turkey
| | - O Kirbiyik
- Department of Medical Genetics, Izmir Tepecik Education and Research Hospital, Turkey
| | - A Koc
- Department of Medical Genetics, Izmir Tepecik Education and Research Hospital, Turkey
| | - T R Ozdemir
- Department of Medical Genetics, Izmir Tepecik Education and Research Hospital, Turkey
| | - O O Kaya
- Department of Medical Genetics, Izmir Tepecik Education and Research Hospital, Turkey
| | - M S Guvenc
- Department of Medical Genetics, Izmir Tepecik Education and Research Hospital, Turkey
| | - K M Erdoğan
- Department of Medical Genetics, Izmir Tepecik Education and Research Hospital, Turkey
| | - Y B Kutbay
- Department of Medical Genetics, Izmir Tepecik Education and Research Hospital, Turkey
| |
Collapse
|
36
|
Cuccaro D, De Marco EV, Cittadella R, Cavallaro S. Copy Number Variants in Alzheimer's Disease. J Alzheimers Dis 2017; 55:37-52. [PMID: 27662298 PMCID: PMC5115612 DOI: 10.3233/jad-160469] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating disease mainly afflicting elderly people, characterized by decreased cognition, loss of memory, and eventually death. Although risk and deterministic genes are known, major genetics research programs are underway to gain further insights into the inheritance of AD. In the last years, in particular, new developments in genome-wide scanning methodologies have enabled the association of a number of previously uncharacterized copy number variants (CNVs, gain or loss of DNA) in AD. Because of the exceedingly large number of studies performed, it has become difficult for geneticists as well as clinicians to systematically follow, evaluate, and interpret the growing number of (sometime conflicting) CNVs implicated in AD. In this review, after a brief introduction of this type of structural variation, and a description of available databases, computational analyses, and technologies involved, we provide a systematic review of all published data showing statistical and scientific significance of pathogenic CNVs and discuss the role they might play in AD.
Collapse
Affiliation(s)
- Denis Cuccaro
- Institute of Neurological Sciences, National Research Council, Section of Catania, Italy
| | | | - Rita Cittadella
- Institute of Neurological Sciences, National Research Council, Section of Mangone, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, National Research Council, Section of Catania, Italy
- Institute of Neurological Sciences, National Research Council, Section of Mangone, Italy
| |
Collapse
|
37
|
Microarray-based identification of genes associated with cancer progression and prognosis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:127. [PMID: 27567667 PMCID: PMC5002170 DOI: 10.1186/s13046-016-0403-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths. The average survival and 5-year survival rates of HCC patients still remains poor. Thus, there is an urgent need to better understand the mechanisms of cancer progression in HCC and to identify useful biomarkers to predict prognosis. METHODS Public data portals including Oncomine, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) profiles were used to retrieve the HCC-related microarrays and to identify potential genes contributed to cancer progression. Bioinformatics analyses including pathway enrichment, protein/gene interaction and text mining were used to explain the potential roles of the identified genes in HCC. Quantitative real-time polymerase chain reaction analysis and Western blotting were used to measure the expression of the targets. The data were analysed by SPSS 20.0 software. RESULTS We identified 80 genes that were significantly dysregulated in HCC according to four independent microarrays covering 386 cases of HCC and 327 normal liver tissues. Twenty genes were consistently and stably dysregulated in the four microarrays by at least 2-fold and detection of gene expression by RT-qPCR and western blotting showed consistent expression profiles in 11 HCC tissues compared with corresponding paracancerous tissues. Eleven of these 20 genes were associated with disease-free survival (DFS) or overall survival (OS) in a cohort of 157 HCC patients, and eight genes were associated with tumour pathologic PT, tumour stage or vital status. Potential roles of those 20 genes in regulation of HCC progression were predicted, primarily in association with metastasis. INTS8 was specifically correlated with most clinical characteristics including DFS, OS, stage, metastasis, invasiveness, diagnosis, and age. CONCLUSION The significantly dysregulated genes identified in this study were associated with cancer progression and prognosis in HCC, and might be potential therapeutic targets for HCC treatment or potential biomarkers for diagnosis and prognosis.
Collapse
|
38
|
Boggula VR, Agarwal M, Kumar R, Awasthi S, Phadke SR. Recurrent benign copy number variants & issues in interpretation of variants of unknown significance identified by cytogenetic microarray in Indian patients with intellectual disability. Indian J Med Res 2016; 142:699-712. [PMID: 26831419 PMCID: PMC4774067 DOI: 10.4103/0971-5916.174561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Cytogenetic microarray (CMA) is now recommended as a first-tier clinical diagnostic test in cases with idiopathic intellectual disability and/or developmental delay (ID/DD). Along with clinically relevant variants, CMA platforms also identify variants of unknown significance (VUS). This study was done to look for utility and various issues in interpretation of copy number variants (CNVs) in Indian patients with ID/DD. METHODS The CMA was performed in 86 Indian patients with idiopathic ID/DD with or without dysmorphic features. CNV was reported if copy number gain was >400 kb in size and copy number loss was > 200 kb in size. RESULTS Pathogenic CNVs were found in 18 of 86 (20.9%) patients. One large (14 Mb size) de novo heterozygous copy number gain was found in one patient. VUS (total 31) were present in 17 of 86 (19.7%) patients. Five novel recurrent benign CNVs were also present in our patients. INTERPRETATION & CONCLUSIONS Our findings highlight the difficulties in interpretation of CNVs identified by CMA. More Indian data on VUS and recurrent benign CNVs will be helpful in the interpretation of CMA in patients with ID/DD.
Collapse
Affiliation(s)
| | | | | | | | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
39
|
Liu X, Zou J, Su J, Lu Y, Zhang J, Li L, Yin F. Downregulation of transient receptor potential cation channel, subfamily C, member 1 contributes to drug resistance and high histological grade in ovarian cancer. Int J Oncol 2015; 48:243-52. [PMID: 26647723 DOI: 10.3892/ijo.2015.3254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/15/2015] [Indexed: 11/05/2022] Open
Abstract
Transient receptor potential cation channel, subfamily C, member 1 (TRPC1) participates in many physiological functions but has also been implicated in cancer development. However, little is known about the role of TRPC1 in ovarian cancer (OC), including the drug resistance of these tumors. In the present study, a significant and consistent downregulation of TRPC1 in drug-resistant OC tissues/cells was determined using real-time quantitative polymerase chain reaction assays and the microarrays deposited in Oncomine and Gene Expression Omnibus (GEO) profiles. Protein/gene-protein/gene and protein-chemical interactions indicated that TRPC1 interacts with 14 proteins/genes and 6 chemicals, all of which are involved in the regulation of drug resistance in OC. Biological process annotation of TRPC1, OC, and drug resistance indicated a role for TRPC1 in drug-resistance-related functions in OC, mainly via the cell cycle, gene expression and cell growth and cell death. Analysis of mRNA-microRNA interactions showed that 8 out of 11 major pathways enriched from 38 predominant microRNAs targeting TRPC1 were involved in the regulation of drug resistance in OC, and 8 out of these top 10 microRNAs were implicated in the drug resistance in ovarian and other cancers. In a clinical analysis using data obtained from The Cancer Genome Atlas project (TCGA) cohort on 341 OC patients, TRPC1 expression was found to differ significantly between grade 2 and grade 3 tumors, with low-level expression correlating with higher tumor grade. This is the first report to show a potential association between the downregulation of TRPC1 and both drug resistance and high histological tumor grade in OC. Our results provide the basis for further investigations of the drug-resistance-related functions of TRPC1 in OC and other forms of cancer.
Collapse
Affiliation(s)
- Xia Liu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Zou
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Su
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
40
|
Conte F, Oti M, Dixon J, Carels CEL, Rubini M, Zhou H. Systematic analysis of copy number variants of a large cohort of orofacial cleft patients identifies candidate genes for orofacial clefts. Hum Genet 2015; 135:41-59. [PMID: 26561393 PMCID: PMC4698300 DOI: 10.1007/s00439-015-1606-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Orofacial clefts (OFCs) represent a large fraction of human birth defects and are one of the most common phenotypes affected by large copy number variants (CNVs). Due to the limited number of CNV patients in individual centers, CNV analyses of a large number of OFC patients are challenging. The present study analyzed 249 genomic deletions and 226 duplications from a cohort of 312 OFC patients reported in two publicly accessible databases of chromosome imbalance and phenotype in humans, DECIPHER and ECARUCA. Genomic regions deleted or duplicated in multiple patients were identified, and genes in these overlapping CNVs were prioritized based on the number of genes encompassed by the region and gene expression in embryonic mouse palate. Our analyses of these overlapping CNVs identified two genes known to be causative for human OFCs, SATB2 and MEIS2, and 12 genes (DGCR6, FGF2, FRZB, LETM1, MAPK3, SPRY1, THBS1, TSHZ1, TTC28, TULP4, WHSC1, WHSC2) that are associated with OFC or orofacial development. Additionally, we report 34 deleted and 24 duplicated genes that have not previously been associated with OFCs but are associated with the BMP, MAPK and RAC1 pathways. Statistical analyses show that the high number of overlapping CNVs is not due to random occurrence. The identified genes are not located in highly variable genomic regions in healthy populations and are significantly enriched for genes that are involved in orofacial development. In summary, we report a CNV analysis pipeline of a large cohort of OFC patients and identify novel candidate OFC genes.
Collapse
Affiliation(s)
- Federica Conte
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands.,Medical Genetic Unit, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Martin Oti
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jill Dixon
- Faculty of Medical and Human Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Carine E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michele Rubini
- Medical Genetic Unit, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands. .,Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
41
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
42
|
Clinically relevant copy number variations detected in cerebral palsy. Nat Commun 2015; 6:7949. [PMID: 26236009 PMCID: PMC4532872 DOI: 10.1038/ncomms8949] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/30/2015] [Indexed: 12/29/2022] Open
Abstract
Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age of onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of aetiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (∼1% rate in controls). In four children, large chromosomal abnormalities deemed likely pathogenic were found, and they were significantly more likely to have severe neuromotor impairments than those CP subjects without such alterations. Overall, the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families.
Collapse
|
43
|
Abstract
In the perinatal setting, chromosome imbalances cause a range of clinically significant disorders and increase the risk for other particular phenotypes. As technologies have improved to detect increasingly smaller deletions and duplications, collectively referred to as copy number variants (CNVs), clinicians are learning the significant role that these types of genomic variants play in human disease and their high frequency in ∼ 1% of all pregnancies. This article highlights key aspects of CNV detection and interpretation used during the course of clinical care in the prenatal and neonatal periods. Early diagnosis and accurate interpretation are important for targeted clinical management.
Collapse
Affiliation(s)
- Christa Lese Martin
- Geisinger Health System, Autism & Developmental Medicine Institute, 120 Hamm Drive, Lewisburg, PA 17837, USA.
| | - Brianne E Kirkpatrick
- Geisinger Health System, Autism & Developmental Medicine Institute, 120 Hamm Drive, Lewisburg, PA 17837, USA
| | - David H Ledbetter
- Geisinger Health System, Autism & Developmental Medicine Institute, 120 Hamm Drive, Lewisburg, PA 17837, USA
| |
Collapse
|
44
|
Faas BHW. Prenatal genetic care: debates and considerations of the past, present and future. Expert Opin Biol Ther 2015; 15:1101-5. [PMID: 25959656 DOI: 10.1517/14712598.2015.1045873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
After karyotyping invasively obtained fetal material for decades, the field of prenatal genetic care has changed tremendously since the turn of the century. The introduction of novel technologies and strategies went along with concerns and debates, in which key issues were costs, the finding of variants of unknown or uncertain clinical relevance, commercialization and ethical and social issues. At present, there is an explosion of new genomic technologies, which need critical assessment prior to implementation, especially in the prenatal field. The key issues of the debates we had in the past will again play a major role in guiding us toward careful implementation of these new techniques in future.
Collapse
Affiliation(s)
- Brigitte H W Faas
- Radboud University Medical Center, Department of Human Genetics , Nijmegen, PO Box 9101, The Netherlands +31 24 3613977 ;
| |
Collapse
|
45
|
Tetreault M, Bareke E, Nadaf J, Alirezaie N, Majewski J. Whole-exome sequencing as a diagnostic tool: current challenges and future opportunities. Expert Rev Mol Diagn 2015; 15:749-60. [PMID: 25959410 DOI: 10.1586/14737159.2015.1039516] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Whole-exome sequencing (WES) represents a significant breakthrough in the field of human genetics. This technology has largely contributed to the identification of new disease-causing genes and is now entering clinical laboratories. WES represents a powerful tool for diagnosis and could reduce the 'diagnostic odyssey' for many patients. In this review, we present a technical overview of WES analysis, variants annotation and interpretation in a clinical setting. We evaluate the usefulness of clinical WES in different clinical indications, such as rare diseases, cancer and complex diseases. Finally, we discuss the efficacy of WES as a diagnostic tool and the impact on patient management.
Collapse
Affiliation(s)
- Martine Tetreault
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
46
|
Liu X, Gao Y, Zhao B, Li X, Lu Y, Zhang J, Li D, Li L, Yin F. Discovery of microarray-identified genes associated with ovarian cancer progression. Int J Oncol 2015; 46:2467-78. [PMID: 25891226 DOI: 10.3892/ijo.2015.2971] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/09/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most lethal cancer of female reproductive system. There is a consistent and urgent need to better understand its mechanism. In this study, we retrieved 186 genes that were dysregulated by at least 4-fold in 594 ovarian serous cystadenocarcinomas in comparison with eight normal ovaries, according to The Cancer Genome Atlas Ovarian Statistics data deposited in Oncomine database. DAVID analysis of these genes enriched two biological processes indicating that the cell cycle and microtubules might play critical roles in ovarian cancer progression. Among these 186 genes, 46 were dysregulated by at least 10-fold and their expression was further confirmed by the Bonome Ovarian Statistics data deposited in Oncomine, which covered 185 cases of ovarian carcinomas and 10 cases of normal ovarian surface epithelium. Six genes, including aldehyde dehydrogenase 1 family, member A2 (ALDH1A2), alcohol dehydrogenase 1B (class I), β polypeptide (ADH1B), NEL-like 2 (chicken) (NELL2), hemoglobin, β (HBB), ATP-binding cassette, sub-family A (ABC1), member 8 (ABCA8) and hemoglobin, α1 (HBA1) were identified to be downregulated by at least 10-fold in 779 ovarian cancers compared with 18 normal controls. Using mRNA expression profiles retrieved from microarrays deposited in the Gene Expression Omnibus Profiles database, RT-qPCR measurement and bioinformatics analysis, we further indicated that high expression of HBB might predict a poorer 5-year survival, high expression of ALDH1A2 and ABCA8 might predict a poor outcome; while ALDH1A2, ADH1B, HBB and ABCA8, in particular the former two genes, might be associated with drug resistance, and ALDH1A2 and NELL2 might contribute to invasiveness and metastasis in ovarian cancer. This study thus contributes to our understanding of the mechanism of ovarian cancer progression and development, and the six identified genes may be potential therapeutic targets and biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Xia Liu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yutao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Beijing 100020, P.R. China
| | - Bingbing Zhao
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaofeng Li
- The Orthopedics and Traumatology Hospital of Guangxi, Nanning, Guangxi 530022, P.R. China
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Danrong Li
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
47
|
Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of genetic techniques: past, present, and beyond. BIOMED RESEARCH INTERNATIONAL 2015; 2015:461524. [PMID: 25874212 PMCID: PMC4385642 DOI: 10.1155/2015/461524] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/05/2014] [Indexed: 12/05/2022]
Abstract
Genetics is the study of heredity, which means the study of genes and factors related to all aspects of genes. The scientific history of genetics began with the works of Gregor Mendel in the mid-19th century. Prior to Mendel, genetics was primarily theoretical whilst, after Mendel, the science of genetics was broadened to include experimental genetics. Developments in all fields of genetics and genetic technology in the first half of the 20th century provided a basis for the later developments. In the second half of the 20th century, the molecular background of genetics has become more understandable. Rapid technological advancements, followed by the completion of Human Genome Project, have contributed a great deal to the knowledge of genetic factors and their impact on human life and diseases. Currently, more than 1800 disease genes have been identified, more than 2000 genetic tests have become available, and in conjunction with this at least 350 biotechnology-based products have been released onto the market. Novel technologies, particularly next generation sequencing, have dramatically accelerated the pace of biological research, while at the same time increasing expectations. In this paper, a brief summary of genetic history with short explanations of most popular genetic techniques is given.
Collapse
Affiliation(s)
- Asude Alpman Durmaz
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| | - Emin Karaca
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology, Warsaw University Faculty of Medicine, 61 02-091 Warsaw, Poland
| | - Gokce Toruner
- Institute of Genomic Medicine, UMDNJ-NJ Medical School, Newark, NJ 07103, USA
| | - Jacqueline Schoumans
- Department of Medical Genetics, Cancer Cytogenetic Unit, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Ozgur Cogulu
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| |
Collapse
|
48
|
Chromosomal microarrays testing in children with developmental disabilities and congenital anomalies. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2015. [DOI: 10.1016/j.jpedp.2014.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Lay-Son G, Espinoza K, Vial C, Rivera JC, Guzmán ML, Repetto GM. Chromosomal microarrays testing in children with developmental disabilities and congenital anomalies. J Pediatr (Rio J) 2015; 91:189-95. [PMID: 25458876 DOI: 10.1016/j.jped.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/28/2014] [Accepted: 07/09/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Clinical use of microarray-based techniques for the analysis of many developmental disorders has emerged during the last decade. Thus, chromosomal microarray has been positioned as a first-tier test. This study reports the first experience in a Chilean cohort. METHODS Chilean patients with developmental disabilities and congenital anomalies were studied with a high-density microarray (CytoScan™ HD Array, Affymetrix, Inc., Santa Clara, CA, USA). Patients had previous cytogenetic studies with either a normal result or a poorly characterized anomaly. RESULTS This study tested 40 patients selected by two or more criteria, including: major congenital anomalies, facial dysmorphism, developmental delay, and intellectual disability. Copy number variants (CNVs) were found in 72.5% of patients, while a pathogenic CNV was found in 25% of patients and a CNV of uncertain clinical significance was found in 2.5% of patients. CONCLUSION Chromosomal microarray analysis is a useful and powerful tool for diagnosis of developmental diseases, by allowing accurate diagnosis, improving the diagnosis rate, and discovering new etiologies. The higher cost is a limitation for widespread use in this setting.
Collapse
Affiliation(s)
- Guillermo Lay-Son
- Center for Human Genetics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Hospital Padre Hurtado, Santiago, Chile.
| | - Karena Espinoza
- Center for Human Genetics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Vial
- Center for Human Genetics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Juan C Rivera
- Center for Human Genetics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - María L Guzmán
- Center for Human Genetics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Hospital Padre Hurtado, Santiago, Chile
| | - Gabriela M Repetto
- Center for Human Genetics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Hospital Padre Hurtado, Santiago, Chile
| |
Collapse
|
50
|
Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet 2015; 16:172-83. [DOI: 10.1038/nrg3871] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|